Move library call simplification statistic to instcombine
[oota-llvm.git] / lib / Transforms / Scalar / SimplifyLibCalls.cpp
index 7c415e5150dc8d6f42ebc5c4344167a77557f752..0d3a2e0a5c8b64ca9d1c72bd497ef8c2784aca2d 100644 (file)
 #define DEBUG_TYPE "simplify-libcalls"
 #include "llvm/Transforms/Scalar.h"
 #include "llvm/Transforms/Utils/BuildLibCalls.h"
-#include "llvm/Intrinsics.h"
+#include "llvm/IRBuilder.h"
 #include "llvm/LLVMContext.h"
 #include "llvm/Module.h"
 #include "llvm/Pass.h"
-#include "llvm/Support/IRBuilder.h"
-#include "llvm/Analysis/ValueTracking.h"
-#include "llvm/Target/TargetData.h"
-#include "llvm/Target/TargetLibraryInfo.h"
+#include "llvm/ADT/STLExtras.h"
 #include "llvm/ADT/SmallPtrSet.h"
-#include "llvm/ADT/StringMap.h"
 #include "llvm/ADT/Statistic.h"
-#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/StringMap.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/Support/CommandLine.h"
 #include "llvm/Support/Debug.h"
 #include "llvm/Support/raw_ostream.h"
+#include "llvm/DataLayout.h"
+#include "llvm/Target/TargetLibraryInfo.h"
 #include "llvm/Config/config.h"            // FIXME: Shouldn't depend on host!
 using namespace llvm;
 
-STATISTIC(NumSimplified, "Number of library calls simplified");
 STATISTIC(NumAnnotated, "Number of attributes added to library functions");
 
 //===----------------------------------------------------------------------===//
@@ -48,7 +47,7 @@ namespace {
 class LibCallOptimization {
 protected:
   Function *Caller;
-  const TargetData *TD;
+  const DataLayout *TD;
   const TargetLibraryInfo *TLI;
   LLVMContext* Context;
 public:
@@ -63,7 +62,7 @@ public:
   virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B)
     =0;
 
-  Value *OptimizeCall(CallInst *CI, const TargetData *TD,
+  Value *OptimizeCall(CallInst *CI, const DataLayout *TD,
                       const TargetLibraryInfo *TLI, IRBuilder<> &B) {
     Caller = CI->getParent()->getParent();
     this->TD = TD;
@@ -81,1359 +80,6 @@ public:
 } // End anonymous namespace.
 
 
-//===----------------------------------------------------------------------===//
-// Helper Functions
-//===----------------------------------------------------------------------===//
-
-/// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
-/// value is equal or not-equal to zero.
-static bool IsOnlyUsedInZeroEqualityComparison(Value *V) {
-  for (Value::use_iterator UI = V->use_begin(), E = V->use_end();
-       UI != E; ++UI) {
-    if (ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
-      if (IC->isEquality())
-        if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
-          if (C->isNullValue())
-            continue;
-    // Unknown instruction.
-    return false;
-  }
-  return true;
-}
-static bool CallHasFloatingPointArgument(const CallInst *CI) {
-  for (CallInst::const_op_iterator it = CI->op_begin(), e = CI->op_end();
-       it != e; ++it) {
-    if ((*it)->getType()->isFloatingPointTy())
-      return true;
-  }
-  return false;
-}
-
-/// IsOnlyUsedInEqualityComparison - Return true if it is only used in equality
-/// comparisons with With.
-static bool IsOnlyUsedInEqualityComparison(Value *V, Value *With) {
-  for (Value::use_iterator UI = V->use_begin(), E = V->use_end();
-       UI != E; ++UI) {
-    if (ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
-      if (IC->isEquality() && IC->getOperand(1) == With)
-        continue;
-    // Unknown instruction.
-    return false;
-  }
-  return true;
-}
-
-//===----------------------------------------------------------------------===//
-// String and Memory LibCall Optimizations
-//===----------------------------------------------------------------------===//
-
-//===---------------------------------------===//
-// 'strcat' Optimizations
-namespace {
-struct StrCatOpt : public LibCallOptimization {
-  virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
-    // Verify the "strcat" function prototype.
-    const FunctionType *FT = Callee->getFunctionType();
-    if (FT->getNumParams() != 2 ||
-        FT->getReturnType() != B.getInt8PtrTy() ||
-        FT->getParamType(0) != FT->getReturnType() ||
-        FT->getParamType(1) != FT->getReturnType())
-      return 0;
-
-    // Extract some information from the instruction
-    Value *Dst = CI->getArgOperand(0);
-    Value *Src = CI->getArgOperand(1);
-
-    // See if we can get the length of the input string.
-    uint64_t Len = GetStringLength(Src);
-    if (Len == 0) return 0;
-    --Len;  // Unbias length.
-
-    // Handle the simple, do-nothing case: strcat(x, "") -> x
-    if (Len == 0)
-      return Dst;
-
-    // These optimizations require TargetData.
-    if (!TD) return 0;
-
-    EmitStrLenMemCpy(Src, Dst, Len, B);
-    return Dst;
-  }
-
-  void EmitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len, IRBuilder<> &B) {
-    // We need to find the end of the destination string.  That's where the
-    // memory is to be moved to. We just generate a call to strlen.
-    Value *DstLen = EmitStrLen(Dst, B, TD);
-
-    // Now that we have the destination's length, we must index into the
-    // destination's pointer to get the actual memcpy destination (end of
-    // the string .. we're concatenating).
-    Value *CpyDst = B.CreateGEP(Dst, DstLen, "endptr");
-
-    // We have enough information to now generate the memcpy call to do the
-    // concatenation for us.  Make a memcpy to copy the nul byte with align = 1.
-    B.CreateMemCpy(CpyDst, Src,
-                   ConstantInt::get(TD->getIntPtrType(*Context), Len + 1), 1);
-  }
-};
-
-//===---------------------------------------===//
-// 'strncat' Optimizations
-
-struct StrNCatOpt : public StrCatOpt {
-  virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
-    // Verify the "strncat" function prototype.
-    const FunctionType *FT = Callee->getFunctionType();
-    if (FT->getNumParams() != 3 ||
-        FT->getReturnType() != B.getInt8PtrTy() ||
-        FT->getParamType(0) != FT->getReturnType() ||
-        FT->getParamType(1) != FT->getReturnType() ||
-        !FT->getParamType(2)->isIntegerTy())
-      return 0;
-
-    // Extract some information from the instruction
-    Value *Dst = CI->getArgOperand(0);
-    Value *Src = CI->getArgOperand(1);
-    uint64_t Len;
-
-    // We don't do anything if length is not constant
-    if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
-      Len = LengthArg->getZExtValue();
-    else
-      return 0;
-
-    // See if we can get the length of the input string.
-    uint64_t SrcLen = GetStringLength(Src);
-    if (SrcLen == 0) return 0;
-    --SrcLen;  // Unbias length.
-
-    // Handle the simple, do-nothing cases:
-    // strncat(x, "", c) -> x
-    // strncat(x,  c, 0) -> x
-    if (SrcLen == 0 || Len == 0) return Dst;
-
-    // These optimizations require TargetData.
-    if (!TD) return 0;
-
-    // We don't optimize this case
-    if (Len < SrcLen) return 0;
-
-    // strncat(x, s, c) -> strcat(x, s)
-    // s is constant so the strcat can be optimized further
-    EmitStrLenMemCpy(Src, Dst, SrcLen, B);
-    return Dst;
-  }
-};
-
-//===---------------------------------------===//
-// 'strchr' Optimizations
-
-struct StrChrOpt : public LibCallOptimization {
-  virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
-    // Verify the "strchr" function prototype.
