API change for {BinaryOperator|CmpInst|CastInst}::create*() --> Create. Legacy interf...
[oota-llvm.git] / lib / Transforms / Scalar / IndVarSimplify.cpp
index fa81f81f7435043d09ee438df62f8170c4202099..ed377658932cde2d9b957d59a19d500131456035 100644 (file)
@@ -1,17 +1,17 @@
 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
-// 
+//
 //                     The LLVM Compiler Infrastructure
 //
-// This file was developed by the LLVM research group and is distributed under
-// the University of Illinois Open Source License. See LICENSE.TXT for details.
-// 
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
 //===----------------------------------------------------------------------===//
 //
 // This transformation analyzes and transforms the induction variables (and
 // computations derived from them) into simpler forms suitable for subsequent
 // analysis and transformation.
 //
-// This transformation make the following changes to each loop with an
+// This transformation makes the following changes to each loop with an
 // identifiable induction variable:
 //   1. All loops are transformed to have a SINGLE canonical induction variable
 //      which starts at zero and steps by one.
 //
 //===----------------------------------------------------------------------===//
 
+#define DEBUG_TYPE "indvars"
 #include "llvm/Transforms/Scalar.h"
 #include "llvm/BasicBlock.h"
 #include "llvm/Constants.h"
 #include "llvm/Instructions.h"
 #include "llvm/Type.h"
-#include "llvm/Analysis/ScalarEvolutionExpressions.h"
+#include "llvm/Analysis/ScalarEvolutionExpander.h"
 #include "llvm/Analysis/LoopInfo.h"
+#include "llvm/Analysis/LoopPass.h"
 #include "llvm/Support/CFG.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/GetElementPtrTypeIterator.h"
 #include "llvm/Transforms/Utils/Local.h"
-#include "Support/CommandLine.h"
-#include "Support/Statistic.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
 using namespace llvm;
 
-namespace {
-  Statistic<> NumRemoved ("indvars", "Number of aux indvars removed");
-  Statistic<> NumPointer ("indvars", "Number of pointer indvars promoted");
-  Statistic<> NumInserted("indvars", "Number of canonical indvars added");
-  Statistic<> NumReplaced("indvars", "Number of exit values replaced");
-  Statistic<> NumLFTR    ("indvars", "Number of loop exit tests replaced");
+STATISTIC(NumRemoved , "Number of aux indvars removed");
+STATISTIC(NumPointer , "Number of pointer indvars promoted");
+STATISTIC(NumInserted, "Number of canonical indvars added");
+STATISTIC(NumReplaced, "Number of exit values replaced");
+STATISTIC(NumLFTR    , "Number of loop exit tests replaced");
 
-  class IndVarSimplify : public FunctionPass {
+namespace {
+  class VISIBILITY_HIDDEN IndVarSimplify : public LoopPass {
     LoopInfo        *LI;
     ScalarEvolution *SE;
     bool Changed;
   public:
-    virtual bool runOnFunction(Function &) {
-      LI = &getAnalysis<LoopInfo>();
-      SE = &getAnalysis<ScalarEvolution>();
-      Changed = false;
-
-      // Induction Variables live in the header nodes of loops
-      for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
-        runOnLoop(*I);
-      return Changed;
-    }
 
-    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
-      AU.addRequiredID(LoopSimplifyID);
-      AU.addRequired<ScalarEvolution>();
-      AU.addRequired<LoopInfo>();
-      AU.addPreservedID(LoopSimplifyID);
-      AU.setPreservesCFG();
-    }
+   static char ID; // Pass identification, replacement for typeid
+   IndVarSimplify() : LoopPass((intptr_t)&ID) {}
+
+   bool runOnLoop(Loop *L, LPPassManager &LPM);
+   bool doInitialization(Loop *L, LPPassManager &LPM);
+   virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+     AU.addRequired<ScalarEvolution>();
+     AU.addRequiredID(LCSSAID);
+     AU.addRequiredID(LoopSimplifyID);
+     AU.addRequired<LoopInfo>();
+     AU.addPreservedID(LoopSimplifyID);
+     AU.addPreservedID(LCSSAID);
+     AU.setPreservesCFG();
+   }
+
   private:
-    void runOnLoop(Loop *L);
+
     void EliminatePointerRecurrence(PHINode *PN, BasicBlock *Preheader,
                                     std::set<Instruction*> &DeadInsts);
-    void LinearFunctionTestReplace(Loop *L, SCEV *IterationCount,
-                                   ScalarEvolutionRewriter &RW);
+    Instruction *LinearFunctionTestReplace(Loop *L, SCEV *IterationCount,
+                                           SCEVExpander &RW);
     void RewriteLoopExitValues(Loop *L);
 
