[PGO] Resubmit "MST based PGO instrumentation infrastructure" (r254021)
[oota-llvm.git] / lib / Transforms / Instrumentation / PGOInstrumentation.cpp
diff --git a/lib/Transforms/Instrumentation/PGOInstrumentation.cpp b/lib/Transforms/Instrumentation/PGOInstrumentation.cpp
new file mode 100644 (file)
index 0000000..4b59b93
--- /dev/null
@@ -0,0 +1,718 @@
+//===-- PGOInstrumentation.cpp - MST-based PGO Instrumentation ------------===//
+//
+//                      The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements PGO instrumentation using a minimum spanning tree based
+// on the following paper:
+//   [1] Donald E. Knuth, Francis R. Stevenson. Optimal measurement of points
+//   for program frequency counts. BIT Numerical Mathematics 1973, Volume 13,
+//   Issue 3, pp 313-322
+// The idea of the algorithm based on the fact that for each node (except for
+// the entry and exit), the sum of incoming edge counts equals the sum of
+// outgoing edge counts. The count of edge on spanning tree can be derived from
+// those edges not on the spanning tree. Knuth proves this method instruments
+// the minimum number of edges.
+//
+// The minimal spanning tree here is actually a maximum weight tree -- on-tree
+// edges have higher frequencies (more likely to execute). The idea is to
+// instrument those less frequently executed edges to reduce the runtime
+// overhead of instrumented binaries.
+//
+// This file contains two passes:
+// (1) Pass PGOInstrumentationGen which instruments the IR to generate edge
+// count profile, and
+// (2) Pass PGOInstrumentationUse which reads the edge count profile and
+// annotates the branch weights.
+// To get the precise counter information, These two passes need to invoke at
+// the same compilation point (so they see the same IR). For pass
+// PGOInstrumentationGen, the real work is done in instrumentOneFunc(). For
+// pass PGOInstrumentationUse, the real work in done in class PGOUseFunc and
+// the profile is opened in module level and passed to each PGOUseFunc instance.
+// The shared code for PGOInstrumentationGen and PGOInstrumentationUse is put
+// in class FuncPGOInstrumentation.
+//
+// Class PGOEdge represents a CFG edge and some auxiliary information. Class
+// BBInfo contains auxiliary information for each BB. These two classes are used
+// in pass PGOInstrumentationGen. Class PGOUseEdge and UseBBInfo are the derived
+// class of PGOEdge and BBInfo, respectively. They contains extra data structure
+// used in populating profile counters.
+// The MST implementation is in Class CFGMST (CFGMST.h).
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Transforms/Instrumentation.h"
+#include "CFGMST.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/BlockFrequencyInfo.h"
+#include "llvm/Analysis/BranchProbabilityInfo.h"
+#include "llvm/Analysis/CFG.h"
+#include "llvm/IR/DiagnosticInfo.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/InstIterator.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/MDBuilder.h"
+#include "llvm/IR/Module.h"
+#include "llvm/Pass.h"
+#include "llvm/ProfileData/InstrProfReader.h"
+#include "llvm/Support/BranchProbability.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/JamCRC.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include <string>
+#include <utility>
+#include <vector>
+
+using namespace llvm;
+
+#define DEBUG_TYPE "pgo-instrumentation"
+
+STATISTIC(NumOfPGOInstrument, "Number of edges instrumented.");
+STATISTIC(NumOfPGOEdge, "Number of edges.");
+STATISTIC(NumOfPGOBB, "Number of basic-blocks.");
+STATISTIC(NumOfPGOSplit, "Number of critical edge splits.");
+STATISTIC(NumOfPGOFunc, "Number of functions having valid profile counts.");
+STATISTIC(NumOfPGOMismatch, "Number of functions having mismatch profile.");
+STATISTIC(NumOfPGOMissing, "Number of functions without profile.");
+
+// Command line option to specify the file to read profile from. This is
+// mainly used for testing.
