[unroll] Merge the simplification and DCE estimation methods on the
[oota-llvm.git] / lib / Transforms / Scalar / LoopUnrollPass.cpp
index 37ab3b0b5bcab2959cf9b8aff7c414bd895e1507..53d80f68e08051ffdb62f1cc812c9573c5119760 100644 (file)
 // counts of loops easily.
 //===----------------------------------------------------------------------===//
 
-#define DEBUG_TYPE "loop-unroll"
-#include "llvm/IntrinsicInst.h"
 #include "llvm/Transforms/Scalar.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/Analysis/AssumptionCache.h"
+#include "llvm/Analysis/CodeMetrics.h"
 #include "llvm/Analysis/LoopPass.h"
-#include "llvm/Analysis/InlineCost.h"
 #include "llvm/Analysis/ScalarEvolution.h"
+#include "llvm/Analysis/ScalarEvolutionExpressions.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DiagnosticInfo.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Metadata.h"
 #include "llvm/Support/CommandLine.h"
 #include "llvm/Support/Debug.h"
 #include "llvm/Support/raw_ostream.h"
 #include "llvm/Transforms/Utils/UnrollLoop.h"
+#include "llvm/IR/InstVisitor.h"
+#include "llvm/Analysis/InstructionSimplify.h"
 #include <climits>
 
 using namespace llvm;
 
+#define DEBUG_TYPE "loop-unroll"
+
 static cl::opt<unsigned>
-UnrollThreshold("unroll-threshold", cl::init(200), cl::Hidden,
+UnrollThreshold("unroll-threshold", cl::init(150), cl::Hidden,
   cl::desc("The cut-off point for automatic loop unrolling"));
 
+static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze(
+    "unroll-max-iteration-count-to-analyze", cl::init(1000), cl::Hidden,
+    cl::desc("Don't allow loop unrolling to simulate more than this number of"
+             "iterations when checking full unroll profitability"));
+
+static cl::opt<unsigned> UnrollMinPercentOfOptimized(
+    "unroll-percent-of-optimized-for-complete-unroll", cl::init(20), cl::Hidden,
+    cl::desc("If complete unrolling could trigger further optimizations, and, "
+             "by that, remove the given percent of instructions, perform the "
+             "complete unroll even if it's beyond the threshold"));
+
+static cl::opt<unsigned> UnrollAbsoluteThreshold(
+    "unroll-absolute-threshold", cl::init(2000), cl::Hidden,
+    cl::desc("Don't unroll if the unrolled size is bigger than this threshold,"
+             " even if we can remove big portion of instructions later."));
+
 static cl::opt<unsigned>
 UnrollCount("unroll-count", cl::init(0), cl::Hidden,
-  cl::desc("Use this unroll count for all loops, for testing purposes"));
+  cl::desc("Use this unroll count for all loops including those with "
+           "unroll_count pragma values, for testing purposes"));
 
 static cl::opt<bool>
 UnrollAllowPartial("unroll-allow-partial", cl::init(false), cl::Hidden,
   cl::desc("Allows loops to be partially unrolled until "
            "-unroll-threshold loop size is reached."));
 
+static cl::opt<bool>
+UnrollRuntime("unroll-runtime", cl::ZeroOrMore, cl::init(false), cl::Hidden,
+  cl::desc("Unroll loops with run-time trip counts"));
+
+static cl::opt<unsigned>
+PragmaUnrollThreshold("pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden,
+  cl::desc("Unrolled size limit for loops with an unroll(full) or "
+           "unroll_count pragma."));
+
 namespace {
   class LoopUnroll : public LoopPass {
   public:
     static char ID; // Pass ID, replacement for typeid
-    LoopUnroll() : LoopPass(&ID) {}
+    LoopUnroll(int T = -1, int C = -1, int P = -1, int R = -1) : LoopPass(ID) {
+      CurrentThreshold = (T == -1) ? UnrollThreshold : unsigned(T);
+      CurrentAbsoluteThreshold = UnrollAbsoluteThreshold;
+      CurrentMinPercentOfOptimized = UnrollMinPercentOfOptimized;
+      CurrentCount = (C == -1) ? UnrollCount : unsigned(C);
+      CurrentAllowPartial = (P == -1) ? UnrollAllowPartial : (bool)P;
+      CurrentRuntime = (R == -1) ? UnrollRuntime : (bool)R;
+
+      UserThreshold = (T != -1) || (UnrollThreshold.getNumOccurrences() > 0);
+      UserAbsoluteThreshold = (UnrollAbsoluteThreshold.getNumOccurrences() > 0);
+      UserPercentOfOptimized =
+          (UnrollMinPercentOfOptimized.getNumOccurrences() > 0);
+      UserAllowPartial = (P != -1) ||
+                         (UnrollAllowPartial.getNumOccurrences() > 0);
+      UserRuntime = (R != -1) || (UnrollRuntime.getNumOccurrences() > 0);
+      UserCount = (C != -1) || (UnrollCount.getNumOccurrences() > 0);
+
+      initializeLoopUnrollPass(*PassRegistry::getPassRegistry());
+    }
 
     /// A magic value for use with the Threshold parameter to indicate
     /// that the loop unroll should be performed regardless of how much
     /// code expansion would result.
     static const unsigned NoThreshold = UINT_MAX;
 