     void DeleteTriviallyDeadInstructions(std::set<Instruction*> &Insts);
   };
-  RegisterOpt<IndVarSimplify> X("indvars", "Canonicalize Induction Variables");
 }
 
-Pass *llvm::createIndVarSimplifyPass() {
+char IndVarSimplify::ID = 0;
+static RegisterPass<IndVarSimplify>
+X("indvars", "Canonicalize Induction Variables");
+
+LoopPass *llvm::createIndVarSimplifyPass() {
   return new IndVarSimplify();
 }
 
-
 /// DeleteTriviallyDeadInstructions - If any of the instructions is the
 /// specified set are trivially dead, delete them and see if this makes any of
 /// their operands subsequently dead.
@@ -110,8 +116,9 @@ DeleteTriviallyDeadInstructions(std::set<Instruction*> &Insts) {
       for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
         if (Instruction *U = dyn_cast<Instruction>(I->getOperand(i)))
           Insts.insert(U);
-      SE->deleteInstructionFromRecords(I);
-      I->getParent()->getInstList().erase(I);
+      SE->deleteValueFromRecords(I);
+      DOUT << "INDVARS: Deleting: " << *I;
+      I->eraseFromParent();
       Changed = true;
     }
   }
@@ -121,50 +128,82 @@ DeleteTriviallyDeadInstructions(std::set<Instruction*> &Insts) {
 /// EliminatePointerRecurrence - Check to see if this is a trivial GEP pointer
 /// recurrence.  If so, change it into an integer recurrence, permitting
 /// analysis by the SCEV routines.
-void IndVarSimplify::EliminatePointerRecurrence(PHINode *PN, 
+void IndVarSimplify::EliminatePointerRecurrence(PHINode *PN,
                                                 BasicBlock *Preheader,
                                             std::set<Instruction*> &DeadInsts) {
   assert(PN->getNumIncomingValues() == 2 && "Noncanonicalized loop!");
   unsigned PreheaderIdx = PN->getBasicBlockIndex(Preheader);
   unsigned BackedgeIdx = PreheaderIdx^1;
   if (GetElementPtrInst *GEPI =
-      dyn_cast<GetElementPtrInst>(PN->getIncomingValue(BackedgeIdx)))
+          dyn_cast<GetElementPtrInst>(PN->getIncomingValue(BackedgeIdx)))
     if (GEPI->getOperand(0) == PN) {
-      assert(GEPI->getNumOperands() == 2 && "GEP types must mismatch!");
-          
+      assert(GEPI->getNumOperands() == 2 && "GEP types must match!");
+      DOUT << "INDVARS: Eliminating pointer recurrence: " << *GEPI;
+      
       // Okay, we found a pointer recurrence.  Transform this pointer
       // recurrence into an integer recurrence.  Compute the value that gets
       // added to the pointer at every iteration.
       Value *AddedVal = GEPI->getOperand(1);
 
       // Insert a new integer PHI node into the top of the block.
-      PHINode *NewPhi = new PHINode(AddedVal->getType(),
-                                    PN->getName()+".rec", PN);
-      NewPhi->addIncoming(Constant::getNullValue(NewPhi->getType()),
-                          Preheader);
+      PHINode *NewPhi = PHINode::Create(AddedVal->getType(),
+                                        PN->getName()+".rec", PN);
+      NewPhi->addIncoming(Constant::getNullValue(NewPhi->getType()), Preheader);
+
       // Create the new add instruction.
-      Value *NewAdd = BinaryOperator::create(Instruction::Add, NewPhi,
-                                             AddedVal,
-                                             GEPI->getName()+".rec", GEPI);
+      Value *NewAdd = BinaryOperator::CreateAdd(NewPhi, AddedVal,
+                                                GEPI->getName()+".rec", GEPI);
       NewPhi->addIncoming(NewAdd, PN->getIncomingBlock(BackedgeIdx));
-          
+
       // Update the existing GEP to use the recurrence.
       GEPI->setOperand(0, PN->getIncomingValue(PreheaderIdx));
-          
+
       // Update the GEP to use the new recurrence we just inserted.
       GEPI->setOperand(1, NewAdd);
 
