[PGO] Resubmit "MST based PGO instrumentation infrastructure" (r254021)
[oota-llvm.git] / lib / Transforms / Instrumentation / CFGMST.h
diff --git a/lib/Transforms/Instrumentation/CFGMST.h b/lib/Transforms/Instrumentation/CFGMST.h
new file mode 100644 (file)
index 0000000..c47fdbf
--- /dev/null
@@ -0,0 +1,217 @@
+//===-- CFGMST.h - Minimum Spanning Tree for CFG ----------------*- C++ -*-===//
+//
+//                      The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements a Union-find algorithm to compute Minimum Spanning Tree
+// for a given CFG.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/Analysis/BlockFrequencyInfo.h"
+#include "llvm/Analysis/BranchProbabilityInfo.h"
+#include "llvm/Analysis/CFG.h"
+#include "llvm/Support/BranchProbability.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include <string>
+#include <utility>
+#include <vector>
+
+namespace llvm {
+
+#define DEBUG_TYPE "cfgmst"
+
+/// \brief An union-find based Minimum Spanning Tree for CFG
+///
+/// Implements a Union-find algorithm to compute Minimum Spanning Tree
+/// for a given CFG.
+template <class Edge, class BBInfo> class CFGMST {
+public:
+  Function &F;
+
+  // Store all the edges in CFG. It may contain some stale edges
+  // when Removed is set.
+  std::vector<std::unique_ptr<Edge>> AllEdges;
+
+  // This map records the auxiliary information for each BB.
+  DenseMap<const BasicBlock *, std::unique_ptr<BBInfo>> BBInfos;
+
+  // Find the root group of the G and compress the path from G to the root.
+  BBInfo *findAndCompressGroup(BBInfo *G) {
+    if (G->Group != G)
+      G->Group = findAndCompressGroup(static_cast<BBInfo *>(G->Group));
+    return static_cast<BBInfo *>(G->Group);
+  }
+
+  // Union BB1 and BB2 into the same group and return true.
+  // Returns false if BB1 and BB2 are already in the same group.
+  bool unionGroups(const BasicBlock *BB1, const BasicBlock *BB2) {
+    BBInfo *BB1G = findAndCompressGroup(&getBBInfo(BB1));
+    BBInfo *BB2G = findAndCompressGroup(&getBBInfo(BB2));
+
+    if (BB1G == BB2G)
+      return false;
+
+    // Make the smaller rank tree a direct child or the root of high rank tree.
+    if (BB1G->Rank < BB2G->Rank)
+      BB1G->Group = BB2G;
+    else {
+      BB2G->Group = BB1G;
+      // If the ranks are the same, increment root of one tree by one.
+      if (BB1G->Rank == BB2G->Rank)
+        BB1G->Rank++;
+    }
+    return true;
+  }
+
+  // Give BB, return the auxiliary information.
+  BBInfo &getBBInfo(const BasicBlock *BB) const {
+    auto It = BBInfos.find(BB);
+    assert(It->second.get() != nullptr);
+    return *It->second.get();
+  }
+
+  // Traverse the CFG using a stack. Find all the edges and assign the weight.
+  // Edges with large weight will be put into MST first so they are less likely
+  // to be instrumented.
+  void buildEdges() {
+    DEBUG(dbgs() << "Build Edge on " << F.getName() << "\n");
+
+    const BasicBlock *BB = &(F.getEntryBlock());
+    uint64_t EntryWeight = (BFI != nullptr ? BFI->getEntryFreq() : 2);
+    // Add a fake edge to the entry.
+    addEdge(nullptr, BB, EntryWeight);
+
+    // Special handling for single BB functions.
+    if (succ_empty(BB)) {
+      addEdge(BB, nullptr, EntryWeight);
+      return;
+    }
+
+    static const uint32_t CriticalEdgeMultiplier = 1000;
+
+    for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
+      TerminatorInst *TI = BB->getTerminator();
+      uint64_t BBWeight =
+          (BFI != nullptr ? BFI->getBlockFreq(&*BB).getFrequency() : 2);
+      uint64_t Weight = 2;
+      if (int successors = TI->getNumSuccessors()) {
+        for (int i = 0; i != successors; ++i) {
+          BasicBlock *TargetBB = TI->getSuccessor(i);
+          bool Critical = isCriticalEdge(TI, i);
+          uint64_t scaleFactor = BBWeight;
+          if (Critical) {
+            if (scaleFactor < UINT64_MAX / CriticalEdgeMultiplier)
+              scaleFactor *= CriticalEdgeMultiplier;
+            else
+              scaleFactor = UINT64_MAX;
+          }
+          if (BPI != nullptr)
+            Weight = BPI->getEdgeProbability(&*BB, TargetBB).scale(scaleFactor);
+          addEdge(&*BB, TargetBB, Weight).IsCritical = Critical;
+          DEBUG(dbgs() << "  Edge: from " << BB->getName() << " to "
+                       << TargetBB->getName() << "  w=" << Weight << "\n");
+        }
+      } else {
+        addEdge(&*BB, nullptr, BBWeight);
+        DEBUG(dbgs() << "  Edge: from " << BB->getName() << " to exit"
+                     << " w = " << BBWeight << "\n");
+      }
+    }
+  }
+
+  // Sort CFG edges based on its weight.