-    bool runOnLoop(Loop *L, LPPassManager &LPM);
+    // Threshold to use when optsize is specified (and there is no
+    // explicit -unroll-threshold).
+    static const unsigned OptSizeUnrollThreshold = 50;
+
+    // Default unroll count for loops with run-time trip count if
+    // -unroll-count is not set
+    static const unsigned UnrollRuntimeCount = 8;
+
+    unsigned CurrentCount;
+    unsigned CurrentThreshold;
+    unsigned CurrentAbsoluteThreshold;
+    unsigned CurrentMinPercentOfOptimized;
+    bool     CurrentAllowPartial;
+    bool     CurrentRuntime;
+    bool     UserCount;            // CurrentCount is user-specified.
+    bool     UserThreshold;        // CurrentThreshold is user-specified.
+    bool UserAbsoluteThreshold;    // CurrentAbsoluteThreshold is
+                                   // user-specified.
+    bool UserPercentOfOptimized;   // CurrentMinPercentOfOptimized is
+                                   // user-specified.
+    bool     UserAllowPartial;     // CurrentAllowPartial is user-specified.
+    bool     UserRuntime;          // CurrentRuntime is user-specified.
+
+    bool runOnLoop(Loop *L, LPPassManager &LPM) override;
 
     /// This transformation requires natural loop information & requires that
     /// loop preheaders be inserted into the CFG...
     ///
-    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
-      AU.addRequired<LoopInfo>();
-      AU.addPreserved<LoopInfo>();
+    void getAnalysisUsage(AnalysisUsage &AU) const override {
+      AU.addRequired<AssumptionCacheTracker>();
+      AU.addRequired<LoopInfoWrapperPass>();
+      AU.addPreserved<LoopInfoWrapperPass>();
       AU.addRequiredID(LoopSimplifyID);
       AU.addPreservedID(LoopSimplifyID);
       AU.addRequiredID(LCSSAID);
       AU.addPreservedID(LCSSAID);
+      AU.addRequired<ScalarEvolution>();
+      AU.addPreserved<ScalarEvolution>();
+      AU.addRequired<TargetTransformInfoWrapperPass>();
       // FIXME: Loop unroll requires LCSSA. And LCSSA requires dom info.
       // If loop unroll does not preserve dom info then LCSSA pass on next
       // loop will receive invalid dom info.
       // For now, recreate dom info, if loop is unrolled.
-      AU.addPreserved<DominatorTree>();
-      AU.addPreserved<DominanceFrontier>();
-      AU.addPreserved<ScalarEvolution>();
+      AU.addPreserved<DominatorTreeWrapperPass>();
+    }
+
+    // Fill in the UnrollingPreferences parameter with values from the
+    // TargetTransformationInfo.
+    void getUnrollingPreferences(Loop *L, const TargetTransformInfo &TTI,
+                                 TargetTransformInfo::UnrollingPreferences &UP) {
+      UP.Threshold = CurrentThreshold;
+      UP.AbsoluteThreshold = CurrentAbsoluteThreshold;
+      UP.MinPercentOfOptimized = CurrentMinPercentOfOptimized;
+      UP.OptSizeThreshold = OptSizeUnrollThreshold;
+      UP.PartialThreshold = CurrentThreshold;
+      UP.PartialOptSizeThreshold = OptSizeUnrollThreshold;
+      UP.Count = CurrentCount;
+      UP.MaxCount = UINT_MAX;
+      UP.Partial = CurrentAllowPartial;
+      UP.Runtime = CurrentRuntime;
+      TTI.getUnrollingPreferences(L, UP);
+    }
+
+    // Select and return an unroll count based on parameters from
+    // user, unroll preferences, unroll pragmas, or a heuristic.
+    // SetExplicitly is set to true if the unroll count is is set by
+    // the user or a pragma rather than selected heuristically.
+    unsigned
+    selectUnrollCount(const Loop *L, unsigned TripCount, bool PragmaFullUnroll,
+                      unsigned PragmaCount,
+                      const TargetTransformInfo::UnrollingPreferences &UP,
+                      bool &SetExplicitly);
+
+    // Select threshold values used to limit unrolling based on a
+    // total unrolled size.  Parameters Threshold and PartialThreshold
+    // are set to the maximum unrolled size for fully and partially
+    // unrolled loops respectively.
+    void selectThresholds(const Loop *L, bool HasPragma,
+                          const TargetTransformInfo::UnrollingPreferences &UP,
+                          unsigned &Threshold, unsigned &PartialThreshold,
+                          unsigned NumberOfOptimizedInstructions) {
+      // Determine the current unrolling threshold.  While this is
+      // normally set from UnrollThreshold, it is overridden to a
+      // smaller value if the current function is marked as
+      // optimize-for-size, and the unroll threshold was not user
+      // specified.
+      Threshold = UserThreshold ? CurrentThreshold : UP.Threshold;
+
+      // If we are allowed to completely unroll if we can remove M% of
+      // instructions, and we know that with complete unrolling we'll be able
+      // to kill N instructions, then we can afford to completely unroll loops
+      // with unrolled size up to N*100/M.
+      // Adjust the threshold according to that:
+      unsigned PercentOfOptimizedForCompleteUnroll =
+          UserPercentOfOptimized ? CurrentMinPercentOfOptimized
+                                 : UP.MinPercentOfOptimized;
+      unsigned AbsoluteThreshold = UserAbsoluteThreshold
+                                       ? CurrentAbsoluteThreshold
+                                       : UP.AbsoluteThreshold;
+      if (PercentOfOptimizedForCompleteUnroll)
+        Threshold = std::max<unsigned>(Threshold,
+                                       NumberOfOptimizedInstructions * 100 /
+                                           PercentOfOptimizedForCompleteUnroll);
+      // But don't allow unrolling loops bigger than absolute threshold.
+      Threshold = std::min<unsigned>(Threshold, AbsoluteThreshold);
+
+      PartialThreshold = UserThreshold ? CurrentThreshold : UP.PartialThreshold;
+      if (!UserThreshold &&
+          L->getHeader()->getParent()->getAttributes().
+              hasAttribute(AttributeSet::FunctionIndex,
+                           Attribute::OptimizeForSize)) {
+        Threshold = UP.OptSizeThreshold;
+        PartialThreshold = UP.PartialOptSizeThreshold;
+      }
+      if (HasPragma) {
+        // If the loop has an unrolling pragma, we want to be more
+        // aggressive with unrolling limits.  Set thresholds to at
+        // least the PragmaTheshold value which is larger than the
+        // default limits.
+        if (Threshold != NoThreshold)
+          Threshold = std::max<unsigned>(Threshold, PragmaUnrollThreshold);
+        if (PartialThreshold != NoThreshold)
+          PartialThreshold =
+              std::max<unsigned>(PartialThreshold, PragmaUnrollThreshold);
+      }
     }
   };
 }
 
