Make DataLayout Non-Optional in the Module
[oota-llvm.git] / lib / Transforms / Scalar / JumpThreading.cpp
index 3d218a6585a5219292d631f72fc11d902eef9eba..db4174d7083aa0506d0ba66cdfa43000bdb9f63e 100644 (file)
 //
 //===----------------------------------------------------------------------===//
 
-#define DEBUG_TYPE "jump-threading"
 #include "llvm/Transforms/Scalar.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/LLVMContext.h"
-#include "llvm/Pass.h"
-#include "llvm/Analysis/InstructionSimplify.h"
-#include "llvm/Analysis/LazyValueInfo.h"
-#include "llvm/Analysis/Loads.h"
-#include "llvm/Transforms/Utils/BasicBlockUtils.h"
-#include "llvm/Transforms/Utils/Local.h"
-#include "llvm/Transforms/Utils/SSAUpdater.h"
-#include "llvm/Target/TargetData.h"
 #include "llvm/ADT/DenseMap.h"
 #include "llvm/ADT/DenseSet.h"
-#include "llvm/ADT/Statistic.h"
 #include "llvm/ADT/STLExtras.h"
 #include "llvm/ADT/SmallPtrSet.h"
 #include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/CFG.h"
+#include "llvm/Analysis/ConstantFolding.h"
+#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/Analysis/LazyValueInfo.h"
+#include "llvm/Analysis/Loads.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Metadata.h"
+#include "llvm/IR/ValueHandle.h"
+#include "llvm/Pass.h"
 #include "llvm/Support/CommandLine.h"
 #include "llvm/Support/Debug.h"
-#include "llvm/Support/ValueHandle.h"
 #include "llvm/Support/raw_ostream.h"
+#include "llvm/Analysis/TargetLibraryInfo.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/Transforms/Utils/SSAUpdater.h"
 using namespace llvm;
 
+#define DEBUG_TYPE "jump-threading"
+
 STATISTIC(NumThreads, "Number of jumps threaded");
 STATISTIC(NumFolds,   "Number of terminators folded");
 STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
 
 static cl::opt<unsigned>
-Threshold("jump-threading-threshold",
+BBDuplicateThreshold("jump-threading-threshold",
           cl::desc("Max block size to duplicate for jump threading"),
           cl::init(6), cl::Hidden);
 
@@ -73,7 +78,8 @@ namespace {
   /// revectored to the false side of the second if.
   ///
   class JumpThreading : public FunctionPass {
-    TargetData *TD;
+    const DataLayout *DL;
+    TargetLibraryInfo *TLI;
     LazyValueInfo *LVI;
 #ifdef NDEBUG
     SmallPtrSet<BasicBlock*, 16> LoopHeaders;
@@ -82,6 +88,8 @@ namespace {
 #endif
     DenseSet<std::pair<Value*, BasicBlock*> > RecursionSet;
 
+    unsigned BBDupThreshold;
+
     // RAII helper for updating the recursion stack.
     struct RecursionSetRemover {
       DenseSet<std::pair<Value*, BasicBlock*> > &TheSet;
@@ -97,15 +105,17 @@ namespace {
     };
   public:
     static char ID; // Pass identification
-    JumpThreading() : FunctionPass(ID) {
+    JumpThreading(int T = -1) : FunctionPass(ID) {
+      BBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T);
       initializeJumpThreadingPass(*PassRegistry::getPassRegistry());
     }
 
-    bool runOnFunction(Function &F);
+    bool runOnFunction(Function &F) override;
 
-    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+    void getAnalysisUsage(AnalysisUsage &AU) const override {
       AU.addRequired<LazyValueInfo>();
       AU.addPreserved<LazyValueInfo>();
+      AU.addRequired<TargetLibraryInfoWrapperPass>();
     }
 
     void FindLoopHeaders(Function &F);
@@ -117,14 +127,17 @@ namespace {
 
     bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,
                                          PredValueInfo &Result,
-                                         ConstantPreference Preference);
+                                         ConstantPreference Preference,
+                                         Instruction *CxtI = nullptr);
     bool ProcessThreadableEdges(Value *Cond, BasicBlock *BB,
-                                ConstantPreference Preference);
+                                ConstantPreference Preference,
+                                Instruction *CxtI = nullptr);
 
     bool ProcessBranchOnPHI(PHINode *PN);
     bool ProcessBranchOnXOR(BinaryOperator *BO);
 
     bool SimplifyPartiallyRedundantLoad(LoadInst *LI);
+    bool TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB);
   };
 }
 
@@ -132,19 +145,33 @@ char JumpThreading::ID = 0;
 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading",
                 "Jump Threading", false, false)
 INITIALIZE_PASS_DEPENDENCY(LazyValueInfo)
+INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
 INITIALIZE_PASS_END(JumpThreading, "jump-threading",
                 "Jump Threading", false, false)
 
