[RS4GC] Fix rematerialization of bitcast of bitcast.
[oota-llvm.git] / lib / Transforms / Scalar / BDCE.cpp
index 09c605e767373c4ae66248ce19dd79c5667eafbe..cb9b8b6fffc84113baa5d5a46062b271c7871523 100644 (file)
 //===----------------------------------------------------------------------===//
 
 #include "llvm/Transforms/Scalar.h"
-#include "llvm/ADT/DenseMap.h"
-#include "llvm/ADT/DepthFirstIterator.h"
-#include "llvm/ADT/SmallPtrSet.h"
 #include "llvm/ADT/SmallVector.h"
 #include "llvm/ADT/Statistic.h"
-#include "llvm/Analysis/AssumptionCache.h"
-#include "llvm/Analysis/ValueTracking.h"
-#include "llvm/IR/BasicBlock.h"
+#include "llvm/Analysis/GlobalsModRef.h"
+#include "llvm/Analysis/DemandedBits.h"
 #include "llvm/IR/CFG.h"
-#include "llvm/IR/DataLayout.h"
-#include "llvm/IR/Dominators.h"
 #include "llvm/IR/InstIterator.h"
 #include "llvm/IR/Instructions.h"
 #include "llvm/IR/IntrinsicInst.h"
-#include "llvm/IR/Module.h"
 #include "llvm/IR/Operator.h"
 #include "llvm/Pass.h"
 #include "llvm/Support/Debug.h"
 #include "llvm/Support/raw_ostream.h"
-
 using namespace llvm;
 
 #define DEBUG_TYPE "bdce"
@@ -53,342 +45,42 @@ struct BDCE : public FunctionPass {
 
   void getAnalysisUsage(AnalysisUsage& AU) const override {
     AU.setPreservesCFG();
-    AU.addRequired<AssumptionCacheTracker>();
-    AU.addRequired<DominatorTreeWrapperPass>();
+    AU.addRequired<DemandedBits>();
+    AU.addPreserved<GlobalsAAWrapperPass>();
   }
-
-  void determineLiveOperandBits(const Instruction *UserI,
-                                const Instruction *I, unsigned OperandNo,
-                                const APInt &AOut, APInt &AB,
-                                APInt &KnownZero, APInt &KnownOne,
-                                APInt &KnownZero2, APInt &KnownOne2);
-
-  AssumptionCache *AC;
-  DominatorTree *DT;
 };
 }
 
 char BDCE::ID = 0;
 INITIALIZE_PASS_BEGIN(BDCE, "bdce", "Bit-Tracking Dead Code Elimination",
                       false, false)
-INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
-INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(DemandedBits)
 INITIALIZE_PASS_END(BDCE, "bdce", "Bit-Tracking Dead Code Elimination",
                     false, false)
 