 char LoopUnroll::ID = 0;
-INITIALIZE_PASS(LoopUnroll, "loop-unroll", "Unroll loops", false, false);
+INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
+INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
+INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
+INITIALIZE_PASS_DEPENDENCY(LCSSA)
+INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
+INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
+
+Pass *llvm::createLoopUnrollPass(int Threshold, int Count, int AllowPartial,
+                                 int Runtime) {
+  return new LoopUnroll(Threshold, Count, AllowPartial, Runtime);
+}
+
+Pass *llvm::createSimpleLoopUnrollPass() {
+  return llvm::createLoopUnrollPass(-1, -1, 0, 0);
+}
+
+static bool isLoadFromConstantInitializer(Value *V) {
+  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
+    if (GV->isConstant() && GV->hasDefinitiveInitializer())
+      return GV->getInitializer();
+  return false;
+}
+
+struct FindConstantPointers {
+  bool LoadCanBeConstantFolded;
+  bool IndexIsConstant;
+  APInt Step;
+  APInt StartValue;
+  Value *BaseAddress;
+  const Loop *L;
+  ScalarEvolution &SE;
+  FindConstantPointers(const Loop *loop, ScalarEvolution &SE)
+      : LoadCanBeConstantFolded(true), IndexIsConstant(true), L(loop), SE(SE) {}
+
+  bool follow(const SCEV *S) {
+    if (const SCEVUnknown *SC = dyn_cast<SCEVUnknown>(S)) {
+      // We've reached the leaf node of SCEV, it's most probably just a
+      // variable. Now it's time to see if it corresponds to a global constant
+      // global (in which case we can eliminate the load), or not.
+      BaseAddress = SC->getValue();
+      LoadCanBeConstantFolded =
+          IndexIsConstant && isLoadFromConstantInitializer(BaseAddress);
+      return false;
+    }
+    if (isa<SCEVConstant>(S))
+      return true;
+    if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
+      // If the current SCEV expression is AddRec, and its loop isn't the loop
+      // we are about to unroll, then we won't get a constant address after
+      // unrolling, and thus, won't be able to eliminate the load.
+      if (AR->getLoop() != L)
+        return IndexIsConstant = false;
+      // If the step isn't constant, we won't get constant addresses in unrolled
+      // version. Bail out.
+      if (const SCEVConstant *StepSE =
+              dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE)))
+        Step = StepSE->getValue()->getValue();
+      else
+        return IndexIsConstant = false;
+
+      return IndexIsConstant;
+    }
+    // If Result is true, continue traversal.
+    // Otherwise, we have found something that prevents us from (possible) load
+    // elimination.
+    return IndexIsConstant;
+  }
+  bool isDone() const { return !IndexIsConstant; }
+};
 
