Revert r240137 (Fixed/added namespace ending comments using clang-tidy. NFC)
[oota-llvm.git] / lib / Transforms / Scalar / Reassociate.cpp
index d036c6654c78c279791703554aaea0831c974e7f..6c66b58729e9a5d08691f4c42038fc28cf30fd49 100644 (file)
 //
 //===----------------------------------------------------------------------===//
 
-#define DEBUG_TYPE "reassociate"
 #include "llvm/Transforms/Scalar.h"
-#include "llvm/Transforms/Utils/Local.h"
-#include "llvm/Constants.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Function.h"
-#include "llvm/Instructions.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/Pass.h"
-#include "llvm/Assembly/Writer.h"
-#include "llvm/Support/CFG.h"
-#include "llvm/Support/IRBuilder.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/ValueHandle.h"
-#include "llvm/Support/raw_ostream.h"
 #include "llvm/ADT/DenseMap.h"
 #include "llvm/ADT/PostOrderIterator.h"
-#include "llvm/ADT/SmallMap.h"
 #include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SetVector.h"
 #include "llvm/ADT/Statistic.h"
+#include "llvm/IR/CFG.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/ValueHandle.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Transforms/Utils/Local.h"
 #include <algorithm>
 using namespace llvm;
 
+#define DEBUG_TYPE "reassociate"
+
 STATISTIC(NumChanged, "Number of insts reassociated");
 STATISTIC(NumAnnihil, "Number of expr tree annihilated");
 STATISTIC(NumFactor , "Number of multiplies factored");
@@ -59,7 +59,7 @@ namespace {
 }
 
 #ifndef NDEBUG
-/// PrintOps - Print out the expression identified in the Ops list.
+/// Print out the expression identified in the Ops list.
 ///
 static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
   Module *M = I->getParent()->getParent()->getParent();
@@ -67,7 +67,7 @@ static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
        << *Ops[0].Op->getType() << '\t';
   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
     dbgs() << "[ ";
-    WriteAsOperand(dbgs(), Ops[i].Op, false, M);
+    Ops[i].Op->printAsOperand(dbgs(), false, M);
     dbgs() << ", #" << Ops[i].Rank << "] ";
   }
 }
@@ -110,14 +110,57 @@ namespace {
       }
     };
   };
+  
+  /// Utility class representing a non-constant Xor-operand. We classify
+  /// non-constant Xor-Operands into two categories:
+  ///  C1) The operand is in the form "X & C", where C is a constant and C != ~0
+  ///  C2)
+  ///    C2.1) The operand is in the form of "X | C", where C is a non-zero
+  ///          constant.
+  ///    C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this
+  ///          operand as "E | 0"
+  class XorOpnd {
+  public:
+    XorOpnd(Value *V);
+
+    bool isInvalid() const { return SymbolicPart == nullptr; }
+    bool isOrExpr() const { return isOr; }
+    Value *getValue() const { return OrigVal; }
+    Value *getSymbolicPart() const { return SymbolicPart; }
+    unsigned getSymbolicRank() const { return SymbolicRank; }
+    const APInt &getConstPart() const { return ConstPart; }
+
+    void Invalidate() { SymbolicPart = OrigVal = nullptr; }
+    void setSymbolicRank(unsigned R) { SymbolicRank = R; }
+
+    // Sort the XorOpnd-Pointer in ascending order of symbolic-value-rank.
+    // The purpose is twofold:
+    // 1) Cluster together the operands sharing the same symbolic-value.
+    // 2) Operand having smaller symbolic-value-rank is permuted earlier, which 
+    //   could potentially shorten crital path, and expose more loop-invariants.
+    //   Note that values' rank are basically defined in RPO order (FIXME). 
+    //   So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier 
+    //   than Y which is defined earlier than Z. Permute "x | 1", "Y & 2",
+    //   "z" in the order of X-Y-Z is better than any other orders.
+    struct PtrSortFunctor {
+      bool operator()(XorOpnd * const &LHS, XorOpnd * const &RHS) {
+        return LHS->getSymbolicRank() < RHS->getSymbolicRank();
+      }
+    };
+  private:
+    Value *OrigVal;
+    Value *SymbolicPart;
+    APInt ConstPart;
+    unsigned SymbolicRank;
+    bool isOr;
+  };
 }
 
 namespace {
   class Reassociate : public FunctionPass {
     DenseMap<BasicBlock*, unsigned> RankMap;
     DenseMap<AssertingVH<Value>, unsigned> ValueRankMap;
-    SmallVector<WeakVH, 8> RedoInsts;
-    SmallVector<WeakVH, 8> DeadInsts;
+    SetVector<AssertingVH<Instruction> > RedoInsts;
     bool MadeChange;
   public:
     static char ID; // Pass identification, replacement for typeid
@@ -125,32 +168,64 @@ namespace {
       initializeReassociatePass(*PassRegistry::getPassRegistry());
     }
 
-    bool runOnFunction(Function &F);
+    bool runOnFunction(Function &F) override;
 
-    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+    void getAnalysisUsage(AnalysisUsage &AU) const override {
       AU.setPreservesCFG();
     }
   private:
     void BuildRankMap(Function &F);
     unsigned getRank(Value *V);
-    Value *ReassociateExpression(BinaryOperator *I);
+    void canonicalizeOperands(Instruction *I);
+    void ReassociateExpression(BinaryOperator *I);
     void RewriteExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
     Value *OptimizeExpression(BinaryOperator *I,
                               SmallVectorImpl<ValueEntry> &Ops);
     Value *OptimizeAdd(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
+    Value *OptimizeXor(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
+    bool CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, APInt &ConstOpnd,
+                        Value *&Res);
+    bool CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, XorOpnd *Opnd2,
+                        APInt &ConstOpnd, Value *&Res);
     bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
                                 SmallVectorImpl<Factor> &Factors);
     Value *buildMinimalMultiplyDAG(IRBuilder<> &Builder,
                                    SmallVectorImpl<Factor> &Factors);
     Value *OptimizeMul(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
-    void LinearizeExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
     Value *RemoveFactorFromExpression(Value *V, Value *Factor);
-    void ReassociateInst(BasicBlock::iterator &BBI);
-
-    void RemoveDeadBinaryOp(Value *V);
+    void EraseInst(Instruction *I);
+    void OptimizeInst(Instruction *I);
+    Instruction *canonicalizeNegConstExpr(Instruction *I);
   };
 }
 
+XorOpnd::XorOpnd(Value *V) {
+  assert(!isa<ConstantInt>(V) && "No ConstantInt");
+  OrigVal = V;
+  Instruction *I = dyn_cast<Instruction>(V);
+  SymbolicRank = 0;
+
+  if (I && (I->getOpcode() == Instruction::Or ||
+            I->getOpcode() == Instruction::And)) {
+    Value *V0 = I->getOperand(0);
+    Value *V1 = I->getOperand(1);
+    if (isa<ConstantInt>(V0))
+      std::swap(V0, V1);
+
+    if (ConstantInt *C = dyn_cast<ConstantInt>(V1)) {
+      ConstPart = C->getValue();
+      SymbolicPart = V0;
+      isOr = (I->getOpcode() == Instruction::Or);
+      return;
+    }
+  }
+
+  // view the operand as "V | 0"
+  SymbolicPart = V;
+  ConstPart = APInt::getNullValue(V->getType()->getIntegerBitWidth());
+  isOr = true;
+}
+
 char Reassociate::ID = 0;
 INITIALIZE_PASS(Reassociate, "reassociate",
                 "Reassociate expressions", false, false)
@@ -158,58 +233,57 @@ INITIALIZE_PASS(Reassociate, "reassociate",
 // Public interface to the Reassociate pass
 FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
 
-/// isReassociableOp - Return true if V is an instruction of the specified
-/// opcode and if it only has one use.
+/// Return true if V is an instruction of the specified opcode and if it
+/// only has one use.
 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
   if (V->hasOneUse() && isa<Instruction>(V) &&
-      cast<Instruction>(V)->getOpcode() == Opcode)
+      cast<Instruction>(V)->getOpcode() == Opcode &&
+      (!isa<FPMathOperator>(V) ||
+       cast<Instruction>(V)->hasUnsafeAlgebra()))
     return cast<BinaryOperator>(V);
-  return 0;
+  return nullptr;
 }
 
-void Reassociate::RemoveDeadBinaryOp(Value *V) {
-  BinaryOperator *Op = dyn_cast<BinaryOperator>(V);
-  if (!Op)
-    return;
-
-  ValueRankMap.erase(Op);
-  DeadInsts.push_back(Op);
-
-  BinaryOperator *LHS = isReassociableOp(Op->getOperand(0), Op->getOpcode());
-  BinaryOperator *RHS = isReassociableOp(Op->getOperand(1), Op->getOpcode());
-  Op->setOperand(0, UndefValue::get(Op->getType()));
-  Op->setOperand(1, UndefValue::get(Op->getType()));
-
-  if (LHS)
-    RemoveDeadBinaryOp(LHS);
-  if (RHS)
-    RemoveDeadBinaryOp(RHS);
+static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode1,
+                                        unsigned Opcode2) {
+  if (V->hasOneUse() && isa<Instruction>(V) &&
+      (cast<Instruction>(V)->getOpcode() == Opcode1 ||
+       cast<Instruction>(V)->getOpcode() == Opcode2) &&
+      (!isa<FPMathOperator>(V) ||
+       cast<Instruction>(V)->hasUnsafeAlgebra()))
+    return cast<BinaryOperator>(V);
+  return nullptr;
 }
 
 static bool isUnmovableInstruction(Instruction *I) {
-  if (I->getOpcode() == Instruction::PHI ||
-      I->getOpcode() == Instruction::LandingPad ||
-      I->getOpcode() == Instruction::Alloca ||
-      I->getOpcode() == Instruction::Load ||
-      I->getOpcode() == Instruction::Invoke ||
-      (I->getOpcode() == Instruction::Call &&
-       !isa<DbgInfoIntrinsic>(I)) ||
-      I->getOpcode() == Instruction::UDiv ||
-      I->getOpcode() == Instruction::SDiv ||
-      I->getOpcode() == Instruction::FDiv ||
-      I->getOpcode() == Instruction::URem ||
-      I->getOpcode() == Instruction::SRem ||
-      I->getOpcode() == Instruction::FRem)
+  switch (I->getOpcode()) {
+  case Instruction::PHI:
+  case Instruction::LandingPad:
+  case Instruction::Alloca:
+  case Instruction::Load:
+  case Instruction::Invoke:
+  case Instruction::UDiv:
+  case Instruction::SDiv:
+  case Instruction::FDiv:
+  case Instruction::URem:
+  case Instruction::SRem:
+  case Instruction::FRem:
     return true;
-  return false;
+  case Instruction::Call:
+    return !isa<DbgInfoIntrinsic>(I);
+  default:
+    return false;
+  }
 }
 
 void Reassociate::BuildRankMap(Function &F) {
   unsigned i = 2;
 
-  // Assign distinct ranks to function arguments
-  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
+  // Assign distinct ranks to function arguments.
+  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) {
     ValueRankMap[&*I] = ++i;
+    DEBUG(dbgs() << "Calculated Rank[" << I->getName() << "] = " << i << "\n");
+  }
 
   ReversePostOrderTraversal<Function*> RPOT(&F);
   for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
@@ -228,7 +302,7 @@ void Reassociate::BuildRankMap(Function &F) {
 
 unsigned Reassociate::getRank(Value *V) {
   Instruction *I = dyn_cast<Instruction>(V);
-  if (I == 0) {
+  if (!I) {
     if (isa<Argument>(V)) return ValueRankMap[V];   // Function argument.
     return 0;  // Otherwise it's a global or constant, rank 0.
   }
@@ -247,36 +321,192 @@ unsigned Reassociate::getRank(Value *V) {
 