+  void sortEdgesByWeight() {
+    std::stable_sort(AllEdges.begin(), AllEdges.end(),
+                     [](const std::unique_ptr<Edge> &Edge1,
+                        const std::unique_ptr<Edge> &Edge2) {
+                       return Edge1->Weight > Edge2->Weight;
+                     });
+  }
+
+  // Traverse all the edges and compute the Minimum Weight Spanning Tree
+  // using union-find algorithm.
+  void computeMinimumSpanningTree() {
+    // First, put all the critical edge with landing-pad as the Dest to MST.
+    // This works around the insufficient support of critical edges split
+    // when destination BB is a landing pad.
+    for (auto &Ei : AllEdges) {
+      if (Ei->Removed)
+        continue;
+      if (Ei->IsCritical) {
+        if (Ei->DestBB && Ei->DestBB->isLandingPad()) {
+          if (unionGroups(Ei->SrcBB, Ei->DestBB))
+            Ei->InMST = true;
+        }
+      }
+    }
+
+    for (auto &Ei : AllEdges) {
+      if (Ei->Removed)
+        continue;
+      if (unionGroups(Ei->SrcBB, Ei->DestBB))
+        Ei->InMST = true;
+    }
+  }
+
+  // Dump the Debug information about the instrumentation.
+  void dumpEdges(raw_ostream &OS, const Twine &Message) const {
+    if (!Message.str().empty())
+      OS << Message << "\n";
+    OS << "  Number of Basic Blocks: " << BBInfos.size() << "\n";
+    for (auto &BI : BBInfos) {
+      const BasicBlock *BB = BI.first;
+      OS << "  BB: " << (BB == nullptr ? "FakeNode" : BB->getName()) << "  "
+         << BI.second->infoString() << "\n";
+    }
+
+    OS << "  Number of Edges: " << AllEdges.size()
+       << " (*: Instrument, C: CriticalEdge, -: Removed)\n";
+    uint32_t Count = 0;
+    for (auto &EI : AllEdges)
+      OS << "  Edge " << Count++ << ": " << getBBInfo(EI->SrcBB).Index << "-->"
+         << getBBInfo(EI->DestBB).Index << EI->infoString() << "\n";
+  }
+
+  // Add an edge to AllEdges with weight W.
+  Edge &addEdge(const BasicBlock *Src, const BasicBlock *Dest, uint64_t W) {
+    uint32_t Index = BBInfos.size();
+    auto Iter = BBInfos.end();
+    bool Inserted;
+    std::tie(Iter, Inserted) = BBInfos.insert(std::make_pair(Src, nullptr));
+    if (Inserted) {
+      // Newly inserted, update the real info.
+      Iter->second = std::move(llvm::make_unique<BBInfo>(Index));
+      Index++;
+    }
+    std::tie(Iter, Inserted) = BBInfos.insert(std::make_pair(Dest, nullptr));
+    if (Inserted)
+      // Newly inserted, update the real info.
+      Iter->second = std::move(llvm::make_unique<BBInfo>(Index));
+    AllEdges.emplace_back(new Edge(Src, Dest, W));
+    return *AllEdges.back();
+  }
+
+  BranchProbabilityInfo *BPI;
+  BlockFrequencyInfo *BFI;
+
+public:
+  CFGMST(Function &Func, BranchProbabilityInfo *BPI_ = nullptr,
+         BlockFrequencyInfo *BFI_ = nullptr)
+      : F(Func), BPI(BPI_), BFI(BFI_) {
+    buildEdges();
+    sortEdgesByWeight();
+    computeMinimumSpanningTree();
+  }
+};
+
+#undef DEBUG_TYPE // "cfgmst"
+} // end namespace llvm