New EH representation for MSVC compatibility
[oota-llvm.git] / lib / Transforms / Scalar / JumpThreading.cpp
index 2b4e3ff00ddd340045f18524e98e5183e93da976..e845a7f586bc3160143efb663980efaf7527a0f6 100644 (file)
@@ -23,6 +23,7 @@
 #include "llvm/Analysis/InstructionSimplify.h"
 #include "llvm/Analysis/LazyValueInfo.h"
 #include "llvm/Analysis/Loads.h"
+#include "llvm/Analysis/TargetLibraryInfo.h"
 #include "llvm/IR/DataLayout.h"
 #include "llvm/IR/IntrinsicInst.h"
 #include "llvm/IR/LLVMContext.h"
@@ -32,7 +33,6 @@
 #include "llvm/Support/CommandLine.h"
 #include "llvm/Support/Debug.h"
 #include "llvm/Support/raw_ostream.h"
-#include "llvm/Target/TargetLibraryInfo.h"
 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
 #include "llvm/Transforms/Utils/Local.h"
 #include "llvm/Transforms/Utils/SSAUpdater.h"
@@ -45,7 +45,7 @@ STATISTIC(NumFolds,   "Number of terminators folded");
 STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
 
 static cl::opt<unsigned>
-Threshold("jump-threading-threshold",
+BBDuplicateThreshold("jump-threading-threshold",
           cl::desc("Max block size to duplicate for jump threading"),
           cl::init(6), cl::Hidden);
 
@@ -78,7 +78,6 @@ namespace {
   /// revectored to the false side of the second if.
   ///
   class JumpThreading : public FunctionPass {
-    const DataLayout *DL;
     TargetLibraryInfo *TLI;
     LazyValueInfo *LVI;
 #ifdef NDEBUG
@@ -88,6 +87,8 @@ namespace {
 #endif
     DenseSet<std::pair<Value*, BasicBlock*> > RecursionSet;
 
+    unsigned BBDupThreshold;
+
     // RAII helper for updating the recursion stack.
     struct RecursionSetRemover {
       DenseSet<std::pair<Value*, BasicBlock*> > &TheSet;
@@ -103,7 +104,8 @@ namespace {
     };
   public:
     static char ID; // Pass identification
-    JumpThreading() : FunctionPass(ID) {
+    JumpThreading(int T = -1) : FunctionPass(ID) {
+      BBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T);
       initializeJumpThreadingPass(*PassRegistry::getPassRegistry());
     }
 
@@ -112,7 +114,7 @@ namespace {
     void getAnalysisUsage(AnalysisUsage &AU) const override {
       AU.addRequired<LazyValueInfo>();
       AU.addPreserved<LazyValueInfo>();
-      AU.addRequired<TargetLibraryInfo>();
+      AU.addRequired<TargetLibraryInfoWrapperPass>();
     }
 
     void FindLoopHeaders(Function &F);
@@ -124,9 +126,11 @@ namespace {
 
     bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,
                                          PredValueInfo &Result,
-                                         ConstantPreference Preference);
+                                         ConstantPreference Preference,
+                                         Instruction *CxtI = nullptr);
     bool ProcessThreadableEdges(Value *Cond, BasicBlock *BB,
-                                ConstantPreference Preference);
+                                ConstantPreference Preference,
+                                Instruction *CxtI = nullptr);
 
     bool ProcessBranchOnPHI(PHINode *PN);
     bool ProcessBranchOnXOR(BinaryOperator *BO);
@@ -140,12 +144,12 @@ char JumpThreading::ID = 0;
 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading",
                 "Jump Threading", false, false)
 INITIALIZE_PASS_DEPENDENCY(LazyValueInfo)
-INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
+INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
 INITIALIZE_PASS_END(JumpThreading, "jump-threading",
                 "Jump Threading", false, false)
 
 // Public interface to the Jump Threading pass
-FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); }
+FunctionPass *llvm::createJumpThreadingPass(int Threshold) { return new JumpThreading(Threshold); }
 
 /// runOnFunction - Top level algorithm.
 ///
@@ -154,9 +158,7 @@ bool JumpThreading::runOnFunction(Function &F) {
     return false;
 
   DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
-  DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
-  DL = DLP ? &DLP->getDataLayout() : nullptr;
-  TLI = &getAnalysis<TargetLibraryInfo>();
+  TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
   LVI = &getAnalysis<LazyValueInfo>();
 