+static cl::opt<std::string>
+    PGOTestProfileFile("pgo-test-profile-file", cl::init(""), cl::Hidden,
+                       cl::value_desc("filename"),
+                       cl::desc("Specify the path of profile data file. This is"
+                                "mainly for test purpose."));
+
+namespace {
+class PGOInstrumentationGen : public ModulePass {
+public:
+  static char ID;
+
+  PGOInstrumentationGen() : ModulePass(ID) {
+    initializePGOInstrumentationGenPass(*PassRegistry::getPassRegistry());
+  }
+
+  const char *getPassName() const override {
+    return "PGOInstrumentationGenPass";
+  }
+
+private:
+  bool runOnModule(Module &M) override;
+
+  void getAnalysisUsage(AnalysisUsage &AU) const override {
+    AU.addRequired<BlockFrequencyInfoWrapperPass>();
+  }
+};
+
+class PGOInstrumentationUse : public ModulePass {
+public:
+  static char ID;
+
+  // Provide the profile filename as the parameter.
+  PGOInstrumentationUse(std::string Filename = "")
+      : ModulePass(ID), ProfileFileName(Filename) {
+    if (!PGOTestProfileFile.empty())
+      ProfileFileName = PGOTestProfileFile;
+    initializePGOInstrumentationUsePass(*PassRegistry::getPassRegistry());
+  }
+
+  const char *getPassName() const override {
+    return "PGOInstrumentationUsePass";
+  }
+
+private:
+  std::string ProfileFileName;
+  std::unique_ptr<IndexedInstrProfReader> PGOReader;
+  bool runOnModule(Module &M) override;
+
+  void getAnalysisUsage(AnalysisUsage &AU) const override {
+    AU.addRequired<BlockFrequencyInfoWrapperPass>();
+  }
+};
+} // end anonymous namespace
+
+char PGOInstrumentationGen::ID = 0;
+INITIALIZE_PASS_BEGIN(PGOInstrumentationGen, "pgo-instr-gen",
+                      "PGO instrumentation.", false, false)
+INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass)
+INITIALIZE_PASS_END(PGOInstrumentationGen, "pgo-instr-gen",
+                    "PGO instrumentation.", false, false)
+
+ModulePass *llvm::createPGOInstrumentationGenPass() {
+  return new PGOInstrumentationGen();
+}
+
+char PGOInstrumentationUse::ID = 0;
+INITIALIZE_PASS_BEGIN(PGOInstrumentationUse, "pgo-instr-use",
+                      "Read PGO instrumentation profile.", false, false)
+INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass)
+INITIALIZE_PASS_END(PGOInstrumentationUse, "pgo-instr-use",
+                    "Read PGO instrumentation profile.", false, false)
+
+ModulePass *llvm::createPGOInstrumentationUsePass(StringRef Filename) {
+  return new PGOInstrumentationUse(Filename.str());
+}
+
+namespace {
+/// \brief An MST based instrumentation for PGO
+///
+/// Implements a Minimum Spanning Tree (MST) based instrumentation for PGO
+/// in the function level.
+struct PGOEdge {
+  // This class implements the CFG edges. Note the CFG can be a multi-graph.
+  // So there might be multiple edges with same SrcBB and DestBB.
+  const BasicBlock *SrcBB;
+  const BasicBlock *DestBB;
+  uint64_t Weight;
+  bool InMST;
+  bool Removed;
+  bool IsCritical;
+  PGOEdge(const BasicBlock *Src, const BasicBlock *Dest, unsigned W = 1)
+      : SrcBB(Src), DestBB(Dest), Weight(W), InMST(false), Removed(false),
+        IsCritical(false) {}
+  // Return the information string of an edge.
+  const std::string infoString() const {
+    return (Twine(Removed ? "-" : " ") + (InMST ? " " : "*") +
+            (IsCritical ? "c" : " ") + "  W=" + Twine(Weight)).str();
+  }
+};
+
+// This class stores the auxiliary information for each BB.
+struct BBInfo {
+  BBInfo *Group;
+  uint32_t Index;
+  uint32_t Rank;
+
+  BBInfo(unsigned IX) : Group(this), Index(IX), Rank(0) {}
+
+  // Return the information string of this object.
+  const std::string infoString() const {
+    return (Twine("Index=") + Twine(Index)).str();
+  }
+};
+
+// This class implements the CFG edges. Note the CFG can be a multi-graph.
+template <class Edge, class BBInfo> class FuncPGOInstrumentation {
+private:
+  Function &F;
+  void computeCFGHash();
+
+public:
+  std::string FuncName;
+  GlobalVariable *FuncNameVar;
+  // CFG hash value for this function.
+  uint64_t FunctionHash;
+
+  // The Minimum Spanning Tree of function CFG.