 // Public interface to the Jump Threading pass
-FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); }
+FunctionPass *llvm::createJumpThreadingPass(int Threshold) { return new JumpThreading(Threshold); }
 
 /// runOnFunction - Top level algorithm.
 ///
 bool JumpThreading::runOnFunction(Function &F) {
+  if (skipOptnoneFunction(F))
+    return false;
+
   DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
-  TD = getAnalysisIfAvailable<TargetData>();
+  DL = &F.getParent()->getDataLayout();
+  TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
   LVI = &getAnalysis<LazyValueInfo>();
 
+  // Remove unreachable blocks from function as they may result in infinite
+  // loop. We do threading if we found something profitable. Jump threading a
+  // branch can create other opportunities. If these opportunities form a cycle
+  // i.e. if any jump treading is undoing previous threading in the path, then
+  // we will loop forever. We take care of this issue by not jump threading for
+  // back edges. This works for normal cases but not for unreachable blocks as
+  // they may have cycle with no back edge.
+  removeUnreachableBlocks(F);
+
   FindLoopHeaders(F);
 
   bool Changed, EverChanged = false;
@@ -160,7 +187,7 @@ bool JumpThreading::runOnFunction(Function &F) {
 
       // If the block is trivially dead, zap it.  This eliminates the successor
       // edges which simplifies the CFG.
-      if (pred_begin(BB) == pred_end(BB) &&
+      if (pred_empty(BB) &&
           BB != &BB->getParent()->getEntryBlock()) {
         DEBUG(dbgs() << "  JT: Deleting dead block '" << BB->getName()
               << "' with terminator: " << *BB->getTerminator() << '\n');
@@ -170,9 +197,9 @@ bool JumpThreading::runOnFunction(Function &F) {
         Changed = true;
         continue;
       }
-      
+
       BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
-      
+
       // Can't thread an unconditional jump, but if the block is "almost
       // empty", we can replace uses of it with uses of the successor and make
       // this dead.
@@ -210,19 +237,24 @@ bool JumpThreading::runOnFunction(Function &F) {
 }
 
 /// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
-/// thread across it.
-static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) {
+/// thread across it. Stop scanning the block when passing the threshold.
+static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB,
+                                             unsigned Threshold) {
   /// Ignore PHI nodes, these will be flattened when duplication happens.
   BasicBlock::const_iterator I = BB->getFirstNonPHI();
 
   // FIXME: THREADING will delete values that are just used to compute the
   // branch, so they shouldn't count against the duplication cost.
 
-
   // Sum up the cost of each instruction until we get to the terminator.  Don't
   // include the terminator because the copy won't include it.
   unsigned Size = 0;
   for (; !isa<TerminatorInst>(I); ++I) {
+
+    // Stop scanning the block if we've reached the threshold.
+    if (Size > Threshold)
+      return Size;
+
     // Debugger intrinsics don't incur code size.
     if (isa<DbgInfoIntrinsic>(I)) continue;
 
@@ -238,7 +270,11 @@ static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) {
     // as having cost of 2 total, and if they are a vector intrinsic, we model
     // them as having cost 1.
     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
-      if (!isa<IntrinsicInst>(CI))
+      if (CI->cannotDuplicate())
+        // Blocks with NoDuplicate are modelled as having infinite cost, so they
+        // are never duplicated.
+        return ~0U;
+      else if (!isa<IntrinsicInst>(CI))
         Size += 3;
       else if (!CI->getType()->isVectorTy())
         Size += 1;
@@ -287,7 +323,7 @@ void JumpThreading::FindLoopHeaders(Function &F) {
 /// Returns null if Val is null or not an appropriate constant.
 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) {
   if (!Val)
-    return 0;
+    return nullptr;
 
   // Undef is "known" enough.
   if (UndefValue *U = dyn_cast<UndefValue>(Val))
@@ -308,7 +344,8 @@ static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) {
 ///
 bool JumpThreading::
 ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result,
-                                ConstantPreference Preference) {
+                                ConstantPreference Preference,
+                                Instruction *CxtI) {
   // This method walks up use-def chains recursively.  Because of this, we could
   // get into an infinite loop going around loops in the use-def chain.  To
   // prevent this, keep track of what (value, block) pairs we've already visited
@@ -331,7 +368,7 @@ ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result,
   // If V is a non-instruction value, or an instruction in a different block,
   // then it can't be derived from a PHI.
   Instruction *I = dyn_cast<Instruction>(V);
-  if (I == 0 || I->getParent() != BB) {
+  if (!I || I->getParent() != BB) {
 