-static bool isAlwaysLive(Instruction *I) {
-  return isa<TerminatorInst>(I) || isa<DbgInfoIntrinsic>(I) ||
-         isa<LandingPadInst>(I) || I->mayHaveSideEffects();
-}
-
-void BDCE::determineLiveOperandBits(const Instruction *UserI,
-                                    const Instruction *I, unsigned OperandNo,
-                                    const APInt &AOut, APInt &AB,
-                                    APInt &KnownZero, APInt &KnownOne,
-                                    APInt &KnownZero2, APInt &KnownOne2) {
-  unsigned BitWidth = AB.getBitWidth();
-
-  // We're called once per operand, but for some instructions, we need to
-  // compute known bits of both operands in order to determine the live bits of
-  // either (when both operands are instructions themselves). We don't,
-  // however, want to do this twice, so we cache the result in APInts that live
-  // in the caller. For the two-relevant-operands case, both operand values are
-  // provided here.
-  auto ComputeKnownBits =
-      [&](unsigned BitWidth, const Value *V1, const Value *V2) {
-        const DataLayout &DL = I->getModule()->getDataLayout();
-        KnownZero = APInt(BitWidth, 0);
-        KnownOne = APInt(BitWidth, 0);
-        computeKnownBits(const_cast<Value *>(V1), KnownZero, KnownOne, DL, 0,
-                         AC, UserI, DT);
-
-        if (V2) {
-          KnownZero2 = APInt(BitWidth, 0);
-          KnownOne2 = APInt(BitWidth, 0);
-          computeKnownBits(const_cast<Value *>(V2), KnownZero2, KnownOne2, DL,
-                           0, AC, UserI, DT);
-        }
-      };
-
-  switch (UserI->getOpcode()) {
-  default: break;
-  case Instruction::Call:
-  case Instruction::Invoke:
-    if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(UserI))
-      switch (II->getIntrinsicID()) {
-      default: break;
-      case Intrinsic::bswap:
-        // The alive bits of the input are the swapped alive bits of
-        // the output.
-        AB = AOut.byteSwap();
-        break;
-      case Intrinsic::ctlz:
-        if (OperandNo == 0) {
-          // We need some output bits, so we need all bits of the
-          // input to the left of, and including, the leftmost bit
-          // known to be one.
-          ComputeKnownBits(BitWidth, I, nullptr);
-          AB = APInt::getHighBitsSet(BitWidth,
-                 std::min(BitWidth, KnownOne.countLeadingZeros()+1));
-        }
-        break;
-      case Intrinsic::cttz:
-        if (OperandNo == 0) {
-          // We need some output bits, so we need all bits of the
-          // input to the right of, and including, the rightmost bit
-          // known to be one.
-          ComputeKnownBits(BitWidth, I, nullptr);
-          AB = APInt::getLowBitsSet(BitWidth,
-                 std::min(BitWidth, KnownOne.countTrailingZeros()+1));
-        }
-        break;
-      }
-    break;
-  case Instruction::Add:
-  case Instruction::Sub:
-    // Find the highest live output bit. We don't need any more input
-    // bits than that (adds, and thus subtracts, ripple only to the
-    // left).
-    AB = APInt::getLowBitsSet(BitWidth, AOut.getActiveBits());
-    break;
-  case Instruction::Shl:
-    if (OperandNo == 0)
-      if (ConstantInt *CI =
-            dyn_cast<ConstantInt>(UserI->getOperand(1))) {
-        uint64_t ShiftAmt = CI->getLimitedValue(BitWidth-1);
-        AB = AOut.lshr(ShiftAmt);
-
-        // If the shift is nuw/nsw, then the high bits are not dead
-        // (because we've promised that they *must* be zero).