   // If this is a not or neg instruction, do not count it for rank.  This
   // assures us that X and ~X will have the same rank.
-  if (!I->getType()->isIntegerTy() ||
-      (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I)))
+  if  (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I) &&
+       !BinaryOperator::isFNeg(I))
     ++Rank;
 
-  //DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = "
-  //     << Rank << "\n");
+  DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = " << Rank << "\n");
 
   return ValueRankMap[I] = Rank;
 }
 
-/// LowerNegateToMultiply - Replace 0-X with X*-1.
-///
-static BinaryOperator *LowerNegateToMultiply(Instruction *Neg,
-                         DenseMap<AssertingVH<Value>, unsigned> &ValueRankMap) {
-  Constant *Cst = Constant::getAllOnesValue(Neg->getType());
+// Canonicalize constants to RHS.  Otherwise, sort the operands by rank.
+void Reassociate::canonicalizeOperands(Instruction *I) {
+  assert(isa<BinaryOperator>(I) && "Expected binary operator.");
+  assert(I->isCommutative() && "Expected commutative operator.");
+
+  Value *LHS = I->getOperand(0);
+  Value *RHS = I->getOperand(1);
+  unsigned LHSRank = getRank(LHS);
+  unsigned RHSRank = getRank(RHS);
+
+  if (isa<Constant>(RHS))
+    return;
+
+  if (isa<Constant>(LHS) || RHSRank < LHSRank)
+    cast<BinaryOperator>(I)->swapOperands();
+}
+
+static BinaryOperator *CreateAdd(Value *S1, Value *S2, const Twine &Name,
+                                 Instruction *InsertBefore, Value *FlagsOp) {
+  if (S1->getType()->isIntOrIntVectorTy())
+    return BinaryOperator::CreateAdd(S1, S2, Name, InsertBefore);
+  else {
+    BinaryOperator *Res =
+        BinaryOperator::CreateFAdd(S1, S2, Name, InsertBefore);
+    Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
+    return Res;
+  }
+}
+
+static BinaryOperator *CreateMul(Value *S1, Value *S2, const Twine &Name,
+                                 Instruction *InsertBefore, Value *FlagsOp) {
+  if (S1->getType()->isIntOrIntVectorTy())
+    return BinaryOperator::CreateMul(S1, S2, Name, InsertBefore);
+  else {
+    BinaryOperator *Res =
+      BinaryOperator::CreateFMul(S1, S2, Name, InsertBefore);
+    Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
+    return Res;
+  }
+}
 
-  BinaryOperator *Res =
-    BinaryOperator::CreateMul(Neg->getOperand(1), Cst, "",Neg);
-  ValueRankMap.erase(Neg);
+static BinaryOperator *CreateNeg(Value *S1, const Twine &Name,
+                                 Instruction *InsertBefore, Value *FlagsOp) {
+  if (S1->getType()->isIntOrIntVectorTy())
+    return BinaryOperator::CreateNeg(S1, Name, InsertBefore);
+  else {
+    BinaryOperator *Res = BinaryOperator::CreateFNeg(S1, Name, InsertBefore);
+    Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
+    return Res;
+  }
+}
+
+/// Replace 0-X with X*-1.
+static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) {
+  Type *Ty = Neg->getType();
+  Constant *NegOne = Ty->isIntOrIntVectorTy() ?
+    ConstantInt::getAllOnesValue(Ty) : ConstantFP::get(Ty, -1.0);
+
+  BinaryOperator *Res = CreateMul(Neg->getOperand(1), NegOne, "", Neg, Neg);
+  Neg->setOperand(1, Constant::getNullValue(Ty)); // Drop use of op.
   Res->takeName(Neg);
   Neg->replaceAllUsesWith(Res);
   Res->setDebugLoc(Neg->getDebugLoc());
-  Neg->eraseFromParent();
   return Res;
 }
 
-/// LinearizeExprTree - Given an associative binary expression, return the leaf
-/// nodes in Ops.  The original expression is the same as Ops[0] op ... Ops[N].
-/// Note that a node may occur multiple times in Ops, but if so all occurrences
-/// are consecutive in the vector.
+/// Returns k such that lambda(2^Bitwidth) = 2^k, where lambda is the Carmichael
+/// function. This means that x^(2^k) === 1 mod 2^Bitwidth for
+/// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic.
+/// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every
+/// even x in Bitwidth-bit arithmetic.
+static unsigned CarmichaelShift(unsigned Bitwidth) {
+  if (Bitwidth < 3)
+    return Bitwidth - 1;
+  return Bitwidth - 2;
+}
+
+/// Add the extra weight 'RHS' to the existing weight 'LHS',
+/// reducing the combined weight using any special properties of the operation.
+/// The existing weight LHS represents the computation X op X op ... op X where
+/// X occurs LHS times.  The combined weight represents  X op X op ... op X with
+/// X occurring LHS + RHS times.  If op is "Xor" for example then the combined
+/// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even;
+/// the routine returns 1 in LHS in the first case, and 0 in LHS in the second.
+static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) {
+  // If we were working with infinite precision arithmetic then the combined
+  // weight would be LHS + RHS.  But we are using finite precision arithmetic,
+  // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct
+  // for nilpotent operations and addition, but not for idempotent operations
+  // and multiplication), so it is important to correctly reduce the combined
+  // weight back into range if wrapping would be wrong.
+
+  // If RHS is zero then the weight didn't change.
+  if (RHS.isMinValue())
+    return;
+  // If LHS is zero then the combined weight is RHS.
+  if (LHS.isMinValue()) {
+    LHS = RHS;
+    return;
+  }
+  // From this point on we know that neither LHS nor RHS is zero.
+
+  if (Instruction::isIdempotent(Opcode)) {
+    // Idempotent means X op X === X, so any non-zero weight is equivalent to a
+    // weight of 1.  Keeping weights at zero or one also means that wrapping is
+    // not a problem.
+    assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
+    return; // Return a weight of 1.
+  }
+  if (Instruction::isNilpotent(Opcode)) {
+    // Nilpotent means X op X === 0, so reduce weights modulo 2.
+    assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
+    LHS = 0; // 1 + 1 === 0 modulo 2.
+    return;
+  }
+  if (Opcode == Instruction::Add || Opcode == Instruction::FAdd) {
+    // TODO: Reduce the weight by exploiting nsw/nuw?
+    LHS += RHS;
+    return;
+  }
+
+  assert((Opcode == Instruction::Mul || Opcode == Instruction::FMul) &&
+         "Unknown associative operation!");
+  unsigned Bitwidth = LHS.getBitWidth();
+  // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth
+  // can be replaced with W-CM.  That's because x^W=x^(W-CM) for every Bitwidth
+  // bit number x, since either x is odd in which case x^CM = 1, or x is even in
+  // which case both x^W and x^(W - CM) are zero.  By subtracting off multiples
+  // of CM like this weights can always be reduced to the range [0, CM+Bitwidth)
+  // which by a happy accident means that they can always be represented using
+  // Bitwidth bits.
+  // TODO: Reduce the weight by exploiting nsw/nuw?  (Could do much better than
+  // the Carmichael number).
+  if (Bitwidth > 3) {
+    /// CM - The value of Carmichael's lambda function.
+    APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth));
+    // Any weight W >= Threshold can be replaced with W - CM.
+    APInt Threshold = CM + Bitwidth;
+    assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!");
+    // For Bitwidth 4 or more the following sum does not overflow.
+    LHS += RHS;
+    while (LHS.uge(Threshold))
+      LHS -= CM;
+  } else {
+    // To avoid problems with overflow do everything the same as above but using
+    // a larger type.
+    unsigned CM = 1U << CarmichaelShift(Bitwidth);
+    unsigned Threshold = CM + Bitwidth;
+    assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold &&
+           "Weights not reduced!");
+    unsigned Total = LHS.getZExtValue() + RHS.getZExtValue();
+    while (Total >= Threshold)
+      Total -= CM;
+    LHS = Total;
+  }
+}
+
+typedef std::pair<Value*, APInt> RepeatedValue;
+
+/// Given an associative binary expression, return the leaf
+/// nodes in Ops along with their weights (how many times the leaf occurs).  The
+/// original expression is the same as
+///   (Ops[0].first op Ops[0].first op ... Ops[0].first)  <- Ops[0].second times
+/// op
+///   (Ops[1].first op Ops[1].first op ... Ops[1].first)  <- Ops[1].second times
+/// op
+///   ...
+/// op
+///   (Ops[N].first op Ops[N].first op ... Ops[N].first)  <- Ops[N].second times
+///
+/// Note that the values Ops[0].first, ..., Ops[N].first are all distinct.
+///
+/// This routine may modify the function, in which case it returns 'true'.  The
+/// changes it makes may well be destructive, changing the value computed by 'I'
+/// to something completely different.  Thus if the routine returns 'true' then
+/// you MUST either replace I with a new expression computed from the Ops array,
+/// or use RewriteExprTree to put the values back in.
 ///
 /// A leaf node is either not a binary operation of the same kind as the root
 /// node 'I' (i.e. is not a binary operator at all, or is, but with a different
@@ -298,7 +528,7 @@ static BinaryOperator *LowerNegateToMultiply(Instruction *Neg,
 ///                   +   *      |      F,  G
 ///
 /// The leaf nodes are C, E, F and G.  The Ops array will contain (maybe not in
-/// that order) C, E, F, F, G, G.
+/// that order) (C, 1), (E, 1), (F, 2), (G, 2).
 ///
 /// The expression is maximal: if some instruction is a binary operator of the
 /// same kind as 'I', and all of its uses are non-leaf nodes of the expression,
@@ -309,7 +539,8 @@ static BinaryOperator *LowerNegateToMultiply(Instruction *Neg,
 /// order to ensure that every non-root node in the expression has *exactly one*
 /// use by a non-leaf node of the expression.  This destruction means that the
 /// caller MUST either replace 'I' with a new expression or use something like
-/// RewriteExprTree to put the values back in.
+/// RewriteExprTree to put the values back in if the routine indicates that it
+/// made a change by returning 'true'.
 ///
 /// In the above example either the right operand of A or the left operand of B
 /// will be replaced by undef.  If it is B's operand then this gives:
@@ -332,9 +563,13 @@ static BinaryOperator *LowerNegateToMultiply(Instruction *Neg,
 /// of the expression) if it can turn them into binary operators of the right
 /// type and thus make the expression bigger.
 
-void Reassociate::LinearizeExprTree(BinaryOperator *I,
-                                    SmallVectorImpl<ValueEntry> &Ops) {
+static bool LinearizeExprTree(BinaryOperator *I,
+                              SmallVectorImpl<RepeatedValue> &Ops) {
   DEBUG(dbgs() << "LINEARIZE: " << *I << '\n');
+  unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits();
+  unsigned Opcode = I->getOpcode();
+  assert(I->isAssociative() && I->isCommutative() &&
+         "Expected an associative and commutative operation!");
 
   // Visit all operands of the expression, keeping track of their weight (the
   // number of paths from the expression root to the operand, or if you like
@@ -346,9 +581,9 @@ void Reassociate::LinearizeExprTree(BinaryOperator *I,
   // with their weights, representing a certain number of paths to the operator.
   // If an operator occurs in the worklist multiple times then we found multiple
   // ways to get to it.
-  SmallVector<std::pair<BinaryOperator*, unsigned>, 8> Worklist; // (Op, Weight)
-  Worklist.push_back(std::make_pair(I, 1));
-  unsigned Opcode = I->getOpcode();
+  SmallVector<std::pair<BinaryOperator*, APInt>, 8> Worklist; // (Op, Weight)
+  Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1)));
+  bool Changed = false;
 
   // Leaves of the expression are values that either aren't the right kind of
   // operation (eg: a constant, or a multiply in an add tree), or are, but have
@@ -365,7 +600,7 @@ void Reassociate::LinearizeExprTree(BinaryOperator *I,
 
   // Leaves - Keeps track of the set of putative leaves as well as the number of
   // paths to each leaf seen so far.
-  typedef SmallMap<Value*, unsigned, 8> LeafMap;
+  typedef DenseMap<Value*, APInt> LeafMap;
   LeafMap Leaves; // Leaf -> Total weight so far.
   SmallVector<Value*, 8> LeafOrder; // Ensure deterministic leaf output order.
 
