[asan] experimental tracing for indirect calls, llvm part.
[oota-llvm.git] / lib / Transforms / Instrumentation / ThreadSanitizer.cpp
index af2e7b9544f044ff805d3f1b951cad12719d54f0..417f2a1649b6517c3d0f70e9eedd86aa920cc9cd 100644 (file)
 // The rest is handled by the run-time library.
 //===----------------------------------------------------------------------===//
 
-#define DEBUG_TYPE "tsan"
-
 #include "llvm/Transforms/Instrumentation.h"
-#include "BlackList.h"
 #include "llvm/ADT/SmallSet.h"
 #include "llvm/ADT/SmallString.h"
 #include "llvm/ADT/SmallVector.h"
 #include "llvm/ADT/Statistic.h"
 #include "llvm/ADT/StringExtras.h"
-#include "llvm/DataLayout.h"
-#include "llvm/Function.h"
-#include "llvm/IRBuilder.h"
-#include "llvm/Intrinsics.h"
-#include "llvm/LLVMContext.h"
-#include "llvm/Metadata.h"
-#include "llvm/Module.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Metadata.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Type.h"
 #include "llvm/Support/CommandLine.h"
 #include "llvm/Support/Debug.h"
 #include "llvm/Support/MathExtras.h"
 #include "llvm/Support/raw_ostream.h"
 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
 #include "llvm/Transforms/Utils/ModuleUtils.h"
-#include "llvm/Type.h"
 
 using namespace llvm;
 
-static cl::opt<std::string>  ClBlacklistFile("tsan-blacklist",
-       cl::desc("Blacklist file"), cl::Hidden);
+#define DEBUG_TYPE "tsan"
+
 static cl::opt<bool>  ClInstrumentMemoryAccesses(
     "tsan-instrument-memory-accesses", cl::init(true),
     cl::desc("Instrument memory accesses"), cl::Hidden);
@@ -56,6 +54,9 @@ static cl::opt<bool>  ClInstrumentFuncEntryExit(
 static cl::opt<bool>  ClInstrumentAtomics(
     "tsan-instrument-atomics", cl::init(true),
     cl::desc("Instrument atomics"), cl::Hidden);
+static cl::opt<bool>  ClInstrumentMemIntrinsics(
+    "tsan-instrument-memintrinsics", cl::init(true),
+    cl::desc("Instrument memintrinsics (memset/memcpy/memmove)"), cl::Hidden);
 
 STATISTIC(NumInstrumentedReads, "Number of instrumented reads");
 STATISTIC(NumInstrumentedWrites, "Number of instrumented writes");
@@ -63,6 +64,7 @@ STATISTIC(NumOmittedReadsBeforeWrite,
           "Number of reads ignored due to following writes");
 STATISTIC(NumAccessesWithBadSize, "Number of accesses with bad size");
 STATISTIC(NumInstrumentedVtableWrites, "Number of vtable ptr writes");
+STATISTIC(NumInstrumentedVtableReads, "Number of vtable ptr reads");
 STATISTIC(NumOmittedReadsFromConstantGlobals,
           "Number of reads from constant globals");
 STATISTIC(NumOmittedReadsFromVtable, "Number of vtable reads");
@@ -71,28 +73,24 @@ namespace {
 
 /// ThreadSanitizer: instrument the code in module to find races.
 struct ThreadSanitizer : public FunctionPass {
-  ThreadSanitizer(StringRef BlacklistFile = StringRef())
-      : FunctionPass(ID),
-        TD(0),
-        BlacklistFile(BlacklistFile.empty() ? ClBlacklistFile
-                                            : BlacklistFile) { }
-  const char *getPassName() const;
-  bool runOnFunction(Function &F);
-  bool doInitialization(Module &M);
+  ThreadSanitizer() : FunctionPass(ID), DL(nullptr) {}
+  const char *getPassName() const override;
+  bool runOnFunction(Function &F) override;
+  bool doInitialization(Module &M) override;
   static char ID;  // Pass identification, replacement for typeid.
 
  private:
   void initializeCallbacks(Module &M);
   bool instrumentLoadOrStore(Instruction *I);
   bool instrumentAtomic(Instruction *I);
+  bool instrumentMemIntrinsic(Instruction *I);
   void chooseInstructionsToInstrument(SmallVectorImpl<Instruction*> &Local,
                                       SmallVectorImpl<Instruction*> &All);
   bool addrPointsToConstantData(Value *Addr);
   int getMemoryAccessFuncIndex(Value *Addr);
 
