split and/or/xor out into one overly-large (2000LOC) file. However, I think
[oota-llvm.git] / lib / Transforms / InstCombine / InstructionCombining.cpp
index 62f74210d5aca9ab2db5531a812d2ec3242979c9..7b8d6647b9967bedfb39aa2faafa732db2af0193 100644 (file)
@@ -47,7 +47,6 @@
 #include "llvm/Target/TargetData.h"
 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
 #include "llvm/Transforms/Utils/Local.h"
-#include "llvm/Support/CallSite.h"
 #include "llvm/Support/Debug.h"
 #include "llvm/Support/ErrorHandling.h"
 #include "llvm/Support/GetElementPtrTypeIterator.h"
@@ -77,16 +76,6 @@ void InstCombiner::getAnalysisUsage(AnalysisUsage &AU) const {
 }
 
 
-// getPromotedType - Return the specified type promoted as it would be to pass
-// though a va_arg area.
-static const Type *getPromotedType(const Type *Ty) {
-  if (const IntegerType* ITy = dyn_cast<IntegerType>(Ty)) {
-    if (ITy->getBitWidth() < 32)
-      return Type::getInt32Ty(Ty->getContext());
-  }
-  return Ty;
-}
-
 /// ShouldChangeType - Return true if it is desirable to convert a computation
 /// from 'From' to 'To'.  We don't want to convert from a legal to an illegal
 /// type for example, or from a smaller to a larger illegal type.
@@ -114,21 +103,6 @@ bool InstCombiner::ShouldChangeType(const Type *From, const Type *To) const {
   return true;
 }
 
-/// getBitCastOperand - If the specified operand is a CastInst, a constant
-/// expression bitcast, or a GetElementPtrInst with all zero indices, return the
-/// operand value, otherwise return null.
-static Value *getBitCastOperand(Value *V) {
-  if (Operator *O = dyn_cast<Operator>(V)) {
-    if (O->getOpcode() == Instruction::BitCast)
-      return O->getOperand(0);
-    if (GEPOperator *GEP = dyn_cast<GEPOperator>(V))
-      if (GEP->hasAllZeroIndices())
-        return GEP->getPointerOperand();
-  }
-  return 0;
-}
-
-
 
 // SimplifyCommutative - This performs a few simplifications for commutative
 // operators:
@@ -216,75 +190,6 @@ Value *InstCombiner::dyn_castFNegVal(Value *V) const {
   return 0;
 }
 
-/// isFreeToInvert - Return true if the specified value is free to invert (apply
-/// ~ to).  This happens in cases where the ~ can be eliminated.
-static inline bool isFreeToInvert(Value *V) {
-  // ~(~(X)) -> X.
-  if (BinaryOperator::isNot(V))
-    return true;
-  
-  // Constants can be considered to be not'ed values.
-  if (isa<ConstantInt>(V))
-    return true;
-  
-  // Compares can be inverted if they have a single use.
-  if (CmpInst *CI = dyn_cast<CmpInst>(V))
-    return CI->hasOneUse();
-  
-  return false;
-}
-
-static inline Value *dyn_castNotVal(Value *V) {
-  // If this is not(not(x)) don't return that this is a not: we want the two
-  // not's to be folded first.
-  if (BinaryOperator::isNot(V)) {
-    Value *Operand = BinaryOperator::getNotArgument(V);
-    if (!isFreeToInvert(Operand))
-      return Operand;
-  }
-
-  // Constants can be considered to be not'ed values...
-  if (ConstantInt *C = dyn_cast<ConstantInt>(V))
-    return ConstantInt::get(C->getType(), ~C->getValue());
-  return 0;
-}
-
-
-
-// dyn_castFoldableMul - If this value is a multiply that can be folded into
-// other computations (because it has a constant operand), return the
-// non-constant operand of the multiply, and set CST to point to the multiplier.
-// Otherwise, return null.
-//
-static inline Value *dyn_castFoldableMul(Value *V, ConstantInt *&CST) {
-  if (V->hasOneUse() && V->getType()->isInteger())
-    if (Instruction *I = dyn_cast<Instruction>(V)) {
-      if (I->getOpcode() == Instruction::Mul)
-        if ((CST = dyn_cast<ConstantInt>(I->getOperand(1))))
-          return I->getOperand(0);
-      if (I->getOpcode() == Instruction::Shl)
-        if ((CST = dyn_cast<ConstantInt>(I->getOperand(1)))) {
-          // The multiplier is really 1 << CST.
-          uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
-          uint32_t CSTVal = CST->getLimitedValue(BitWidth);
-          CST = ConstantInt::get(V->getType()->getContext(),
-                                 APInt(BitWidth, 1).shl(CSTVal));
-          return I->getOperand(0);
-        }
-    }
-  return 0;
-}
-
-/// AddOne - Add one to a ConstantInt.
-static Constant *AddOne(Constant *C) {
-  return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1));
-}
-/// SubOne - Subtract one from a ConstantInt.
-static Constant *SubOne(ConstantInt *C) {
-  return ConstantInt::get(C->getContext(), C->getValue()-1);
-}
-
-
 static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO,
                                              InstCombiner *IC) {
   if (CastInst *CI = dyn_cast<CastInst>(&I))
@@ -463,3586 +368,177 @@ Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I,
   return ReplaceInstUsesWith(I, NewPN);
 }
 