-Pass *llvm::createLoopUnrollPass() { return new LoopUnroll(); }
+// This class is used to get an estimate of the optimization effects that we
+// could get from complete loop unrolling. It comes from the fact that some
+// loads might be replaced with concrete constant values and that could trigger
+// a chain of instruction simplifications.
+//
+// E.g. we might have:
+//   int a[] = {0, 1, 0};
+//   v = 0;
+//   for (i = 0; i < 3; i ++)
+//     v += b[i]*a[i];
+// If we completely unroll the loop, we would get:
+//   v = b[0]*a[0] + b[1]*a[1] + b[2]*a[2]
+// Which then will be simplified to:
+//   v = b[0]* 0 + b[1]* 1 + b[2]* 0
+// And finally:
+//   v = b[1]
+class UnrollAnalyzer : public InstVisitor<UnrollAnalyzer, bool> {
+  typedef InstVisitor<UnrollAnalyzer, bool> Base;
+  friend class InstVisitor<UnrollAnalyzer, bool>;
+
+  const Loop *L;
+  unsigned TripCount;
+  ScalarEvolution &SE;
+  const TargetTransformInfo &TTI;
+
+  DenseMap<Value *, Constant *> SimplifiedValues;
+  DenseMap<LoadInst *, Value *> LoadBaseAddresses;
+  SmallPtrSet<Instruction *, 32> CountedInstructions;
+
+  /// \brief Count the number of optimized instructions.
+  unsigned NumberOfOptimizedInstructions;
+
+  // Provide base case for our instruction visit.
+  bool visitInstruction(Instruction &I) { return false; };
+  // TODO: We should also visit ICmp, FCmp, GetElementPtr, Trunc, ZExt, SExt,
+  // FPTrunc, FPExt, FPToUI, FPToSI, UIToFP, SIToFP, BitCast, Select,
+  // ExtractElement, InsertElement, ShuffleVector, ExtractValue, InsertValue.
+  //
+  // Probaly it's worth to hoist the code for estimating the simplifications
+  // effects to a separate class, since we have a very similar code in
+  // InlineCost already.
+  bool visitBinaryOperator(BinaryOperator &I) {
+    Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
+    if (!isa<Constant>(LHS))
+      if (Constant *SimpleLHS = SimplifiedValues.lookup(LHS))
+        LHS = SimpleLHS;
+    if (!isa<Constant>(RHS))
+      if (Constant *SimpleRHS = SimplifiedValues.lookup(RHS))
+        RHS = SimpleRHS;
+    Value *SimpleV = nullptr;
+    if (auto FI = dyn_cast<FPMathOperator>(&I))
+      SimpleV =
+          SimplifyFPBinOp(I.getOpcode(), LHS, RHS, FI->getFastMathFlags());
+    else
+      SimpleV = SimplifyBinOp(I.getOpcode(), LHS, RHS);
+
+    if (SimpleV && CountedInstructions.insert(&I).second)
+      NumberOfOptimizedInstructions += TTI.getUserCost(&I);
+
+    if (Constant *C = dyn_cast_or_null<Constant>(SimpleV)) {
+      SimplifiedValues[&I] = C;
+      return true;
+    }
+    return false;
+  }
+
+  Constant *computeLoadValue(LoadInst *LI, unsigned Iteration) {
+    if (!LI)
+      return nullptr;
+    Value *BaseAddr = LoadBaseAddresses[LI];
+    if (!BaseAddr)
+      return nullptr;
+
+    auto GV = dyn_cast<GlobalVariable>(BaseAddr);
+    if (!GV)
+      return nullptr;
+
+    ConstantDataSequential *CDS =
+        dyn_cast<ConstantDataSequential>(GV->getInitializer());
+    if (!CDS)
+      return nullptr;
+
+    const SCEV *BaseAddrSE = SE.getSCEV(BaseAddr);
+    const SCEV *S = SE.getSCEV(LI->getPointerOperand());
+    const SCEV *OffSE = SE.getMinusSCEV(S, BaseAddrSE);
+
+    APInt StepC, StartC;
+    const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(OffSE);
+    if (!AR)
+      return nullptr;
+
+    if (const SCEVConstant *StepSE =
+            dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE)))
+      StepC = StepSE->getValue()->getValue();
+    else
+      return nullptr;
+
+    if (const SCEVConstant *StartSE = dyn_cast<SCEVConstant>(AR->getStart()))
+      StartC = StartSE->getValue()->getValue();
+    else
+      return nullptr;
+
+    unsigned ElemSize = CDS->getElementType()->getPrimitiveSizeInBits() / 8U;
+    unsigned Start = StartC.getLimitedValue();
+    unsigned Step = StepC.getLimitedValue();
+
+    unsigned Index = (Start + Step * Iteration) / ElemSize;
+    if (Index >= CDS->getNumElements())
+      return nullptr;
+
+    Constant *CV = CDS->getElementAsConstant(Index);
+
+    return CV;
+  }
+
+public:
+  UnrollAnalyzer(const Loop *L, unsigned TripCount, ScalarEvolution &SE,
+                 const TargetTransformInfo &TTI)
+      : L(L), TripCount(TripCount), SE(SE), TTI(TTI),
+        NumberOfOptimizedInstructions(0) {}
+
+  // Visit all loads the loop L, and for those that, after complete loop
+  // unrolling, would have a constant address and it will point to a known
+  // constant initializer, record its base address for future use.  It is used
+  // when we estimate number of potentially simplified instructions.
+  void findConstFoldableLoads() {
+    for (auto BB : L->getBlocks()) {
+      for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
+        if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
+          if (!LI->isSimple())
+            continue;
+          Value *AddrOp = LI->getPointerOperand();
+          const SCEV *S = SE.getSCEV(AddrOp);
+          FindConstantPointers Visitor(L, SE);
+          SCEVTraversal<FindConstantPointers> T(Visitor);
+          T.visitAll(S);
+          if (Visitor.IndexIsConstant && Visitor.LoadCanBeConstantFolded) {