   // Remove unreachable blocks from function as they may result in infinite
@@ -183,7 +185,7 @@ bool JumpThreading::runOnFunction(Function &F) {
 
       // If the block is trivially dead, zap it.  This eliminates the successor
       // edges which simplifies the CFG.
-      if (pred_begin(BB) == pred_end(BB) &&
+      if (pred_empty(BB) &&
           BB != &BB->getParent()->getEntryBlock()) {
         DEBUG(dbgs() << "  JT: Deleting dead block '" << BB->getName()
               << "' with terminator: " << *BB->getTerminator() << '\n');
@@ -340,7 +342,8 @@ static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) {
 ///
 bool JumpThreading::
 ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result,
-                                ConstantPreference Preference) {
+                                ConstantPreference Preference,
+                                Instruction *CxtI) {
   // This method walks up use-def chains recursively.  Because of this, we could
   // get into an infinite loop going around loops in the use-def chain.  To
   // prevent this, keep track of what (value, block) pairs we've already visited
@@ -382,7 +385,7 @@ ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result,
       BasicBlock *P = *PI;
       // If the value is known by LazyValueInfo to be a constant in a
       // predecessor, use that information to try to thread this block.
-      Constant *PredCst = LVI->getConstantOnEdge(V, P, BB);
+      Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI);
       if (Constant *KC = getKnownConstant(PredCst, Preference))
         Result.push_back(std::make_pair(KC, P));
     }
@@ -398,7 +401,8 @@ ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result,
         Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
       } else {
         Constant *CI = LVI->getConstantOnEdge(InVal,
-                                              PN->getIncomingBlock(i), BB);
+                                              PN->getIncomingBlock(i),
+                                              BB, CxtI);
         if (Constant *KC = getKnownConstant(CI, Preference))
           Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
       }
@@ -417,9 +421,9 @@ ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result,
     if (I->getOpcode() == Instruction::Or ||
         I->getOpcode() == Instruction::And) {
       ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals,
-                                      WantInteger);
+                                      WantInteger, CxtI);
       ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals,
-                                      WantInteger);
+                                      WantInteger, CxtI);
 
       if (LHSVals.empty() && RHSVals.empty())
         return false;
@@ -460,7 +464,7 @@ ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result,
         isa<ConstantInt>(I->getOperand(1)) &&
         cast<ConstantInt>(I->getOperand(1))->isOne()) {
       ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result,
-                                      WantInteger);
+                                      WantInteger, CxtI);
       if (Result.empty())
         return false;
 
@@ -478,7 +482,7 @@ ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result,
     if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
       PredValueInfoTy LHSVals;
       ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals,
-                                      WantInteger);
+                                      WantInteger, CxtI);
 
       // Try to use constant folding to simplify the binary operator.
       for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) {
@@ -498,6 +502,7 @@ ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result,
     assert(Preference == WantInteger && "Compares only produce integers");
     PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0));
     if (PN && PN->getParent() == BB) {
+      const DataLayout &DL = PN->getModule()->getDataLayout();
       // We can do this simplification if any comparisons fold to true or false.
       // See if any do.
       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
@@ -512,7 +517,8 @@ ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result,
 
           LazyValueInfo::Tristate
             ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS,
-                                           cast<Constant>(RHS), PredBB, BB);
+                                           cast<Constant>(RHS), PredBB, BB,
+                                           CxtI ? CxtI : Cmp);
           if (ResT == LazyValueInfo::Unknown)
             continue;
           Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
@@ -525,7 +531,6 @@ ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result,
       return !Result.empty();
     }
 
-
     // If comparing a live-in value against a constant, see if we know the
     // live-in value on any predecessors.
     if (isa<Constant>(Cmp->getOperand(1)) && Cmp->getType()->isIntegerTy()) {
@@ -539,7 +544,7 @@ ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result,
           // predecessor, use that information to try to thread this block.
           LazyValueInfo::Tristate Res =
             LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0),
-                                    RHSCst, P, BB);
+                                    RHSCst, P, BB, CxtI ? CxtI : Cmp);
           if (Res == LazyValueInfo::Unknown)
             continue;
 
@@ -555,7 +560,7 @@ ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result,
       if (Constant *CmpConst = dyn_cast<Constant>(Cmp->getOperand(1))) {
         PredValueInfoTy LHSVals;
         ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals,
-                                        WantInteger);
+                                        WantInteger, CxtI);
 
         for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) {
           Constant *V = LHSVals[i].first;
@@ -578,7 +583,7 @@ ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result,
     PredValueInfoTy Conds;
     if ((TrueVal || FalseVal) &&
         ComputeValueKnownInPredecessors(SI->getCondition(), BB, Conds,
-                                        WantInteger)) {
+                                        WantInteger, CxtI)) {
       for (unsigned i = 0, e = Conds.size(); i != e; ++i) {
         Constant *Cond = Conds[i].first;
 