-
-/// getICmpCode - Encode a icmp predicate into a three bit mask.  These bits
-/// are carefully arranged to allow folding of expressions such as:
-///
-///      (A < B) | (A > B) --> (A != B)
-///
-/// Note that this is only valid if the first and second predicates have the
-/// same sign. Is illegal to do: (A u< B) | (A s> B) 
-///
-/// Three bits are used to represent the condition, as follows:
-///   0  A > B
-///   1  A == B
-///   2  A < B
-///
-/// <=>  Value  Definition
-/// 000     0   Always false
-/// 001     1   A >  B
-/// 010     2   A == B
-/// 011     3   A >= B
-/// 100     4   A <  B
-/// 101     5   A != B
-/// 110     6   A <= B
-/// 111     7   Always true
-///  
-static unsigned getICmpCode(const ICmpInst *ICI) {
-  switch (ICI->getPredicate()) {
-    // False -> 0
-  case ICmpInst::ICMP_UGT: return 1;  // 001
-  case ICmpInst::ICMP_SGT: return 1;  // 001
-  case ICmpInst::ICMP_EQ:  return 2;  // 010
-  case ICmpInst::ICMP_UGE: return 3;  // 011
-  case ICmpInst::ICMP_SGE: return 3;  // 011
-  case ICmpInst::ICMP_ULT: return 4;  // 100
-  case ICmpInst::ICMP_SLT: return 4;  // 100
-  case ICmpInst::ICMP_NE:  return 5;  // 101
-  case ICmpInst::ICMP_ULE: return 6;  // 110
-  case ICmpInst::ICMP_SLE: return 6;  // 110
-    // True -> 7
-  default:
-    llvm_unreachable("Invalid ICmp predicate!");
-    return 0;
-  }
-}
-
-/// getFCmpCode - Similar to getICmpCode but for FCmpInst. This encodes a fcmp
-/// predicate into a three bit mask. It also returns whether it is an ordered
-/// predicate by reference.
-static unsigned getFCmpCode(FCmpInst::Predicate CC, bool &isOrdered) {
-  isOrdered = false;
-  switch (CC) {
-  case FCmpInst::FCMP_ORD: isOrdered = true; return 0;  // 000
-  case FCmpInst::FCMP_UNO:                   return 0;  // 000
-  case FCmpInst::FCMP_OGT: isOrdered = true; return 1;  // 001
-  case FCmpInst::FCMP_UGT:                   return 1;  // 001
-  case FCmpInst::FCMP_OEQ: isOrdered = true; return 2;  // 010
-  case FCmpInst::FCMP_UEQ:                   return 2;  // 010
-  case FCmpInst::FCMP_OGE: isOrdered = true; return 3;  // 011
-  case FCmpInst::FCMP_UGE:                   return 3;  // 011
-  case FCmpInst::FCMP_OLT: isOrdered = true; return 4;  // 100
-  case FCmpInst::FCMP_ULT:                   return 4;  // 100
-  case FCmpInst::FCMP_ONE: isOrdered = true; return 5;  // 101
-  case FCmpInst::FCMP_UNE:                   return 5;  // 101
-  case FCmpInst::FCMP_OLE: isOrdered = true; return 6;  // 110
-  case FCmpInst::FCMP_ULE:                   return 6;  // 110
-    // True -> 7
-  default:
-    // Not expecting FCMP_FALSE and FCMP_TRUE;
-    llvm_unreachable("Unexpected FCmp predicate!");
-    return 0;
-  }
-}
-
-/// getICmpValue - This is the complement of getICmpCode, which turns an
-/// opcode and two operands into either a constant true or false, or a brand 
-/// new ICmp instruction. The sign is passed in to determine which kind
-/// of predicate to use in the new icmp instruction.
-static Value *getICmpValue(bool Sign, unsigned Code, Value *LHS, Value *RHS) {
-  switch (Code) {
-  default: assert(0 && "Illegal ICmp code!");
-  case 0:
-    return ConstantInt::getFalse(LHS->getContext());
-  case 1: 
-    if (Sign)
-      return new ICmpInst(ICmpInst::ICMP_SGT, LHS, RHS);
-    return new ICmpInst(ICmpInst::ICMP_UGT, LHS, RHS);
-  case 2:
-    return new ICmpInst(ICmpInst::ICMP_EQ,  LHS, RHS);
-  case 3: 
-    if (Sign)
-      return new ICmpInst(ICmpInst::ICMP_SGE, LHS, RHS);
-    return new ICmpInst(ICmpInst::ICMP_UGE, LHS, RHS);
-  case 4: 
-    if (Sign)
-      return new ICmpInst(ICmpInst::ICMP_SLT, LHS, RHS);
-    return new ICmpInst(ICmpInst::ICMP_ULT, LHS, RHS);
-  case 5:
-    return new ICmpInst(ICmpInst::ICMP_NE,  LHS, RHS);
-  case 6: 
-    if (Sign)
-      return new ICmpInst(ICmpInst::ICMP_SLE, LHS, RHS);
-    return new ICmpInst(ICmpInst::ICMP_ULE, LHS, RHS);
-  case 7:
-    return ConstantInt::getTrue(LHS->getContext());
+/// FindElementAtOffset - Given a type and a constant offset, determine whether