-    const FunctionType *FT = Callee->getFunctionType();
-    if (FT->getNumParams() != 2 ||
-        FT->getReturnType() != B.getInt8PtrTy() ||
-        FT->getParamType(0) != FT->getReturnType() ||
-        !FT->getParamType(1)->isIntegerTy(32))
-      return 0;
-
-    Value *SrcStr = CI->getArgOperand(0);
-
-    // If the second operand is non-constant, see if we can compute the length
-    // of the input string and turn this into memchr.
-    ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
-    if (CharC == 0) {
-      // These optimizations require TargetData.
-      if (!TD) return 0;
-
-      uint64_t Len = GetStringLength(SrcStr);
-      if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32))// memchr needs i32.
-        return 0;
-
-      return EmitMemChr(SrcStr, CI->getArgOperand(1), // include nul.
-                        ConstantInt::get(TD->getIntPtrType(*Context), Len),
-                        B, TD);
-    }
-
-    // Otherwise, the character is a constant, see if the first argument is
-    // a string literal.  If so, we can constant fold.
-    std::string Str;
-    if (!GetConstantStringInfo(SrcStr, Str))
-      return 0;
-
-    // strchr can find the nul character.
-    Str += '\0';
-
-    // Compute the offset.
-    size_t I = Str.find(CharC->getSExtValue());
-    if (I == std::string::npos) // Didn't find the char.  strchr returns null.
-      return Constant::getNullValue(CI->getType());
-
-    // strchr(s+n,c)  -> gep(s+n+i,c)
-    return B.CreateGEP(SrcStr, B.getInt64(I), "strchr");
-  }
-};
-
-//===---------------------------------------===//
-// 'strrchr' Optimizations
-
-struct StrRChrOpt : public LibCallOptimization {
-  virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
-    // Verify the "strrchr" function prototype.
-    const FunctionType *FT = Callee->getFunctionType();
-    if (FT->getNumParams() != 2 ||
-        FT->getReturnType() != B.getInt8PtrTy() ||
-        FT->getParamType(0) != FT->getReturnType() ||
-        !FT->getParamType(1)->isIntegerTy(32))
-      return 0;
-
-    Value *SrcStr = CI->getArgOperand(0);
-    ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
-
-    // Cannot fold anything if we're not looking for a constant.
-    if (!CharC)
-      return 0;
-
-    std::string Str;
-    if (!GetConstantStringInfo(SrcStr, Str)) {
-      // strrchr(s, 0) -> strchr(s, 0)
-      if (TD && CharC->isZero())
-        return EmitStrChr(SrcStr, '\0', B, TD);
-      return 0;
-    }
-
-    // strrchr can find the nul character.
-    Str += '\0';
-
-    // Compute the offset.
-    size_t I = Str.rfind(CharC->getSExtValue());
-    if (I == std::string::npos) // Didn't find the char. Return null.
-      return Constant::getNullValue(CI->getType());
-
-    // strrchr(s+n,c) -> gep(s+n+i,c)
-    return B.CreateGEP(SrcStr, B.getInt64(I), "strrchr");
-  }
-};
-
-//===---------------------------------------===//
-// 'strcmp' Optimizations
-
-struct StrCmpOpt : public LibCallOptimization {
-  virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
-    // Verify the "strcmp" function prototype.
-    const FunctionType *FT = Callee->getFunctionType();
-    if (FT->getNumParams() != 2 ||
-        !FT->getReturnType()->isIntegerTy(32) ||
-        FT->getParamType(0) != FT->getParamType(1) ||
-        FT->getParamType(0) != B.getInt8PtrTy())
-      return 0;
-
-    Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
-    if (Str1P == Str2P)      // strcmp(x,x)  -> 0
-      return ConstantInt::get(CI->getType(), 0);
-
-    std::string Str1, Str2;
-    bool HasStr1 = GetConstantStringInfo(Str1P, Str1);
-    bool HasStr2 = GetConstantStringInfo(Str2P, Str2);
-
-    if (HasStr1 && Str1.empty()) // strcmp("", x) -> *x
-      return B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType());
-
-    if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x
-      return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
-
-    // strcmp(x, y)  -> cnst  (if both x and y are constant strings)
-    if (HasStr1 && HasStr2)
-      return ConstantInt::get(CI->getType(),
-                                     strcmp(Str1.c_str(),Str2.c_str()));
-
-    // strcmp(P, "x") -> memcmp(P, "x", 2)
-    uint64_t Len1 = GetStringLength(Str1P);
-    uint64_t Len2 = GetStringLength(Str2P);
-    if (Len1 && Len2) {
-      // These optimizations require TargetData.
-      if (!TD) return 0;
-
-      return EmitMemCmp(Str1P, Str2P,
-                        ConstantInt::get(TD->getIntPtrType(*Context),
-                        std::min(Len1, Len2)), B, TD);
-    }
-
-    return 0;
-  }
-};
-
-//===---------------------------------------===//
-// 'strncmp' Optimizations
-
-struct StrNCmpOpt : public LibCallOptimization {
-  virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
-    // Verify the "strncmp" function prototype.
-    const FunctionType *FT = Callee->getFunctionType();
-    if (FT->getNumParams() != 3 ||
-        !FT->getReturnType()->isIntegerTy(32) ||
-        FT->getParamType(0) != FT->getParamType(1) ||
-        FT->getParamType(0) != B.getInt8PtrTy() ||
-        !FT->getParamType(2)->isIntegerTy())
-      return 0;
-
-    Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
-    if (Str1P == Str2P)      // strncmp(x,x,n)  -> 0
-      return ConstantInt::get(CI->getType(), 0);
-
-    // Get the length argument if it is constant.
-    uint64_t Length;
-    if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
-      Length = LengthArg->getZExtValue();
-    else
-      return 0;
-
-    if (Length == 0) // strncmp(x,y,0)   -> 0
-      return ConstantInt::get(CI->getType(), 0);
-
-    if (TD && Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1)
-      return EmitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, TD);
-
-    std::string Str1, Str2;
-    bool HasStr1 = GetConstantStringInfo(Str1P, Str1);
-    bool HasStr2 = GetConstantStringInfo(Str2P, Str2);
-
-    if (HasStr1 && Str1.empty())  // strncmp("", x, n) -> *x
-      return B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType());
-
-    if (HasStr2 && Str2.empty())  // strncmp(x, "", n) -> *x
-      return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
-
-    // strncmp(x, y)  -> cnst  (if both x and y are constant strings)
-    if (HasStr1 && HasStr2)
-      return ConstantInt::get(CI->getType(),
-                              strncmp(Str1.c_str(), Str2.c_str(), Length));
-    return 0;
-  }
-};
-
-
-//===---------------------------------------===//
-// 'strcpy' Optimizations
-
-struct StrCpyOpt : public LibCallOptimization {
-  bool OptChkCall;  // True if it's optimizing a __strcpy_chk libcall.
-
-  StrCpyOpt(bool c) : OptChkCall(c) {}
-
-  virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
-    // Verify the "strcpy" function prototype.
-    unsigned NumParams = OptChkCall ? 3 : 2;
-    const FunctionType *FT = Callee->getFunctionType();
-    if (FT->getNumParams() != NumParams ||
-        FT->getReturnType() != FT->getParamType(0) ||
-        FT->getParamType(0) != FT->getParamType(1) ||
-        FT->getParamType(0) != B.getInt8PtrTy())
-      return 0;
-
-    Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
-    if (Dst == Src)      // strcpy(x,x)  -> x
-      return Src;
-
-    // These optimizations require TargetData.
-    if (!TD) return 0;
-
-    // See if we can get the length of the input string.
-    uint64_t Len = GetStringLength(Src);
-    if (Len == 0) return 0;
-
-    // We have enough information to now generate the memcpy call to do the
-    // concatenation for us.  Make a memcpy to copy the nul byte with align = 1.