+            LoadBaseAddresses[LI] = Visitor.BaseAddress;
+          }
+        }
+      }
+    }
+  }
+
+  // Given a list of loads that could be constant-folded (LoadBaseAddresses),
+  // estimate number of optimized instructions after substituting the concrete
+  // values for the given Iteration. Also track how many instructions become
+  // dead through this process.
+  unsigned estimateNumberOfOptimizedInstructions(unsigned Iteration) {
+    // We keep a set vector for the worklist so that we don't wast space in the
+    // worklist queuing up the same instruction repeatedly. This can happen due
+    // to multiple operands being the same instruction or due to the same
+    // instruction being an operand of lots of things that end up dead or
+    // simplified.
+    SmallSetVector<Instruction *, 8> Worklist;
+
+    // Clear the simplified values and counts for this iteration.
+    SimplifiedValues.clear();
+    CountedInstructions.clear();
+    NumberOfOptimizedInstructions = 0;
+
+    // We start by adding all loads to the worklist.
+    for (auto &LoadDescr : LoadBaseAddresses) {
+      LoadInst *LI = LoadDescr.first;
+      SimplifiedValues[LI] = computeLoadValue(LI, Iteration);
+      if (CountedInstructions.insert(LI).second)
+        NumberOfOptimizedInstructions += TTI.getUserCost(LI);
+
+      for (User *U : LI->users())
+        Worklist.insert(cast<Instruction>(U));
+    }
+
+    // And then we try to simplify every user of every instruction from the
+    // worklist. If we do simplify a user, add it to the worklist to process
+    // its users as well.
+    while (!Worklist.empty()) {
+      Instruction *I = Worklist.pop_back_val();
+      if (!L->contains(I))
+        continue;
+      if (!visit(I))
+        continue;
+      for (User *U : I->users())
+        Worklist.insert(cast<Instruction>(U));
+    }
+
+    // Now that we know the potentially simplifed instructions, estimate number
+    // of instructions that would become dead if we do perform the
+    // simplification.
+
+    // The dead instructions are held in a separate set. This is used to
+    // prevent us from re-examining instructions and make sure we only count
+    // the benifit once. The worklist's internal set handles insertion
+    // deduplication.
+    SmallPtrSet<Instruction *, 16> DeadInstructions;
+
+    // Lambda to enque operands onto the worklist.
+    auto EnqueueOperands = [&](Instruction &I) {
+      for (auto *Op : I.operand_values())
+        if (auto *OpI = dyn_cast<Instruction>(Op))
+          if (!OpI->use_empty())
+            Worklist.insert(OpI);
+    };
+
+    // Start by initializing worklist with simplified instructions.
+    for (auto &FoldedKeyValue : SimplifiedValues)
+      if (auto *FoldedInst = dyn_cast<Instruction>(FoldedKeyValue.first)) {
+        DeadInstructions.insert(FoldedInst);
+
+        // Add each instruction operand of this dead instruction to the
+        // worklist.
+        EnqueueOperands(*FoldedInst);
+      }
+
+    // If a definition of an insn is only used by simplified or dead
+    // instructions, it's also dead. Check defs of all instructions from the
+    // worklist.
+    while (!Worklist.empty()) {
+      Instruction *I = Worklist.pop_back_val();
+      if (!L->contains(I))
+        continue;
+      if (DeadInstructions.count(I))
+        continue;
+
+      if (std::all_of(I->user_begin(), I->user_end(), [&](User *U) {
+            return DeadInstructions.count(cast<Instruction>(U));
+          })) {
+        NumberOfOptimizedInstructions += TTI.getUserCost(I);
+        DeadInstructions.insert(I);
+        EnqueueOperands(*I);
+      }
+    }
+    return NumberOfOptimizedInstructions;
+  }
+};
+
+// Complete loop unrolling can make some loads constant, and we need to know if
+// that would expose any further optimization opportunities.
+// This routine estimates this optimization effect and returns the number of
+// instructions, that potentially might be optimized away.
+static unsigned
+approximateNumberOfOptimizedInstructions(const Loop *L, ScalarEvolution &SE,
+                                         unsigned TripCount,
+                                         const TargetTransformInfo &TTI) {
+  if (!TripCount || !UnrollMaxIterationsCountToAnalyze)
+    return 0;
+
+  UnrollAnalyzer UA(L, TripCount, SE, TTI);
+  UA.findConstFoldableLoads();
+
+  // Estimate number of instructions, that could be simplified if we replace a
+  // load with the corresponding constant. Since the same load will take
+  // different values on different iterations, we have to go through all loop's
+  // iterations here. To limit ourselves here, we check only first N
+  // iterations, and then scale the found number, if necessary.
+  unsigned IterationsNumberForEstimate =
+      std::min<unsigned>(UnrollMaxIterationsCountToAnalyze, TripCount);
+  unsigned NumberOfOptimizedInstructions = 0;
+  for (unsigned i = 0; i < IterationsNumberForEstimate; ++i)
+    NumberOfOptimizedInstructions +=
+        UA.estimateNumberOfOptimizedInstructions(i);
+
+  NumberOfOptimizedInstructions *= TripCount / IterationsNumberForEstimate;
+
+  return NumberOfOptimizedInstructions;
+}
 