+  CFGMST<Edge, BBInfo> MST;
+
+  // Give an edge, find the BB that will be instrumented.
+  // Return nullptr if there is no BB to be instrumented.
+  BasicBlock *getInstrBB(Edge *E);
+
+  // Return the auxiliary BB information.
+  BBInfo &getBBInfo(const BasicBlock *BB) const { return MST.getBBInfo(BB); }
+
+  // Dump edges and BB information.
+  void dumpInfo(std::string Str = "") const {
+    MST.dumpEdges(dbgs(), Twine("Dump Function ") + FuncName + " Hash: " +
+                          Twine(FunctionHash) + "\t" + Str);
+  }
+
+  FuncPGOInstrumentation(Function &Func, bool CreateGlobalVar = false,
+                         BranchProbabilityInfo *BPI = nullptr,
+                         BlockFrequencyInfo *BFI = nullptr)
+      : F(Func), FunctionHash(0), MST(F, BPI, BFI) {
+    FuncName = getPGOFuncName(F);
+    computeCFGHash();
+    DEBUG(dumpInfo("after CFGMST"));
+
+    NumOfPGOBB += MST.BBInfos.size();
+    for (auto &E : MST.AllEdges) {
+      if (E->Removed)
+        continue;
+      NumOfPGOEdge++;
+      if (!E->InMST)
+        NumOfPGOInstrument++;
+    }
+
+    if (CreateGlobalVar)
+      FuncNameVar = createPGOFuncNameVar(F, FuncName);
+  };
+};
+
+// Compute Hash value for the CFG: the lower 32 bits are CRC32 of the index
+// value of each BB in the CFG. The higher 32 bits record the number of edges.
+template <class Edge, class BBInfo>
+void FuncPGOInstrumentation<Edge, BBInfo>::computeCFGHash() {
+  std::vector<char> Indexes;
+  JamCRC JC;
+  for (auto &BB : F) {
+    const TerminatorInst *TI = BB.getTerminator();
+    for (unsigned I = 0, E = TI->getNumSuccessors(); I != E; ++I) {
+      BasicBlock *Succ = TI->getSuccessor(I);
+      uint32_t Index = getBBInfo(Succ).Index;
+      for (int J = 0; J < 4; J++)
+        Indexes.push_back((char)(Index >> (J * 8)));
+    }
+  }
+  JC.update(Indexes);
+  FunctionHash = (uint64_t)MST.AllEdges.size() << 32 | JC.getCRC();
+}
+
+// Given a CFG E to be instrumented, find which BB to place the instrumented
+// code. The function will split the critical edge if necessary.
+template <class Edge, class BBInfo>
+BasicBlock *FuncPGOInstrumentation<Edge, BBInfo>::getInstrBB(Edge *E) {
+  if (E->InMST || E->Removed)
+    return nullptr;
+
+  BasicBlock *SrcBB = const_cast<BasicBlock *>(E->SrcBB);
+  BasicBlock *DestBB = const_cast<BasicBlock *>(E->DestBB);
+  // For a fake edge, instrument the real BB.
+  if (SrcBB == nullptr)
+    return DestBB;
+  if (DestBB == nullptr)
+    return SrcBB;
+
+  // Instrument the SrcBB if it has a single successor,
+  // otherwise, the DestBB if this is not a critical edge.
+  TerminatorInst *TI = SrcBB->getTerminator();
+  if (TI->getNumSuccessors() <= 1)
+    return SrcBB;
+  if (!E->IsCritical)
+    return DestBB;
+
+  // For a critical edge, we have to split. Instrument the newly
+  // created BB.
+  NumOfPGOSplit++;
+  DEBUG(dbgs() << "Split critical edge: " << getBBInfo(SrcBB).Index << " --> "
+               << getBBInfo(DestBB).Index << "\n");
+  unsigned SuccNum = GetSuccessorNumber(SrcBB, DestBB);
+  BasicBlock *InstrBB = SplitCriticalEdge(TI, SuccNum);
+  assert(InstrBB && "Critical edge is not split");
+
+  E->Removed = true;
+  return InstrBB;
+}
+
+// Visit all edge and instrument the edges not in MST.
+// Critical edges will be split.