-        const ShlOperator *S = cast<ShlOperator>(UserI);
-        if (S->hasNoSignedWrap())
-          AB |= APInt::getHighBitsSet(BitWidth, ShiftAmt+1);
-        else if (S->hasNoUnsignedWrap())
-          AB |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
-      }
-    break;
-  case Instruction::LShr:
-    if (OperandNo == 0)
-      if (ConstantInt *CI =
-            dyn_cast<ConstantInt>(UserI->getOperand(1))) {
-        uint64_t ShiftAmt = CI->getLimitedValue(BitWidth-1);
-        AB = AOut.shl(ShiftAmt);
-
-        // If the shift is exact, then the low bits are not dead
-        // (they must be zero).
-        if (cast<LShrOperator>(UserI)->isExact())
-          AB |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
-      }
-    break;
-  case Instruction::AShr:
-    if (OperandNo == 0)
-      if (ConstantInt *CI =
-            dyn_cast<ConstantInt>(UserI->getOperand(1))) {
-        uint64_t ShiftAmt = CI->getLimitedValue(BitWidth-1);
-        AB = AOut.shl(ShiftAmt);
-        // Because the high input bit is replicated into the
-        // high-order bits of the result, if we need any of those
-        // bits, then we must keep the highest input bit.
-        if ((AOut & APInt::getHighBitsSet(BitWidth, ShiftAmt))
-            .getBoolValue())
-          AB.setBit(BitWidth-1);
-
-        // If the shift is exact, then the low bits are not dead
-        // (they must be zero).
-        if (cast<AShrOperator>(UserI)->isExact())
-          AB |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
-      }
-    break;
-  case Instruction::And:
-    AB = AOut;
-
-    // For bits that are known zero, the corresponding bits in the
-    // other operand are dead (unless they're both zero, in which
-    // case they can't both be dead, so just mark the LHS bits as
-    // dead).
-    if (OperandNo == 0) {
-      ComputeKnownBits(BitWidth, I, UserI->getOperand(1));
-      AB &= ~KnownZero2;
-    } else {
-      if (!isa<Instruction>(UserI->getOperand(0)))
-        ComputeKnownBits(BitWidth, UserI->getOperand(0), I);
-      AB &= ~(KnownZero & ~KnownZero2);
-    }
-    break;
-  case Instruction::Or:
-    AB = AOut;
-
-    // For bits that are known one, the corresponding bits in the
-    // other operand are dead (unless they're both one, in which
-    // case they can't both be dead, so just mark the LHS bits as
-    // dead).
-    if (OperandNo == 0) {
-      ComputeKnownBits(BitWidth, I, UserI->getOperand(1));
-      AB &= ~KnownOne2;
-    } else {
-      if (!isa<Instruction>(UserI->getOperand(0)))
-        ComputeKnownBits(BitWidth, UserI->getOperand(0), I);
-      AB &= ~(KnownOne & ~KnownOne2);
-    }
-    break;
-  case Instruction::Xor:
-  case Instruction::PHI:
-    AB = AOut;
-    break;
-  case Instruction::Trunc:
-    AB = AOut.zext(BitWidth);
-    break;
-  case Instruction::ZExt:
-    AB = AOut.trunc(BitWidth);
-    break;
-  case Instruction::SExt:
-    AB = AOut.trunc(BitWidth);
-    // Because the high input bit is replicated into the
-    // high-order bits of the result, if we need any of those
-    // bits, then we must keep the highest input bit.
-    if ((AOut & APInt::getHighBitsSet(AOut.getBitWidth(),
-                                      AOut.getBitWidth() - BitWidth))
-        .getBoolValue())
-      AB.setBit(BitWidth-1);
-    break;
-  case Instruction::Select:
-    if (OperandNo != 0)
-      AB = AOut;
-    break;
-  }
-}
-
 bool BDCE::runOnFunction(Function& F) {
   if (skipOptnoneFunction(F))
     return false;
+  DemandedBits &DB = getAnalysis<DemandedBits>();
 