-  DataLayout *TD;
-  SmallString<64> BlacklistFile;
-  OwningPtr<BlackList> BL;
+  const DataLayout *DL;
+  Type *IntptrTy;
   IntegerType *OrdTy;
   // Callbacks to run-time library are computed in doInitialization.
   Function *TsanFuncEntry;
@@ -108,6 +106,8 @@ struct ThreadSanitizer : public FunctionPass {
   Function *TsanAtomicThreadFence;
   Function *TsanAtomicSignalFence;
   Function *TsanVptrUpdate;
+  Function *TsanVptrLoad;
+  Function *MemmoveFn, *MemcpyFn, *MemsetFn;
 };
 }  // namespace
 
@@ -120,8 +120,8 @@ const char *ThreadSanitizer::getPassName() const {
   return "ThreadSanitizer";
 }
 
-FunctionPass *llvm::createThreadSanitizerPass(StringRef BlacklistFile) {
-  return new ThreadSanitizer(BlacklistFile);
+FunctionPass *llvm::createThreadSanitizerPass() {
+  return new ThreadSanitizer();
 }
 
 static Function *checkInterfaceFunction(Constant *FuncOrBitcast) {
@@ -165,8 +165,8 @@ void ThreadSanitizer::initializeCallbacks(Module &M) {
 
     for (int op = AtomicRMWInst::FIRST_BINOP;
         op <= AtomicRMWInst::LAST_BINOP; ++op) {
-      TsanAtomicRMW[op][i] = NULL;
-      const char *NamePart = NULL;
+      TsanAtomicRMW[op][i] = nullptr;
+      const char *NamePart = nullptr;
       if (op == AtomicRMWInst::Xchg)
         NamePart = "_exchange";
       else if (op == AtomicRMWInst::Add)
@@ -196,20 +196,33 @@ void ThreadSanitizer::initializeCallbacks(Module &M) {
   TsanVptrUpdate = checkInterfaceFunction(M.getOrInsertFunction(
       "__tsan_vptr_update", IRB.getVoidTy(), IRB.getInt8PtrTy(),
       IRB.getInt8PtrTy(), NULL));
+  TsanVptrLoad = checkInterfaceFunction(M.getOrInsertFunction(
+      "__tsan_vptr_read", IRB.getVoidTy(), IRB.getInt8PtrTy(), NULL));
   TsanAtomicThreadFence = checkInterfaceFunction(M.getOrInsertFunction(
       "__tsan_atomic_thread_fence", IRB.getVoidTy(), OrdTy, NULL));
   TsanAtomicSignalFence = checkInterfaceFunction(M.getOrInsertFunction(
       "__tsan_atomic_signal_fence", IRB.getVoidTy(), OrdTy, NULL));
+
+  MemmoveFn = checkInterfaceFunction(M.getOrInsertFunction(
+    "memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
+    IRB.getInt8PtrTy(), IntptrTy, NULL));
+  MemcpyFn = checkInterfaceFunction(M.getOrInsertFunction(
+    "memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
+    IntptrTy, NULL));
+  MemsetFn = checkInterfaceFunction(M.getOrInsertFunction(
+    "memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt32Ty(),
+    IntptrTy, NULL));
 }
 
 bool ThreadSanitizer::doInitialization(Module &M) {
-  TD = getAnalysisIfAvailable<DataLayout>();
-  if (!TD)
-    return false;
-  BL.reset(new BlackList(BlacklistFile));
+  DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
+  if (!DLP)
+    report_fatal_error("data layout missing");
+  DL = &DLP->getDataLayout();
 
   // Always insert a call to __tsan_init into the module's CTORs.
   IRBuilder<> IRB(M.getContext());
+  IntptrTy = IRB.getIntPtrTy(DL);
   Value *TsanInit = M.getOrInsertFunction("__tsan_init",
                                           IRB.getVoidTy(), NULL);
   appendToGlobalCtors(M, cast<Function>(TsanInit), 0);
@@ -218,12 +231,8 @@ bool ThreadSanitizer::doInitialization(Module &M) {
 }
 
 static bool isVtableAccess(Instruction *I) {
-  if (MDNode *Tag = I->getMetadata(LLVMContext::MD_tbaa)) {
-    if (Tag->getNumOperands() < 1) return false;
-    if (MDString *Tag1 = dyn_cast<MDString>(Tag->getOperand(0))) {
-      if (Tag1->getString() == "vtable pointer") return true;
-    }
-  }
+  if (MDNode *Tag = I->getMetadata(LLVMContext::MD_tbaa))
+    return Tag->isTBAAVtableAccess();
   return false;
 }
 