-    if (OptChkCall)
-      EmitMemCpyChk(Dst, Src,
-                    ConstantInt::get(TD->getIntPtrType(*Context), Len),
-                    CI->getArgOperand(2), B, TD);
-    else
-      B.CreateMemCpy(Dst, Src,
-                     ConstantInt::get(TD->getIntPtrType(*Context), Len), 1);
-    return Dst;
-  }
-};
-
-//===---------------------------------------===//
-// 'strncpy' Optimizations
-
-struct StrNCpyOpt : public LibCallOptimization {
-  virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
-    const FunctionType *FT = Callee->getFunctionType();
-    if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
-        FT->getParamType(0) != FT->getParamType(1) ||
-        FT->getParamType(0) != B.getInt8PtrTy() ||
-        !FT->getParamType(2)->isIntegerTy())
-      return 0;
-
-    Value *Dst = CI->getArgOperand(0);
-    Value *Src = CI->getArgOperand(1);
-    Value *LenOp = CI->getArgOperand(2);
-
-    // See if we can get the length of the input string.
-    uint64_t SrcLen = GetStringLength(Src);
-    if (SrcLen == 0) return 0;
-    --SrcLen;
-
-    if (SrcLen == 0) {
-      // strncpy(x, "", y) -> memset(x, '\0', y, 1)
-      B.CreateMemSet(Dst, B.getInt8('\0'), LenOp, 1);
-      return Dst;
-    }
-
-    uint64_t Len;
-    if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(LenOp))
-      Len = LengthArg->getZExtValue();
-    else
-      return 0;
-
-    if (Len == 0) return Dst; // strncpy(x, y, 0) -> x
-
-    // These optimizations require TargetData.
-    if (!TD) return 0;
-
-    // Let strncpy handle the zero padding
-    if (Len > SrcLen+1) return 0;
-
-    // strncpy(x, s, c) -> memcpy(x, s, c, 1) [s and c are constant]
-    B.CreateMemCpy(Dst, Src,
-                   ConstantInt::get(TD->getIntPtrType(*Context), Len), 1);
-
-    return Dst;
-  }
-};
-
-//===---------------------------------------===//
-// 'strlen' Optimizations
-
-struct StrLenOpt : public LibCallOptimization {
-  virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
-    const FunctionType *FT = Callee->getFunctionType();
-    if (FT->getNumParams() != 1 ||
-        FT->getParamType(0) != B.getInt8PtrTy() ||
-        !FT->getReturnType()->isIntegerTy())
-      return 0;
-
-    Value *Src = CI->getArgOperand(0);
-
-    // Constant folding: strlen("xyz") -> 3
-    if (uint64_t Len = GetStringLength(Src))
-      return ConstantInt::get(CI->getType(), Len-1);
-
-    // strlen(x) != 0 --> *x != 0
-    // strlen(x) == 0 --> *x == 0
-    if (IsOnlyUsedInZeroEqualityComparison(CI))
-      return B.CreateZExt(B.CreateLoad(Src, "strlenfirst"), CI->getType());
-    return 0;
-  }
-};
-
-
-//===---------------------------------------===//
-// 'strpbrk' Optimizations
-
-struct StrPBrkOpt : public LibCallOptimization {
-  virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
-    const FunctionType *FT = Callee->getFunctionType();
-    if (FT->getNumParams() != 2 ||
-        FT->getParamType(0) != B.getInt8PtrTy() ||
-        FT->getParamType(1) != FT->getParamType(0) ||
-        FT->getReturnType() != FT->getParamType(0))
-      return 0;
-
-    std::string S1, S2;
-    bool HasS1 = GetConstantStringInfo(CI->getArgOperand(0), S1);
-    bool HasS2 = GetConstantStringInfo(CI->getArgOperand(1), S2);
-
-    // strpbrk(s, "") -> NULL
-    // strpbrk("", s) -> NULL
-    if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
-      return Constant::getNullValue(CI->getType());
-
-    // Constant folding.
-    if (HasS1 && HasS2) {
-      size_t I = S1.find_first_of(S2);
-      if (I == std::string::npos) // No match.
-        return Constant::getNullValue(CI->getType());
-
-      return B.CreateGEP(CI->getArgOperand(0), B.getInt64(I), "strpbrk");
-    }
-
-    // strpbrk(s, "a") -> strchr(s, 'a')
-    if (TD && HasS2 && S2.size() == 1)
-      return EmitStrChr(CI->getArgOperand(0), S2[0], B, TD);
-
-    return 0;
-  }
-};
-
-//===---------------------------------------===//
-// 'strto*' Optimizations.  This handles strtol, strtod, strtof, strtoul, etc.
-
-struct StrToOpt : public LibCallOptimization {
-  virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
-    const FunctionType *FT = Callee->getFunctionType();
-    if ((FT->getNumParams() != 2 && FT->getNumParams() != 3) ||
-        !FT->getParamType(0)->isPointerTy() ||
-        !FT->getParamType(1)->isPointerTy())
-      return 0;
-
-    Value *EndPtr = CI->getArgOperand(1);
-    if (isa<ConstantPointerNull>(EndPtr)) {
-      // With a null EndPtr, this function won't capture the main argument.
-      // It would be readonly too, except that it still may write to errno.
-      CI->addAttribute(1, Attribute::NoCapture);
-    }
-
-    return 0;
-  }
-};
-
-//===---------------------------------------===//
-// 'strspn' Optimizations
-
-struct StrSpnOpt : public LibCallOptimization {
-  virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
-    const FunctionType *FT = Callee->getFunctionType();
-    if (FT->getNumParams() != 2 ||
-        FT->getParamType(0) != B.getInt8PtrTy() ||
-        FT->getParamType(1) != FT->getParamType(0) ||
-        !FT->getReturnType()->isIntegerTy())
-      return 0;
-
-    std::string S1, S2;
-    bool HasS1 = GetConstantStringInfo(CI->getArgOperand(0), S1);
-    bool HasS2 = GetConstantStringInfo(CI->getArgOperand(1), S2);
-
-    // strspn(s, "") -> 0
-    // strspn("", s) -> 0
-    if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
-      return Constant::getNullValue(CI->getType());
-
-    // Constant folding.
-    if (HasS1 && HasS2)
-      return ConstantInt::get(CI->getType(), strspn(S1.c_str(), S2.c_str()));
-
-    return 0;
-  }
-};
-
-//===---------------------------------------===//
-// 'strcspn' Optimizations
-
-struct StrCSpnOpt : public LibCallOptimization {
-  virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
-    const FunctionType *FT = Callee->getFunctionType();
-    if (FT->getNumParams() != 2 ||
-        FT->getParamType(0) != B.getInt8PtrTy() ||
-        FT->getParamType(1) != FT->getParamType(0) ||
-        !FT->getReturnType()->isIntegerTy())
-      return 0;
-
-    std::string S1, S2;
-    bool HasS1 = GetConstantStringInfo(CI->getArgOperand(0), S1);
-    bool HasS2 = GetConstantStringInfo(CI->getArgOperand(1), S2);
-
-    // strcspn("", s) -> 0
-    if (HasS1 && S1.empty())
-      return Constant::getNullValue(CI->getType());
-
-    // Constant folding.
-    if (HasS1 && HasS2)
-      return ConstantInt::get(CI->getType(), strcspn(S1.c_str(), S2.c_str()));
-
-    // strcspn(s, "") -> strlen(s)
-    if (TD && HasS2 && S2.empty())
-      return EmitStrLen(CI->getArgOperand(0), B, TD);
-
-    return 0;
-  }
-};
-
-//===---------------------------------------===//
-// 'strstr' Optimizations
-
-struct StrStrOpt : public LibCallOptimization {
-  virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
-    const FunctionType *FT = Callee->getFunctionType();
-    if (FT->getNumParams() != 2 ||
-        !FT->getParamType(0)->isPointerTy() ||
-        !FT->getParamType(1)->isPointerTy() ||
-        !FT->getReturnType()->isPointerTy())
-      return 0;
-
-    // fold strstr(x, x) -> x.