@@ -373,20 +608,19 @@ void Reassociate::LinearizeExprTree(BinaryOperator *I,
   SmallPtrSet<Value*, 8> Visited; // For sanity checking the iteration scheme.
 #endif
   while (!Worklist.empty()) {
-    std::pair<BinaryOperator*, unsigned> P = Worklist.pop_back_val();
+    std::pair<BinaryOperator*, APInt> P = Worklist.pop_back_val();
     I = P.first; // We examine the operands of this binary operator.
-    assert(P.second >= 1 && "No paths to here, so how did we get here?!");
 
     for (unsigned OpIdx = 0; OpIdx < 2; ++OpIdx) { // Visit operands.
       Value *Op = I->getOperand(OpIdx);
-      unsigned Weight = P.second; // Number of paths to this operand.
+      APInt Weight = P.second; // Number of paths to this operand.
       DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n");
       assert(!Op->use_empty() && "No uses, so how did we get to it?!");
 
       // If this is a binary operation of the right kind with only one use then
       // add its operands to the expression.
       if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
-        assert(Visited.insert(Op) && "Not first visit!");
+        assert(Visited.insert(Op).second && "Not first visit!");
         DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n");
         Worklist.push_back(std::make_pair(BO, Weight));
         continue;
@@ -396,7 +630,7 @@ void Reassociate::LinearizeExprTree(BinaryOperator *I,
       LeafMap::iterator It = Leaves.find(Op);
       if (It == Leaves.end()) {
         // Not in the leaf map.  Must be the first time we saw this operand.
-        assert(Visited.insert(Op) && "Not first visit!");
+        assert(Visited.insert(Op).second && "Not first visit!");
         if (!Op->hasOneUse()) {
           // This value has uses not accounted for by the expression, so it is
           // not safe to modify.  Mark it as being a leaf.
@@ -411,13 +645,14 @@ void Reassociate::LinearizeExprTree(BinaryOperator *I,
         assert(Visited.count(Op) && "In leaf map but not visited!");
 
         // Update the number of paths to the leaf.
-        It->second += Weight;
+        IncorporateWeight(It->second, Weight, Opcode);
 
+#if 0   // TODO: Re-enable once PR13021 is fixed.
         // The leaf already has one use from inside the expression.  As we want
         // exactly one such use, drop this new use of the leaf.
         assert(!Op->hasOneUse() && "Only one use, but we got here twice!");
         I->setOperand(OpIdx, UndefValue::get(I->getType()));
-        MadeChange = true;
+        Changed = true;
 
         // If the leaf is a binary operation of the right kind and we now see
         // that its multiple original uses were in fact all by nodes belonging
@@ -429,6 +664,7 @@ void Reassociate::LinearizeExprTree(BinaryOperator *I,
           Leaves.erase(It);
           continue;
         }
+#endif
 
         // If we still have uses that are not accounted for by the expression
         // then it is not safe to modify the value.
@@ -445,21 +681,24 @@ void Reassociate::LinearizeExprTree(BinaryOperator *I,
       // expression.  This means that it can safely be modified.  See if we
       // can usefully morph it into an expression of the right kind.
       assert((!isa<Instruction>(Op) ||
-              cast<Instruction>(Op)->getOpcode() != Opcode) &&
+              cast<Instruction>(Op)->getOpcode() != Opcode
+              || (isa<FPMathOperator>(Op) &&
+                  !cast<Instruction>(Op)->hasUnsafeAlgebra())) &&
              "Should have been handled above!");
       assert(Op->hasOneUse() && "Has uses outside the expression tree!");
 
       // If this is a multiply expression, turn any internal negations into
       // multiplies by -1 so they can be reassociated.
-      BinaryOperator *BO = dyn_cast<BinaryOperator>(Op);
-      if (Opcode == Instruction::Mul && BO && BinaryOperator::isNeg(BO)) {
-        DEBUG(dbgs() << "MORPH LEAF: " << *Op << " (" << Weight << ") TO ");
-        BO = LowerNegateToMultiply(BO, ValueRankMap);
-        DEBUG(dbgs() << *BO << 'n');
-        Worklist.push_back(std::make_pair(BO, Weight));
-        MadeChange = true;
-        continue;
-      }
+      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op))
+        if ((Opcode == Instruction::Mul && BinaryOperator::isNeg(BO)) ||
+            (Opcode == Instruction::FMul && BinaryOperator::isFNeg(BO))) {
+          DEBUG(dbgs() << "MORPH LEAF: " << *Op << " (" << Weight << ") TO ");
+          BO = LowerNegateToMultiply(BO);
+          DEBUG(dbgs() << *BO << '\n');
+          Worklist.push_back(std::make_pair(BO, Weight));
+          Changed = true;
+          continue;
+        }
 
       // Failed to morph into an expression of the right type.  This really is
       // a leaf.
@@ -476,27 +715,38 @@ void Reassociate::LinearizeExprTree(BinaryOperator *I,
     Value *V = LeafOrder[i];
     LeafMap::iterator It = Leaves.find(V);
     if (It == Leaves.end())
-      // Leaf already output, or node initially thought to be a leaf wasn't.
+      // Node initially thought to be a leaf wasn't.
       continue;
     assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!");
-    unsigned Weight = It->second;
-    assert(Weight > 0 && "No paths to this value!");
-    // FIXME: Rather than repeating values Weight times, use a vector of
-    // (ValueEntry, multiplicity) pairs.
-    Ops.append(Weight, ValueEntry(getRank(V), V));
+    APInt Weight = It->second;
+    if (Weight.isMinValue())
+      // Leaf already output or weight reduction eliminated it.
+      continue;
     // Ensure the leaf is only output once.
-    Leaves.erase(It);
+    It->second = 0;
+    Ops.push_back(std::make_pair(V, Weight));
+  }
+
+  // For nilpotent operations or addition there may be no operands, for example
+  // because the expression was "X xor X" or consisted of 2^Bitwidth additions:
+  // in both cases the weight reduces to 0 causing the value to be skipped.
+  if (Ops.empty()) {
+    Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType());
+    assert(Identity && "Associative operation without identity!");
+    Ops.emplace_back(Identity, APInt(Bitwidth, 1));
   }
+
+  return Changed;
 }
 
-// RewriteExprTree - Now that the operands for this expression tree are
-// linearized and optimized, emit them in-order.
+/// Now that the operands for this expression tree are
+/// linearized and optimized, emit them in-order.
 void Reassociate::RewriteExprTree(BinaryOperator *I,
                                   SmallVectorImpl<ValueEntry> &Ops) {
   assert(Ops.size() > 1 && "Single values should be used directly!");
 
-  // Since our optimizations never increase the number of operations, the new
-  // expression can always be written by reusing the existing binary operators
+  // Since our optimizations should never increase the number of operations, the
+  // new expression can usually be written reusing the existing binary operators
   // from the original expression tree, without creating any new instructions,
   // though the rewritten expression may have a completely different topology.
   // We take care to not change anything if the new expression will be the same
@@ -508,23 +758,27 @@ void Reassociate::RewriteExprTree(BinaryOperator *I,
   /// the new expression into.
   SmallVector<BinaryOperator*, 8> NodesToRewrite;
   unsigned Opcode = I->getOpcode();
-  NodesToRewrite.push_back(I);
+  BinaryOperator *Op = I;
+
+  /// NotRewritable - The operands being written will be the leaves of the new
+  /// expression and must not be used as inner nodes (via NodesToRewrite) by
+  /// mistake.  Inner nodes are always reassociable, and usually leaves are not
+  /// (if they were they would have been incorporated into the expression and so
+  /// would not be leaves), so most of the time there is no danger of this.  But
+  /// in rare cases a leaf may become reassociable if an optimization kills uses
+  /// of it, or it may momentarily become reassociable during rewriting (below)
+  /// due it being removed as an operand of one of its uses.  Ensure that misuse
+  /// of leaf nodes as inner nodes cannot occur by remembering all of the future
+  /// leaves and refusing to reuse any of them as inner nodes.
+  SmallPtrSet<Value*, 8> NotRewritable;
+  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
+    NotRewritable.insert(Ops[i].Op);
 
   // ExpressionChanged - Non-null if the rewritten expression differs from the
   // original in some non-trivial way, requiring the clearing of optional flags.
   // Flags are cleared from the operator in ExpressionChanged up to I inclusive.
-  BinaryOperator *ExpressionChanged = 0;
-  BinaryOperator *Previous;
-  BinaryOperator *Op = 0;
-  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
-    assert(!NodesToRewrite.empty() &&
-           "Optimized expressions has more nodes than original!");
-    Previous = Op; Op = NodesToRewrite.pop_back_val();
-    if (ExpressionChanged)
-      // Compactify the tree instructions together with each other to guarantee
-      // that the expression tree is dominated by all of Ops.
-      Op->moveBefore(Previous);
-
+  BinaryOperator *ExpressionChanged = nullptr;
+  for (unsigned i = 0; ; ++i) {
     // The last operation (which comes earliest in the IR) is special as both
     // operands will come from Ops, rather than just one with the other being
     // a subexpression.
@@ -552,12 +806,14 @@ void Reassociate::RewriteExprTree(BinaryOperator *I,
       // the old operands with the new ones.
       DEBUG(dbgs() << "RA: " << *Op << '\n');
       if (NewLHS != OldLHS) {
-        if (BinaryOperator *BO = isReassociableOp(OldLHS, Opcode))
+        BinaryOperator *BO = isReassociableOp(OldLHS, Opcode);
+        if (BO && !NotRewritable.count(BO))
           NodesToRewrite.push_back(BO);
         Op->setOperand(0, NewLHS);
       }
       if (NewRHS != OldRHS) {
-        if (BinaryOperator *BO = isReassociableOp(OldRHS, Opcode))
+        BinaryOperator *BO = isReassociableOp(OldRHS, Opcode);
+        if (BO && !NotRewritable.count(BO))
           NodesToRewrite.push_back(BO);
         Op->setOperand(1, NewRHS);
       }
@@ -581,7 +837,8 @@ void Reassociate::RewriteExprTree(BinaryOperator *I,
         Op->swapOperands();
       } else {
         // Overwrite with the new right-hand side.
-        if (BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode))
+        BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode);
+        if (BO && !NotRewritable.count(BO))
           NodesToRewrite.push_back(BO);
         Op->setOperand(1, NewRHS);
         ExpressionChanged = Op;
@@ -594,46 +851,76 @@ void Reassociate::RewriteExprTree(BinaryOperator *I,
     // Now deal with the left-hand side.  If this is already an operation node
     // from the original expression then just rewrite the rest of the expression
     // into it.
-    if (BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode)) {
-      NodesToRewrite.push_back(BO);
+    BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode);
+    if (BO && !NotRewritable.count(BO)) {
+      Op = BO;
       continue;
     }
 