     // Okay, if this is a live-in value, see if it has a known value at the end
     // of any of our predecessors.
@@ -350,7 +387,7 @@ ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result,
       BasicBlock *P = *PI;
       // If the value is known by LazyValueInfo to be a constant in a
       // predecessor, use that information to try to thread this block.
-      Constant *PredCst = LVI->getConstantOnEdge(V, P, BB);
+      Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI);
       if (Constant *KC = getKnownConstant(PredCst, Preference))
         Result.push_back(std::make_pair(KC, P));
     }
@@ -366,7 +403,8 @@ ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result,
         Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
       } else {
         Constant *CI = LVI->getConstantOnEdge(InVal,
-                                              PN->getIncomingBlock(i), BB);
+                                              PN->getIncomingBlock(i),
+                                              BB, CxtI);
         if (Constant *KC = getKnownConstant(CI, Preference))
           Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
       }
@@ -385,9 +423,9 @@ ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result,
     if (I->getOpcode() == Instruction::Or ||
         I->getOpcode() == Instruction::And) {
       ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals,
-                                      WantInteger);
+                                      WantInteger, CxtI);
       ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals,
-                                      WantInteger);
+                                      WantInteger, CxtI);
 
       if (LHSVals.empty() && RHSVals.empty())
         return false;
@@ -428,7 +466,7 @@ ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result,
         isa<ConstantInt>(I->getOperand(1)) &&
         cast<ConstantInt>(I->getOperand(1))->isOne()) {
       ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result,
-                                      WantInteger);
+                                      WantInteger, CxtI);
       if (Result.empty())
         return false;
 
@@ -446,7 +484,7 @@ ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result,
     if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
       PredValueInfoTy LHSVals;
       ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals,
-                                      WantInteger);
+                                      WantInteger, CxtI);
 
       // Try to use constant folding to simplify the binary operator.
       for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) {
@@ -473,14 +511,15 @@ ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result,
         Value *LHS = PN->getIncomingValue(i);
         Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB);
 
-        Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, TD);
-        if (Res == 0) {
+        Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, DL);
+        if (!Res) {
           if (!isa<Constant>(RHS))
             continue;
 
           LazyValueInfo::Tristate
             ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS,
-                                           cast<Constant>(RHS), PredBB, BB);
+                                           cast<Constant>(RHS), PredBB, BB,
+                                           CxtI ? CxtI : Cmp);
           if (ResT == LazyValueInfo::Unknown)
             continue;
           Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
@@ -493,7 +532,6 @@ ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result,
       return !Result.empty();
     }
 
-
     // If comparing a live-in value against a constant, see if we know the
     // live-in value on any predecessors.
     if (isa<Constant>(Cmp->getOperand(1)) && Cmp->getType()->isIntegerTy()) {
@@ -507,7 +545,7 @@ ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result,
           // predecessor, use that information to try to thread this block.
           LazyValueInfo::Tristate Res =
             LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0),
-                                    RHSCst, P, BB);
+                                    RHSCst, P, BB, CxtI ? CxtI : Cmp);
           if (Res == LazyValueInfo::Unknown)
             continue;
 
@@ -523,7 +561,7 @@ ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result,
       if (Constant *CmpConst = dyn_cast<Constant>(Cmp->getOperand(1))) {
         PredValueInfoTy LHSVals;
         ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals,
-                                        WantInteger);
+                                        WantInteger, CxtI);
 
         for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) {
           Constant *V = LHSVals[i].first;
@@ -546,7 +584,7 @@ ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result,
     PredValueInfoTy Conds;
     if ((TrueVal || FalseVal) &&
         ComputeValueKnownInPredecessors(SI->getCondition(), BB, Conds,
-                                        WantInteger)) {
+                                        WantInteger, CxtI)) {
       for (unsigned i = 0, e = Conds.size(); i != e; ++i) {
         Constant *Cond = Conds[i].first;
 
@@ -560,7 +598,7 @@ ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result,
           // Either operand will do, so be sure to pick the one that's a known
           // constant.
           // FIXME: Do this more cleverly if both values are known constants?
-          KnownCond = (TrueVal != 0);
+          KnownCond = (TrueVal != nullptr);
         }
 
         // See if the select has a known constant value for this predecessor.
@@ -573,7 +611,7 @@ ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result,
   }
 