@@ -605,7 +610,7 @@ ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result,
   }
 
   // If all else fails, see if LVI can figure out a constant value for us.
-  Constant *CI = LVI->getConstant(V, BB);
+  Constant *CI = LVI->getConstant(V, BB, CxtI);
   if (Constant *KC = getKnownConstant(CI, Preference)) {
     for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
       Result.push_back(std::make_pair(KC, *PI));
@@ -655,7 +660,7 @@ static bool hasAddressTakenAndUsed(BasicBlock *BB) {
 bool JumpThreading::ProcessBlock(BasicBlock *BB) {
   // If the block is trivially dead, just return and let the caller nuke it.
   // This simplifies other transformations.
-  if (pred_begin(BB) == pred_end(BB) &&
+  if (pred_empty(BB) &&
       BB != &BB->getParent()->getEntryBlock())
     return false;
 
@@ -664,7 +669,8 @@ bool JumpThreading::ProcessBlock(BasicBlock *BB) {
   // because now the condition in this block can be threaded through
   // predecessors of our predecessor block.
   if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
-    if (SinglePred->getTerminator()->getNumSuccessors() == 1 &&
+    const TerminatorInst *TI = SinglePred->getTerminator();
+    if (!TI->isExceptional() && TI->getNumSuccessors() == 1 &&
         SinglePred != BB && !hasAddressTakenAndUsed(BB)) {
       // If SinglePred was a loop header, BB becomes one.
       if (LoopHeaders.erase(SinglePred))
@@ -702,7 +708,8 @@ bool JumpThreading::ProcessBlock(BasicBlock *BB) {
   // Run constant folding to see if we can reduce the condition to a simple
   // constant.
   if (Instruction *I = dyn_cast<Instruction>(Condition)) {
-    Value *SimpleVal = ConstantFoldInstruction(I, DL, TLI);
+    Value *SimpleVal =
+        ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI);
     if (SimpleVal) {
       I->replaceAllUsesWith(SimpleVal);
       I->eraseFromParent();
@@ -745,49 +752,42 @@ bool JumpThreading::ProcessBlock(BasicBlock *BB) {
   // All the rest of our checks depend on the condition being an instruction.
   if (!CondInst) {
     // FIXME: Unify this with code below.
-    if (ProcessThreadableEdges(Condition, BB, Preference))
+    if (ProcessThreadableEdges(Condition, BB, Preference, Terminator))
       return true;
     return false;
   }
 
 
   if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
-    // For a comparison where the LHS is outside this block, it's possible
-    // that we've branched on it before.  Used LVI to see if we can simplify
-    // the branch based on that.
+    // If we're branching on a conditional, LVI might be able to determine
+    // it's value at the branch instruction.  We only handle comparisons
+    // against a constant at this time.
+    // TODO: This should be extended to handle switches as well.  
     BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
     Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1));
-    pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
-    if (CondBr && CondConst && CondBr->isConditional() && PI != PE &&
-        (!isa<Instruction>(CondCmp->getOperand(0)) ||
-         cast<Instruction>(CondCmp->getOperand(0))->getParent() != BB)) {
-      // For predecessor edge, determine if the comparison is true or false
-      // on that edge.  If they're all true or all false, we can simplify the
-      // branch.
-      // FIXME: We could handle mixed true/false by duplicating code.
-      LazyValueInfo::Tristate Baseline =
-        LVI->getPredicateOnEdge(CondCmp->getPredicate(), CondCmp->getOperand(0),
-                                CondConst, *PI, BB);
-      if (Baseline != LazyValueInfo::Unknown) {
-        // Check that all remaining incoming values match the first one.
-        while (++PI != PE) {
-          LazyValueInfo::Tristate Ret =
-            LVI->getPredicateOnEdge(CondCmp->getPredicate(),
-                                    CondCmp->getOperand(0), CondConst, *PI, BB);
-          if (Ret != Baseline) break;
-        }
-
-        // If we terminated early, then one of the values didn't match.
-        if (PI == PE) {
-          unsigned ToRemove = Baseline == LazyValueInfo::True ? 1 : 0;
-          unsigned ToKeep = Baseline == LazyValueInfo::True ? 0 : 1;
-          CondBr->getSuccessor(ToRemove)->removePredecessor(BB, true);
-          BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr);
-          CondBr->eraseFromParent();
-          return true;
+    if (CondBr && CondConst && CondBr->isConditional()) {
+      LazyValueInfo::Tristate Ret =
+        LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0),
+                            CondConst, CondBr);
+      if (Ret != LazyValueInfo::Unknown) {
+        unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0;
+        unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1;
+        CondBr->getSuccessor(ToRemove)->removePredecessor(BB, true);
+        BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr);
+        CondBr->eraseFromParent();
+        if (CondCmp->use_empty())
+          CondCmp->eraseFromParent();
+        else if (CondCmp->getParent() == BB) {
+          // If the fact we just learned is true for all uses of the
+          // condition, replace it with a constant value
+          auto *CI = Ret == LazyValueInfo::True ?
+            ConstantInt::getTrue(CondCmp->getType()) :
+            ConstantInt::getFalse(CondCmp->getType());
+          CondCmp->replaceAllUsesWith(CI);
+          CondCmp->eraseFromParent();
         }
+        return true;
       }
-
     }
 