     // Otherwise, grab a spare node from the original expression and use that as
-    // the left-hand side.
-    assert(!NodesToRewrite.empty() &&
-           "Optimized expressions has more nodes than original!");
+    // the left-hand side.  If there are no nodes left then the optimizers made
+    // an expression with more nodes than the original!  This usually means that
+    // they did something stupid but it might mean that the problem was just too
+    // hard (finding the mimimal number of multiplications needed to realize a
+    // multiplication expression is NP-complete).  Whatever the reason, smart or
+    // stupid, create a new node if there are none left.
+    BinaryOperator *NewOp;
+    if (NodesToRewrite.empty()) {
+      Constant *Undef = UndefValue::get(I->getType());
+      NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode),
+                                     Undef, Undef, "", I);
+      if (NewOp->getType()->isFPOrFPVectorTy())
+        NewOp->setFastMathFlags(I->getFastMathFlags());
+    } else {
+      NewOp = NodesToRewrite.pop_back_val();
+    }
+
     DEBUG(dbgs() << "RA: " << *Op << '\n');
-    Op->setOperand(0, NodesToRewrite.back());
+    Op->setOperand(0, NewOp);
     DEBUG(dbgs() << "TO: " << *Op << '\n');
     ExpressionChanged = Op;
     MadeChange = true;
     ++NumChanged;
+    Op = NewOp;
   }
 
   // If the expression changed non-trivially then clear out all subclass data
-  // starting from the operator specified in ExpressionChanged.
-  if (ExpressionChanged) {
+  // starting from the operator specified in ExpressionChanged, and compactify
+  // the operators to just before the expression root to guarantee that the
+  // expression tree is dominated by all of Ops.
+  if (ExpressionChanged)
     do {
-      ExpressionChanged->clearSubclassOptionalData();
+      // Preserve FastMathFlags.
+      if (isa<FPMathOperator>(I)) {
+        FastMathFlags Flags = I->getFastMathFlags();
+        ExpressionChanged->clearSubclassOptionalData();
+        ExpressionChanged->setFastMathFlags(Flags);
+      } else
+        ExpressionChanged->clearSubclassOptionalData();
+
       if (ExpressionChanged == I)
         break;
-      ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->use_begin());
+      ExpressionChanged->moveBefore(I);
+      ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->user_begin());
     } while (1);
-  }
 
   // Throw away any left over nodes from the original expression.
   for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i)
-    RemoveDeadBinaryOp(NodesToRewrite[i]);
+    RedoInsts.insert(NodesToRewrite[i]);
 }
 
-/// NegateValue - Insert instructions before the instruction pointed to by BI,
+/// Insert instructions before the instruction pointed to by BI,
 /// that computes the negative version of the value specified.  The negative
 /// version of the value is returned, and BI is left pointing at the instruction
 /// that should be processed next by the reassociation pass.
 static Value *NegateValue(Value *V, Instruction *BI) {
-  if (Constant *C = dyn_cast<Constant>(V))
+  if (Constant *C = dyn_cast<Constant>(V)) {
+    if (C->getType()->isFPOrFPVectorTy()) {
+      return ConstantExpr::getFNeg(C);
+    }
     return ConstantExpr::getNeg(C);
+  }
+
 
   // We are trying to expose opportunity for reassociation.  One of the things
   // that we want to do to achieve this is to push a negation as deep into an
@@ -644,7 +931,8 @@ static Value *NegateValue(Value *V, Instruction *BI) {
   // the constants.  We assume that instcombine will clean up the mess later if
   // we introduce tons of unnecessary negation instructions.
   //
-  if (BinaryOperator *I = isReassociableOp(V, Instruction::Add)) {
+  if (BinaryOperator *I =
+          isReassociableOp(V, Instruction::Add, Instruction::FAdd)) {
     // Push the negates through the add.
     I->setOperand(0, NegateValue(I->getOperand(0), BI));
     I->setOperand(1, NegateValue(I->getOperand(1), BI));
@@ -661,9 +949,9 @@ static Value *NegateValue(Value *V, Instruction *BI) {
 
   // Okay, we need to materialize a negated version of V with an instruction.
   // Scan the use lists of V to see if we have one already.
-  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
-    User *U = *UI;
-    if (!BinaryOperator::isNeg(U)) continue;
+  for (User *U : V->users()) {
+    if (!BinaryOperator::isNeg(U) && !BinaryOperator::isFNeg(U))
+      continue;
 
     // We found one!  Now we have to make sure that the definition dominates
     // this use.  We do this by moving it to the entry block (if it is a
@@ -693,37 +981,41 @@ static Value *NegateValue(Value *V, Instruction *BI) {
 
   // Insert a 'neg' instruction that subtracts the value from zero to get the
   // negation.
-  return BinaryOperator::CreateNeg(V, V->getName() + ".neg", BI);
+  return CreateNeg(V, V->getName() + ".neg", BI, BI);
 }
 
-/// ShouldBreakUpSubtract - Return true if we should break up this subtract of
-/// X-Y into (X + -Y).
+/// Return true if we should break up this subtract of X-Y into (X + -Y).
 static bool ShouldBreakUpSubtract(Instruction *Sub) {
   // If this is a negation, we can't split it up!
-  if (BinaryOperator::isNeg(Sub))
+  if (BinaryOperator::isNeg(Sub) || BinaryOperator::isFNeg(Sub))
+    return false;
+
+  // Don't breakup X - undef.
+  if (isa<UndefValue>(Sub->getOperand(1)))
     return false;
 
   // Don't bother to break this up unless either the LHS is an associable add or
   // subtract or if this is only used by one.
-  if (isReassociableOp(Sub->getOperand(0), Instruction::Add) ||
-      isReassociableOp(Sub->getOperand(0), Instruction::Sub))
+  Value *V0 = Sub->getOperand(0);
+  if (isReassociableOp(V0, Instruction::Add, Instruction::FAdd) ||
+      isReassociableOp(V0, Instruction::Sub, Instruction::FSub))
     return true;
-  if (isReassociableOp(Sub->getOperand(1), Instruction::Add) ||
-      isReassociableOp(Sub->getOperand(1), Instruction::Sub))
+  Value *V1 = Sub->getOperand(1);
+  if (isReassociableOp(V1, Instruction::Add, Instruction::FAdd) ||
+      isReassociableOp(V1, Instruction::Sub, Instruction::FSub))
     return true;
+  Value *VB = Sub->user_back();
   if (Sub->hasOneUse() &&
-      (isReassociableOp(Sub->use_back(), Instruction::Add) ||
-       isReassociableOp(Sub->use_back(), Instruction::Sub)))
+      (isReassociableOp(VB, Instruction::Add, Instruction::FAdd) ||
+       isReassociableOp(VB, Instruction::Sub, Instruction::FSub)))
     return true;
 
   return false;
 }
 
-/// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
-/// only used by an add, transform this into (X+(0-Y)) to promote better
-/// reassociation.
-static Instruction *BreakUpSubtract(Instruction *Sub,
-                         DenseMap<AssertingVH<Value>, unsigned> &ValueRankMap) {
+/// If we have (X-Y), and if either X is an add, or if this is only used by an
+/// add, transform this into (X+(0-Y)) to promote better reassociation.
+static BinaryOperator *BreakUpSubtract(Instruction *Sub) {
   // Convert a subtract into an add and a neg instruction. This allows sub
   // instructions to be commuted with other add instructions.
   //
@@ -731,65 +1023,73 @@ static Instruction *BreakUpSubtract(Instruction *Sub,
   // and set it as the RHS of the add instruction we just made.
   //
   Value *NegVal = NegateValue(Sub->getOperand(1), Sub);
-  Instruction *New =
-    BinaryOperator::CreateAdd(Sub->getOperand(0), NegVal, "", Sub);
+  BinaryOperator *New = CreateAdd(Sub->getOperand(0), NegVal, "", Sub, Sub);
+  Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op.
+  Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op.
   New->takeName(Sub);
 
   // Everyone now refers to the add instruction.
-  ValueRankMap.erase(Sub);
   Sub->replaceAllUsesWith(New);
   New->setDebugLoc(Sub->getDebugLoc());
-  Sub->eraseFromParent();
 
   DEBUG(dbgs() << "Negated: " << *New << '\n');
   return New;
 }
 
-/// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used
-/// by one, change this into a multiply by a constant to assist with further
-/// reassociation.
-static Instruction *ConvertShiftToMul(Instruction *Shl,
-                         DenseMap<AssertingVH<Value>, unsigned> &ValueRankMap) {
-  // If an operand of this shift is a reassociable multiply, or if the shift
-  // is used by a reassociable multiply or add, turn into a multiply.
-  if (isReassociableOp(Shl->getOperand(0), Instruction::Mul) ||
-      (Shl->hasOneUse() &&
-       (isReassociableOp(Shl->use_back(), Instruction::Mul) ||
-        isReassociableOp(Shl->use_back(), Instruction::Add)))) {
-    Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
-    MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
-
-    Instruction *Mul =
-      BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
-    ValueRankMap.erase(Shl);
-    Mul->takeName(Shl);
-    Shl->replaceAllUsesWith(Mul);
-    Mul->setDebugLoc(Shl->getDebugLoc());
-    Shl->eraseFromParent();
-    return Mul;
-  }
-  return 0;
+/// If this is a shift of a reassociable multiply or is used by one, change
+/// this into a multiply by a constant to assist with further reassociation.
+static BinaryOperator *ConvertShiftToMul(Instruction *Shl) {
+  Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
+  MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
+
+  BinaryOperator *Mul =
+    BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
+  Shl->setOperand(0, UndefValue::get(Shl->getType())); // Drop use of op.
+  Mul->takeName(Shl);
+
+  // Everyone now refers to the mul instruction.
+  Shl->replaceAllUsesWith(Mul);
+  Mul->setDebugLoc(Shl->getDebugLoc());
+
+  // We can safely preserve the nuw flag in all cases.  It's also safe to turn a
+  // nuw nsw shl into a nuw nsw mul.  However, nsw in isolation requires special
+  // handling.
+  bool NSW = cast<BinaryOperator>(Shl)->hasNoSignedWrap();
+  bool NUW = cast<BinaryOperator>(Shl)->hasNoUnsignedWrap();
+  if (NSW && NUW)
+    Mul->setHasNoSignedWrap(true);
+  Mul->setHasNoUnsignedWrap(NUW);
+  return Mul;
 }
 
-/// FindInOperandList - Scan backwards and forwards among values with the same
-/// rank as element i to see if X exists.  If X does not exist, return i.  This
-/// is useful when scanning for 'x' when we see '-x' because they both get the
-/// same rank.
+/// Scan backwards and forwards among values with the same rank as element i
+/// to see if X exists.  If X does not exist, return i.  This is useful when
+/// scanning for 'x' when we see '-x' because they both get the same rank.
 static unsigned FindInOperandList(SmallVectorImpl<ValueEntry> &Ops, unsigned i,
                                   Value *X) {
   unsigned XRank = Ops[i].Rank;
   unsigned e = Ops.size();
-  for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j)
+  for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j) {
     if (Ops[j].Op == X)
       return j;
+    if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
+      if (Instruction *I2 = dyn_cast<Instruction>(X))
+        if (I1->isIdenticalTo(I2))
+          return j;
+  }
   // Scan backwards.
-  for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j)
+  for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j) {
     if (Ops[j].Op == X)
       return j;
+    if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
+      if (Instruction *I2 = dyn_cast<Instruction>(X))
+        if (I1->isIdenticalTo(I2))
+          return j;
+  }
   return i;
 }
 