   // If all else fails, see if LVI can figure out a constant value for us.
-  Constant *CI = LVI->getConstant(V, BB);
+  Constant *CI = LVI->getConstant(V, BB, CxtI);
   if (Constant *KC = getKnownConstant(CI, Preference)) {
     for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
       Result.push_back(std::make_pair(KC, *PI));
@@ -599,19 +637,31 @@ static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
   for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
     TestBB = BBTerm->getSuccessor(i);
     unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
-    if (NumPreds < MinNumPreds)
+    if (NumPreds < MinNumPreds) {
       MinSucc = i;
+      MinNumPreds = NumPreds;
+    }
   }
 
   return MinSucc;
 }
 
+static bool hasAddressTakenAndUsed(BasicBlock *BB) {
+  if (!BB->hasAddressTaken()) return false;
+
+  // If the block has its address taken, it may be a tree of dead constants
+  // hanging off of it.  These shouldn't keep the block alive.
+  BlockAddress *BA = BlockAddress::get(BB);
+  BA->removeDeadConstantUsers();
+  return !BA->use_empty();
+}
+
 /// ProcessBlock - If there are any predecessors whose control can be threaded
 /// through to a successor, transform them now.
 bool JumpThreading::ProcessBlock(BasicBlock *BB) {
   // If the block is trivially dead, just return and let the caller nuke it.
   // This simplifies other transformations.
-  if (pred_begin(BB) == pred_end(BB) &&
+  if (pred_empty(BB) &&
       BB != &BB->getParent()->getEntryBlock())
     return false;
 
@@ -621,19 +671,14 @@ bool JumpThreading::ProcessBlock(BasicBlock *BB) {
   // predecessors of our predecessor block.
   if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
     if (SinglePred->getTerminator()->getNumSuccessors() == 1 &&
-        SinglePred != BB) {
+        SinglePred != BB && !hasAddressTakenAndUsed(BB)) {
       // If SinglePred was a loop header, BB becomes one.
       if (LoopHeaders.erase(SinglePred))
         LoopHeaders.insert(BB);
 
-      // Remember if SinglePred was the entry block of the function.  If so, we
-      // will need to move BB back to the entry position.
-      bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
       LVI->eraseBlock(SinglePred);
       MergeBasicBlockIntoOnlyPred(BB);
 
-      if (isEntry && BB != &BB->getParent()->getEntryBlock())
-        BB->moveBefore(&BB->getParent()->getEntryBlock());
       return true;
     }
   }
@@ -652,12 +697,25 @@ bool JumpThreading::ProcessBlock(BasicBlock *BB) {
   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) {
     Condition = SI->getCondition();
   } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) {
+    // Can't thread indirect branch with no successors.
+    if (IB->getNumSuccessors() == 0) return false;
     Condition = IB->getAddress()->stripPointerCasts();
     Preference = WantBlockAddress;
   } else {
     return false; // Must be an invoke.
   }
 
+  // Run constant folding to see if we can reduce the condition to a simple
+  // constant.
+  if (Instruction *I = dyn_cast<Instruction>(Condition)) {
+    Value *SimpleVal = ConstantFoldInstruction(I, DL, TLI);
+    if (SimpleVal) {
+      I->replaceAllUsesWith(SimpleVal);
+      I->eraseFromParent();
+      Condition = SimpleVal;
+    }
+  }
+
   // If the terminator is branching on an undef, we can pick any of the
   // successors to branch to.  Let GetBestDestForJumpOnUndef decide.
   if (isa<UndefValue>(Condition)) {
@@ -684,16 +742,16 @@ bool JumpThreading::ProcessBlock(BasicBlock *BB) {
     DEBUG(dbgs() << "  In block '" << BB->getName()
           << "' folding terminator: " << *BB->getTerminator() << '\n');
     ++NumFolds;
-    ConstantFoldTerminator(BB);
+    ConstantFoldTerminator(BB, true);
     return true;
   }
 
   Instruction *CondInst = dyn_cast<Instruction>(Condition);
 
   // All the rest of our checks depend on the condition being an instruction.
-  if (CondInst == 0) {
+  if (!CondInst) {
     // FIXME: Unify this with code below.
-    if (ProcessThreadableEdges(Condition, BB, Preference))
+    if (ProcessThreadableEdges(Condition, BB, Preference, Terminator))
       return true;
     return false;
   }
@@ -715,13 +773,14 @@ bool JumpThreading::ProcessBlock(BasicBlock *BB) {
       // FIXME: We could handle mixed true/false by duplicating code.
       LazyValueInfo::Tristate Baseline =
         LVI->getPredicateOnEdge(CondCmp->getPredicate(), CondCmp->getOperand(0),
-                                CondConst, *PI, BB);
+                                CondConst, *PI, BB, CondCmp);
       if (Baseline != LazyValueInfo::Unknown) {
         // Check that all remaining incoming values match the first one.
         while (++PI != PE) {
           LazyValueInfo::Tristate Ret =
             LVI->getPredicateOnEdge(CondCmp->getPredicate(),
-                                    CondCmp->getOperand(0), CondConst, *PI, BB);
+                                    CondCmp->getOperand(0), CondConst, *PI, BB,
+                                    CondCmp);
           if (Ret != Baseline) break;
         }
 