-    if (CI->getArgOperand(0) == CI->getArgOperand(1))
-      return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
-
-    // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0
-    if (TD && IsOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) {
-      Value *StrLen = EmitStrLen(CI->getArgOperand(1), B, TD);
-      Value *StrNCmp = EmitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1),
-                                   StrLen, B, TD);
-      for (Value::use_iterator UI = CI->use_begin(), UE = CI->use_end();
-           UI != UE; ) {
-        ICmpInst *Old = cast<ICmpInst>(*UI++);
-        Value *Cmp = B.CreateICmp(Old->getPredicate(), StrNCmp,
-                                  ConstantInt::getNullValue(StrNCmp->getType()),
-                                  "cmp");
-        Old->replaceAllUsesWith(Cmp);
-        Old->eraseFromParent();
-      }
-      return CI;
-    }
-
-    // See if either input string is a constant string.
-    std::string SearchStr, ToFindStr;
-    bool HasStr1 = GetConstantStringInfo(CI->getArgOperand(0), SearchStr);
-    bool HasStr2 = GetConstantStringInfo(CI->getArgOperand(1), ToFindStr);
-
-    // fold strstr(x, "") -> x.
-    if (HasStr2 && ToFindStr.empty())
-      return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
-
-    // If both strings are known, constant fold it.
-    if (HasStr1 && HasStr2) {
-      std::string::size_type Offset = SearchStr.find(ToFindStr);
-
-      if (Offset == std::string::npos) // strstr("foo", "bar") -> null
-        return Constant::getNullValue(CI->getType());
-
-      // strstr("abcd", "bc") -> gep((char*)"abcd", 1)
-      Value *Result = CastToCStr(CI->getArgOperand(0), B);
-      Result = B.CreateConstInBoundsGEP1_64(Result, Offset, "strstr");
-      return B.CreateBitCast(Result, CI->getType());
-    }
-
-    // fold strstr(x, "y") -> strchr(x, 'y').
-    if (HasStr2 && ToFindStr.size() == 1)
-      return B.CreateBitCast(EmitStrChr(CI->getArgOperand(0),
-                             ToFindStr[0], B, TD), CI->getType());
-    return 0;
-  }
-};
-
-
-//===---------------------------------------===//
-// 'memcmp' Optimizations
-
-struct MemCmpOpt : public LibCallOptimization {
-  virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
-    const FunctionType *FT = Callee->getFunctionType();
-    if (FT->getNumParams() != 3 || !FT->getParamType(0)->isPointerTy() ||
-        !FT->getParamType(1)->isPointerTy() ||
-        !FT->getReturnType()->isIntegerTy(32))
-      return 0;
-
-    Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1);
-
-    if (LHS == RHS)  // memcmp(s,s,x) -> 0
-      return Constant::getNullValue(CI->getType());
-
-    // Make sure we have a constant length.
-    ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
-    if (!LenC) return 0;
-    uint64_t Len = LenC->getZExtValue();
-
-    if (Len == 0) // memcmp(s1,s2,0) -> 0
-      return Constant::getNullValue(CI->getType());
-
-    // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS
-    if (Len == 1) {
-      Value *LHSV = B.CreateZExt(B.CreateLoad(CastToCStr(LHS, B), "lhsc"),
-                                 CI->getType(), "lhsv");
-      Value *RHSV = B.CreateZExt(B.CreateLoad(CastToCStr(RHS, B), "rhsc"),
-                                 CI->getType(), "rhsv");
-      return B.CreateSub(LHSV, RHSV, "chardiff");
-    }
-
-    // Constant folding: memcmp(x, y, l) -> cnst (all arguments are constant)
-    std::string LHSStr, RHSStr;
-    if (GetConstantStringInfo(LHS, LHSStr) &&
-        GetConstantStringInfo(RHS, RHSStr)) {
-      // Make sure we're not reading out-of-bounds memory.
-      if (Len > LHSStr.length() || Len > RHSStr.length())
-        return 0;
-      uint64_t Ret = memcmp(LHSStr.data(), RHSStr.data(), Len);
-      return ConstantInt::get(CI->getType(), Ret);
-    }
-
-    return 0;
-  }
-};
-
-//===---------------------------------------===//
-// 'memcpy' Optimizations
-
-struct MemCpyOpt : public LibCallOptimization {
-  virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
-    // These optimizations require TargetData.
-    if (!TD) return 0;
-
-    const FunctionType *FT = Callee->getFunctionType();
-    if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
-        !FT->getParamType(0)->isPointerTy() ||
-        !FT->getParamType(1)->isPointerTy() ||
-        FT->getParamType(2) != TD->getIntPtrType(*Context))
-      return 0;
-
-    // memcpy(x, y, n) -> llvm.memcpy(x, y, n, 1)
-    B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
-                   CI->getArgOperand(2), 1);
-    return CI->getArgOperand(0);
-  }
-};
-
-//===---------------------------------------===//
-// 'memmove' Optimizations
-
-struct MemMoveOpt : public LibCallOptimization {
-  virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
-    // These optimizations require TargetData.
-    if (!TD) return 0;
-
-    const FunctionType *FT = Callee->getFunctionType();
-    if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
-        !FT->getParamType(0)->isPointerTy() ||
-        !FT->getParamType(1)->isPointerTy() ||
-        FT->getParamType(2) != TD->getIntPtrType(*Context))
-      return 0;
-
-    // memmove(x, y, n) -> llvm.memmove(x, y, n, 1)
-    B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1),
-                    CI->getArgOperand(2), 1);
-    return CI->getArgOperand(0);
-  }
-};
-
-//===---------------------------------------===//
-// 'memset' Optimizations
-
-struct MemSetOpt : public LibCallOptimization {
-  virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
-    // These optimizations require TargetData.
-    if (!TD) return 0;
-
-    const FunctionType *FT = Callee->getFunctionType();
-    if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
-        !FT->getParamType(0)->isPointerTy() ||
-        !FT->getParamType(1)->isIntegerTy() ||
-        FT->getParamType(2) != TD->getIntPtrType(*Context))
-      return 0;
-
-    // memset(p, v, n) -> llvm.memset(p, v, n, 1)
-    Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
-    B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
-    return CI->getArgOperand(0);
-  }
-};
-
-//===----------------------------------------------------------------------===//
-// Math Library Optimizations
-//===----------------------------------------------------------------------===//
-
-//===---------------------------------------===//
-// 'pow*' Optimizations
-
-struct PowOpt : public LibCallOptimization {
-  virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
-    const FunctionType *FT = Callee->getFunctionType();
-    // Just make sure this has 2 arguments of the same FP type, which match the
-    // result type.
-    if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) ||
-        FT->getParamType(0) != FT->getParamType(1) ||
-        !FT->getParamType(0)->isFloatingPointTy())
-      return 0;
-
-    Value *Op1 = CI->getArgOperand(0), *Op2 = CI->getArgOperand(1);
-    if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
-      if (Op1C->isExactlyValue(1.0))  // pow(1.0, x) -> 1.0
-        return Op1C;
-      if (Op1C->isExactlyValue(2.0))  // pow(2.0, x) -> exp2(x)
-        return EmitUnaryFloatFnCall(Op2, "exp2", B, Callee->getAttributes());
-    }
-
-    ConstantFP *Op2C = dyn_cast<ConstantFP>(Op2);
-    if (Op2C == 0) return 0;
-
-    if (Op2C->getValueAPF().isZero())  // pow(x, 0.0) -> 1.0
-      return ConstantFP::get(CI->getType(), 1.0);
-
-    if (Op2C->isExactlyValue(0.5)) {
-      // Expand pow(x, 0.5) to (x == -infinity ? +infinity : fabs(sqrt(x))).
-      // This is faster than calling pow, and still handles negative zero
-      // and negative infinite correctly.