+/// or not there is a sequence of GEP indices into the type that will land us at
+/// the specified offset.  If so, fill them into NewIndices and return the
+/// resultant element type, otherwise return null.
+const Type *InstCombiner::FindElementAtOffset(const Type *Ty, int64_t Offset, 
+                                          SmallVectorImpl<Value*> &NewIndices) {
+  if (!TD) return 0;
+  if (!Ty->isSized()) return 0;
+  
+  // Start with the index over the outer type.  Note that the type size
+  // might be zero (even if the offset isn't zero) if the indexed type
+  // is something like [0 x {int, int}]
+  const Type *IntPtrTy = TD->getIntPtrType(Ty->getContext());
+  int64_t FirstIdx = 0;
+  if (int64_t TySize = TD->getTypeAllocSize(Ty)) {
+    FirstIdx = Offset/TySize;
+    Offset -= FirstIdx*TySize;
+    
+    // Handle hosts where % returns negative instead of values [0..TySize).
+    if (Offset < 0) {
+      --FirstIdx;
+      Offset += TySize;
+      assert(Offset >= 0);
+    }
+    assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset");
   }
-}
-
-/// getFCmpValue - This is the complement of getFCmpCode, which turns an
-/// opcode and two operands into either a FCmp instruction. isordered is passed
-/// in to determine which kind of predicate to use in the new fcmp instruction.
-static Value *getFCmpValue(bool isordered, unsigned code,
-                           Value *LHS, Value *RHS) {
-  switch (code) {
-  default: llvm_unreachable("Illegal FCmp code!");
-  case  0:
-    if (isordered)
-      return new FCmpInst(FCmpInst::FCMP_ORD, LHS, RHS);
-    else
-      return new FCmpInst(FCmpInst::FCMP_UNO, LHS, RHS);
-  case  1: 
-    if (isordered)
-      return new FCmpInst(FCmpInst::FCMP_OGT, LHS, RHS);
-    else
-      return new FCmpInst(FCmpInst::FCMP_UGT, LHS, RHS);
-  case  2: 
-    if (isordered)
-      return new FCmpInst(FCmpInst::FCMP_OEQ, LHS, RHS);
-    else
-      return new FCmpInst(FCmpInst::FCMP_UEQ, LHS, RHS);
-  case  3: 
-    if (isordered)
-      return new FCmpInst(FCmpInst::FCMP_OGE, LHS, RHS);
-    else
-      return new FCmpInst(FCmpInst::FCMP_UGE, LHS, RHS);
-  case  4: 
-    if (isordered)
-      return new FCmpInst(FCmpInst::FCMP_OLT, LHS, RHS);
-    else
-      return new FCmpInst(FCmpInst::FCMP_ULT, LHS, RHS);
-  case  5: 
-    if (isordered)
-      return new FCmpInst(FCmpInst::FCMP_ONE, LHS, RHS);
-    else
-      return new FCmpInst(FCmpInst::FCMP_UNE, LHS, RHS);
-  case  6: 
-    if (isordered)
-      return new FCmpInst(FCmpInst::FCMP_OLE, LHS, RHS);
-    else
-      return new FCmpInst(FCmpInst::FCMP_ULE, LHS, RHS);
-  case  7: return ConstantInt::getTrue(LHS->getContext());
+  
+  NewIndices.push_back(ConstantInt::get(IntPtrTy, FirstIdx));
+    
+  // Index into the types.  If we fail, set OrigBase to null.
+  while (Offset) {
+    // Indexing into tail padding between struct/array elements.
+    if (uint64_t(Offset*8) >= TD->getTypeSizeInBits(Ty))
+      return 0;
+    
+    if (const StructType *STy = dyn_cast<StructType>(Ty)) {
+      const StructLayout *SL = TD->getStructLayout(STy);
+      assert(Offset < (int64_t)SL->getSizeInBytes() &&
+             "Offset must stay within the indexed type");
+      
+      unsigned Elt = SL->getElementContainingOffset(Offset);
+      NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
+                                            Elt));
+      
+      Offset -= SL->getElementOffset(Elt);
+      Ty = STy->getElementType(Elt);
+    } else if (const ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
+      uint64_t EltSize = TD->getTypeAllocSize(AT->getElementType());
+      assert(EltSize && "Cannot index into a zero-sized array");
+      NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize));
+      Offset %= EltSize;
+      Ty = AT->getElementType();
+    } else {
+      // Otherwise, we can't index into the middle of this atomic type, bail.
+      return 0;
+    }
   }
+  
+  return Ty;
 }
 