@@ -735,7 +794,26 @@ bool JumpThreading::ProcessBlock(BasicBlock *BB) {
           return true;
         }
       }
+
+    } else if (CondBr && CondConst && CondBr->isConditional()) {
+      // There might be an invariant in the same block with the conditional
+      // that can determine the predicate.
+
+      LazyValueInfo::Tristate Ret =
+        LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0),
+                            CondConst, CondCmp);
+      if (Ret != LazyValueInfo::Unknown) {
+        unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0;
+        unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1;
+        CondBr->getSuccessor(ToRemove)->removePredecessor(BB, true);
+        BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr);
+        CondBr->eraseFromParent();
+        return true;
+      }
     }
+
+    if (CondBr && CondConst && TryToUnfoldSelect(CondCmp, BB))
+      return true;
   }
 
   // Check for some cases that are worth simplifying.  Right now we want to look
@@ -759,7 +837,7 @@ bool JumpThreading::ProcessBlock(BasicBlock *BB) {
   // a PHI node in the current block.  If we can prove that any predecessors
   // compute a predictable value based on a PHI node, thread those predecessors.
   //
-  if (ProcessThreadableEdges(CondInst, BB, Preference))
+  if (ProcessThreadableEdges(CondInst, BB, Preference, Terminator))
     return true;
 
   // If this is an otherwise-unfoldable branch on a phi node in the current
@@ -781,14 +859,13 @@ bool JumpThreading::ProcessBlock(BasicBlock *BB) {
   return false;
 }
 
-
 /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant
 /// load instruction, eliminate it by replacing it with a PHI node.  This is an
 /// important optimization that encourages jump threading, and needs to be run
 /// interlaced with other jump threading tasks.
 bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
-  // Don't hack volatile loads.
-  if (LI->isVolatile()) return false;
+  // Don't hack volatile/atomic loads.
+  if (!LI->isSimple()) return false;
 
   // If the load is defined in a block with exactly one predecessor, it can't be
   // partially redundant.
@@ -796,6 +873,12 @@ bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
   if (LoadBB->getSinglePredecessor())
     return false;
 
+  // If the load is defined in a landing pad, it can't be partially redundant,
+  // because the edges between the invoke and the landing pad cannot have other
+  // instructions between them.
+  if (LoadBB->isLandingPad())
+    return false;
+
   Value *LoadedPtr = LI->getOperand(0);
 
   // If the loaded operand is defined in the LoadBB, it can't be available.
@@ -817,6 +900,9 @@ bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
     // If the returned value is the load itself, replace with an undef. This can
     // only happen in dead loops.
     if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType());
+    if (AvailableVal->getType() != LI->getType())
+      AvailableVal =
+          CastInst::CreateBitOrPointerCast(AvailableVal, LI->getType(), "", LI);
     LI->replaceAllUsesWith(AvailableVal);
     LI->eraseFromParent();
     return true;
@@ -828,11 +914,15 @@ bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
   if (BBIt != LoadBB->begin())
     return false;
 
+  // If all of the loads and stores that feed the value have the same AA tags,
+  // then we can propagate them onto any newly inserted loads.
+  AAMDNodes AATags;
+  LI->getAAMetadata(AATags);
 
   SmallPtrSet<BasicBlock*, 8> PredsScanned;
   typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy;
   AvailablePredsTy AvailablePreds;
-  BasicBlock *OneUnavailablePred = 0;
+  BasicBlock *OneUnavailablePred = nullptr;
 
   // If we got here, the loaded value is transparent through to the start of the
   // block.  Check to see if it is available in any of the predecessor blocks.
@@ -841,17 +931,22 @@ bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
     BasicBlock *PredBB = *PI;
 
     // If we already scanned this predecessor, skip it.
-    if (!PredsScanned.insert(PredBB))
+    if (!PredsScanned.insert(PredBB).second)
       continue;
 
     // Scan the predecessor to see if the value is available in the pred.
     BBIt = PredBB->end();
-    Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6);
+    AAMDNodes ThisAATags;
+    Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6,
+                                                    nullptr, &ThisAATags);
     if (!PredAvailable) {
       OneUnavailablePred = PredBB;
       continue;
     }
 
+    // If AA tags disagree or are not present, forget about them.
+    if (AATags != ThisAATags) AATags = AAMDNodes();
+
     // If so, this load is partially redundant.  Remember this info so that we
     // can create a PHI node.
     AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
@@ -866,7 +961,7 @@ bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
   // predecessor, we want to insert a merge block for those common predecessors.
   // This ensures that we only have to insert one reload, thus not increasing
   // code size.
-  BasicBlock *UnavailablePred = 0;
+  BasicBlock *UnavailablePred = nullptr;
 