-/// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together
+/// Emit a tree of add instructions, summing Ops together
 /// and returning the result.  Insert the tree before I.
 static Value *EmitAddTreeOfValues(Instruction *I,
                                   SmallVectorImpl<WeakVH> &Ops){
@@ -798,18 +1098,26 @@ static Value *EmitAddTreeOfValues(Instruction *I,
   Value *V1 = Ops.back();
   Ops.pop_back();
   Value *V2 = EmitAddTreeOfValues(I, Ops);
-  return BinaryOperator::CreateAdd(V2, V1, "tmp", I);
+  return CreateAdd(V2, V1, "tmp", I, I);
 }
 
-/// RemoveFactorFromExpression - If V is an expression tree that is a
-/// multiplication sequence, and if this sequence contains a multiply by Factor,
+/// If V is an expression tree that is a multiplication sequence,
+/// and if this sequence contains a multiply by Factor,
 /// remove Factor from the tree and return the new tree.
 Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
-  BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
-  if (!BO) return 0;
+  BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
+  if (!BO)
+    return nullptr;
 
+  SmallVector<RepeatedValue, 8> Tree;
+  MadeChange |= LinearizeExprTree(BO, Tree);
   SmallVector<ValueEntry, 8> Factors;
-  LinearizeExprTree(BO, Factors);
+  Factors.reserve(Tree.size());
+  for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
+    RepeatedValue E = Tree[i];
+    Factors.append(E.second.getZExtValue(),
+                   ValueEntry(getRank(E.first), E.first));
+  }
 
   bool FoundFactor = false;
   bool NeedsNegate = false;
@@ -821,19 +1129,31 @@ Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
     }
 
     // If this is a negative version of this factor, remove it.
-    if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor))
+    if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor)) {
       if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
         if (FC1->getValue() == -FC2->getValue()) {
           FoundFactor = NeedsNegate = true;
           Factors.erase(Factors.begin()+i);
           break;
         }
+    } else if (ConstantFP *FC1 = dyn_cast<ConstantFP>(Factor)) {
+      if (ConstantFP *FC2 = dyn_cast<ConstantFP>(Factors[i].Op)) {
+        APFloat F1(FC1->getValueAPF());
+        APFloat F2(FC2->getValueAPF());
+        F2.changeSign();
+        if (F1.compare(F2) == APFloat::cmpEqual) {
+          FoundFactor = NeedsNegate = true;
+          Factors.erase(Factors.begin() + i);
+          break;
+        }
+      }
+    }
   }
 
   if (!FoundFactor) {
     // Make sure to restore the operands to the expression tree.
     RewriteExprTree(BO, Factors);
-    return 0;
+    return nullptr;
   }
 
   BasicBlock::iterator InsertPt = BO; ++InsertPt;
@@ -841,7 +1161,7 @@ Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
   // If this was just a single multiply, remove the multiply and return the only
   // remaining operand.
   if (Factors.size() == 1) {
-    RemoveDeadBinaryOp(BO);
+    RedoInsts.insert(BO);
     V = Factors[0].Op;
   } else {
     RewriteExprTree(BO, Factors);
@@ -849,19 +1169,19 @@ Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
   }
 
   if (NeedsNegate)
-    V = BinaryOperator::CreateNeg(V, "neg", InsertPt);
+    V = CreateNeg(V, "neg", InsertPt, BO);
 
   return V;
 }
 
-/// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively
-/// add its operands as factors, otherwise add V to the list of factors.
+/// If V is a single-use multiply, recursively add its operands as factors,
+/// otherwise add V to the list of factors.
 ///
 /// Ops is the top-level list of add operands we're trying to factor.
 static void FindSingleUseMultiplyFactors(Value *V,
                                          SmallVectorImpl<Value*> &Factors,
                                        const SmallVectorImpl<ValueEntry> &Ops) {
-  BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
+  BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
   if (!BO) {
     Factors.push_back(V);
     return;
@@ -872,10 +1192,9 @@ static void FindSingleUseMultiplyFactors(Value *V,
   FindSingleUseMultiplyFactors(BO->getOperand(0), Factors, Ops);
 }
 
-/// OptimizeAndOrXor - Optimize a series of operands to an 'and', 'or', or 'xor'
-/// instruction.  This optimizes based on identities.  If it can be reduced to
-/// a single Value, it is returned, otherwise the Ops list is mutated as
-/// necessary.
+/// Optimize a series of operands to an 'and', 'or', or 'xor' instruction.
+/// This optimizes based on identities.  If it can be reduced to a single Value,
+/// it is returned, otherwise the Ops list is mutated as necessary.
 static Value *OptimizeAndOrXor(unsigned Opcode,
                                SmallVectorImpl<ValueEntry> &Ops) {
   // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
@@ -918,20 +1237,263 @@ static Value *OptimizeAndOrXor(unsigned Opcode,
       ++NumAnnihil;
     }
   }
-  return 0;
+  return nullptr;
+}
+
+/// Helper funciton of CombineXorOpnd(). It creates a bitwise-and
+/// instruction with the given two operands, and return the resulting
+/// instruction. There are two special cases: 1) if the constant operand is 0,
+/// it will return NULL. 2) if the constant is ~0, the symbolic operand will
+/// be returned.
+static Value *createAndInstr(Instruction *InsertBefore, Value *Opnd, 
+                             const APInt &ConstOpnd) {
+  if (ConstOpnd != 0) {
+    if (!ConstOpnd.isAllOnesValue()) {
+      LLVMContext &Ctx = Opnd->getType()->getContext();
+      Instruction *I;
+      I = BinaryOperator::CreateAnd(Opnd, ConstantInt::get(Ctx, ConstOpnd),
+                                    "and.ra", InsertBefore);
+      I->setDebugLoc(InsertBefore->getDebugLoc());
+      return I;
+    }
+    return Opnd;
+  }
+  return nullptr;
+}
+
+// Helper function of OptimizeXor(). It tries to simplify "Opnd1 ^ ConstOpnd"
+// into "R ^ C", where C would be 0, and R is a symbolic value.
+//
+// If it was successful, true is returned, and the "R" and "C" is returned
+// via "Res" and "ConstOpnd", respectively; otherwise, false is returned,
+// and both "Res" and "ConstOpnd" remain unchanged.
+//  
+bool Reassociate::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
+                                 APInt &ConstOpnd, Value *&Res) {
+  // Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2 
+  //                       = ((x | c1) ^ c1) ^ (c1 ^ c2)
+  //                       = (x & ~c1) ^ (c1 ^ c2)
+  // It is useful only when c1 == c2.
+  if (Opnd1->isOrExpr() && Opnd1->getConstPart() != 0) {
+    if (!Opnd1->getValue()->hasOneUse())
+      return false;
+
+    const APInt &C1 = Opnd1->getConstPart();
+    if (C1 != ConstOpnd)
+      return false;
+
+    Value *X = Opnd1->getSymbolicPart();
+    Res = createAndInstr(I, X, ~C1);
+    // ConstOpnd was C2, now C1 ^ C2.
+    ConstOpnd ^= C1;
+
+    if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
+      RedoInsts.insert(T);
+    return true;
+  }
+  return false;
+}
+
+                           
+// Helper function of OptimizeXor(). It tries to simplify
+// "Opnd1 ^ Opnd2 ^ ConstOpnd" into "R ^ C", where C would be 0, and R is a
+// symbolic value. 
+// 
+// If it was successful, true is returned, and the "R" and "C" is returned 
+// via "Res" and "ConstOpnd", respectively (If the entire expression is
+// evaluated to a constant, the Res is set to NULL); otherwise, false is
+// returned, and both "Res" and "ConstOpnd" remain unchanged.
+bool Reassociate::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, XorOpnd *Opnd2,
+                                 APInt &ConstOpnd, Value *&Res) {
+  Value *X = Opnd1->getSymbolicPart();
+  if (X != Opnd2->getSymbolicPart())
+    return false;
+
+  // This many instruction become dead.(At least "Opnd1 ^ Opnd2" will die.)
+  int DeadInstNum = 1;
+  if (Opnd1->getValue()->hasOneUse())
+    DeadInstNum++;
+  if (Opnd2->getValue()->hasOneUse())
+    DeadInstNum++;
+
+  // Xor-Rule 2:
+  //  (x | c1) ^ (x & c2)
+  //   = (x|c1) ^ (x&c2) ^ (c1 ^ c1) = ((x|c1) ^ c1) ^ (x & c2) ^ c1
+  //   = (x & ~c1) ^ (x & c2) ^ c1               // Xor-Rule 1
+  //   = (x & c3) ^ c1, where c3 = ~c1 ^ c2      // Xor-rule 3
+  //
+  if (Opnd1->isOrExpr() != Opnd2->isOrExpr()) {
+    if (Opnd2->isOrExpr())
+      std::swap(Opnd1, Opnd2);
+
+    const APInt &C1 = Opnd1->getConstPart();
+    const APInt &C2 = Opnd2->getConstPart();
+    APInt C3((~C1) ^ C2);
+
+    // Do not increase code size!
+    if (C3 != 0 && !C3.isAllOnesValue()) {
+      int NewInstNum = ConstOpnd != 0 ? 1 : 2;
+      if (NewInstNum > DeadInstNum)
+        return false;
+    }
+
+    Res = createAndInstr(I, X, C3);
+    ConstOpnd ^= C1;
+
+  } else if (Opnd1->isOrExpr()) {
+    // Xor-Rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2
+    //
+    const APInt &C1 = Opnd1->getConstPart();
+    const APInt &C2 = Opnd2->getConstPart();
+    APInt C3 = C1 ^ C2;
+    
+    // Do not increase code size
+    if (C3 != 0 && !C3.isAllOnesValue()) {
+      int NewInstNum = ConstOpnd != 0 ? 1 : 2;
+      if (NewInstNum > DeadInstNum)
+        return false;
+    }
+
+    Res = createAndInstr(I, X, C3);
+    ConstOpnd ^= C3;
+  } else {
+    // Xor-Rule 4: (x & c1) ^ (x & c2) = (x & (c1^c2))
+    //
+    const APInt &C1 = Opnd1->getConstPart();
+    const APInt &C2 = Opnd2->getConstPart();
+    APInt C3 = C1 ^ C2;
+    Res = createAndInstr(I, X, C3);
+  }
+
+  // Put the original operands in the Redo list; hope they will be deleted
+  // as dead code.
+  if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
+    RedoInsts.insert(T);
+  if (Instruction *T = dyn_cast<Instruction>(Opnd2->getValue()))
+    RedoInsts.insert(T);
+
+  return true;
 }
 