-  AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
-  DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
-
-  DenseMap<Instruction *, APInt> AliveBits;
   SmallVector<Instruction*, 128> Worklist;
-
-  // The set of visited instructions (non-integer-typed only).
-  SmallPtrSet<Instruction*, 128> Visited;
-
-  // Collect the set of "root" instructions that are known live.
-  for (Instruction &I : inst_range(F)) {
-    if (!isAlwaysLive(&I))
-      continue;
-
-    DEBUG(dbgs() << "BDCE: Root: " << I << "\n");
-    // For integer-valued instructions, set up an initial empty set of alive
-    // bits and add the instruction to the work list. For other instructions
-    // add their operands to the work list (for integer values operands, mark
-    // all bits as live).
-    if (IntegerType *IT = dyn_cast<IntegerType>(I.getType())) {
-      if (!AliveBits.count(&I)) {
-        AliveBits[&I] = APInt(IT->getBitWidth(), 0);
-        Worklist.push_back(&I);
-      }
-
-      continue;
-    }
-
-    // Non-integer-typed instructions...
-    for (Use &OI : I.operands()) {
-      if (Instruction *J = dyn_cast<Instruction>(OI)) {
-        if (IntegerType *IT = dyn_cast<IntegerType>(J->getType()))
-          AliveBits[J] = APInt::getAllOnesValue(IT->getBitWidth());
-        Worklist.push_back(J);
-      }
-    }
-    // To save memory, we don't add I to the Visited set here. Instead, we
-    // check isAlwaysLive on every instruction when searching for dead
-    // instructions later (we need to check isAlwaysLive for the
-    // integer-typed instructions anyway).
-  }
-
-  // Propagate liveness backwards to operands.
-  while (!Worklist.empty()) {
-    Instruction *UserI = Worklist.pop_back_val();
-
-    DEBUG(dbgs() << "BDCE: Visiting: " << *UserI);
-    APInt AOut;
-    if (UserI->getType()->isIntegerTy()) {
-      AOut = AliveBits[UserI];
-      DEBUG(dbgs() << " Alive Out: " << AOut);
-    }
-    DEBUG(dbgs() << "\n");
-
-    if (!UserI->getType()->isIntegerTy())
-      Visited.insert(UserI);
-
-    APInt KnownZero, KnownOne, KnownZero2, KnownOne2;
-    // Compute the set of alive bits for each operand. These are anded into the
-    // existing set, if any, and if that changes the set of alive bits, the
-    // operand is added to the work-list.
-    for (Use &OI : UserI->operands()) {
-      if (Instruction *I = dyn_cast<Instruction>(OI)) {
-        if (IntegerType *IT = dyn_cast<IntegerType>(I->getType())) {
-          unsigned BitWidth = IT->getBitWidth();
-          APInt AB = APInt::getAllOnesValue(BitWidth);
-          if (UserI->getType()->isIntegerTy() && !AOut &&
-              !isAlwaysLive(UserI)) {
-            AB = APInt(BitWidth, 0);
-          } else {
-            // If all bits of the output are dead, then all bits of the input 
-            // Bits of each operand that are used to compute alive bits of the
-            // output are alive, all others are dead.
-            determineLiveOperandBits(UserI, I, OI.getOperandNo(), AOut, AB,
-                                     KnownZero, KnownOne,
-                                     KnownZero2, KnownOne2);
-          }
-
-          // If we've added to the set of alive bits (or the operand has not
-          // been previously visited), then re-queue the operand to be visited
-          // again.
-          APInt ABPrev(BitWidth, 0);
-          auto ABI = AliveBits.find(I);
-          if (ABI != AliveBits.end())
-            ABPrev = ABI->second;
-
-          APInt ABNew = AB | ABPrev;
-          if (ABNew != ABPrev || ABI == AliveBits.end()) {
-            AliveBits[I] = std::move(ABNew);
-            Worklist.push_back(I);
-          }
-        } else if (!Visited.count(I)) {
-          Worklist.push_back(I);
-        }
-      }
-    }
-  }
-
   bool Changed = false;
-  // The inverse of the live set is the dead set.  These are those instructions
-  // which have no side effects and do not influence the control flow or return
-  // value of the function, and may therefore be deleted safely.
-  // NOTE: We reuse the Worklist vector here for memory efficiency.
-  for (Instruction &I : inst_range(F)) {
-    // For live instructions that have all dead bits, first make them dead by
-    // replacing all uses with something else. Then, if they don't need to
-    // remain live (because they have side effects, etc.) we can remove them.
-    if (I.getType()->isIntegerTy()) {
-      auto ABI = AliveBits.find(&I);
-      if (ABI != AliveBits.end()) {
-        if (ABI->second.getBoolValue())
-          continue;
-
-        DEBUG(dbgs() << "BDCE: Trivializing: " << I << " (all bits dead)\n");
-        // FIXME: In theory we could substitute undef here instead of zero.
-        // This should be reconsidered once we settle on the semantics of
-        // undef, poison, etc.
-        Value *Zero = ConstantInt::get(I.getType(), 0);
-        ++NumSimplified;
-        I.replaceAllUsesWith(Zero);
-        Changed = true;
-      }
-    } else if (Visited.count(&I)) {
-      continue;
+  for (Instruction &I : instructions(F)) {
+    if (I.getType()->isIntegerTy() &&
+        !DB.getDemandedBits(&I).getBoolValue()) {
+      // For live instructions that have all dead bits, first make them dead by
+      // replacing all uses with something else. Then, if they don't need to
+      // remain live (because they have side effects, etc.) we can remove them.
+      DEBUG(dbgs() << "BDCE: Trivializing: " << I << " (all bits dead)\n");
+      // FIXME: In theory we could substitute undef here instead of zero.
+      // This should be reconsidered once we settle on the semantics of
+      // undef, poison, etc.
+      Value *Zero = ConstantInt::get(I.getType(), 0);
+      ++NumSimplified;
+      I.replaceAllUsesWith(Zero);
+      Changed = true;
     }
-
-    if (isAlwaysLive(&I))
+    if (!DB.isInstructionDead(&I))
       continue;
 
     Worklist.push_back(&I);