   // If there is exactly one predecessor where the value is unavailable, the
   // already computed 'OneUnavailablePred' block is it.  If it ends in an
@@ -897,8 +992,7 @@ bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
 
     // Split them out to their own block.
     UnavailablePred =
-      SplitBlockPredecessors(LoadBB, &PredsToSplit[0], PredsToSplit.size(),
-                             "thread-pre-split", this);
+      SplitBlockPredecessors(LoadBB, PredsToSplit, "thread-pre-split");
   }
 
   // If the value isn't available in all predecessors, then there will be
@@ -907,9 +1001,13 @@ bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
   if (UnavailablePred) {
     assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
            "Can't handle critical edge here!");
-    Value *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr", false,
+    LoadInst *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr", false,
                                  LI->getAlignment(),
                                  UnavailablePred->getTerminator());
+    NewVal->setDebugLoc(LI->getDebugLoc());
+    if (AATags)
+      NewVal->setAAMetadata(AATags);
+
     AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
   }
 
@@ -918,22 +1016,33 @@ bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
   array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
 
   // Create a PHI node at the start of the block for the PRE'd load value.
-  PHINode *PN = PHINode::Create(LI->getType(), "", LoadBB->begin());
+  pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB);
+  PHINode *PN = PHINode::Create(LI->getType(), std::distance(PB, PE), "",
+                                LoadBB->begin());
   PN->takeName(LI);
+  PN->setDebugLoc(LI->getDebugLoc());
 
   // Insert new entries into the PHI for each predecessor.  A single block may
   // have multiple entries here.
-  for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB); PI != E;
-       ++PI) {
+  for (pred_iterator PI = PB; PI != PE; ++PI) {
     BasicBlock *P = *PI;
     AvailablePredsTy::iterator I =
       std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
-                       std::make_pair(P, (Value*)0));
+                       std::make_pair(P, (Value*)nullptr));
 
     assert(I != AvailablePreds.end() && I->first == P &&
            "Didn't find entry for predecessor!");
 
-    PN->addIncoming(I->second, I->first);
+    // If we have an available predecessor but it requires casting, insert the
+    // cast in the predecessor and use the cast. Note that we have to update the
+    // AvailablePreds vector as we go so that all of the PHI entries for this
+    // predecessor use the same bitcast.
+    Value *&PredV = I->second;
+    if (PredV->getType() != LI->getType())
+      PredV = CastInst::CreateBitOrPointerCast(PredV, LI->getType(), "",
+                                               P->getTerminator());
+
+    PN->addIncoming(PredV, I->first);
   }
 
   //cerr << "PRE: " << *LI << *PN << "\n";
@@ -1008,14 +1117,15 @@ FindMostPopularDest(BasicBlock *BB,
 }
 
 bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB,
-                                           ConstantPreference Preference) {
+                                           ConstantPreference Preference,
+                                           Instruction *CxtI) {
   // If threading this would thread across a loop header, don't even try to
   // thread the edge.
   if (LoopHeaders.count(BB))
     return false;
 
   PredValueInfoTy PredValues;
-  if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference))
+  if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference, CxtI))
     return false;
 
   assert(!PredValues.empty() &&
@@ -1035,12 +1145,12 @@ bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB,
   SmallPtrSet<BasicBlock*, 16> SeenPreds;
   SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
 
-  BasicBlock *OnlyDest = 0;
+  BasicBlock *OnlyDest = nullptr;
   BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
 
   for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
     BasicBlock *Pred = PredValues[i].second;
-    if (!SeenPreds.insert(Pred))
+    if (!SeenPreds.insert(Pred).second)
       continue;  // Duplicate predecessor entry.
 
     // If the predecessor ends with an indirect goto, we can't change its
@@ -1052,12 +1162,12 @@ bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB,
 
     BasicBlock *DestBB;
     if (isa<UndefValue>(Val))
-      DestBB = 0;
+      DestBB = nullptr;
     else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
       DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero());
-    else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
-      DestBB = SI->getSuccessor(SI->findCaseValue(cast<ConstantInt>(Val)));
-    else {
+    else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
+      DestBB = SI->findCaseValue(cast<ConstantInt>(Val)).getCaseSuccessor();
+    else {
       assert(isa<IndirectBrInst>(BB->getTerminator())
               && "Unexpected terminator");
       DestBB = cast<BlockAddress>(Val)->getBasicBlock();
@@ -1103,7 +1213,7 @@ bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB,
 