     if (CondBr && CondConst && TryToUnfoldSelect(CondCmp, BB))
@@ -815,7 +815,7 @@ bool JumpThreading::ProcessBlock(BasicBlock *BB) {
   // a PHI node in the current block.  If we can prove that any predecessors
   // compute a predictable value based on a PHI node, thread those predecessors.
   //
-  if (ProcessThreadableEdges(CondInst, BB, Preference))
+  if (ProcessThreadableEdges(CondInst, BB, Preference, Terminator))
     return true;
 
   // If this is an otherwise-unfoldable branch on a phi node in the current
@@ -878,6 +878,9 @@ bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
     // If the returned value is the load itself, replace with an undef. This can
     // only happen in dead loops.
     if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType());
+    if (AvailableVal->getType() != LI->getType())
+      AvailableVal =
+          CastInst::CreateBitOrPointerCast(AvailableVal, LI->getType(), "", LI);
     LI->replaceAllUsesWith(AvailableVal);
     LI->eraseFromParent();
     return true;
@@ -906,7 +909,7 @@ bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
     BasicBlock *PredBB = *PI;
 
     // If we already scanned this predecessor, skip it.
-    if (!PredsScanned.insert(PredBB))
+    if (!PredsScanned.insert(PredBB).second)
       continue;
 
     // Scan the predecessor to see if the value is available in the pred.
@@ -967,7 +970,7 @@ bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
 
     // Split them out to their own block.
     UnavailablePred =
-      SplitBlockPredecessors(LoadBB, PredsToSplit, "thread-pre-split", this);
+      SplitBlockPredecessors(LoadBB, PredsToSplit, "thread-pre-split");
   }
 
   // If the value isn't available in all predecessors, then there will be
@@ -1008,7 +1011,16 @@ bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
     assert(I != AvailablePreds.end() && I->first == P &&
            "Didn't find entry for predecessor!");
 
-    PN->addIncoming(I->second, I->first);
+    // If we have an available predecessor but it requires casting, insert the
+    // cast in the predecessor and use the cast. Note that we have to update the
+    // AvailablePreds vector as we go so that all of the PHI entries for this
+    // predecessor use the same bitcast.
+    Value *&PredV = I->second;
+    if (PredV->getType() != LI->getType())
+      PredV = CastInst::CreateBitOrPointerCast(PredV, LI->getType(), "",
+                                               P->getTerminator());
+
+    PN->addIncoming(PredV, I->first);
   }
 
   //cerr << "PRE: " << *LI << *PN << "\n";
@@ -1083,14 +1095,15 @@ FindMostPopularDest(BasicBlock *BB,
 }
 
 bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB,
-                                           ConstantPreference Preference) {
+                                           ConstantPreference Preference,
+                                           Instruction *CxtI) {
   // If threading this would thread across a loop header, don't even try to
   // thread the edge.
   if (LoopHeaders.count(BB))
     return false;
 
   PredValueInfoTy PredValues;
-  if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference))
+  if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference, CxtI))
     return false;
 
   assert(!PredValues.empty() &&
@@ -1115,7 +1128,7 @@ bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB,
 
   for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
     BasicBlock *Pred = PredValues[i].second;
-    if (!SeenPreds.insert(Pred))
+    if (!SeenPreds.insert(Pred).second)
       continue;  // Duplicate predecessor entry.
 