-/// OptimizeAdd - Optimize a series of operands to an 'add' instruction.  This
+/// Optimize a series of operands to an 'xor' instruction. If it can be reduced
+/// to a single Value, it is returned, otherwise the Ops list is mutated as
+/// necessary.
+Value *Reassociate::OptimizeXor(Instruction *I,
+                                SmallVectorImpl<ValueEntry> &Ops) {
+  if (Value *V = OptimizeAndOrXor(Instruction::Xor, Ops))
+    return V;
+      
+  if (Ops.size() == 1)
+    return nullptr;
+
+  SmallVector<XorOpnd, 8> Opnds;
+  SmallVector<XorOpnd*, 8> OpndPtrs;
+  Type *Ty = Ops[0].Op->getType();
+  APInt ConstOpnd(Ty->getIntegerBitWidth(), 0);
+
+  // Step 1: Convert ValueEntry to XorOpnd
+  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
+    Value *V = Ops[i].Op;
+    if (!isa<ConstantInt>(V)) {
+      XorOpnd O(V);
+      O.setSymbolicRank(getRank(O.getSymbolicPart()));
+      Opnds.push_back(O);
+    } else
+      ConstOpnd ^= cast<ConstantInt>(V)->getValue();
+  }
+
+  // NOTE: From this point on, do *NOT* add/delete element to/from "Opnds".
+  //  It would otherwise invalidate the "Opnds"'s iterator, and hence invalidate
+  //  the "OpndPtrs" as well. For the similar reason, do not fuse this loop
+  //  with the previous loop --- the iterator of the "Opnds" may be invalidated
+  //  when new elements are added to the vector.
+  for (unsigned i = 0, e = Opnds.size(); i != e; ++i)
+    OpndPtrs.push_back(&Opnds[i]);
+
+  // Step 2: Sort the Xor-Operands in a way such that the operands containing
+  //  the same symbolic value cluster together. For instance, the input operand
+  //  sequence ("x | 123", "y & 456", "x & 789") will be sorted into:
+  //  ("x | 123", "x & 789", "y & 456").
+  std::stable_sort(OpndPtrs.begin(), OpndPtrs.end(), XorOpnd::PtrSortFunctor());
+
+  // Step 3: Combine adjacent operands
+  XorOpnd *PrevOpnd = nullptr;
+  bool Changed = false;
+  for (unsigned i = 0, e = Opnds.size(); i < e; i++) {
+    XorOpnd *CurrOpnd = OpndPtrs[i];
+    // The combined value
+    Value *CV;
+
+    // Step 3.1: Try simplifying "CurrOpnd ^ ConstOpnd"
+    if (ConstOpnd != 0 && CombineXorOpnd(I, CurrOpnd, ConstOpnd, CV)) {
+      Changed = true;
+      if (CV)
+        *CurrOpnd = XorOpnd(CV);
+      else {
+        CurrOpnd->Invalidate();
+        continue;
+      }
+    }
+
+    if (!PrevOpnd || CurrOpnd->getSymbolicPart() != PrevOpnd->getSymbolicPart()) {
+      PrevOpnd = CurrOpnd;
+      continue;
+    }
+
+    // step 3.2: When previous and current operands share the same symbolic
+    //  value, try to simplify "PrevOpnd ^ CurrOpnd ^ ConstOpnd" 
+    //    
+    if (CombineXorOpnd(I, CurrOpnd, PrevOpnd, ConstOpnd, CV)) {
+      // Remove previous operand
+      PrevOpnd->Invalidate();
+      if (CV) {
+        *CurrOpnd = XorOpnd(CV);
+        PrevOpnd = CurrOpnd;
+      } else {
+        CurrOpnd->Invalidate();
+        PrevOpnd = nullptr;
+      }
+      Changed = true;
+    }
+  }
+
+  // Step 4: Reassemble the Ops
+  if (Changed) {
+    Ops.clear();
+    for (unsigned int i = 0, e = Opnds.size(); i < e; i++) {
+      XorOpnd &O = Opnds[i];
+      if (O.isInvalid())
+        continue;
+      ValueEntry VE(getRank(O.getValue()), O.getValue());
+      Ops.push_back(VE);
+    }
+    if (ConstOpnd != 0) {
+      Value *C = ConstantInt::get(Ty->getContext(), ConstOpnd);
+      ValueEntry VE(getRank(C), C);
+      Ops.push_back(VE);
+    }
+    int Sz = Ops.size();
+    if (Sz == 1)
+      return Ops.back().Op;
+    else if (Sz == 0) {
+      assert(ConstOpnd == 0);
+      return ConstantInt::get(Ty->getContext(), ConstOpnd);
+    }
+  }
+
+  return nullptr;
+}
+
+/// Optimize a series of operands to an 'add' instruction.  This
 /// optimizes based on identities.  If it can be reduced to a single Value, it
 /// is returned, otherwise the Ops list is mutated as necessary.
 Value *Reassociate::OptimizeAdd(Instruction *I,
                                 SmallVectorImpl<ValueEntry> &Ops) {
   // Scan the operand lists looking for X and -X pairs.  If we find any, we
-  // can simplify the expression. X+-X == 0.  While we're at it, scan for any
+  // can simplify expressions like X+-X == 0 and X+~X ==-1.  While we're at it,
+  // scan for any
   // duplicates.  We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
-  //
-  // TODO: We could handle "X + ~X" -> "-1" if we wanted, since "-X = ~X+1".
-  //
+
   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
     Value *TheOp = Ops[i].Op;
     // Check to see if we've seen this operand before.  If so, we factor all
@@ -945,17 +1507,19 @@ Value *Reassociate::OptimizeAdd(Instruction *I,
         ++NumFound;
       } while (i != Ops.size() && Ops[i].Op == TheOp);
 
-      DEBUG(errs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n');
+      DEBUG(dbgs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n');
       ++NumFactor;
 
       // Insert a new multiply.
-      Value *Mul = ConstantInt::get(cast<IntegerType>(I->getType()), NumFound);
-      Mul = BinaryOperator::CreateMul(TheOp, Mul, "factor", I);
+      Type *Ty = TheOp->getType();
+      Constant *C = Ty->isIntOrIntVectorTy() ?
+        ConstantInt::get(Ty, NumFound) : ConstantFP::get(Ty, NumFound);
+      Instruction *Mul = CreateMul(TheOp, C, "factor", I, I);
 
       // Now that we have inserted a multiply, optimize it. This allows us to
       // handle cases that require multiple factoring steps, such as this:
       // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
-      RedoInsts.push_back(Mul);
+      RedoInsts.insert(Mul);
 
       // If every add operand was a duplicate, return the multiply.
       if (Ops.empty())
@@ -971,19 +1535,30 @@ Value *Reassociate::OptimizeAdd(Instruction *I,
       continue;
     }
 
-    // Check for X and -X in the operand list.
-    if (!BinaryOperator::isNeg(TheOp))
+    // Check for X and -X or X and ~X in the operand list.
+    if (!BinaryOperator::isNeg(TheOp) && !BinaryOperator::isFNeg(TheOp) &&
+        !BinaryOperator::isNot(TheOp))
       continue;
 
-    Value *X = BinaryOperator::getNegArgument(TheOp);
+    Value *X = nullptr;
+    if (BinaryOperator::isNeg(TheOp) || BinaryOperator::isFNeg(TheOp))
+      X = BinaryOperator::getNegArgument(TheOp);
+    else if (BinaryOperator::isNot(TheOp))
+      X = BinaryOperator::getNotArgument(TheOp);
+
     unsigned FoundX = FindInOperandList(Ops, i, X);
     if (FoundX == i)
       continue;
 
     // Remove X and -X from the operand list.
-    if (Ops.size() == 2)
+    if (Ops.size() == 2 &&
+        (BinaryOperator::isNeg(TheOp) || BinaryOperator::isFNeg(TheOp)))
       return Constant::getNullValue(X->getType());
 
+    // Remove X and ~X from the operand list.
+    if (Ops.size() == 2 && BinaryOperator::isNot(TheOp))
+      return Constant::getAllOnesValue(X->getType());
+
     Ops.erase(Ops.begin()+i);
     if (i < FoundX)
       --FoundX;
@@ -993,6 +1568,13 @@ Value *Reassociate::OptimizeAdd(Instruction *I,
     ++NumAnnihil;
     --i;     // Revisit element.
     e -= 2;  // Removed two elements.
+
+    // if X and ~X we append -1 to the operand list.
+    if (BinaryOperator::isNot(TheOp)) {
+      Value *V = Constant::getAllOnesValue(X->getType());
+      Ops.insert(Ops.end(), ValueEntry(getRank(V), V));
+      e += 1;
+    }
   }
 
   // Scan the operand list, checking to see if there are any common factors
@@ -1005,9 +1587,10 @@ Value *Reassociate::OptimizeAdd(Instruction *I,
   // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
   // where they are actually the same multiply.
   unsigned MaxOcc = 0;
-  Value *MaxOccVal = 0;
+  Value *MaxOccVal = nullptr;
   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
-    BinaryOperator *BOp = isReassociableOp(Ops[i].Op, Instruction::Mul);
+    BinaryOperator *BOp =
+        isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
     if (!BOp)
       continue;
 
@@ -1020,40 +1603,65 @@ Value *Reassociate::OptimizeAdd(Instruction *I,
     SmallPtrSet<Value*, 8> Duplicates;
     for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
       Value *Factor = Factors[i];
-      if (!Duplicates.insert(Factor)) continue;
+      if (!Duplicates.insert(Factor).second)
+        continue;
 
       unsigned Occ = ++FactorOccurrences[Factor];
-      if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; }
+      if (Occ > MaxOcc) {
+        MaxOcc = Occ;
+        MaxOccVal = Factor;
+      }
 
       // If Factor is a negative constant, add the negated value as a factor
       // because we can percolate the negate out.  Watch for minint, which
       // cannot be positivified.
-      if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor))
+      if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor)) {
         if (CI->isNegative() && !CI->isMinValue(true)) {
           Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
           assert(!Duplicates.count(Factor) &&
                  "Shouldn't have two constant factors, missed a canonicalize");
-
           unsigned Occ = ++FactorOccurrences[Factor];
-          if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; }
+          if (Occ > MaxOcc) {
+            MaxOcc = Occ;
+            MaxOccVal = Factor;
+          }
+        }
+      } else if (ConstantFP *CF = dyn_cast<ConstantFP>(Factor)) {
+        if (CF->isNegative()) {
+          APFloat F(CF->getValueAPF());
+          F.changeSign();
+          Factor = ConstantFP::get(CF->getContext(), F);
+          assert(!Duplicates.count(Factor) &&
+                 "Shouldn't have two constant factors, missed a canonicalize");
+          unsigned Occ = ++FactorOccurrences[Factor];
+          if (Occ > MaxOcc) {
+            MaxOcc = Occ;
+            MaxOccVal = Factor;
+          }
         }
+      }
     }
   }
 
   // If any factor occurred more than one time, we can pull it out.
   if (MaxOcc > 1) {
-    DEBUG(errs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n');
+    DEBUG(dbgs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n');
     ++NumFactor;
 
     // Create a new instruction that uses the MaxOccVal twice.  If we don't do
     // this, we could otherwise run into situations where removing a factor
     // from an expression will drop a use of maxocc, and this can cause
     // RemoveFactorFromExpression on successive values to behave differently.
-    Instruction *DummyInst = BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal);
+    Instruction *DummyInst =
+        I->getType()->isIntOrIntVectorTy()
+            ? BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal)
+            : BinaryOperator::CreateFAdd(MaxOccVal, MaxOccVal);
+
     SmallVector<WeakVH, 4> NewMulOps;
     for (unsigned i = 0; i != Ops.size(); ++i) {
       // Only try to remove factors from expressions we're allowed to.
-      BinaryOperator *BOp = isReassociableOp(Ops[i].Op, Instruction::Mul);
+      BinaryOperator *BOp =
+          isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
       if (!BOp)
         continue;
 
@@ -1082,14 +1690,15 @@ Value *Reassociate::OptimizeAdd(Instruction *I,
     // A*A*B + A*A*C   -->   A*(A*B+A*C)   -->   A*(A*(B+C))
     assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
     (void)NumAddedValues;
-    RedoInsts.push_back(V);
+    if (Instruction *VI = dyn_cast<Instruction>(V))
+      RedoInsts.insert(VI);
 
     // Create the multiply.
-    Value *V2 = BinaryOperator::CreateMul(V, MaxOccVal, "tmp", I);
+    Instruction *V2 = CreateMul(V, MaxOccVal, "tmp", I, I);
 
     // Rerun associate on the multiply in case the inner expression turned into
     // a multiply.  We want to make sure that we keep things in canonical form.
-    RedoInsts.push_back(V2);
+    RedoInsts.insert(V2);
 