+      // If the incoming value is a constant expr GEP, try peeling out the array
+      // 0 index if possible to make things simpler.
+      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEPI->getOperand(0)))
+        if (CE->getOpcode() == Instruction::GetElementPtr) {
+          unsigned NumOps = CE->getNumOperands();
+          assert(NumOps > 1 && "CE folding didn't work!");
+          if (CE->getOperand(NumOps-1)->isNullValue()) {
+            // Check to make sure the last index really is an array index.
+            gep_type_iterator GTI = gep_type_begin(CE);
+            for (unsigned i = 1, e = CE->getNumOperands()-1;
+                 i != e; ++i, ++GTI)
+              /*empty*/;
+            if (isa<SequentialType>(*GTI)) {
+              // Pull the last index out of the constant expr GEP.
+              SmallVector<Value*, 8> CEIdxs(CE->op_begin()+1, CE->op_end()-1);
+              Constant *NCE = ConstantExpr::getGetElementPtr(CE->getOperand(0),
+                                                             &CEIdxs[0],
+                                                             CEIdxs.size());
+              Value *Idx[2];
+              Idx[0] = Constant::getNullValue(Type::Int32Ty);
+              Idx[1] = NewAdd;
+              GetElementPtrInst *NGEPI = GetElementPtrInst::Create(
+                  NCE, Idx, Idx + 2, 
+                  GEPI->getName(), GEPI);
+              SE->deleteValueFromRecords(GEPI);
+              GEPI->replaceAllUsesWith(NGEPI);
+              GEPI->eraseFromParent();
+              GEPI = NGEPI;
+            }
+          }
+        }
+
+
       // Finally, if there are any other users of the PHI node, we must
       // insert a new GEP instruction that uses the pre-incremented version
       // of the induction amount.
       if (!PN->use_empty()) {
         BasicBlock::iterator InsertPos = PN; ++InsertPos;
         while (isa<PHINode>(InsertPos)) ++InsertPos;
-        std::string Name = PN->getName(); PN->setName("");
         Value *PreInc =
-          new GetElementPtrInst(PN->getIncomingValue(PreheaderIdx),
-                                std::vector<Value*>(1, NewPhi), Name,
-                                InsertPos);
+          GetElementPtrInst::Create(PN->getIncomingValue(PreheaderIdx),
+                                    NewPhi, "", InsertPos);
+        PreInc->takeName(PN);
         PN->replaceAllUsesWith(PreInc);
       }
 
@@ -181,12 +220,18 @@ void IndVarSimplify::EliminatePointerRecurrence(PHINode *PN,
 /// variable.  This pass is able to rewrite the exit tests of any loop where the
 /// SCEV analysis can determine a loop-invariant trip count of the loop, which
 /// is actually a much broader range than just linear tests.
-void IndVarSimplify::LinearFunctionTestReplace(Loop *L, SCEV *IterationCount,
-                                               ScalarEvolutionRewriter &RW) {
+///
+/// This method returns a "potentially dead" instruction whose computation chain
+/// should be deleted when convenient.
+Instruction *IndVarSimplify::LinearFunctionTestReplace(Loop *L,
+                                                       SCEV *IterationCount,
+                                                       SCEVExpander &RW) {
   // Find the exit block for the loop.  We can currently only handle loops with
   // a single exit.
-  if (L->getExitBlocks().size() != 1) return;
-  BasicBlock *ExitBlock = L->getExitBlocks()[0];
+  SmallVector<BasicBlock*, 8> ExitBlocks;
+  L->getExitBlocks(ExitBlocks);
+  if (ExitBlocks.size() != 1) return 0;
+  BasicBlock *ExitBlock = ExitBlocks[0];
 