+static void instrumentOneFunc(Function &F, Module *M,
+                              BranchProbabilityInfo *BPI,
+                              BlockFrequencyInfo *BFI) {
+  unsigned NumCounters = 0;
+  FuncPGOInstrumentation<PGOEdge, BBInfo> FuncInfo(F, true, BPI, BFI);
+  for (auto &E : FuncInfo.MST.AllEdges) {
+    if (!E->InMST && !E->Removed)
+      NumCounters++;
+  }
+
+  uint32_t I = 0;
+  for (auto &E : FuncInfo.MST.AllEdges) {
+    BasicBlock *InstrBB = FuncInfo.getInstrBB(E.get());
+    if (!InstrBB)
+      continue;
+
+    IRBuilder<> Builder(InstrBB, InstrBB->getFirstInsertionPt());
+    assert(Builder.GetInsertPoint() != InstrBB->end() &&
+           "Cannot get the Instrumentation point");
+    Type *I8PtrTy = Type::getInt8PtrTy(M->getContext());
+    Builder.CreateCall(
+        Intrinsic::getDeclaration(M, Intrinsic::instrprof_increment),
+        {llvm::ConstantExpr::getBitCast(FuncInfo.FuncNameVar, I8PtrTy),
+         Builder.getInt64(FuncInfo.FunctionHash), Builder.getInt32(NumCounters),
+         Builder.getInt32(I++)});
+  }
+}
+
+// This class represents a CFG edge in profile use compilation.
+struct PGOUseEdge : public PGOEdge {
+  bool CountValid;
+  uint64_t CountValue;
+  PGOUseEdge(const BasicBlock *Src, const BasicBlock *Dest, unsigned W = 1)
+      : PGOEdge(Src, Dest, W), CountValid(false), CountValue(0) {}
+
+  // Set edge count value
+  void setEdgeCount(uint64_t Value) {
+    CountValue = Value;
+    CountValid = true;
+  }
+
+  // Return the information string for this object.
+  const std::string infoString() const {
+    if (!CountValid)
+      return PGOEdge::infoString();
+    return (Twine(PGOEdge::infoString()) + "  Count=" + Twine(CountValue)).str();
+  }
+};
+
+typedef SmallVector<PGOUseEdge *, 2> DirectEdges;
+
+// This class stores the auxiliary information for each BB.
+struct UseBBInfo : public BBInfo {
+  uint64_t CountValue;
+  bool CountValid;
+  int32_t UnknownCountInEdge;
+  int32_t UnknownCountOutEdge;
+  DirectEdges InEdges;
+  DirectEdges OutEdges;
+  UseBBInfo(unsigned IX)
+      : BBInfo(IX), CountValue(0), CountValid(false), UnknownCountInEdge(0),
+        UnknownCountOutEdge(0) {}
+  UseBBInfo(unsigned IX, uint64_t C)
+      : BBInfo(IX), CountValue(C), CountValid(true), UnknownCountInEdge(0),
+        UnknownCountOutEdge(0) {}
+
+  // Set the profile count value for this BB.
+  void setBBInfoCount(uint64_t Value) {
+    CountValue = Value;
+    CountValid = true;
+  }
+
+  // Return the information string of this object.
+  const std::string infoString() const {
+    if (!CountValid)
+      return BBInfo::infoString();
+    return (Twine(BBInfo::infoString()) + "  Count=" + Twine(CountValue)).str();
+  }
+};
+
+// Sum up the count values for all the edges.
+static uint64_t sumEdgeCount(const ArrayRef<PGOUseEdge *> Edges) {
+  uint64_t Total = 0;
+  for (auto &E : Edges) {
+    if (E->Removed)
+      continue;
+    Total += E->CountValue;
+  }
+  return Total;
+}
+
+class PGOUseFunc {
+private:
+  Function &F;
+  Module *M;
+  // This member stores the shared information with class PGOGenFunc.
+  FuncPGOInstrumentation<PGOUseEdge, UseBBInfo> FuncInfo;
+
+  // Return the auxiliary BB information.
+  UseBBInfo &getBBInfo(const BasicBlock *BB) const {
+    return FuncInfo.getBBInfo(BB);
+  }
+
+  // The maximum count value in the profile. This is only used in PGO use
+  // compilation.
+  uint64_t ProgramMaxCount;
+
+  // Find the Instrumented BB and set the value.
+  void setInstrumentedCounts(const std::vector<uint64_t> &CountFromProfile);
+
+  // Set the edge counter value for the unknown edge -- there should be only
+  // one unknown edge.