   // If the threadable edges are branching on an undefined value, we get to pick
   // the destination that these predecessors should get to.
-  if (MostPopularDest == 0)
+  if (!MostPopularDest)
     MostPopularDest = BB->getTerminator()->
                             getSuccessor(GetBestDestForJumpOnUndef(BB));
 
@@ -1180,10 +1290,10 @@ bool JumpThreading::ProcessBranchOnXOR(BinaryOperator *BO) {
   PredValueInfoTy XorOpValues;
   bool isLHS = true;
   if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues,
-                                       WantInteger)) {
+                                       WantInteger, BO)) {
     assert(XorOpValues.empty());
     if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues,
-                                         WantInteger))
+                                         WantInteger, BO))
       return false;
     isLHS = false;
   }
@@ -1205,7 +1315,7 @@ bool JumpThreading::ProcessBranchOnXOR(BinaryOperator *BO) {
   }
 
   // Determine which value to split on, true, false, or undef if neither.
-  ConstantInt *SplitVal = 0;
+  ConstantInt *SplitVal = nullptr;
   if (NumTrue > NumFalse)
     SplitVal = ConstantInt::getTrue(BB->getContext());
   else if (NumTrue != 0 || NumFalse != 0)
@@ -1226,7 +1336,7 @@ bool JumpThreading::ProcessBranchOnXOR(BinaryOperator *BO) {
   // help us.  However, we can just replace the LHS or RHS with the constant.
   if (BlocksToFoldInto.size() ==
       cast<PHINode>(BB->front()).getNumIncomingValues()) {
-    if (SplitVal == 0) {
+    if (!SplitVal) {
       // If all preds provide undef, just nuke the xor, because it is undef too.
       BO->replaceAllUsesWith(UndefValue::get(BO->getType()));
       BO->eraseFromParent();
@@ -1293,8 +1403,8 @@ bool JumpThreading::ThreadEdge(BasicBlock *BB,
     return false;
   }
 
-  unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
-  if (JumpThreadCost > Threshold) {
+  unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB, BBDupThreshold);
+  if (JumpThreadCost > BBDupThreshold) {
     DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
           << "' - Cost is too high: " << JumpThreadCost << "\n");
     return false;
@@ -1307,8 +1417,7 @@ bool JumpThreading::ThreadEdge(BasicBlock *BB,
   else {
     DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
           << " common predecessors.\n");
-    PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(),
-                                    ".thr_comm", this);
+    PredBB = SplitBlockPredecessors(BB, PredBBs, ".thr_comm");
   }
 
   // And finally, do it!
@@ -1352,7 +1461,8 @@ bool JumpThreading::ThreadEdge(BasicBlock *BB,
 
   // We didn't copy the terminator from BB over to NewBB, because there is now
   // an unconditional jump to SuccBB.  Insert the unconditional jump.
-  BranchInst::Create(SuccBB, NewBB);
+  BranchInst *NewBI =BranchInst::Create(SuccBB, NewBB);
+  NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc());
 
   // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
   // PHI nodes for NewBB now.
@@ -1367,16 +1477,15 @@ bool JumpThreading::ThreadEdge(BasicBlock *BB,
   for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
     // Scan all uses of this instruction to see if it is used outside of its
     // block, and if so, record them in UsesToRename.
-    for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
-         ++UI) {
-      Instruction *User = cast<Instruction>(*UI);
+    for (Use &U : I->uses()) {
+      Instruction *User = cast<Instruction>(U.getUser());
       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
-        if (UserPN->getIncomingBlock(UI) == BB)
+        if (UserPN->getIncomingBlock(U) == BB)
           continue;
       } else if (User->getParent() == BB)
         continue;
 
-      UsesToRename.push_back(&UI.getUse());
+      UsesToRename.push_back(&U);
     }
 
     // If there are no uses outside the block, we're done with this instruction.
@@ -1411,7 +1520,7 @@ bool JumpThreading::ThreadEdge(BasicBlock *BB,
   // At this point, the IR is fully up to date and consistent.  Do a quick scan
   // over the new instructions and zap any that are constants or dead.  This
   // frequently happens because of phi translation.
-  SimplifyInstructionsInBlock(NewBB, TD);
+  SimplifyInstructionsInBlock(NewBB, DL, TLI);
 
   // Threaded an edge!
   ++NumThreads;
@@ -1437,8 +1546,8 @@ bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
     return false;
   }
 
-  unsigned DuplicationCost = getJumpThreadDuplicationCost(BB);
-  if (DuplicationCost > Threshold) {
+  unsigned DuplicationCost = getJumpThreadDuplicationCost(BB, BBDupThreshold);
+  if (DuplicationCost > BBDupThreshold) {
     DEBUG(dbgs() << "  Not duplicating BB '" << BB->getName()
           << "' - Cost is too high: " << DuplicationCost << "\n");
     return false;
@@ -1451,8 +1560,7 @@ bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
   else {
     DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
           << " common predecessors.\n");
-    PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(),
-                                    ".thr_comm", this);
+    PredBB = SplitBlockPredecessors(BB, PredBBs, ".thr_comm");
   }
 