   // Make sure there is only one predecessor block in the loop.
   BasicBlock *ExitingBlock = 0;
@@ -196,19 +241,17 @@ void IndVarSimplify::LinearFunctionTestReplace(Loop *L, SCEV *IterationCount,
       if (ExitingBlock == 0)
         ExitingBlock = *PI;
       else
-        return;  // Multiple exits from loop to this block.
+        return 0;  // Multiple exits from loop to this block.
     }
   assert(ExitingBlock && "Loop info is broken");
 
   if (!isa<BranchInst>(ExitingBlock->getTerminator()))
-    return;  // Can't rewrite non-branch yet
+    return 0;  // Can't rewrite non-branch yet
   BranchInst *BI = cast<BranchInst>(ExitingBlock->getTerminator());
   assert(BI->isConditional() && "Must be conditional to be part of loop!");
 
-  std::set<Instruction*> InstructionsToDelete;
-  if (Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()))
-    InstructionsToDelete.insert(Cond);
-
+  Instruction *PotentiallyDeadInst = dyn_cast<Instruction>(BI->getCondition());
+  
   // If the exiting block is not the same as the backedge block, we must compare
   // against the preincremented value, otherwise we prefer to compare against
   // the post-incremented value.
@@ -225,32 +268,33 @@ void IndVarSimplify::LinearFunctionTestReplace(Loop *L, SCEV *IterationCount,
     // The IterationCount expression contains the number of times that the
     // backedge actually branches to the loop header.  This is one less than the
     // number of times the loop executes, so add one to it.
-    Constant *OneC = ConstantInt::get(IterationCount->getType(), 1);
-    TripCount = SCEVAddExpr::get(IterationCount, SCEVUnknown::get(OneC));
+    ConstantInt *OneC = ConstantInt::get(IterationCount->getType(), 1);
+    TripCount = SE->getAddExpr(IterationCount, SE->getConstant(OneC));
     IndVar = L->getCanonicalInductionVariableIncrement();
   } else {
     // We have to use the preincremented value...
     IndVar = L->getCanonicalInductionVariable();
   }
+  
+  DOUT << "INDVARS: LFTR: TripCount = " << *TripCount
+       << "  IndVar = " << *IndVar << "\n";
 
   // Expand the code for the iteration count into the preheader of the loop.
   BasicBlock *Preheader = L->getLoopPreheader();
-  Value *ExitCnt = RW.ExpandCodeFor(TripCount, Preheader->getTerminator(),
-                                    IndVar->getType());
+  Value *ExitCnt = RW.expandCodeFor(TripCount, Preheader->getTerminator());
 
-  // Insert a new setne or seteq instruction before the branch.
-  Instruction::BinaryOps Opcode;
+  // Insert a new icmp_ne or icmp_eq instruction before the branch.
+  ICmpInst::Predicate Opcode;
   if (L->contains(BI->getSuccessor(0)))
-    Opcode = Instruction::SetNE;
+    Opcode = ICmpInst::ICMP_NE;
   else
-    Opcode = Instruction::SetEQ;
+    Opcode = ICmpInst::ICMP_EQ;
 
-  Value *Cond = new SetCondInst(Opcode, IndVar, ExitCnt, "exitcond", BI);
+  Value *Cond = new ICmpInst(Opcode, IndVar, ExitCnt, "exitcond", BI);
   BI->setCondition(Cond);
   ++NumLFTR;
   Changed = true;
-
-  DeleteTriviallyDeadInstructions(InstructionsToDelete);
+  return PotentiallyDeadInst;
 }
 
 
@@ -264,84 +308,148 @@ void IndVarSimplify::RewriteLoopExitValues(Loop *L) {
 
   // Scan all of the instructions in the loop, looking at those that have
   // extra-loop users and which are recurrences.
-  ScalarEvolutionRewriter Rewriter(*SE, *LI);
+  SCEVExpander Rewriter(*SE, *LI);
 