+  void setEdgeCount(DirectEdges &Edges, uint64_t Value);
+
+  // Return FuncName string;
+  const std::string getFuncName() const { return FuncInfo.FuncName; }
+
+  // Set the hot/cold inline hints based on the count values.
+  // FIXME: This function should be removed once the functionality in
+  // the inliner is implemented.
+  void applyFunctionAttributes(uint64_t EntryCount, uint64_t MaxCount) {
+    if (ProgramMaxCount == 0)
+      return;
+    // Threshold of the hot functions.
+    const BranchProbability HotFunctionThreshold(1, 100);
+    // Threshold of the cold functions.
+    const BranchProbability ColdFunctionThreshold(2, 10000);
+    if (EntryCount >= HotFunctionThreshold.scale(ProgramMaxCount))
+      F.addFnAttr(llvm::Attribute::InlineHint);
+    else if (MaxCount <= ColdFunctionThreshold.scale(ProgramMaxCount))
+      F.addFnAttr(llvm::Attribute::Cold);
+  }
+
+public:
+  PGOUseFunc(Function &Func, Module *Modu, BranchProbabilityInfo *BPI = nullptr,
+             BlockFrequencyInfo *BFI = nullptr)
+      : F(Func), M(Modu), FuncInfo(Func, false, BPI, BFI) {}
+
+  // Read counts for the instrumented BB from profile.
+  bool readCounters(IndexedInstrProfReader *PGOReader);
+
+  // Populate the counts for all BBs.
+  void populateCounters();
+
+  // Set the branch weights based on the count values.
+  void setBranchWeights();
+};
+
+// Visit all the edges and assign the count value for the instrumented
+// edges and the BB.
+void PGOUseFunc::setInstrumentedCounts(
+    const std::vector<uint64_t> &CountFromProfile) {
+
+  // Use a worklist as we will update the vector during the iteration.
+  std::vector<PGOUseEdge *> WorkList;
+  for (auto &E : FuncInfo.MST.AllEdges)
+    WorkList.push_back(E.get());
+
+  uint32_t I = 0;
+  for (auto &E : WorkList) {
+    BasicBlock *InstrBB = FuncInfo.getInstrBB(E);
+    if (!InstrBB)
+      continue;
+    uint64_t CountValue = CountFromProfile[I++];
+    if (!E->Removed) {
+      getBBInfo(InstrBB).setBBInfoCount(CountValue);
+      E->setEdgeCount(CountValue);
+      continue;
+    }
+
+    // Need to add two new edges.
+    BasicBlock *SrcBB = const_cast<BasicBlock *>(E->SrcBB);
+    BasicBlock *DestBB = const_cast<BasicBlock *>(E->DestBB);
+    // Add new edge of SrcBB->InstrBB.
+    PGOUseEdge &NewEdge = FuncInfo.MST.addEdge(SrcBB, InstrBB, 0);
+    NewEdge.setEdgeCount(CountValue);
+    // Add new edge of InstrBB->DestBB.
+    PGOUseEdge &NewEdge1 = FuncInfo.MST.addEdge(InstrBB, DestBB, 0);
+    NewEdge1.setEdgeCount(CountValue);
+    NewEdge1.InMST = true;
+    getBBInfo(InstrBB).setBBInfoCount(CountValue);
+  }
+}
+
+// Set the count value for the unknown edge. There should be one and only one
+// unknown edge in Edges vector.
+void PGOUseFunc::setEdgeCount(DirectEdges &Edges, uint64_t Value) {
+  for (auto &E : Edges) {
+    if (E->CountValid)
+      continue;
+    E->setEdgeCount(Value);
+
+    getBBInfo(E->SrcBB).UnknownCountOutEdge--;
+    getBBInfo(E->DestBB).UnknownCountInEdge--;
+    return;
+  }
+  llvm_unreachable("Cannot find the unknown count edge");
+}
+
+// Read the profile from ProfileFileName and assign the value to the
+// instrumented BB and the edges. This function also updates ProgramMaxCount.
+// Return true if the profile are successfully read, and false on errors.