-      // TODO: In fast-math mode, this could be just sqrt(x).
-      // TODO: In finite-only mode, this could be just fabs(sqrt(x)).
-      Value *Inf = ConstantFP::getInfinity(CI->getType());
-      Value *NegInf = ConstantFP::getInfinity(CI->getType(), true);
-      Value *Sqrt = EmitUnaryFloatFnCall(Op1, "sqrt", B,
-                                         Callee->getAttributes());
-      Value *FAbs = EmitUnaryFloatFnCall(Sqrt, "fabs", B,
-                                         Callee->getAttributes());
-      Value *FCmp = B.CreateFCmpOEQ(Op1, NegInf, "tmp");
-      Value *Sel = B.CreateSelect(FCmp, Inf, FAbs, "tmp");
-      return Sel;
-    }
-
-    if (Op2C->isExactlyValue(1.0))  // pow(x, 1.0) -> x
-      return Op1;
-    if (Op2C->isExactlyValue(2.0))  // pow(x, 2.0) -> x*x
-      return B.CreateFMul(Op1, Op1, "pow2");
-    if (Op2C->isExactlyValue(-1.0)) // pow(x, -1.0) -> 1.0/x
-      return B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0),
-                          Op1, "powrecip");
-    return 0;
-  }
-};
-
-//===---------------------------------------===//
-// 'exp2' Optimizations
-
-struct Exp2Opt : public LibCallOptimization {
-  virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
-    const FunctionType *FT = Callee->getFunctionType();
-    // Just make sure this has 1 argument of FP type, which matches the
-    // result type.
-    if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
-        !FT->getParamType(0)->isFloatingPointTy())
-      return 0;
-
-    Value *Op = CI->getArgOperand(0);
-    // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x))  if sizeof(x) <= 32
-    // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x))  if sizeof(x) < 32
-    Value *LdExpArg = 0;
-    if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) {
-      if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32)
-        LdExpArg = B.CreateSExt(OpC->getOperand(0), B.getInt32Ty(), "tmp");
-    } else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) {
-      if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32)
-        LdExpArg = B.CreateZExt(OpC->getOperand(0), B.getInt32Ty(), "tmp");
-    }
-
-    if (LdExpArg) {
-      const char *Name;
-      if (Op->getType()->isFloatTy())
-        Name = "ldexpf";
-      else if (Op->getType()->isDoubleTy())
-        Name = "ldexp";
-      else
-        Name = "ldexpl";
-
-      Constant *One = ConstantFP::get(*Context, APFloat(1.0f));
-      if (!Op->getType()->isFloatTy())
-        One = ConstantExpr::getFPExtend(One, Op->getType());
-
-      Module *M = Caller->getParent();
-      Value *Callee = M->getOrInsertFunction(Name, Op->getType(),
-                                             Op->getType(),
-                                             B.getInt32Ty(), NULL);
-      CallInst *CI = B.CreateCall2(Callee, One, LdExpArg);
-      if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts()))
-        CI->setCallingConv(F->getCallingConv());
-
-      return CI;
-    }
-    return 0;
-  }
-};
-
-//===---------------------------------------===//
-// Double -> Float Shrinking Optimizations for Unary Functions like 'floor'
-
-struct UnaryDoubleFPOpt : public LibCallOptimization {
-  virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
-    const FunctionType *FT = Callee->getFunctionType();
-    if (FT->getNumParams() != 1 || !FT->getReturnType()->isDoubleTy() ||
-        !FT->getParamType(0)->isDoubleTy())
-      return 0;
-
-    // If this is something like 'floor((double)floatval)', convert to floorf.
-    FPExtInst *Cast = dyn_cast<FPExtInst>(CI->getArgOperand(0));
-    if (Cast == 0 || !Cast->getOperand(0)->getType()->isFloatTy())
-      return 0;
-
-    // floor((double)floatval) -> (double)floorf(floatval)
-    Value *V = Cast->getOperand(0);
-    V = EmitUnaryFloatFnCall(V, Callee->getName().data(), B,
-                             Callee->getAttributes());
-    return B.CreateFPExt(V, B.getDoubleTy());
-  }
-};
-
-//===----------------------------------------------------------------------===//
-// Integer Optimizations
-//===----------------------------------------------------------------------===//
-
-//===---------------------------------------===//
-// 'ffs*' Optimizations
-
-struct FFSOpt : public LibCallOptimization {
-  virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
-    const FunctionType *FT = Callee->getFunctionType();
-    // Just make sure this has 2 arguments of the same FP type, which match the
-    // result type.
-    if (FT->getNumParams() != 1 ||
-        !FT->getReturnType()->isIntegerTy(32) ||
-        !FT->getParamType(0)->isIntegerTy())
-      return 0;
-
-    Value *Op = CI->getArgOperand(0);
-
-    // Constant fold.
-    if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
-      if (CI->getValue() == 0)  // ffs(0) -> 0.
-        return Constant::getNullValue(CI->getType());
-      // ffs(c) -> cttz(c)+1
-      return B.getInt32(CI->getValue().countTrailingZeros() + 1);
-    }
-
-    // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0
-    Type *ArgType = Op->getType();
-    Value *F = Intrinsic::getDeclaration(Callee->getParent(),
-                                         Intrinsic::cttz, ArgType);
-    Value *V = B.CreateCall(F, Op, "cttz");
-    V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1), "tmp");
-    V = B.CreateIntCast(V, B.getInt32Ty(), false, "tmp");
-
-    Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType), "tmp");
-    return B.CreateSelect(Cond, V, B.getInt32(0));
-  }
-};
-
-//===---------------------------------------===//
-// 'isdigit' Optimizations
-
-struct IsDigitOpt : public LibCallOptimization {
-  virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
-    const FunctionType *FT = Callee->getFunctionType();
-    // We require integer(i32)
-    if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() ||
-        !FT->getParamType(0)->isIntegerTy(32))
-      return 0;
-
-    // isdigit(c) -> (c-'0') <u 10
-    Value *Op = CI->getArgOperand(0);
-    Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp");
-    Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit");
-    return B.CreateZExt(Op, CI->getType());
-  }
-};
-
-//===---------------------------------------===//
-// 'isascii' Optimizations
-
-struct IsAsciiOpt : public LibCallOptimization {
-  virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
-    const FunctionType *FT = Callee->getFunctionType();
-    // We require integer(i32)
-    if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() ||
-        !FT->getParamType(0)->isIntegerTy(32))
-      return 0;
-
-    // isascii(c) -> c <u 128
-    Value *Op = CI->getArgOperand(0);
-    Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii");
-    return B.CreateZExt(Op, CI->getType());
-  }
-};
-
-//===---------------------------------------===//
-// 'abs', 'labs', 'llabs' Optimizations
-
-struct AbsOpt : public LibCallOptimization {
-  virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
-    const FunctionType *FT = Callee->getFunctionType();
-    // We require integer(integer) where the types agree.
-    if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() ||
-        FT->getParamType(0) != FT->getReturnType())
-      return 0;
-
-    // abs(x) -> x >s -1 ? x : -x
-    Value *Op = CI->getArgOperand(0);
-    Value *Pos = B.CreateICmpSGT(Op, Constant::getAllOnesValue(Op->getType()),
-                                 "ispos");
-    Value *Neg = B.CreateNeg(Op, "neg");
-    return B.CreateSelect(Pos, Op, Neg);
-  }
-};
-
-
-//===---------------------------------------===//
-// 'toascii' Optimizations
-
-struct ToAsciiOpt : public LibCallOptimization {
-  virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
-    const FunctionType *FT = Callee->getFunctionType();
-    // We require i32(i32)
-    if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
-        !FT->getParamType(0)->isIntegerTy(32))
-      return 0;
-
-    // isascii(c) -> c & 0x7f
-    return B.CreateAnd(CI->getArgOperand(0),
-                       ConstantInt::get(CI->getType(),0x7F));
-  }
-};
-
-//===----------------------------------------------------------------------===//
-// Formatting and IO Optimizations
-//===----------------------------------------------------------------------===//
-
-//===---------------------------------------===//
-// 'printf' Optimizations
-
-struct PrintFOpt : public LibCallOptimization {
-  Value *OptimizeFixedFormatString(Function *Callee, CallInst *CI,
-                                   IRBuilder<> &B) {
-    // Check for a fixed format string.