   // We insert the code into the preheader of the loop if the loop contains
   // multiple exit blocks, or in the exit block if there is exactly one.
   BasicBlock *BlockToInsertInto;
-  if (L->getExitBlocks().size() == 1)
-    BlockToInsertInto = L->getExitBlocks()[0];
+  SmallVector<BasicBlock*, 8> ExitBlocks;
+  L->getUniqueExitBlocks(ExitBlocks);
+  if (ExitBlocks.size() == 1)
+    BlockToInsertInto = ExitBlocks[0];
   else
     BlockToInsertInto = Preheader;
   BasicBlock::iterator InsertPt = BlockToInsertInto->begin();
   while (isa<PHINode>(InsertPt)) ++InsertPt;
 
+  bool HasConstantItCount = isa<SCEVConstant>(SE->getIterationCount(L));
+
   std::set<Instruction*> InstructionsToDelete;
-  
-  for (unsigned i = 0, e = L->getBlocks().size(); i != e; ++i)
-    if (LI->getLoopFor(L->getBlocks()[i]) == L) {  // Not in a subloop...
-      BasicBlock *BB = L->getBlocks()[i];
-      for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
-        if (I->getType()->isInteger()) {      // Is an integer instruction
-          SCEVHandle SH = SE->getSCEV(I);
-          if (SH->hasComputableLoopEvolution(L)) {   // Varies predictably
-            // Find out if this predictably varying value is actually used
-            // outside of the loop.  "extra" as opposed to "intra".
-            std::vector<User*> ExtraLoopUsers;
-            for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
-                 UI != E; ++UI)
-              if (!L->contains(cast<Instruction>(*UI)->getParent()))
-                ExtraLoopUsers.push_back(*UI);
-            if (!ExtraLoopUsers.empty()) {
-              // Okay, this instruction has a user outside of the current loop
-              // and varies predictably in this loop.  Evaluate the value it
-              // contains when the loop exits, and insert code for it.
-              SCEVHandle ExitValue = SE->getSCEVAtScope(I,L->getParentLoop());
-              if (!isa<SCEVCouldNotCompute>(ExitValue)) {
-                Changed = true;
-                ++NumReplaced;
-                Value *NewVal = Rewriter.ExpandCodeFor(ExitValue, InsertPt,
-                                                       I->getType());
-
-                // Rewrite any users of the computed value outside of the loop
-                // with the newly computed value.
-                for (unsigned i = 0, e = ExtraLoopUsers.size(); i != e; ++i)
-                  ExtraLoopUsers[i]->replaceUsesOfWith(I, NewVal);
-
-                // If this instruction is dead now, schedule it to be removed.
-                if (I->use_empty())
-                  InstructionsToDelete.insert(I);
-              }
-            }
-          }
+  std::map<Instruction*, Value*> ExitValues;
+
+  // Find all values that are computed inside the loop, but used outside of it.
+  // Because of LCSSA, these values will only occur in LCSSA PHI Nodes.  Scan
+  // the exit blocks of the loop to find them.
+  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
+    BasicBlock *ExitBB = ExitBlocks[i];
+    
+    // If there are no PHI nodes in this exit block, then no values defined
+    // inside the loop are used on this path, skip it.
+    PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
+    if (!PN) continue;
+    
+    unsigned NumPreds = PN->getNumIncomingValues();
+    
+    // Iterate over all of the PHI nodes.
+    BasicBlock::iterator BBI = ExitBB->begin();
+    while ((PN = dyn_cast<PHINode>(BBI++))) {
+      
+      // Iterate over all of the values in all the PHI nodes.
+      for (unsigned i = 0; i != NumPreds; ++i) {
+        // If the value being merged in is not integer or is not defined
+        // in the loop, skip it.
+        Value *InVal = PN->getIncomingValue(i);
+        if (!isa<Instruction>(InVal) ||
+            // SCEV only supports integer expressions for now.
+            !isa<IntegerType>(InVal->getType()))
+          continue;
+
+        // If this pred is for a subloop, not L itself, skip it.
+        if (LI->getLoopFor(PN->getIncomingBlock(i)) != L) 
+          continue; // The Block is in a subloop, skip it.
+
+        // Check that InVal is defined in the loop.
+        Instruction *Inst = cast<Instruction>(InVal);
+        if (!L->contains(Inst->getParent()))
+          continue;
+        
+        // We require that this value either have a computable evolution or that
+        // the loop have a constant iteration count.  In the case where the loop
+        // has a constant iteration count, we can sometimes force evaluation of
+        // the exit value through brute force.
+        SCEVHandle SH = SE->getSCEV(Inst);
+        if (!SH->hasComputableLoopEvolution(L) && !HasConstantItCount)
+          continue;          // Cannot get exit evolution for the loop value.
+        
+        // Okay, this instruction has a user outside of the current loop
+        // and varies predictably *inside* the loop.  Evaluate the value it
+        // contains when the loop exits, if possible.
+        SCEVHandle ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
+        if (isa<SCEVCouldNotCompute>(ExitValue) ||
+            !ExitValue->isLoopInvariant(L))
+          continue;
+
+        Changed = true;
+        ++NumReplaced;
+        
+        // See if we already computed the exit value for the instruction, if so,
+        // just reuse it.
+        Value *&ExitVal = ExitValues[Inst];
+        if (!ExitVal)
+          ExitVal = Rewriter.expandCodeFor(ExitValue, InsertPt);
+        
+        DOUT << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal
+             << "  LoopVal = " << *Inst << "\n";
+
+        PN->setIncomingValue(i, ExitVal);
+        
+        // If this instruction is dead now, schedule it to be removed.
+        if (Inst->use_empty())
+          InstructionsToDelete.insert(Inst);
+        
+        // See if this is a single-entry LCSSA PHI node.  If so, we can (and
+        // have to) remove
+        // the PHI entirely.  This is safe, because the NewVal won't be variant
+        // in the loop, so we don't need an LCSSA phi node anymore.
+        if (NumPreds == 1) {
+          SE->deleteValueFromRecords(PN);
+          PN->replaceAllUsesWith(ExitVal);
+          PN->eraseFromParent();
+          break;
         }
+      }
     }
-
+  }
+  
   DeleteTriviallyDeadInstructions(InstructionsToDelete);
 }
 