+bool PGOUseFunc::readCounters(IndexedInstrProfReader *PGOReader) {
+  auto &Ctx = M->getContext();
+  ErrorOr<InstrProfRecord> Result =
+      PGOReader->getInstrProfRecord(FuncInfo.FuncName, FuncInfo.FunctionHash);
+  if (std::error_code EC = Result.getError()) {
+    if (EC == instrprof_error::unknown_function)
+      NumOfPGOMissing++;
+    else if (EC == instrprof_error::hash_mismatch ||
+             EC == llvm::instrprof_error::malformed)
+      NumOfPGOMismatch++;
+
+    std::string Msg = EC.message() + std::string(" ") + F.getName().str();
+    Ctx.diagnose(
+        DiagnosticInfoPGOProfile(M->getName().data(), Msg, DS_Warning));
+    return false;
+  }
+  std::vector<uint64_t> &CountFromProfile = Result.get().Counts;
+
+  NumOfPGOFunc++;
+  DEBUG(dbgs() << CountFromProfile.size() << " counts\n");
+  uint64_t ValueSum = 0;
+  for (unsigned I = 0, S = CountFromProfile.size(); I < S; I++) {
+    DEBUG(dbgs() << "  " << I << ": " << CountFromProfile[I] << "\n");
+    ValueSum += CountFromProfile[I];
+  }
+
+  DEBUG(dbgs() << "SUM =  " << ValueSum << "\n");
+
+  getBBInfo(nullptr).UnknownCountOutEdge = 2;
+  getBBInfo(nullptr).UnknownCountInEdge = 2;
+
+  setInstrumentedCounts(CountFromProfile);
+  ProgramMaxCount = PGOReader->getMaximumFunctionCount();
+  return true;
+}
+
+// Populate the counters from instrumented BBs to all BBs.
+// In the end of this operation, all BBs should have a valid count value.
+void PGOUseFunc::populateCounters() {
+  // First set up Count variable for all BBs.
+  for (auto &E : FuncInfo.MST.AllEdges) {
+    if (E->Removed)
+      continue;
+
+    const BasicBlock *SrcBB = E->SrcBB;
+    const BasicBlock *DestBB = E->DestBB;
+    UseBBInfo &SrcInfo = getBBInfo(SrcBB);
+    UseBBInfo &DestInfo = getBBInfo(DestBB);
+    SrcInfo.OutEdges.push_back(E.get());
+    DestInfo.InEdges.push_back(E.get());
+    SrcInfo.UnknownCountOutEdge++;
+    DestInfo.UnknownCountInEdge++;
+
+    if (!E->CountValid)
+      continue;
+    DestInfo.UnknownCountInEdge--;
+    SrcInfo.UnknownCountOutEdge--;
+  }
+
+  bool Changes = true;
+  unsigned NumPasses = 0;
+  while (Changes) {
+    NumPasses++;
+    Changes = false;
+
+    // For efficient traversal, it's better to start from the end as most
+    // of the instrumented edges are at the end.
+    for (auto &BB : reverse(F)) {
+      UseBBInfo &Count = getBBInfo(&BB);
+      if (!Count.CountValid) {
+        if (Count.UnknownCountOutEdge == 0) {
+          Count.CountValue = sumEdgeCount(Count.OutEdges);
+          Count.CountValid = true;
+          Changes = true;
+        } else if (Count.UnknownCountInEdge == 0) {
+          Count.CountValue = sumEdgeCount(Count.InEdges);
+          Count.CountValid = true;
+          Changes = true;
+        }
+      }
+      if (Count.CountValid) {
+        if (Count.UnknownCountOutEdge == 1) {
+          uint64_t Total = Count.CountValue - sumEdgeCount(Count.OutEdges);
+          setEdgeCount(Count.OutEdges, Total);
+          Changes = true;
+        }
+        if (Count.UnknownCountInEdge == 1) {
+          uint64_t Total = Count.CountValue - sumEdgeCount(Count.InEdges);
+          setEdgeCount(Count.InEdges, Total);
+          Changes = true;
+        }
+      }
+    }
+  }
+
+  DEBUG(dbgs() << "Populate counts in " << NumPasses << " passes.\n");
+  // Assert every BB has a valid counter.
+  uint64_t FuncEntryCount = getBBInfo(&*F.begin()).CountValue;
+  uint64_t FuncMaxCount = FuncEntryCount;
+  for (auto &BB : F) {
+    assert(getBBInfo(&BB).CountValid && "BB count is not valid");
+    uint64_t Count = getBBInfo(&BB).CountValue;
+    if (Count > FuncMaxCount)
+      FuncMaxCount = Count;
+  }
+  applyFunctionAttributes(FuncEntryCount, FuncMaxCount);
+
+  DEBUG(FuncInfo.dumpInfo("after reading profile."));
+}
+
+// Assign the scaled count values to the BB with multiple out edges.