-    std::string FormatStr;
-    if (!GetConstantStringInfo(CI->getArgOperand(0), FormatStr))
-      return 0;
-
-    // Empty format string -> noop.
-    if (FormatStr.empty())  // Tolerate printf's declared void.
-      return CI->use_empty() ? (Value*)CI :
-                               ConstantInt::get(CI->getType(), 0);
-
-    // Do not do any of the following transformations if the printf return value
-    // is used, in general the printf return value is not compatible with either
-    // putchar() or puts().
-    if (!CI->use_empty())
-      return 0;
-
-    // printf("x") -> putchar('x'), even for '%'.
-    if (FormatStr.size() == 1) {
-      Value *Res = EmitPutChar(B.getInt32(FormatStr[0]), B, TD);
-      if (CI->use_empty()) return CI;
-      return B.CreateIntCast(Res, CI->getType(), true);
-    }
-
-    // printf("foo\n") --> puts("foo")
-    if (FormatStr[FormatStr.size()-1] == '\n' &&
-        FormatStr.find('%') == std::string::npos) {  // no format characters.
-      // Create a string literal with no \n on it.  We expect the constant merge
-      // pass to be run after this pass, to merge duplicate strings.
-      FormatStr.erase(FormatStr.end()-1);
-      Constant *C = ConstantArray::get(*Context, FormatStr, true);
-      C = new GlobalVariable(*Callee->getParent(), C->getType(), true,
-                             GlobalVariable::InternalLinkage, C, "str");
-      EmitPutS(C, B, TD);
-      return CI->use_empty() ? (Value*)CI :
-                    ConstantInt::get(CI->getType(), FormatStr.size()+1);
-    }
-
-    // Optimize specific format strings.
-    // printf("%c", chr) --> putchar(chr)
-    if (FormatStr == "%c" && CI->getNumArgOperands() > 1 &&
-        CI->getArgOperand(1)->getType()->isIntegerTy()) {
-      Value *Res = EmitPutChar(CI->getArgOperand(1), B, TD);
-
-      if (CI->use_empty()) return CI;
-      return B.CreateIntCast(Res, CI->getType(), true);
-    }
-
-    // printf("%s\n", str) --> puts(str)
-    if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 &&
-        CI->getArgOperand(1)->getType()->isPointerTy()) {
-      EmitPutS(CI->getArgOperand(1), B, TD);
-      return CI;
-    }
-    return 0;
-  }
-
-  virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
-    // Require one fixed pointer argument and an integer/void result.
-    const FunctionType *FT = Callee->getFunctionType();
-    if (FT->getNumParams() < 1 || !FT->getParamType(0)->isPointerTy() ||
-        !(FT->getReturnType()->isIntegerTy() ||
-          FT->getReturnType()->isVoidTy()))
-      return 0;
-
-    if (Value *V = OptimizeFixedFormatString(Callee, CI, B)) {
-      return V;
-    }
-
-    // printf(format, ...) -> iprintf(format, ...) if no floating point
-    // arguments.
-    if (TLI->has(LibFunc::iprintf) && !CallHasFloatingPointArgument(CI)) {
-      Module *M = B.GetInsertBlock()->getParent()->getParent();
-      Constant *IPrintFFn =
-        M->getOrInsertFunction("iprintf", FT, Callee->getAttributes());
-      CallInst *New = cast<CallInst>(CI->clone());
-      New->setCalledFunction(IPrintFFn);
-      B.Insert(New);
-      return New;
-    }
-    return 0;
-  }
-};
-
-//===---------------------------------------===//
-// 'sprintf' Optimizations
-
-struct SPrintFOpt : public LibCallOptimization {
-  Value *OptimizeFixedFormatString(Function *Callee, CallInst *CI,
-                                   IRBuilder<> &B) {
-    // Check for a fixed format string.
-    std::string FormatStr;
-    if (!GetConstantStringInfo(CI->getArgOperand(1), FormatStr))
-      return 0;
-
-    // If we just have a format string (nothing else crazy) transform it.
-    if (CI->getNumArgOperands() == 2) {
-      // Make sure there's no % in the constant array.  We could try to handle
-      // %% -> % in the future if we cared.
-      for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
-        if (FormatStr[i] == '%')
-          return 0; // we found a format specifier, bail out.
-
-      // These optimizations require TargetData.
-      if (!TD) return 0;
-
-      // sprintf(str, fmt) -> llvm.memcpy(str, fmt, strlen(fmt)+1, 1)
-      B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
-                     ConstantInt::get(TD->getIntPtrType(*Context), // Copy the
-                                      FormatStr.size() + 1), 1);   // nul byte.
-      return ConstantInt::get(CI->getType(), FormatStr.size());
-    }
-
-    // The remaining optimizations require the format string to be "%s" or "%c"
-    // and have an extra operand.
-    if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
-        CI->getNumArgOperands() < 3)
-      return 0;
-
-    // Decode the second character of the format string.
-    if (FormatStr[1] == 'c') {
-      // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
-      if (!CI->getArgOperand(2)->getType()->isIntegerTy()) return 0;
-      Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char");
-      Value *Ptr = CastToCStr(CI->getArgOperand(0), B);
-      B.CreateStore(V, Ptr);
-      Ptr = B.CreateGEP(Ptr, B.getInt32(1), "nul");
-      B.CreateStore(B.getInt8(0), Ptr);
-
-      return ConstantInt::get(CI->getType(), 1);
-    }
-
-    if (FormatStr[1] == 's') {
-      // These optimizations require TargetData.
-      if (!TD) return 0;
-
-      // sprintf(dest, "%s", str) -> llvm.memcpy(dest, str, strlen(str)+1, 1)
-      if (!CI->getArgOperand(2)->getType()->isPointerTy()) return 0;
-
-      Value *Len = EmitStrLen(CI->getArgOperand(2), B, TD);
-      Value *IncLen = B.CreateAdd(Len,
-                                  ConstantInt::get(Len->getType(), 1),
-                                  "leninc");
-      B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(2), IncLen, 1);
-
-      // The sprintf result is the unincremented number of bytes in the string.
-      return B.CreateIntCast(Len, CI->getType(), false);
-    }
-    return 0;
-  }
-
-  virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
-    // Require two fixed pointer arguments and an integer result.
-    const FunctionType *FT = Callee->getFunctionType();
-    if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
-        !FT->getParamType(1)->isPointerTy() ||
-        !FT->getReturnType()->isIntegerTy())
-      return 0;
-
-    if (Value *V = OptimizeFixedFormatString(Callee, CI, B)) {
-      return V;
-    }
-
-    // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating
-    // point arguments.
-    if (TLI->has(LibFunc::siprintf) && !CallHasFloatingPointArgument(CI)) {
-      Module *M = B.GetInsertBlock()->getParent()->getParent();
-      Constant *SIPrintFFn =
-        M->getOrInsertFunction("siprintf", FT, Callee->getAttributes());
-      CallInst *New = cast<CallInst>(CI->clone());
-      New->setCalledFunction(SIPrintFFn);
-      B.Insert(New);
-      return New;
-    }
-    return 0;
-  }
-};
-
-//===---------------------------------------===//
-// 'fwrite' Optimizations
-
-struct FWriteOpt : public LibCallOptimization {
-  virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
-    // Require a pointer, an integer, an integer, a pointer, returning integer.