+bool IndVarSimplify::doInitialization(Loop *L, LPPassManager &LPM) {
 
-void IndVarSimplify::runOnLoop(Loop *L) {
+  Changed = false;
   // First step.  Check to see if there are any trivial GEP pointer recurrences.
   // If there are, change them into integer recurrences, permitting analysis by
   // the SCEV routines.
   //
   BasicBlock *Header    = L->getHeader();
   BasicBlock *Preheader = L->getLoopPreheader();
-  
+  SE = &LPM.getAnalysis<ScalarEvolution>();
+
   std::set<Instruction*> DeadInsts;
-  for (BasicBlock::iterator I = Header->begin();
-       PHINode *PN = dyn_cast<PHINode>(I); ++I)
+  for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
+    PHINode *PN = cast<PHINode>(I);
     if (isa<PointerType>(PN->getType()))
       EliminatePointerRecurrence(PN, Preheader, DeadInsts);
+  }
 
   if (!DeadInsts.empty())
     DeleteTriviallyDeadInstructions(DeadInsts);
 
+  return Changed;
+}
+
+bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
 
-  // Next, transform all loops nesting inside of this loop.
-  for (LoopInfo::iterator I = L->begin(), E = L->end(); I != E; ++I)
-    runOnLoop(*I);
+
+  LI = &getAnalysis<LoopInfo>();
+  SE = &getAnalysis<ScalarEvolution>();
+
+  Changed = false;
+  BasicBlock *Header    = L->getHeader();
+  std::set<Instruction*> DeadInsts;
+  
+  // Verify the input to the pass in already in LCSSA form.
+  assert(L->isLCSSAForm());
 
   // Check to see if this loop has a computable loop-invariant execution count.
   // If so, this means that we can compute the final value of any expressions
@@ -357,14 +465,21 @@ void IndVarSimplify::runOnLoop(Loop *L) {
   // auxillary induction variables.
   std::vector<std::pair<PHINode*, SCEVHandle> > IndVars;
 