     // If every add operand included the factor (e.g. "A*B + A*C"), then the
     // entire result expression is just the multiply "A*(B+C)".
@@ -1102,20 +1711,7 @@ Value *Reassociate::OptimizeAdd(Instruction *I,
     Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
   }
 
-  return 0;
-}
-
-namespace {
-  /// \brief Predicate tests whether a ValueEntry's op is in a map.
-  struct IsValueInMap {
-    const DenseMap<Value *, unsigned> &Map;
-
-    IsValueInMap(const DenseMap<Value *, unsigned> &Map) : Map(Map) {}
-
-    bool operator()(const ValueEntry &Entry) {
-      return Map.find(Entry.Op) != Map.end();
-    }
-  };
+  return nullptr;
 }
 
 /// \brief Build up a vector of value/power pairs factoring a product.
@@ -1176,7 +1772,7 @@ bool Reassociate::collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
   // below our mininum of '4'.
   assert(FactorPowerSum >= 4);
 
-  std::sort(Factors.begin(), Factors.end(), Factor::PowerDescendingSorter());
+  std::stable_sort(Factors.begin(), Factors.end(), Factor::PowerDescendingSorter());
   return true;
 }
 
@@ -1188,7 +1784,10 @@ static Value *buildMultiplyTree(IRBuilder<> &Builder,
 
   Value *LHS = Ops.pop_back_val();
   do {
-    LHS = Builder.CreateMul(LHS, Ops.pop_back_val());
+    if (LHS->getType()->isIntOrIntVectorTy())
+      LHS = Builder.CreateMul(LHS, Ops.pop_back_val());
+    else
+      LHS = Builder.CreateFMul(LHS, Ops.pop_back_val());
   } while (!Ops.empty());
 
   return LHS;
@@ -1223,8 +1822,9 @@ Value *Reassociate::buildMinimalMultiplyDAG(IRBuilder<> &Builder,
 
     // Reset the base value of the first factor to the new expression tree.
     // We'll remove all the factors with the same power in a second pass.
-    Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct);
-    RedoInsts.push_back(Factors[LastIdx].Base);
+    Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct);
+    if (Instruction *MI = dyn_cast<Instruction>(M))
+      RedoInsts.insert(MI);
 
     LastIdx = Idx;
   }
@@ -1259,14 +1859,14 @@ Value *Reassociate::OptimizeMul(BinaryOperator *I,
   // We can only optimize the multiplies when there is a chain of more than
   // three, such that a balanced tree might require fewer total multiplies.
   if (Ops.size() < 4)
-    return 0;
+    return nullptr;
 
   // Try to turn linear trees of multiplies without other uses of the
   // intermediate stages into minimal multiply DAGs with perfect sub-expression
   // re-use.
   SmallVector<Factor, 4> Factors;
   if (!collectMultiplyFactors(Ops, Factors))
-    return 0; // All distinct factors, so nothing left for us to do.
+    return nullptr; // All distinct factors, so nothing left for us to do.
 
   IRBuilder<> Builder(I);
   Value *V = buildMinimalMultiplyDAG(Builder, Factors);
@@ -1275,54 +1875,32 @@ Value *Reassociate::OptimizeMul(BinaryOperator *I,
 
   ValueEntry NewEntry = ValueEntry(getRank(V), V);
   Ops.insert(std::lower_bound(Ops.begin(), Ops.end(), NewEntry), NewEntry);
-  return 0;
+  return nullptr;
 }
 
 Value *Reassociate::OptimizeExpression(BinaryOperator *I,
                                        SmallVectorImpl<ValueEntry> &Ops) {
   // Now that we have the linearized expression tree, try to optimize it.
   // Start by folding any constants that we found.
-  bool IterateOptimization = false;
-  if (Ops.size() == 1) return Ops[0].Op;
-
+  Constant *Cst = nullptr;
   unsigned Opcode = I->getOpcode();
+  while (!Ops.empty() && isa<Constant>(Ops.back().Op)) {
+    Constant *C = cast<Constant>(Ops.pop_back_val().Op);
+    Cst = Cst ? ConstantExpr::get(Opcode, C, Cst) : C;
+  }
+  // If there was nothing but constants then we are done.
+  if (Ops.empty())
+    return Cst;
+
+  // Put the combined constant back at the end of the operand list, except if
+  // there is no point.  For example, an add of 0 gets dropped here, while a
+  // multiplication by zero turns the whole expression into zero.
+  if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, I->getType())) {
+    if (Cst == ConstantExpr::getBinOpAbsorber(Opcode, I->getType()))
+      return Cst;
+    Ops.push_back(ValueEntry(0, Cst));
+  }
 
-  if (Constant *V1 = dyn_cast<Constant>(Ops[Ops.size()-2].Op))
-    if (Constant *V2 = dyn_cast<Constant>(Ops.back().Op)) {
-      Ops.pop_back();
-      Ops.back().Op = ConstantExpr::get(Opcode, V1, V2);
-      return OptimizeExpression(I, Ops);
-    }
-
-  // Check for destructive annihilation due to a constant being used.
-  if (ConstantInt *CstVal = dyn_cast<ConstantInt>(Ops.back().Op))
-    switch (Opcode) {
-    default: break;
-    case Instruction::And:
-      if (CstVal->isZero())                  // X & 0 -> 0
-        return CstVal;
-      if (CstVal->isAllOnesValue())          // X & -1 -> X
-        Ops.pop_back();
-      break;
-    case Instruction::Mul:
-      if (CstVal->isZero()) {                // X * 0 -> 0
-        ++NumAnnihil;
-        return CstVal;
-      }
-
-      if (cast<ConstantInt>(CstVal)->isOne())
-        Ops.pop_back();                      // X * 1 -> X
-      break;
-    case Instruction::Or:
-      if (CstVal->isAllOnesValue())          // X | -1 -> -1
-        return CstVal;
-      // FALLTHROUGH!
-    case Instruction::Add:
-    case Instruction::Xor:
-      if (CstVal->isZero())                  // X [|^+] 0 -> X
-        Ops.pop_back();
-      break;
-    }
   if (Ops.size() == 1) return Ops[0].Op;
 
   // Handle destructive annihilation due to identities between elements in the
@@ -1332,65 +1910,170 @@ Value *Reassociate::OptimizeExpression(BinaryOperator *I,
   default: break;
   case Instruction::And:
   case Instruction::Or:
-  case Instruction::Xor:
     if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
       return Result;
     break;
 
+  case Instruction::Xor:
+    if (Value *Result = OptimizeXor(I, Ops))
+      return Result;
+    break;
+
   case Instruction::Add:
+  case Instruction::FAdd:
     if (Value *Result = OptimizeAdd(I, Ops))
       return Result;
     break;
 
   case Instruction::Mul:
+  case Instruction::FMul:
     if (Value *Result = OptimizeMul(I, Ops))
       return Result;
     break;
   }
 
-  if (IterateOptimization || Ops.size() != NumOps)
+  if (Ops.size() != NumOps)
     return OptimizeExpression(I, Ops);
-  return 0;
+  return nullptr;
 }
 
-/// ReassociateInst - Inspect and reassociate the instruction at the
-/// given position, post-incrementing the position.
-void Reassociate::ReassociateInst(BasicBlock::iterator &BBI) {
-  Instruction *BI = BBI++;
-  if (BI->getOpcode() == Instruction::Shl &&
-      isa<ConstantInt>(BI->getOperand(1)))
-    if (Instruction *NI = ConvertShiftToMul(BI, ValueRankMap)) {
-      MadeChange = true;
-      BI = NI;
+/// Zap the given instruction, adding interesting operands to the work list.
+void Reassociate::EraseInst(Instruction *I) {
+  assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
+  SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
+  // Erase the dead instruction.
+  ValueRankMap.erase(I);
+  RedoInsts.remove(I);
+  I->eraseFromParent();
+  // Optimize its operands.
+  SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes.
+  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
+    if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) {
+      // If this is a node in an expression tree, climb to the expression root
+      // and add that since that's where optimization actually happens.
+      unsigned Opcode = Op->getOpcode();
+      while (Op->hasOneUse() && Op->user_back()->getOpcode() == Opcode &&
+             Visited.insert(Op).second)
+        Op = Op->user_back();
+      RedoInsts.insert(Op);
     }
+}
 
-  // Floating point binary operators are not associative, but we can still
-  // commute (some) of them, to canonicalize the order of their operands.
-  // This can potentially expose more CSE opportunities, and makes writing
-  // other transformations simpler.
-  if (isa<BinaryOperator>(BI) &&
-      (BI->getType()->isFloatingPointTy() || BI->getType()->isVectorTy())) {
-    // FAdd and FMul can be commuted.
-    if (BI->getOpcode() != Instruction::FMul &&
-        BI->getOpcode() != Instruction::FAdd)
-      return;
+// Canonicalize expressions of the following form:
+//  x + (-Constant * y) -> x - (Constant * y)
+//  x - (-Constant * y) -> x + (Constant * y)
+Instruction *Reassociate::canonicalizeNegConstExpr(Instruction *I) {
+  if (!I->hasOneUse() || I->getType()->isVectorTy())
+    return nullptr;
 
-    Value *LHS = BI->getOperand(0);
-    Value *RHS = BI->getOperand(1);
-    unsigned LHSRank = getRank(LHS);
-    unsigned RHSRank = getRank(RHS);
+  // Must be a fmul or fdiv instruction.
+  unsigned Opcode = I->getOpcode();
+  if (Opcode != Instruction::FMul && Opcode != Instruction::FDiv)
+    return nullptr;
+
+  auto *C0 = dyn_cast<ConstantFP>(I->getOperand(0));
+  auto *C1 = dyn_cast<ConstantFP>(I->getOperand(1));
+
+  // Both operands are constant, let it get constant folded away.
+  if (C0 && C1)
+    return nullptr;
+
+  ConstantFP *CF = C0 ? C0 : C1;
+
+  // Must have one constant operand.
+  if (!CF)
+    return nullptr;
+
+  // Must be a negative ConstantFP.
+  if (!CF->isNegative())
+    return nullptr;
+
+  // User must be a binary operator with one or more uses.
+  Instruction *User = I->user_back();
+  if (!isa<BinaryOperator>(User) || !User->hasNUsesOrMore(1))
+    return nullptr;
+
+  unsigned UserOpcode = User->getOpcode();
+  if (UserOpcode != Instruction::FAdd && UserOpcode != Instruction::FSub)
+    return nullptr;
+
+  // Subtraction is not commutative. Explicitly, the following transform is
+  // not valid: (-Constant * y) - x  -> x + (Constant * y)
+  if (!User->isCommutative() && User->getOperand(1) != I)
+    return nullptr;
+
+  // Change the sign of the constant.
+  APFloat Val = CF->getValueAPF();
+  Val.changeSign();
+  I->setOperand(C0 ? 0 : 1, ConstantFP::get(CF->getContext(), Val));
+
+  // Canonicalize I to RHS to simplify the next bit of logic. E.g.,
+  // ((-Const*y) + x) -> (x + (-Const*y)).
+  if (User->getOperand(0) == I && User->isCommutative())
+    cast<BinaryOperator>(User)->swapOperands();
+
+  Value *Op0 = User->getOperand(0);
+  Value *Op1 = User->getOperand(1);
+  BinaryOperator *NI;
+  switch (UserOpcode) {
+  default:
+    llvm_unreachable("Unexpected Opcode!");
+  case Instruction::FAdd:
+    NI = BinaryOperator::CreateFSub(Op0, Op1);
+    NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags());
+    break;
+  case Instruction::FSub:
+    NI = BinaryOperator::CreateFAdd(Op0, Op1);
+    NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags());
+    break;
+  }
 