-    const FunctionType *FT = Callee->getFunctionType();
-    if (FT->getNumParams() != 4 || !FT->getParamType(0)->isPointerTy() ||
-        !FT->getParamType(1)->isIntegerTy() ||
-        !FT->getParamType(2)->isIntegerTy() ||
-        !FT->getParamType(3)->isPointerTy() ||
-        !FT->getReturnType()->isIntegerTy())
-      return 0;
-
-    // Get the element size and count.
-    ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
-    ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
-    if (!SizeC || !CountC) return 0;
-    uint64_t Bytes = SizeC->getZExtValue()*CountC->getZExtValue();
-
-    // If this is writing zero records, remove the call (it's a noop).
-    if (Bytes == 0)
-      return ConstantInt::get(CI->getType(), 0);
-
-    // If this is writing one byte, turn it into fputc.
-    if (Bytes == 1) {  // fwrite(S,1,1,F) -> fputc(S[0],F)
-      Value *Char = B.CreateLoad(CastToCStr(CI->getArgOperand(0), B), "char");
-      EmitFPutC(Char, CI->getArgOperand(3), B, TD);
-      return ConstantInt::get(CI->getType(), 1);
-    }
-
-    return 0;
-  }
-};
-
-//===---------------------------------------===//
-// 'fputs' Optimizations
-
-struct FPutsOpt : public LibCallOptimization {
-  virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
-    // These optimizations require TargetData.
-    if (!TD) return 0;
-
-    // Require two pointers.  Also, we can't optimize if return value is used.
-    const FunctionType *FT = Callee->getFunctionType();
-    if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
-        !FT->getParamType(1)->isPointerTy() ||
-        !CI->use_empty())
-      return 0;
-
-    // fputs(s,F) --> fwrite(s,1,strlen(s),F)
-    uint64_t Len = GetStringLength(CI->getArgOperand(0));
-    if (!Len) return 0;
-    EmitFWrite(CI->getArgOperand(0),
-               ConstantInt::get(TD->getIntPtrType(*Context), Len-1),
-               CI->getArgOperand(1), B, TD);
-    return CI;  // Known to have no uses (see above).
-  }
-};
-
-//===---------------------------------------===//
-// 'fprintf' Optimizations
-
-struct FPrintFOpt : public LibCallOptimization {
-  Value *OptimizeFixedFormatString(Function *Callee, CallInst *CI,
-                                   IRBuilder<> &B) {
-    // All the optimizations depend on the format string.
-    std::string FormatStr;
-    if (!GetConstantStringInfo(CI->getArgOperand(1), FormatStr))
-      return 0;
-
-    // fprintf(F, "foo") --> fwrite("foo", 3, 1, F)
-    if (CI->getNumArgOperands() == 2) {
-      for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
-        if (FormatStr[i] == '%')  // Could handle %% -> % if we cared.
-          return 0; // We found a format specifier.
-
-      // These optimizations require TargetData.
-      if (!TD) return 0;
-
-      EmitFWrite(CI->getArgOperand(1),
-                 ConstantInt::get(TD->getIntPtrType(*Context),
-                                  FormatStr.size()),
-                 CI->getArgOperand(0), B, TD);
-      return ConstantInt::get(CI->getType(), FormatStr.size());
-    }
-
-    // The remaining optimizations require the format string to be "%s" or "%c"
-    // and have an extra operand.
-    if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
-        CI->getNumArgOperands() < 3)
-      return 0;
-
-    // Decode the second character of the format string.
-    if (FormatStr[1] == 'c') {
-      // fprintf(F, "%c", chr) --> fputc(chr, F)
-      if (!CI->getArgOperand(2)->getType()->isIntegerTy()) return 0;
-      EmitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TD);
-      return ConstantInt::get(CI->getType(), 1);
-    }
-
-    if (FormatStr[1] == 's') {
-      // fprintf(F, "%s", str) --> fputs(str, F)
-      if (!CI->getArgOperand(2)->getType()->isPointerTy() || !CI->use_empty())
-        return 0;
-      EmitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TD);
-      return CI;
-    }
-    return 0;
-  }
-
-  virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
-    // Require two fixed paramters as pointers and integer result.
-    const FunctionType *FT = Callee->getFunctionType();
-    if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
-        !FT->getParamType(1)->isPointerTy() ||
-        !FT->getReturnType()->isIntegerTy())
-      return 0;
-
-    if (Value *V = OptimizeFixedFormatString(Callee, CI, B)) {
-      return V;
-    }
-
-    // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no
-    // floating point arguments.
-    if (TLI->has(LibFunc::fiprintf) && !CallHasFloatingPointArgument(CI)) {
-      Module *M = B.GetInsertBlock()->getParent()->getParent();
-      Constant *FIPrintFFn =
-        M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes());
-      CallInst *New = cast<CallInst>(CI->clone());
-      New->setCalledFunction(FIPrintFFn);
-      B.Insert(New);
-      return New;
-    }
-    return 0;
-  }
-};
-
-//===---------------------------------------===//
-// 'puts' Optimizations
-
-struct PutsOpt : public LibCallOptimization {
-  virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
-    // Require one fixed pointer argument and an integer/void result.
-    const FunctionType *FT = Callee->getFunctionType();
-    if (FT->getNumParams() < 1 || !FT->getParamType(0)->isPointerTy() ||
-        !(FT->getReturnType()->isIntegerTy() ||
-          FT->getReturnType()->isVoidTy()))
-      return 0;
-
-    // Check for a constant string.
-    std::string Str;
-    if (!GetConstantStringInfo(CI->getArgOperand(0), Str))
-      return 0;
-
-    if (Str.empty() && CI->use_empty()) {
-      // puts("") -> putchar('\n')
-      Value *Res = EmitPutChar(B.getInt32('\n'), B, TD);
-      if (CI->use_empty()) return CI;
-      return B.CreateIntCast(Res, CI->getType(), true);
-    }
-
-    return 0;
-  }
-};
-
-} // end anonymous namespace.
-
 //===----------------------------------------------------------------------===//
 // SimplifyLibCalls Pass Implementation
 //===----------------------------------------------------------------------===//
@@ -1443,30 +89,18 @@ namespace {
   ///
   class SimplifyLibCalls : public FunctionPass {
     TargetLibraryInfo *TLI;
-    
+
     StringMap<LibCallOptimization*> Optimizations;
-    // String and Memory LibCall Optimizations
-    StrCatOpt StrCat; StrNCatOpt StrNCat; StrChrOpt StrChr; StrRChrOpt StrRChr;
-    StrCmpOpt StrCmp; StrNCmpOpt StrNCmp; StrCpyOpt StrCpy; StrCpyOpt StrCpyChk;
-    StrNCpyOpt StrNCpy; StrLenOpt StrLen; StrPBrkOpt StrPBrk;
-    StrToOpt StrTo; StrSpnOpt StrSpn; StrCSpnOpt StrCSpn; StrStrOpt StrStr;
-    MemCmpOpt MemCmp; MemCpyOpt MemCpy; MemMoveOpt MemMove; MemSetOpt MemSet;
-    // Math Library Optimizations
-    PowOpt Pow; Exp2Opt Exp2; UnaryDoubleFPOpt UnaryDoubleFP;
-    // Integer Optimizations
-    FFSOpt FFS; AbsOpt Abs; IsDigitOpt IsDigit; IsAsciiOpt IsAscii;
-    ToAsciiOpt ToAscii;
-    // Formatting and IO Optimizations
-    SPrintFOpt SPrintF; PrintFOpt PrintF;
-    FWriteOpt FWrite; FPutsOpt FPuts; FPrintFOpt FPrintF;
-    PutsOpt Puts;
-    
+
     bool Modified;  // This is only used by doInitialization.