@@ -302,29 +311,29 @@ static bool isAtomic(Instruction *I) {
 }
 
 bool ThreadSanitizer::runOnFunction(Function &F) {
-  if (!TD) return false;
-  if (BL->isIn(F)) return false;
+  if (!DL) return false;
   initializeCallbacks(*F.getParent());
   SmallVector<Instruction*, 8> RetVec;
   SmallVector<Instruction*, 8> AllLoadsAndStores;
   SmallVector<Instruction*, 8> LocalLoadsAndStores;
   SmallVector<Instruction*, 8> AtomicAccesses;
+  SmallVector<Instruction*, 8> MemIntrinCalls;
   bool Res = false;
   bool HasCalls = false;
+  bool SanitizeFunction = F.hasFnAttribute(Attribute::SanitizeThread);
 
   // Traverse all instructions, collect loads/stores/returns, check for calls.
-  for (Function::iterator FI = F.begin(), FE = F.end();
-       FI != FE; ++FI) {
-    BasicBlock &BB = *FI;
-    for (BasicBlock::iterator BI = BB.begin(), BE = BB.end();
-         BI != BE; ++BI) {
-      if (isAtomic(BI))
-        AtomicAccesses.push_back(BI);
-      else if (isa<LoadInst>(BI) || isa<StoreInst>(BI))
-        LocalLoadsAndStores.push_back(BI);
-      else if (isa<ReturnInst>(BI))
-        RetVec.push_back(BI);
-      else if (isa<CallInst>(BI) || isa<InvokeInst>(BI)) {
+  for (auto &BB : F) {
+    for (auto &Inst : BB) {
+      if (isAtomic(&Inst))
+        AtomicAccesses.push_back(&Inst);
+      else if (isa<LoadInst>(Inst) || isa<StoreInst>(Inst))
+        LocalLoadsAndStores.push_back(&Inst);
+      else if (isa<ReturnInst>(Inst))
+        RetVec.push_back(&Inst);
+      else if (isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) {
+        if (isa<MemIntrinsic>(Inst))
+          MemIntrinCalls.push_back(&Inst);
         HasCalls = true;
         chooseInstructionsToInstrument(LocalLoadsAndStores, AllLoadsAndStores);
       }
@@ -336,16 +345,22 @@ bool ThreadSanitizer::runOnFunction(Function &F) {
   // FIXME: many of these accesses do not need to be checked for races
   // (e.g. variables that do not escape, etc).
 
-  // Instrument memory accesses.
-  if (ClInstrumentMemoryAccesses)
-    for (size_t i = 0, n = AllLoadsAndStores.size(); i < n; ++i) {
-      Res |= instrumentLoadOrStore(AllLoadsAndStores[i]);
+  // Instrument memory accesses only if we want to report bugs in the function.
+  if (ClInstrumentMemoryAccesses && SanitizeFunction)
+    for (auto Inst : AllLoadsAndStores) {
+      Res |= instrumentLoadOrStore(Inst);
     }
 
-  // Instrument atomic memory accesses.
+  // Instrument atomic memory accesses in any case (they can be used to
+  // implement synchronization).
   if (ClInstrumentAtomics)
-    for (size_t i = 0, n = AtomicAccesses.size(); i < n; ++i) {
-      Res |= instrumentAtomic(AtomicAccesses[i]);
+    for (auto Inst : AtomicAccesses) {
+      Res |= instrumentAtomic(Inst);
+    }
+
+  if (ClInstrumentMemIntrinsics && SanitizeFunction)
+    for (auto Inst : MemIntrinCalls) {
+      Res |= instrumentMemIntrinsic(Inst);
     }
 