 /// ApproximateLoopSize - Approximate the size of the loop.
-static unsigned ApproximateLoopSize(const Loop *L, unsigned &NumCalls) {
+static unsigned ApproximateLoopSize(const Loop *L, unsigned &NumCalls,
+                                    bool &NotDuplicatable,
+                                    const TargetTransformInfo &TTI,
+                                    AssumptionCache *AC) {
+  SmallPtrSet<const Value *, 32> EphValues;
+  CodeMetrics::collectEphemeralValues(L, AC, EphValues);
+
   CodeMetrics Metrics;
   for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
        I != E; ++I)
-    Metrics.analyzeBasicBlock(*I);
-  NumCalls = Metrics.NumCalls;
-  return Metrics.NumInsts;
+    Metrics.analyzeBasicBlock(*I, TTI, EphValues);
+  NumCalls = Metrics.NumInlineCandidates;
+  NotDuplicatable = Metrics.notDuplicatable;
+
+  unsigned LoopSize = Metrics.NumInsts;
+
+  // Don't allow an estimate of size zero.  This would allows unrolling of loops
+  // with huge iteration counts, which is a compile time problem even if it's
+  // not a problem for code quality. Also, the code using this size may assume
+  // that each loop has at least three instructions (likely a conditional
+  // branch, a comparison feeding that branch, and some kind of loop increment
+  // feeding that comparison instruction).
+  LoopSize = std::max(LoopSize, 3u);
+
+  return LoopSize;
+}
+
+// Returns the loop hint metadata node with the given name (for example,
+// "llvm.loop.unroll.count").  If no such metadata node exists, then nullptr is
+// returned.
+static MDNode *GetUnrollMetadataForLoop(const Loop *L, StringRef Name) {
+  if (MDNode *LoopID = L->getLoopID())
+    return GetUnrollMetadata(LoopID, Name);
+  return nullptr;
+}
+
+// Returns true if the loop has an unroll(full) pragma.
+static bool HasUnrollFullPragma(const Loop *L) {
+  return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.full");
+}
+
+// Returns true if the loop has an unroll(disable) pragma.
+static bool HasUnrollDisablePragma(const Loop *L) {
+  return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.disable");
+}
+
+// If loop has an unroll_count pragma return the (necessarily
+// positive) value from the pragma.  Otherwise return 0.
+static unsigned UnrollCountPragmaValue(const Loop *L) {
+  MDNode *MD = GetUnrollMetadataForLoop(L, "llvm.loop.unroll.count");
+  if (MD) {
+    assert(MD->getNumOperands() == 2 &&
+           "Unroll count hint metadata should have two operands.");
+    unsigned Count =
+        mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue();
+    assert(Count >= 1 && "Unroll count must be positive.");
+    return Count;
+  }
+  return 0;
+}
+
+// Remove existing unroll metadata and add unroll disable metadata to
+// indicate the loop has already been unrolled.  This prevents a loop
+// from being unrolled more than is directed by a pragma if the loop
+// unrolling pass is run more than once (which it generally is).
+static void SetLoopAlreadyUnrolled(Loop *L) {
+  MDNode *LoopID = L->getLoopID();
+  if (!LoopID) return;
+
+  // First remove any existing loop unrolling metadata.
+  SmallVector<Metadata *, 4> MDs;
+  // Reserve first location for self reference to the LoopID metadata node.
+  MDs.push_back(nullptr);
+  for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
+    bool IsUnrollMetadata = false;
+    MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
+    if (MD) {
+      const MDString *S = dyn_cast<MDString>(MD->getOperand(0));
+      IsUnrollMetadata = S && S->getString().startswith("llvm.loop.unroll.");
+    }
+    if (!IsUnrollMetadata)
+      MDs.push_back(LoopID->getOperand(i));
+  }
+
+  // Add unroll(disable) metadata to disable future unrolling.
+  LLVMContext &Context = L->getHeader()->getContext();
+  SmallVector<Metadata *, 1> DisableOperands;
+  DisableOperands.push_back(MDString::get(Context, "llvm.loop.unroll.disable"));
+  MDNode *DisableNode = MDNode::get(Context, DisableOperands);
+  MDs.push_back(DisableNode);
+
+  MDNode *NewLoopID = MDNode::get(Context, MDs);
+  // Set operand 0 to refer to the loop id itself.
+  NewLoopID->replaceOperandWith(0, NewLoopID);
+  L->setLoopID(NewLoopID);
+}
+
+unsigned LoopUnroll::selectUnrollCount(
+    const Loop *L, unsigned TripCount, bool PragmaFullUnroll,
+    unsigned PragmaCount, const TargetTransformInfo::UnrollingPreferences &UP,
+    bool &SetExplicitly) {
+  SetExplicitly = true;
+
+  // User-specified count (either as a command-line option or
+  // constructor parameter) has highest precedence.
+  unsigned Count = UserCount ? CurrentCount : 0;
+
+  // If there is no user-specified count, unroll pragmas have the next
+  // highest precendence.
+  if (Count == 0) {
+    if (PragmaCount) {
+      Count = PragmaCount;
+    } else if (PragmaFullUnroll) {
+      Count = TripCount;
+    }
+  }
+
+  if (Count == 0)
+    Count = UP.Count;
+
+  if (Count == 0) {
+    SetExplicitly = false;
+    if (TripCount == 0)
+      // Runtime trip count.
+      Count = UnrollRuntimeCount;
+    else
+      // Conservative heuristic: if we know the trip count, see if we can
+      // completely unroll (subject to the threshold, checked below); otherwise
+      // try to find greatest modulo of the trip count which is still under
+      // threshold value.
+      Count = TripCount;
+  }
+  if (TripCount && Count > TripCount)
+    return TripCount;
+  return Count;
 }
 