   public:
     static char ID; // Pass identification
-    SimplifyLibCalls() : FunctionPass(ID), StrCpy(false), StrCpyChk(true) {
+    SimplifyLibCalls() : FunctionPass(ID) {
       initializeSimplifyLibCallsPass(*PassRegistry::getPassRegistry());
     }
+    void AddOpt(LibFunc::Func F, LibCallOptimization* Opt);
+    void AddOpt(LibFunc::Func F1, LibFunc::Func F2, LibCallOptimization* Opt);
+
     void InitOptimizations();
     bool runOnFunction(Function &F);
 
@@ -1497,90 +131,20 @@ FunctionPass *llvm::createSimplifyLibCallsPass() {
   return new SimplifyLibCalls();
 }
 
+void SimplifyLibCalls::AddOpt(LibFunc::Func F, LibCallOptimization* Opt) {
+  if (TLI->has(F))
+    Optimizations[TLI->getName(F)] = Opt;
+}
+
+void SimplifyLibCalls::AddOpt(LibFunc::Func F1, LibFunc::Func F2,
+                              LibCallOptimization* Opt) {
+  if (TLI->has(F1) && TLI->has(F2))
+    Optimizations[TLI->getName(F1)] = Opt;
+}
+
 /// Optimizations - Populate the Optimizations map with all the optimizations
 /// we know.
 void SimplifyLibCalls::InitOptimizations() {
-  // String and Memory LibCall Optimizations
-  Optimizations["strcat"] = &StrCat;
-  Optimizations["strncat"] = &StrNCat;
-  Optimizations["strchr"] = &StrChr;
-  Optimizations["strrchr"] = &StrRChr;
-  Optimizations["strcmp"] = &StrCmp;
-  Optimizations["strncmp"] = &StrNCmp;
-  Optimizations["strcpy"] = &StrCpy;
-  Optimizations["strncpy"] = &StrNCpy;
-  Optimizations["strlen"] = &StrLen;
-  Optimizations["strpbrk"] = &StrPBrk;
-  Optimizations["strtol"] = &StrTo;
-  Optimizations["strtod"] = &StrTo;
-  Optimizations["strtof"] = &StrTo;
-  Optimizations["strtoul"] = &StrTo;
-  Optimizations["strtoll"] = &StrTo;
-  Optimizations["strtold"] = &StrTo;
-  Optimizations["strtoull"] = &StrTo;
-  Optimizations["strspn"] = &StrSpn;
-  Optimizations["strcspn"] = &StrCSpn;
-  Optimizations["strstr"] = &StrStr;
-  Optimizations["memcmp"] = &MemCmp;
-  if (TLI->has(LibFunc::memcpy)) Optimizations["memcpy"] = &MemCpy;
-  Optimizations["memmove"] = &MemMove;
-  if (TLI->has(LibFunc::memset)) Optimizations["memset"] = &MemSet;
-
-  // _chk variants of String and Memory LibCall Optimizations.
-  Optimizations["__strcpy_chk"] = &StrCpyChk;
-
-  // Math Library Optimizations
-  Optimizations["powf"] = &Pow;
-  Optimizations["pow"] = &Pow;
-  Optimizations["powl"] = &Pow;
-  Optimizations["llvm.pow.f32"] = &Pow;
-  Optimizations["llvm.pow.f64"] = &Pow;
-  Optimizations["llvm.pow.f80"] = &Pow;
-  Optimizations["llvm.pow.f128"] = &Pow;
-  Optimizations["llvm.pow.ppcf128"] = &Pow;
-  Optimizations["exp2l"] = &Exp2;
-  Optimizations["exp2"] = &Exp2;
-  Optimizations["exp2f"] = &Exp2;
-  Optimizations["llvm.exp2.ppcf128"] = &Exp2;
-  Optimizations["llvm.exp2.f128"] = &Exp2;
-  Optimizations["llvm.exp2.f80"] = &Exp2;
-  Optimizations["llvm.exp2.f64"] = &Exp2;
-  Optimizations["llvm.exp2.f32"] = &Exp2;
-
-#ifdef HAVE_FLOORF
-  Optimizations["floor"] = &UnaryDoubleFP;
-#endif
-#ifdef HAVE_CEILF
-  Optimizations["ceil"] = &UnaryDoubleFP;
-#endif
-#ifdef HAVE_ROUNDF
-  Optimizations["round"] = &UnaryDoubleFP;
-#endif
-#ifdef HAVE_RINTF
-  Optimizations["rint"] = &UnaryDoubleFP;
-#endif
-#ifdef HAVE_NEARBYINTF
-  Optimizations["nearbyint"] = &UnaryDoubleFP;
-#endif
-
-  // Integer Optimizations
-  Optimizations["ffs"] = &FFS;
-  Optimizations["ffsl"] = &FFS;
-  Optimizations["ffsll"] = &FFS;
-  Optimizations["abs"] = &Abs;
-  Optimizations["labs"] = &Abs;
-  Optimizations["llabs"] = &Abs;
-  Optimizations["isdigit"] = &IsDigit;
-  Optimizations["isascii"] = &IsAscii;
-  Optimizations["toascii"] = &ToAscii;
-
-  // Formatting and IO Optimizations
-  Optimizations["sprintf"] = &SPrintF;
-  Optimizations["printf"] = &PrintF;
-  Optimizations["fwrite"] = &FWrite;
-  Optimizations["fputs"] = &FPuts;
-  Optimizations["fprintf"] = &FPrintF;
-  Optimizations["puts"] = &Puts;
 }
 
 
@@ -1592,7 +156,7 @@ bool SimplifyLibCalls::runOnFunction(Function &F) {
   if (Optimizations.empty())
     InitOptimizations();
 
-  const TargetData *TD = getAnalysisIfAvailable<TargetData>();
+  const DataLayout *TD = getAnalysisIfAvailable<DataLayout>();
 
   IRBuilder<> Builder(F.getContext());
 
@@ -1628,7 +192,6 @@ bool SimplifyLibCalls::runOnFunction(Function &F) {
 
       // Something changed!
       Changed = true;
-      ++NumSimplified;
 
       // Inspect the instruction after the call (which was potentially just
       // added) next.
@@ -1685,8 +248,8 @@ void SimplifyLibCalls::setDoesNotAlias(Function &F, unsigned n) {
 
 
 void SimplifyLibCalls::inferPrototypeAttributes(Function &F) {
-  const FunctionType *FTy = F.getFunctionType();
-  
+  FunctionType *FTy = F.getFunctionType();
+
   StringRef Name = F.getName();
   switch (Name[0]) {
   case 's':
@@ -1715,6 +278,7 @@ void SimplifyLibCalls::inferPrototypeAttributes(Function &F) {
                Name == "strtold" ||
                Name == "strncat" ||
                Name == "strncpy" ||
+               Name == "stpncpy" ||
                Name == "strtoull") {
       if (FTy->getNumParams() < 2 ||
           !FTy->getParamType(1)->isPointerTy())
@@ -2343,9 +907,6 @@ bool SimplifyLibCalls::doInitialization(Module &M) {
 //   * cbrt(sqrt(x))  -> pow(x,1/6)
 //   * cbrt(sqrt(x))  -> pow(x,1/9)
 //
-// cos, cosf, cosl:
-//   * cos(-x)  -> cos(x)
-//
 // exp, expf, expl:
 //   * exp(log(x))  -> x
 //
@@ -2378,10 +939,8 @@ bool SimplifyLibCalls::doInitialization(Module &M) {
 //   * sqrt(Nroot(x)) -> pow(x,1/(2*N))
 //   * sqrt(pow(x,y)) -> pow(|x|,y*0.5)
 //
-// stpcpy:
-//   * stpcpy(str, "literal") ->
-//           llvm.memcpy(str,"literal",strlen("literal")+1,1)
-//
+// strchr:
+//   * strchr(p, 0) -> strlen(p)
 // tan, tanf, tanl:
 //   * tan(atan(x)) -> x
 //