     // If the predecessor ends with an indirect goto, we can't change its
@@ -1255,10 +1268,10 @@ bool JumpThreading::ProcessBranchOnXOR(BinaryOperator *BO) {
   PredValueInfoTy XorOpValues;
   bool isLHS = true;
   if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues,
-                                       WantInteger)) {
+                                       WantInteger, BO)) {
     assert(XorOpValues.empty());
     if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues,
-                                         WantInteger))
+                                         WantInteger, BO))
       return false;
     isLHS = false;
   }
@@ -1368,8 +1381,8 @@ bool JumpThreading::ThreadEdge(BasicBlock *BB,
     return false;
   }
 
-  unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB, Threshold);
-  if (JumpThreadCost > Threshold) {
+  unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB, BBDupThreshold);
+  if (JumpThreadCost > BBDupThreshold) {
     DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
           << "' - Cost is too high: " << JumpThreadCost << "\n");
     return false;
@@ -1382,7 +1395,7 @@ bool JumpThreading::ThreadEdge(BasicBlock *BB,
   else {
     DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
           << " common predecessors.\n");
-    PredBB = SplitBlockPredecessors(BB, PredBBs, ".thr_comm", this);
+    PredBB = SplitBlockPredecessors(BB, PredBBs, ".thr_comm");
   }
 
   // And finally, do it!
@@ -1485,7 +1498,7 @@ bool JumpThreading::ThreadEdge(BasicBlock *BB,
   // At this point, the IR is fully up to date and consistent.  Do a quick scan
   // over the new instructions and zap any that are constants or dead.  This
   // frequently happens because of phi translation.
-  SimplifyInstructionsInBlock(NewBB, DL, TLI);
+  SimplifyInstructionsInBlock(NewBB, TLI);
 
   // Threaded an edge!
   ++NumThreads;
@@ -1511,8 +1524,8 @@ bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
     return false;
   }
 
-  unsigned DuplicationCost = getJumpThreadDuplicationCost(BB, Threshold);
-  if (DuplicationCost > Threshold) {
+  unsigned DuplicationCost = getJumpThreadDuplicationCost(BB, BBDupThreshold);
+  if (DuplicationCost > BBDupThreshold) {
     DEBUG(dbgs() << "  Not duplicating BB '" << BB->getName()
           << "' - Cost is too high: " << DuplicationCost << "\n");
     return false;
@@ -1525,7 +1538,7 @@ bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
   else {
     DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
           << " common predecessors.\n");
-    PredBB = SplitBlockPredecessors(BB, PredBBs, ".thr_comm", this);
+    PredBB = SplitBlockPredecessors(BB, PredBBs, ".thr_comm");
   }
 
   // Okay, we decided to do this!  Clone all the instructions in BB onto the end
@@ -1539,7 +1552,7 @@ bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
   BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
 
   if (!OldPredBranch || !OldPredBranch->isUnconditional()) {
-    PredBB = SplitEdge(PredBB, BB, this);
+    PredBB = SplitEdge(PredBB, BB);
     OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
   }
 
@@ -1550,7 +1563,6 @@ bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
   BasicBlock::iterator BI = BB->begin();
   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
-
   // Clone the non-phi instructions of BB into PredBB, keeping track of the
   // mapping and using it to remap operands in the cloned instructions.
   for (; BI != BB->end(); ++BI) {
@@ -1567,7 +1579,8 @@ bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
     // If this instruction can be simplified after the operands are updated,
     // just use the simplified value instead.  This frequently happens due to
     // phi translation.
-    if (Value *IV = SimplifyInstruction(New, DL)) {
+    if (Value *IV =
+            SimplifyInstruction(New, BB->getModule()->getDataLayout())) {
       delete New;
       ValueMapping[BI] = IV;
     } else {
@@ -1674,10 +1687,10 @@ bool JumpThreading::TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) {
     // cases will be threaded in any case.
     LazyValueInfo::Tristate LHSFolds =
         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1),
-                                CondRHS, Pred, BB);
+                                CondRHS, Pred, BB, CondCmp);
     LazyValueInfo::Tristate RHSFolds =
         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2),
-                                CondRHS, Pred, BB);
+                                CondRHS, Pred, BB, CondCmp);
     if ((LHSFolds != LazyValueInfo::Unknown ||
          RHSFolds != LazyValueInfo::Unknown) &&
         LHSFolds != RHSFolds) {