-    // Sort the operands by rank.
-    if (RHSRank < LHSRank) {
-      BI->setOperand(0, RHS);
-      BI->setOperand(1, LHS);
+  NI->insertBefore(User);
+  NI->setName(User->getName());
+  User->replaceAllUsesWith(NI);
+  NI->setDebugLoc(I->getDebugLoc());
+  RedoInsts.insert(I);
+  MadeChange = true;
+  return NI;
+}
+
+/// Inspect and optimize the given instruction. Note that erasing
+/// instructions is not allowed.
+void Reassociate::OptimizeInst(Instruction *I) {
+  // Only consider operations that we understand.
+  if (!isa<BinaryOperator>(I))
+    return;
+
+  if (I->getOpcode() == Instruction::Shl && isa<ConstantInt>(I->getOperand(1)))
+    // If an operand of this shift is a reassociable multiply, or if the shift
+    // is used by a reassociable multiply or add, turn into a multiply.
+    if (isReassociableOp(I->getOperand(0), Instruction::Mul) ||
+        (I->hasOneUse() &&
+         (isReassociableOp(I->user_back(), Instruction::Mul) ||
+          isReassociableOp(I->user_back(), Instruction::Add)))) {
+      Instruction *NI = ConvertShiftToMul(I);
+      RedoInsts.insert(I);
+      MadeChange = true;
+      I = NI;
     }
 
+  // Canonicalize negative constants out of expressions.
+  if (Instruction *Res = canonicalizeNegConstExpr(I))
+    I = Res;
+
+  // Commute binary operators, to canonicalize the order of their operands.
+  // This can potentially expose more CSE opportunities, and makes writing other
+  // transformations simpler.
+  if (I->isCommutative())
+    canonicalizeOperands(I);
+
+  // TODO: We should optimize vector Xor instructions, but they are
+  // currently unsupported.
+  if (I->getType()->isVectorTy() && I->getOpcode() == Instruction::Xor)
     return;
-  }
 
-  // Do not reassociate operations that we do not understand.
-  if (!isa<BinaryOperator>(BI))
+  // Don't optimize floating point instructions that don't have unsafe algebra.
+  if (I->getType()->isFloatingPointTy() && !I->hasUnsafeAlgebra())
     return;
 
   // Do not reassociate boolean (i1) expressions.  We want to preserve the
@@ -1399,55 +2082,83 @@ void Reassociate::ReassociateInst(BasicBlock::iterator &BBI) {
   // is not further optimized, it is likely to be transformed back to a
   // short-circuited form for code gen, and the source order may have been
   // optimized for the most likely conditions.
-  if (BI->getType()->isIntegerTy(1))
+  if (I->getType()->isIntegerTy(1))
     return;
 
   // If this is a subtract instruction which is not already in negate form,
   // see if we can convert it to X+-Y.
-  if (BI->getOpcode() == Instruction::Sub) {
-    if (ShouldBreakUpSubtract(BI)) {
-      BI = BreakUpSubtract(BI, ValueRankMap);
-      // Reset the BBI iterator in case BreakUpSubtract changed the
-      // instruction it points to.
-      BBI = BI;
-      ++BBI;
+  if (I->getOpcode() == Instruction::Sub) {
+    if (ShouldBreakUpSubtract(I)) {
+      Instruction *NI = BreakUpSubtract(I);
+      RedoInsts.insert(I);
       MadeChange = true;
-    } else if (BinaryOperator::isNeg(BI)) {
+      I = NI;
+    } else if (BinaryOperator::isNeg(I)) {
       // Otherwise, this is a negation.  See if the operand is a multiply tree
       // and if this is not an inner node of a multiply tree.
-      if (isReassociableOp(BI->getOperand(1), Instruction::Mul) &&
-          (!BI->hasOneUse() ||
-           !isReassociableOp(BI->use_back(), Instruction::Mul))) {
-        BI = LowerNegateToMultiply(BI, ValueRankMap);
+      if (isReassociableOp(I->getOperand(1), Instruction::Mul) &&
+          (!I->hasOneUse() ||
+           !isReassociableOp(I->user_back(), Instruction::Mul))) {
+        Instruction *NI = LowerNegateToMultiply(I);
+        RedoInsts.insert(I);
         MadeChange = true;
+        I = NI;
+      }
+    }
+  } else if (I->getOpcode() == Instruction::FSub) {
+    if (ShouldBreakUpSubtract(I)) {
+      Instruction *NI = BreakUpSubtract(I);
+      RedoInsts.insert(I);
+      MadeChange = true;
+      I = NI;
+    } else if (BinaryOperator::isFNeg(I)) {
+      // Otherwise, this is a negation.  See if the operand is a multiply tree
+      // and if this is not an inner node of a multiply tree.
+      if (isReassociableOp(I->getOperand(1), Instruction::FMul) &&
+          (!I->hasOneUse() ||
+           !isReassociableOp(I->user_back(), Instruction::FMul))) {
+        Instruction *NI = LowerNegateToMultiply(I);
+        RedoInsts.insert(I);
+        MadeChange = true;
+        I = NI;
       }
     }
   }
 
-  // If this instruction is a commutative binary operator, process it.
-  if (!BI->isAssociative()) return;
-  BinaryOperator *I = cast<BinaryOperator>(BI);
+  // If this instruction is an associative binary operator, process it.
+  if (!I->isAssociative()) return;
+  BinaryOperator *BO = cast<BinaryOperator>(I);
 
   // If this is an interior node of a reassociable tree, ignore it until we
   // get to the root of the tree, to avoid N^2 analysis.
-  if (I->hasOneUse() && isReassociableOp(I->use_back(), I->getOpcode()))
+  unsigned Opcode = BO->getOpcode();
+  if (BO->hasOneUse() && BO->user_back()->getOpcode() == Opcode)
     return;
 
   // If this is an add tree that is used by a sub instruction, ignore it
   // until we process the subtract.
-  if (I->hasOneUse() && I->getOpcode() == Instruction::Add &&
-      cast<Instruction>(I->use_back())->getOpcode() == Instruction::Sub)
+  if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add &&
+      cast<Instruction>(BO->user_back())->getOpcode() == Instruction::Sub)
+    return;
+  if (BO->hasOneUse() && BO->getOpcode() == Instruction::FAdd &&
+      cast<Instruction>(BO->user_back())->getOpcode() == Instruction::FSub)
     return;
 
-  ReassociateExpression(I);
+  ReassociateExpression(BO);
 }
 
-Value *Reassociate::ReassociateExpression(BinaryOperator *I) {
-
+void Reassociate::ReassociateExpression(BinaryOperator *I) {
   // First, walk the expression tree, linearizing the tree, collecting the
   // operand information.
+  SmallVector<RepeatedValue, 8> Tree;
+  MadeChange |= LinearizeExprTree(I, Tree);
   SmallVector<ValueEntry, 8> Ops;
-  LinearizeExprTree(I, Ops);
+  Ops.reserve(Tree.size());
+  for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
+    RepeatedValue E = Tree[i];
+    Ops.append(E.second.getZExtValue(),
+               ValueEntry(getRank(E.first), E.first));
+  }
 
   DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');
 
@@ -1459,75 +2170,97 @@ Value *Reassociate::ReassociateExpression(BinaryOperator *I) {
   // the vector.
   std::stable_sort(Ops.begin(), Ops.end());
 
-  // OptimizeExpression - Now that we have the expression tree in a convenient
+  // Now that we have the expression tree in a convenient
   // sorted form, optimize it globally if possible.
   if (Value *V = OptimizeExpression(I, Ops)) {
+    if (V == I)
+      // Self-referential expression in unreachable code.
+      return;
     // This expression tree simplified to something that isn't a tree,
     // eliminate it.
     DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
     I->replaceAllUsesWith(V);
     if (Instruction *VI = dyn_cast<Instruction>(V))
       VI->setDebugLoc(I->getDebugLoc());
-    RemoveDeadBinaryOp(I);
+    RedoInsts.insert(I);
     ++NumAnnihil;
-    return V;
+    return;
   }
 
   // We want to sink immediates as deeply as possible except in the case where
   // this is a multiply tree used only by an add, and the immediate is a -1.
   // In this case we reassociate to put the negation on the outside so that we
   // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
-  if (I->getOpcode() == Instruction::Mul && I->hasOneUse() &&
-      cast<Instruction>(I->use_back())->getOpcode() == Instruction::Add &&
-      isa<ConstantInt>(Ops.back().Op) &&
-      cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
-    ValueEntry Tmp = Ops.pop_back_val();
-    Ops.insert(Ops.begin(), Tmp);
+  if (I->hasOneUse()) {
+    if (I->getOpcode() == Instruction::Mul &&
+        cast<Instruction>(I->user_back())->getOpcode() == Instruction::Add &&
+        isa<ConstantInt>(Ops.back().Op) &&
+        cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
+      ValueEntry Tmp = Ops.pop_back_val();
+      Ops.insert(Ops.begin(), Tmp);
+    } else if (I->getOpcode() == Instruction::FMul &&
+               cast<Instruction>(I->user_back())->getOpcode() ==
+                   Instruction::FAdd &&
+               isa<ConstantFP>(Ops.back().Op) &&
+               cast<ConstantFP>(Ops.back().Op)->isExactlyValue(-1.0)) {
+      ValueEntry Tmp = Ops.pop_back_val();
+      Ops.insert(Ops.begin(), Tmp);
+    }
   }
 
   DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');
 
   if (Ops.size() == 1) {
+    if (Ops[0].Op == I)
+      // Self-referential expression in unreachable code.
+      return;
+
     // This expression tree simplified to something that isn't a tree,
     // eliminate it.
     I->replaceAllUsesWith(Ops[0].Op);
     if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op))
       OI->setDebugLoc(I->getDebugLoc());
-    RemoveDeadBinaryOp(I);
-    return Ops[0].Op;
+    RedoInsts.insert(I);
+    return;
   }
 
   // Now that we ordered and optimized the expressions, splat them back into
   // the expression tree, removing any unneeded nodes.
   RewriteExprTree(I, Ops);
-  return I;
 }
 
 bool Reassociate::runOnFunction(Function &F) {
-  // Recalculate the rank map for F
+  if (skipOptnoneFunction(F))
+    return false;
+
+  // Calculate the rank map for F
   BuildRankMap(F);
 
   MadeChange = false;
-  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
-    for (BasicBlock::iterator BBI = FI->begin(); BBI != FI->end(); )
-      ReassociateInst(BBI);
-
-  // Now that we're done, revisit any instructions which are likely to
-  // have secondary reassociation opportunities.
-  while (!RedoInsts.empty())
-    if (Value *V = RedoInsts.pop_back_val()) {
-      BasicBlock::iterator BBI = cast<Instruction>(V);
-      ReassociateInst(BBI);
+  for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) {
+    // Optimize every instruction in the basic block.
+    for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE; )
+      if (isInstructionTriviallyDead(II)) {
+        EraseInst(II++);
+      } else {
+        OptimizeInst(II);
+        assert(II->getParent() == BI && "Moved to a different block!");
+        ++II;
+      }
+
+    // If this produced extra instructions to optimize, handle them now.
+    while (!RedoInsts.empty()) {
+      Instruction *I = RedoInsts.pop_back_val();
+      if (isInstructionTriviallyDead(I))
+        EraseInst(I);
+      else
+        OptimizeInst(I);
     }
+  }
 
   // We are done with the rank map.
   RankMap.clear();
   ValueRankMap.clear();
 
-  // Now that we're done, delete any instructions which are no longer used.
-  while (!DeadInsts.empty())
-    if (Value *V = DeadInsts.pop_back_val())
-      RecursivelyDeleteTriviallyDeadInstructions(V);
-
   return MadeChange;
 }