+void PGOUseFunc::setBranchWeights() {
+  // Generate MD_prof metadata for every branch instruction.
+  DEBUG(dbgs() << "\nSetting branch weights.\n");
+  MDBuilder MDB(M->getContext());
+  for (auto &BB : F) {
+    TerminatorInst *TI = BB.getTerminator();
+    if (TI->getNumSuccessors() < 2)
+      continue;
+    if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI))
+      continue;
+    if (getBBInfo(&BB).CountValue == 0)
+      continue;
+
+    // We have a non-zero Branch BB.
+    const UseBBInfo &BBCountInfo = getBBInfo(&BB);
+    unsigned Size = BBCountInfo.OutEdges.size();
+    SmallVector<unsigned, 2> EdgeCounts(Size, 0);
+    uint64_t MaxCount = 0;
+    for (unsigned s = 0; s < Size; s++) {
+      const PGOUseEdge *E = BBCountInfo.OutEdges[s];
+      const BasicBlock *SrcBB = E->SrcBB;
+      const BasicBlock *DestBB = E->DestBB;
+      if (DestBB == 0)
+        continue;
+      unsigned SuccNum = GetSuccessorNumber(SrcBB, DestBB);
+      uint64_t EdgeCount = E->CountValue;
+      if (EdgeCount > MaxCount)
+        MaxCount = EdgeCount;
+      EdgeCounts[SuccNum] = EdgeCount;
+    }
+    assert(MaxCount > 0 && "Bad max count");
+    uint64_t Scale = calculateCountScale(MaxCount);
+    SmallVector<unsigned, 4> Weights;
+    for (const auto &ECI : EdgeCounts)
+      Weights.push_back(scaleBranchCount(ECI, Scale));
+
+    TI->setMetadata(llvm::LLVMContext::MD_prof,
+                    MDB.createBranchWeights(Weights));
+    DEBUG(dbgs() << "Weight is: ";
+          for (const auto &W : Weights) { dbgs() << W << " "; }
+          dbgs() << "\n";);
+  }
+}
+} // end anonymous namespace
+
+bool PGOInstrumentationGen::runOnModule(Module &M) {
+  for (auto &F : M) {
+    if (F.isDeclaration())
+      continue;
+    BranchProbabilityInfo *BPI =
+        &(getAnalysis<BranchProbabilityInfoWrapperPass>(F).getBPI());
+    BlockFrequencyInfo *BFI =
+        &(getAnalysis<BlockFrequencyInfoWrapperPass>(F).getBFI());
+    instrumentOneFunc(F, &M, BPI, BFI);
+  }
+  return true;
+}
+
+static void setPGOCountOnFunc(PGOUseFunc &Func,
+                              IndexedInstrProfReader *PGOReader) {
+  if (Func.readCounters(PGOReader)) {
+    Func.populateCounters();
+    Func.setBranchWeights();
+  }
+}
+
+bool PGOInstrumentationUse::runOnModule(Module &M) {
+  DEBUG(dbgs() << "Read in profile counters: ");
+  auto &Ctx = M.getContext();
+  // Read the counter array from file.
+  auto ReaderOrErr = IndexedInstrProfReader::create(ProfileFileName);
+  if (std::error_code EC = ReaderOrErr.getError()) {
+    Ctx.diagnose(
+        DiagnosticInfoPGOProfile(ProfileFileName.data(), EC.message()));
+    return false;
+  }
+
+  PGOReader = std::move(ReaderOrErr.get());
+  if (!PGOReader) {
+    Ctx.diagnose(DiagnosticInfoPGOProfile(ProfileFileName.data(),
+                                          "Cannot get PGOReader"));
+    return false;
+  }
+
+  for (auto &F : M) {
+    if (F.isDeclaration())
+      continue;
+    BranchProbabilityInfo *BPI =
+        &(getAnalysis<BranchProbabilityInfoWrapperPass>(F).getBPI());
+    BlockFrequencyInfo *BFI =
+        &(getAnalysis<BlockFrequencyInfoWrapperPass>(F).getBFI());
+    PGOUseFunc Func(F, &M, BPI, BFI);
+    setPGOCountOnFunc(Func, PGOReader.get());
+  }
+  return true;
+}