   // Okay, we decided to do this!  Clone all the instructions in BB onto the end
@@ -1465,8 +1573,8 @@ bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
   // can just clone the bits from BB into the end of the new PredBB.
   BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
 
-  if (OldPredBranch == 0 || !OldPredBranch->isUnconditional()) {
-    PredBB = SplitEdge(PredBB, BB, this);
+  if (!OldPredBranch || !OldPredBranch->isUnconditional()) {
+    PredBB = SplitEdge(PredBB, BB);
     OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
   }
 
@@ -1494,7 +1602,7 @@ bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
     // If this instruction can be simplified after the operands are updated,
     // just use the simplified value instead.  This frequently happens due to
     // phi translation.
-    if (Value *IV = SimplifyInstruction(New, TD)) {
+    if (Value *IV = SimplifyInstruction(New, DL)) {
       delete New;
       ValueMapping[BI] = IV;
     } else {
@@ -1522,16 +1630,15 @@ bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
   for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
     // Scan all uses of this instruction to see if it is used outside of its
     // block, and if so, record them in UsesToRename.
-    for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
-         ++UI) {
-      Instruction *User = cast<Instruction>(*UI);
+    for (Use &U : I->uses()) {
+      Instruction *User = cast<Instruction>(U.getUser());
       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
-        if (UserPN->getIncomingBlock(UI) == BB)
+        if (UserPN->getIncomingBlock(U) == BB)
           continue;
       } else if (User->getParent() == BB)
         continue;
 
-      UsesToRename.push_back(&UI.getUse());
+      UsesToRename.push_back(&U);
     }
 
     // If there are no uses outside the block, we're done with this instruction.
@@ -1563,4 +1670,80 @@ bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
   return true;
 }
 
+/// TryToUnfoldSelect - Look for blocks of the form
+/// bb1:
+///   %a = select
+///   br bb
+///
+/// bb2:
+///   %p = phi [%a, %bb] ...
+///   %c = icmp %p
+///   br i1 %c
+///
+/// And expand the select into a branch structure if one of its arms allows %c
+/// to be folded. This later enables threading from bb1 over bb2.
+bool JumpThreading::TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) {
+  BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
+  PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0));
+  Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1));
+
+  if (!CondBr || !CondBr->isConditional() || !CondLHS ||
+      CondLHS->getParent() != BB)
+    return false;
+
+  for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) {
+    BasicBlock *Pred = CondLHS->getIncomingBlock(I);
+    SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I));
+
+    // Look if one of the incoming values is a select in the corresponding
+    // predecessor.
+    if (!SI || SI->getParent() != Pred || !SI->hasOneUse())
+      continue;
 
+    BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
+    if (!PredTerm || !PredTerm->isUnconditional())
+      continue;
+
+    // Now check if one of the select values would allow us to constant fold the
+    // terminator in BB. We don't do the transform if both sides fold, those
+    // cases will be threaded in any case.
+    LazyValueInfo::Tristate LHSFolds =
+        LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1),
+                                CondRHS, Pred, BB, CondCmp);
+    LazyValueInfo::Tristate RHSFolds =
+        LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2),
+                                CondRHS, Pred, BB, CondCmp);
+    if ((LHSFolds != LazyValueInfo::Unknown ||
+         RHSFolds != LazyValueInfo::Unknown) &&
+        LHSFolds != RHSFolds) {
+      // Expand the select.
+      //
+      // Pred --
+      //  |    v
+      //  |  NewBB
+      //  |    |
+      //  |-----
+      //  v
+      // BB
+      BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold",
+                                             BB->getParent(), BB);
+      // Move the unconditional branch to NewBB.
+      PredTerm->removeFromParent();
+      NewBB->getInstList().insert(NewBB->end(), PredTerm);
+      // Create a conditional branch and update PHI nodes.
+      BranchInst::Create(NewBB, BB, SI->getCondition(), Pred);
+      CondLHS->setIncomingValue(I, SI->getFalseValue());
+      CondLHS->addIncoming(SI->getTrueValue(), NewBB);
+      // The select is now dead.
+      SI->eraseFromParent();
+
+      // Update any other PHI nodes in BB.
+      for (BasicBlock::iterator BI = BB->begin();
+           PHINode *Phi = dyn_cast<PHINode>(BI); ++BI)
+        if (Phi != CondLHS)
+          Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB);
+      return true;
+    }
+  }
+  return false;
+}