 bool LoopUnroll::runOnLoop(Loop *L, LPPassManager &LPM) {
-  LoopInfo *LI = &getAnalysis<LoopInfo>();
+  if (skipOptnoneFunction(L))
+    return false;
+
+  Function &F = *L->getHeader()->getParent();
+
+  LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
+  ScalarEvolution *SE = &getAnalysis<ScalarEvolution>();
+  const TargetTransformInfo &TTI =
+      getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
+  auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
 
   BasicBlock *Header = L->getHeader();
   DEBUG(dbgs() << "Loop Unroll: F[" << Header->getParent()->getName()
         << "] Loop %" << Header->getName() << "\n");
-  (void)Header;
 
-  // Find trip count
-  unsigned TripCount = L->getSmallConstantTripCount();
-  unsigned Count = UnrollCount;
+  if (HasUnrollDisablePragma(L)) {
+    return false;
+  }
+  bool PragmaFullUnroll = HasUnrollFullPragma(L);
+  unsigned PragmaCount = UnrollCountPragmaValue(L);
+  bool HasPragma = PragmaFullUnroll || PragmaCount > 0;
 
-  // Automatically select an unroll count.
-  if (Count == 0) {
-    // Conservative heuristic: if we know the trip count, see if we can
-    // completely unroll (subject to the threshold, checked below); otherwise
-    // try to find greatest modulo of the trip count which is still under
-    // threshold value.
-    if (TripCount == 0)
-      return false;
-    Count = TripCount;
+  TargetTransformInfo::UnrollingPreferences UP;
+  getUnrollingPreferences(L, TTI, UP);
+
+  // Find trip count and trip multiple if count is not available
+  unsigned TripCount = 0;
+  unsigned TripMultiple = 1;
+  // If there are multiple exiting blocks but one of them is the latch, use the
+  // latch for the trip count estimation. Otherwise insist on a single exiting
+  // block for the trip count estimation.
+  BasicBlock *ExitingBlock = L->getLoopLatch();
+  if (!ExitingBlock || !L->isLoopExiting(ExitingBlock))
+    ExitingBlock = L->getExitingBlock();
+  if (ExitingBlock) {
+    TripCount = SE->getSmallConstantTripCount(L, ExitingBlock);
+    TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock);
+  }
+
+  // Select an initial unroll count.  This may be reduced later based
+  // on size thresholds.
+  bool CountSetExplicitly;
+  unsigned Count = selectUnrollCount(L, TripCount, PragmaFullUnroll,
+                                     PragmaCount, UP, CountSetExplicitly);
+
+  unsigned NumInlineCandidates;
+  bool notDuplicatable;
+  unsigned LoopSize =
+      ApproximateLoopSize(L, NumInlineCandidates, notDuplicatable, TTI, &AC);
+  DEBUG(dbgs() << "  Loop Size = " << LoopSize << "\n");
+
+  // When computing the unrolled size, note that the conditional branch on the
+  // backedge and the comparison feeding it are not replicated like the rest of
+  // the loop body (which is why 2 is subtracted).
+  uint64_t UnrolledSize = (uint64_t)(LoopSize-2) * Count + 2;
+  if (notDuplicatable) {
+    DEBUG(dbgs() << "  Not unrolling loop which contains non-duplicatable"
+                 << " instructions.\n");
+    return false;
   }
+  if (NumInlineCandidates != 0) {
+    DEBUG(dbgs() << "  Not unrolling loop with inlinable calls.\n");
+    return false;
+  }
+
+  unsigned NumberOfOptimizedInstructions =
+      approximateNumberOfOptimizedInstructions(L, *SE, TripCount, TTI);
+  DEBUG(dbgs() << "  Complete unrolling could save: "
+               << NumberOfOptimizedInstructions << "\n");
 