   // Instrument function entry/exit points if there were instrumented accesses.
@@ -355,8 +370,8 @@ bool ThreadSanitizer::runOnFunction(Function &F) {
         Intrinsic::getDeclaration(F.getParent(), Intrinsic::returnaddress),
         IRB.getInt32(0));
     IRB.CreateCall(TsanFuncEntry, ReturnAddress);
-    for (size_t i = 0, n = RetVec.size(); i < n; ++i) {
-      IRBuilder<> IRBRet(RetVec[i]);
+    for (auto RetInst : RetVec) {
+      IRBuilder<> IRBRet(RetInst);
       IRBRet.CreateCall(TsanFuncExit);
     }
     Res = true;
@@ -376,8 +391,13 @@ bool ThreadSanitizer::instrumentLoadOrStore(Instruction *I) {
   if (IsWrite && isVtableAccess(I)) {
     DEBUG(dbgs() << "  VPTR : " << *I << "\n");
     Value *StoredValue = cast<StoreInst>(I)->getValueOperand();
-    // StoredValue does not necessary have a pointer type.
-    if (isa<IntegerType>(StoredValue->getType()))
+    // StoredValue may be a vector type if we are storing several vptrs at once.
+    // In this case, just take the first element of the vector since this is
+    // enough to find vptr races.
+    if (isa<VectorType>(StoredValue->getType()))
+      StoredValue = IRB.CreateExtractElement(
+          StoredValue, ConstantInt::get(IRB.getInt32Ty(), 0));
+    if (StoredValue->getType()->isIntegerTy())
       StoredValue = IRB.CreateIntToPtr(StoredValue, IRB.getInt8PtrTy());
     // Call TsanVptrUpdate.
     IRB.CreateCall2(TsanVptrUpdate,
@@ -386,6 +406,12 @@ bool ThreadSanitizer::instrumentLoadOrStore(Instruction *I) {
     NumInstrumentedVtableWrites++;
     return true;
   }
+  if (!IsWrite && isVtableAccess(I)) {
+    IRB.CreateCall(TsanVptrLoad,
+                   IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()));
+    NumInstrumentedVtableReads++;
+    return true;
+  }
   Value *OnAccessFunc = IsWrite ? TsanWrite[Idx] : TsanRead[Idx];
   IRB.CreateCall(OnAccessFunc, IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()));
   if (IsWrite) NumInstrumentedWrites++;
@@ -408,23 +434,34 @@ static ConstantInt *createOrdering(IRBuilder<> *IRB, AtomicOrdering ord) {
   return IRB->getInt32(v);
 }
 
-static ConstantInt *createFailOrdering(IRBuilder<> *IRB, AtomicOrdering ord) {
-  uint32_t v = 0;
-  switch (ord) {
-    case NotAtomic:              assert(false);
-    case Unordered:              // Fall-through.
-    case Monotonic:              v = 0; break;
-    // case Consume:                v = 1; break;  // Not specified yet.
-    case Acquire:                v = 2; break;
-    case Release:                v = 0; break;
-    case AcquireRelease:         v = 2; break;
-    case SequentiallyConsistent: v = 5; break;
+// If a memset intrinsic gets inlined by the code gen, we will miss races on it.
+// So, we either need to ensure the intrinsic is not inlined, or instrument it.
+// We do not instrument memset/memmove/memcpy intrinsics (too complicated),
+// instead we simply replace them with regular function calls, which are then
+// intercepted by the run-time.
+// Since tsan is running after everyone else, the calls should not be
+// replaced back with intrinsics. If that becomes wrong at some point,
+// we will need to call e.g. __tsan_memset to avoid the intrinsics.
+bool ThreadSanitizer::instrumentMemIntrinsic(Instruction *I) {
+  IRBuilder<> IRB(I);
+  if (MemSetInst *M = dyn_cast<MemSetInst>(I)) {
+    IRB.CreateCall3(MemsetFn,
+      IRB.CreatePointerCast(M->getArgOperand(0), IRB.getInt8PtrTy()),
+      IRB.CreateIntCast(M->getArgOperand(1), IRB.getInt32Ty(), false),
+      IRB.CreateIntCast(M->getArgOperand(2), IntptrTy, false));
+    I->eraseFromParent();
+  } else if (MemTransferInst *M = dyn_cast<MemTransferInst>(I)) {
+    IRB.CreateCall3(isa<MemCpyInst>(M) ? MemcpyFn : MemmoveFn,
+      IRB.CreatePointerCast(M->getArgOperand(0), IRB.getInt8PtrTy()),
+      IRB.CreatePointerCast(M->getArgOperand(1), IRB.getInt8PtrTy()),
+      IRB.CreateIntCast(M->getArgOperand(2), IntptrTy, false));
+    I->eraseFromParent();
   }
-  return IRB->getInt32(v);
+  return false;
 }
 
 // Both llvm and ThreadSanitizer atomic operations are based on C++11/C1x
-// standards.  For background see C++11 standard.  A slightly older, publically
+// standards.  For background see C++11 standard.  A slightly older, publicly
 // available draft of the standard (not entirely up-to-date, but close enough
 // for casual browsing) is available here:
 // http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf
@@ -444,8 +481,7 @@ bool ThreadSanitizer::instrumentAtomic(Instruction *I) {
     Type *PtrTy = Ty->getPointerTo();
     Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
                      createOrdering(&IRB, LI->getOrdering())};
-    CallInst *C = CallInst::Create(TsanAtomicLoad[Idx],
-                                   ArrayRef<Value*>(Args));
+    CallInst *C = CallInst::Create(TsanAtomicLoad[Idx], Args);
     ReplaceInstWithInst(I, C);
 
   } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
@@ -460,8 +496,7 @@ bool ThreadSanitizer::instrumentAtomic(Instruction *I) {
     Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
                      IRB.CreateIntCast(SI->getValueOperand(), Ty, false),
                      createOrdering(&IRB, SI->getOrdering())};
-    CallInst *C = CallInst::Create(TsanAtomicStore[Idx],
-                                   ArrayRef<Value*>(Args));
+    CallInst *C = CallInst::Create(TsanAtomicStore[Idx], Args);
     ReplaceInstWithInst(I, C);
   } else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) {
     Value *Addr = RMWI->getPointerOperand();
@@ -469,7 +504,7 @@ bool ThreadSanitizer::instrumentAtomic(Instruction *I) {
     if (Idx < 0)
       return false;
     Function *F = TsanAtomicRMW[RMWI->getOperation()][Idx];
-    if (F == NULL)
+    if (!F)
       return false;
     const size_t ByteSize = 1 << Idx;
     const size_t BitSize = ByteSize * 8;
@@ -478,7 +513,7 @@ bool ThreadSanitizer::instrumentAtomic(Instruction *I) {
     Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
                      IRB.CreateIntCast(RMWI->getValOperand(), Ty, false),
                      createOrdering(&IRB, RMWI->getOrdering())};
-    CallInst *C = CallInst::Create(F, ArrayRef<Value*>(Args));
+    CallInst *C = CallInst::Create(F, Args);
     ReplaceInstWithInst(I, C);
   } else if (AtomicCmpXchgInst *CASI = dyn_cast<AtomicCmpXchgInst>(I)) {
     Value *Addr = CASI->getPointerOperand();
@@ -492,15 +527,21 @@ bool ThreadSanitizer::instrumentAtomic(Instruction *I) {
     Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
                      IRB.CreateIntCast(CASI->getCompareOperand(), Ty, false),
                      IRB.CreateIntCast(CASI->getNewValOperand(), Ty, false),
-                     createOrdering(&IRB, CASI->getOrdering()),
-                     createFailOrdering(&IRB, CASI->getOrdering())};
-    CallInst *C = CallInst::Create(TsanAtomicCAS[Idx], ArrayRef<Value*>(Args));
-    ReplaceInstWithInst(I, C);
+                     createOrdering(&IRB, CASI->getSuccessOrdering()),
+                     createOrdering(&IRB, CASI->getFailureOrdering())};
+    CallInst *C = IRB.CreateCall(TsanAtomicCAS[Idx], Args);
+    Value *Success = IRB.CreateICmpEQ(C, CASI->getCompareOperand());
+
+    Value *Res = IRB.CreateInsertValue(UndefValue::get(CASI->getType()), C, 0);
+    Res = IRB.CreateInsertValue(Res, Success, 1);
+
+    I->replaceAllUsesWith(Res);
+    I->eraseFromParent();
   } else if (FenceInst *FI = dyn_cast<FenceInst>(I)) {
     Value *Args[] = {createOrdering(&IRB, FI->getOrdering())};
     Function *F = FI->getSynchScope() == SingleThread ?
         TsanAtomicSignalFence : TsanAtomicThreadFence;
-    CallInst *C = CallInst::Create(F, ArrayRef<Value*>(Args));
+    CallInst *C = CallInst::Create(F, Args);
     ReplaceInstWithInst(I, C);
   }
   return true;
@@ -510,14 +551,14 @@ int ThreadSanitizer::getMemoryAccessFuncIndex(Value *Addr) {
   Type *OrigPtrTy = Addr->getType();
   Type *OrigTy = cast<PointerType>(OrigPtrTy)->getElementType();
   assert(OrigTy->isSized());
-  uint32_t TypeSize = TD->getTypeStoreSizeInBits(OrigTy);
+  uint32_t TypeSize = DL->getTypeStoreSizeInBits(OrigTy);
   if (TypeSize != 8  && TypeSize != 16 &&
       TypeSize != 32 && TypeSize != 64 && TypeSize != 128) {
     NumAccessesWithBadSize++;
     // Ignore all unusual sizes.
     return -1;
   }
-  size_t Idx = CountTrailingZeros_32(TypeSize / 8);
+  size_t Idx = countTrailingZeros(TypeSize / 8);
   assert(Idx < kNumberOfAccessSizes);
   return Idx;
 }