-  for (BasicBlock::iterator I = Header->begin();
-       PHINode *PN = dyn_cast<PHINode>(I); ++I)
-    if (PN->getType()->isInteger()) {  // FIXME: when we have fast-math, enable!
+  for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
+    PHINode *PN = cast<PHINode>(I);
+    if (PN->getType()->isInteger()) { // FIXME: when we have fast-math, enable!
       SCEVHandle SCEV = SE->getSCEV(PN);
       if (SCEV->hasComputableLoopEvolution(L))
-        if (SE->shouldSubstituteIndVar(SCEV))  // HACK!
-          IndVars.push_back(std::make_pair(PN, SCEV));
+        // FIXME: It is an extremely bad idea to indvar substitute anything more
+        // complex than affine induction variables.  Doing so will put expensive
+        // polynomial evaluations inside of the loop, and the str reduction pass
+        // currently can only reduce affine polynomials.  For now just disable
+        // indvar subst on anything more complex than an affine addrec.
+        if (SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SCEV))
+          if (AR->isAffine())
+            IndVars.push_back(std::make_pair(PN, SCEV));
     }
+  }
 
   // If there are no induction variables in the loop, there is nothing more to
   // do.
@@ -372,12 +487,17 @@ void IndVarSimplify::runOnLoop(Loop *L) {
     // Actually, if we know how many times the loop iterates, lets insert a
     // canonical induction variable to help subsequent passes.
     if (!isa<SCEVCouldNotCompute>(IterationCount)) {
-      ScalarEvolutionRewriter Rewriter(*SE, *LI);
-      Rewriter.GetOrInsertCanonicalInductionVariable(L,
+      SCEVExpander Rewriter(*SE, *LI);
+      Rewriter.getOrInsertCanonicalInductionVariable(L,
                                                      IterationCount->getType());
-      LinearFunctionTestReplace(L, IterationCount, Rewriter);
+      if (Instruction *I = LinearFunctionTestReplace(L, IterationCount,
+                                                     Rewriter)) {
+        std::set<Instruction*> InstructionsToDelete;
+        InstructionsToDelete.insert(I);
+        DeleteTriviallyDeadInstructions(InstructionsToDelete);
+      }
     }
-    return;
+    return Changed;
   }
 
   // Compute the type of the largest recurrence expression.
@@ -386,46 +506,69 @@ void IndVarSimplify::runOnLoop(Loop *L) {
   bool DifferingSizes = false;
   for (unsigned i = 1, e = IndVars.size(); i != e; ++i) {
     const Type *Ty = IndVars[i].first->getType();
-    DifferingSizes |= Ty->getPrimitiveSize() != LargestType->getPrimitiveSize();
-    if (Ty->getPrimitiveSize() > LargestType->getPrimitiveSize())
+    DifferingSizes |= 
+      Ty->getPrimitiveSizeInBits() != LargestType->getPrimitiveSizeInBits();
+    if (Ty->getPrimitiveSizeInBits() > LargestType->getPrimitiveSizeInBits())
       LargestType = Ty;
   }
 
   // Create a rewriter object which we'll use to transform the code with.
-  ScalarEvolutionRewriter Rewriter(*SE, *LI);
+  SCEVExpander Rewriter(*SE, *LI);
 
   // Now that we know the largest of of the induction variables in this loop,
   // insert a canonical induction variable of the largest size.
-  LargestType = LargestType->getUnsignedVersion();
-  Value *IndVar = Rewriter.GetOrInsertCanonicalInductionVariable(L,LargestType);
+  Value *IndVar = Rewriter.getOrInsertCanonicalInductionVariable(L,LargestType);
   ++NumInserted;
   Changed = true;
+  DOUT << "INDVARS: New CanIV: " << *IndVar;
+
+  if (!isa<SCEVCouldNotCompute>(IterationCount)) {
+    if (IterationCount->getType()->getPrimitiveSizeInBits() <
+        LargestType->getPrimitiveSizeInBits())
+      IterationCount = SE->getZeroExtendExpr(IterationCount, LargestType);
+    else if (IterationCount->getType() != LargestType)
+      IterationCount = SE->getTruncateExpr(IterationCount, LargestType);
+    if (Instruction *DI = LinearFunctionTestReplace(L, IterationCount,Rewriter))
+      DeadInsts.insert(DI);
+  }
 