-  // Enforce the threshold.
-  if (UnrollThreshold != NoThreshold) {
-    unsigned NumCalls;
-    unsigned LoopSize = ApproximateLoopSize(L, NumCalls);
-    DEBUG(dbgs() << "  Loop Size = " << LoopSize << "\n");
-    if (NumCalls != 0) {
-      DEBUG(dbgs() << "  Not unrolling loop with function calls.\n");
+  unsigned Threshold, PartialThreshold;
+  selectThresholds(L, HasPragma, UP, Threshold, PartialThreshold,
+                   NumberOfOptimizedInstructions);
+
+  // Given Count, TripCount and thresholds determine the type of
+  // unrolling which is to be performed.
+  enum { Full = 0, Partial = 1, Runtime = 2 };
+  int Unrolling;
+  if (TripCount && Count == TripCount) {
+    if (Threshold != NoThreshold && UnrolledSize > Threshold) {
+      DEBUG(dbgs() << "  Too large to fully unroll with count: " << Count
+                   << " because size: " << UnrolledSize << ">" << Threshold
+                   << "\n");
+      Unrolling = Partial;
+    } else {
+      Unrolling = Full;
+    }
+  } else if (TripCount && Count < TripCount) {
+    Unrolling = Partial;
+  } else {
+    Unrolling = Runtime;
+  }
+
+  // Reduce count based on the type of unrolling and the threshold values.
+  unsigned OriginalCount = Count;
+  bool AllowRuntime = UserRuntime ? CurrentRuntime : UP.Runtime;
+  if (Unrolling == Partial) {
+    bool AllowPartial = UserAllowPartial ? CurrentAllowPartial : UP.Partial;
+    if (!AllowPartial && !CountSetExplicitly) {
+      DEBUG(dbgs() << "  will not try to unroll partially because "
+                   << "-unroll-allow-partial not given\n");
       return false;
     }
-    uint64_t Size = (uint64_t)LoopSize*Count;
-    if (TripCount != 1 && Size > UnrollThreshold) {
-      DEBUG(dbgs() << "  Too large to fully unroll with count: " << Count
-            << " because size: " << Size << ">" << UnrollThreshold << "\n");
-      if (!UnrollAllowPartial) {
-        DEBUG(dbgs() << "  will not try to unroll partially because "
-              << "-unroll-allow-partial not given\n");
-        return false;
-      }
-      // Reduce unroll count to be modulo of TripCount for partial unrolling
-      Count = UnrollThreshold / LoopSize;
-      while (Count != 0 && TripCount%Count != 0) {
+    if (PartialThreshold != NoThreshold && UnrolledSize > PartialThreshold) {
+      // Reduce unroll count to be modulo of TripCount for partial unrolling.
+      Count = (std::max(PartialThreshold, 3u)-2) / (LoopSize-2);
+      while (Count != 0 && TripCount % Count != 0)
         Count--;
+    }
+  } else if (Unrolling == Runtime) {
+    if (!AllowRuntime && !CountSetExplicitly) {
+      DEBUG(dbgs() << "  will not try to unroll loop with runtime trip count "
+                   << "-unroll-runtime not given\n");
+      return false;
+    }
+    // Reduce unroll count to be the largest power-of-two factor of
+    // the original count which satisfies the threshold limit.
+    while (Count != 0 && UnrolledSize > PartialThreshold) {
+      Count >>= 1;
+      UnrolledSize = (LoopSize-2) * Count + 2;
+    }
+    if (Count > UP.MaxCount)
+      Count = UP.MaxCount;
+    DEBUG(dbgs() << "  partially unrolling with count: " << Count << "\n");
+  }
+
+  if (HasPragma) {
+    if (PragmaCount != 0)
+      // If loop has an unroll count pragma mark loop as unrolled to prevent
+      // unrolling beyond that requested by the pragma.
+      SetLoopAlreadyUnrolled(L);
+
+    // Emit optimization remarks if we are unable to unroll the loop
+    // as directed by a pragma.
+    DebugLoc LoopLoc = L->getStartLoc();
+    Function *F = Header->getParent();
+    LLVMContext &Ctx = F->getContext();
+    if (PragmaFullUnroll && PragmaCount == 0) {
+      if (TripCount && Count != TripCount) {
+        emitOptimizationRemarkMissed(
+            Ctx, DEBUG_TYPE, *F, LoopLoc,
+            "Unable to fully unroll loop as directed by unroll(full) pragma "
+            "because unrolled size is too large.");
+      } else if (!TripCount) {
+        emitOptimizationRemarkMissed(
+            Ctx, DEBUG_TYPE, *F, LoopLoc,
+            "Unable to fully unroll loop as directed by unroll(full) pragma "
+            "because loop has a runtime trip count.");
       }
-      if (Count < 2) {
-        DEBUG(dbgs() << "  could not unroll partially\n");
-        return false;
-      }
-      DEBUG(dbgs() << "  partially unrolling with count: " << Count << "\n");
+    } else if (PragmaCount > 0 && Count != OriginalCount) {
+      emitOptimizationRemarkMissed(
+          Ctx, DEBUG_TYPE, *F, LoopLoc,
+          "Unable to unroll loop the number of times directed by "
+          "unroll_count pragma because unrolled size is too large.");
     }
   }
 
+  if (Unrolling != Full && Count < 2) {
+    // Partial unrolling by 1 is a nop.  For full unrolling, a factor
+    // of 1 makes sense because loop control can be eliminated.
+    return false;
+  }
+
   // Unroll the loop.
-  Function *F = L->getHeader()->getParent();
-  if (!UnrollLoop(L, Count, LI, &LPM))
+  if (!UnrollLoop(L, Count, TripCount, AllowRuntime, TripMultiple, LI, this,
+                  &LPM, &AC))
     return false;
 
-  // FIXME: Reconstruct dom info, because it is not preserved properly.
-  DominatorTree *DT = getAnalysisIfAvailable<DominatorTree>();
-  if (DT) {
-    DT->runOnFunction(*F);
-    DominanceFrontier *DF = getAnalysisIfAvailable<DominanceFrontier>();
-    if (DF)
-      DF->runOnFunction(*F);
-  }
   return true;
 }