-  if (!isa<SCEVCouldNotCompute>(IterationCount))
-    LinearFunctionTestReplace(L, IterationCount, Rewriter);
+  // Now that we have a canonical induction variable, we can rewrite any
+  // recurrences in terms of the induction variable.  Start with the auxillary
+  // induction variables, and recursively rewrite any of their uses.
+  BasicBlock::iterator InsertPt = Header->begin();
+  while (isa<PHINode>(InsertPt)) ++InsertPt;
 
-#if 0
   // If there were induction variables of other sizes, cast the primary
   // induction variable to the right size for them, avoiding the need for the
   // code evaluation methods to insert induction variables of different sizes.
-  // FIXME!
   if (DifferingSizes) {
-    std::map<unsigned, Value*> InsertedSizes;
+    SmallVector<unsigned,4> InsertedSizes;
+    InsertedSizes.push_back(LargestType->getPrimitiveSizeInBits());
     for (unsigned i = 0, e = IndVars.size(); i != e; ++i) {
-    }    
+      unsigned ithSize = IndVars[i].first->getType()->getPrimitiveSizeInBits();
+      if (std::find(InsertedSizes.begin(), InsertedSizes.end(), ithSize)
+          == InsertedSizes.end()) {
+        PHINode *PN = IndVars[i].first;
+        InsertedSizes.push_back(ithSize);
+        Instruction *New = new TruncInst(IndVar, PN->getType(), "indvar",
+                                         InsertPt);
+        Rewriter.addInsertedValue(New, SE->getSCEV(New));
+        DOUT << "INDVARS: Made trunc IV for " << *PN
+             << "   NewVal = " << *New << "\n";
+      }
+    }
   }
-#endif
-
-  // Now that we have a canonical induction variable, we can rewrite any
-  // recurrences in terms of the induction variable.  Start with the auxillary
-  // induction variables, and recursively rewrite any of their uses.
-  BasicBlock::iterator InsertPt = Header->begin();
-  while (isa<PHINode>(InsertPt)) ++InsertPt;
 
+  // Rewrite all induction variables in terms of the canonical induction
+  // variable.
+  std::map<unsigned, Value*> InsertedSizes;
   while (!IndVars.empty()) {
     PHINode *PN = IndVars.back().first;
-    Value *NewVal = Rewriter.ExpandCodeFor(IndVars.back().second, InsertPt,
-                                           PN->getType());
+    Value *NewVal = Rewriter.expandCodeFor(IndVars.back().second, InsertPt);
+    DOUT << "INDVARS: Rewrote IV '" << *IndVars.back().second << "' " << *PN
+         << "   into = " << *NewVal << "\n";
+    NewVal->takeName(PN);
+
     // Replace the old PHI Node with the inserted computation.
     PN->replaceAllUsesWith(NewVal);
     DeadInsts.insert(PN);
@@ -434,21 +577,32 @@ void IndVarSimplify::runOnLoop(Loop *L) {
     Changed = true;
   }
 
-  DeleteTriviallyDeadInstructions(DeadInsts);
-
-  // TODO: In the future we could replace all instructions in the loop body with
-  // simpler expressions.  It's not clear how useful this would be though or if
-  // the code expansion cost would be worth it!  We probably shouldn't do this
-  // until we have a way to reuse expressions already in the code.
 #if 0
+  // Now replace all derived expressions in the loop body with simpler
+  // expressions.
   for (unsigned i = 0, e = L->getBlocks().size(); i != e; ++i)
     if (LI->getLoopFor(L->getBlocks()[i]) == L) {  // Not in a subloop...
       BasicBlock *BB = L->getBlocks()[i];
       for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
         if (I->getType()->isInteger() &&      // Is an integer instruction
+            !I->use_empty() &&
             !Rewriter.isInsertedInstruction(I)) {
           SCEVHandle SH = SE->getSCEV(I);
+          Value *V = Rewriter.expandCodeFor(SH, I, I->getType());
+          if (V != I) {
+            if (isa<Instruction>(V))
+              V->takeName(I);
+            I->replaceAllUsesWith(V);
+            DeadInsts.insert(I);
+            ++NumRemoved;
+            Changed = true;
+          }
         }
     }
 #endif
+
+  DeleteTriviallyDeadInstructions(DeadInsts);
+  
+  assert(L->isLCSSAForm());
+  return Changed;
 }