-/// PredicatesFoldable - Return true if both predicates match sign or if at
-/// least one of them is an equality comparison (which is signless).
-static bool PredicatesFoldable(ICmpInst::Predicate p1, ICmpInst::Predicate p2) {
-  return (CmpInst::isSigned(p1) == CmpInst::isSigned(p2)) ||
-         (CmpInst::isSigned(p1) && ICmpInst::isEquality(p2)) ||
-         (CmpInst::isSigned(p2) && ICmpInst::isEquality(p1));
-}
-
-// OptAndOp - This handles expressions of the form ((val OP C1) & C2).  Where
-// the Op parameter is 'OP', OpRHS is 'C1', and AndRHS is 'C2'.  Op is
-// guaranteed to be a binary operator.
-Instruction *InstCombiner::OptAndOp(Instruction *Op,
-                                    ConstantInt *OpRHS,
-                                    ConstantInt *AndRHS,
-                                    BinaryOperator &TheAnd) {
-  Value *X = Op->getOperand(0);
-  Constant *Together = 0;
-  if (!Op->isShift())
-    Together = ConstantExpr::getAnd(AndRHS, OpRHS);
-
-  switch (Op->getOpcode()) {
-  case Instruction::Xor:
-    if (Op->hasOneUse()) {
-      // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2)
-      Value *And = Builder->CreateAnd(X, AndRHS);
-      And->takeName(Op);
-      return BinaryOperator::CreateXor(And, Together);
-    }
-    break;
-  case Instruction::Or:
-    if (Together == AndRHS) // (X | C) & C --> C
-      return ReplaceInstUsesWith(TheAnd, AndRHS);
-
-    if (Op->hasOneUse() && Together != OpRHS) {
-      // (X | C1) & C2 --> (X | (C1&C2)) & C2
-      Value *Or = Builder->CreateOr(X, Together);
-      Or->takeName(Op);
-      return BinaryOperator::CreateAnd(Or, AndRHS);
-    }
-    break;
-  case Instruction::Add:
-    if (Op->hasOneUse()) {
-      // Adding a one to a single bit bit-field should be turned into an XOR
-      // of the bit.  First thing to check is to see if this AND is with a
-      // single bit constant.
-      const APInt &AndRHSV = cast<ConstantInt>(AndRHS)->getValue();
-
-      // If there is only one bit set.
-      if (AndRHSV.isPowerOf2()) {
-        // Ok, at this point, we know that we are masking the result of the
-        // ADD down to exactly one bit.  If the constant we are adding has
-        // no bits set below this bit, then we can eliminate the ADD.
-        const APInt& AddRHS = cast<ConstantInt>(OpRHS)->getValue();
 
-        // Check to see if any bits below the one bit set in AndRHSV are set.
-        if ((AddRHS & (AndRHSV-1)) == 0) {
-          // If not, the only thing that can effect the output of the AND is
-          // the bit specified by AndRHSV.  If that bit is set, the effect of
-          // the XOR is to toggle the bit.  If it is clear, then the ADD has
-          // no effect.
-          if ((AddRHS & AndRHSV) == 0) { // Bit is not set, noop
-            TheAnd.setOperand(0, X);
-            return &TheAnd;
-          } else {
-            // Pull the XOR out of the AND.
-            Value *NewAnd = Builder->CreateAnd(X, AndRHS);
-            NewAnd->takeName(Op);
-            return BinaryOperator::CreateXor(NewAnd, AndRHS);
-          }
-        }
-      }
-    }
-    break;
 
-  case Instruction::Shl: {
-    // We know that the AND will not produce any of the bits shifted in, so if
-    // the anded constant includes them, clear them now!
-    //
-    uint32_t BitWidth = AndRHS->getType()->getBitWidth();
-    uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
-    APInt ShlMask(APInt::getHighBitsSet(BitWidth, BitWidth-OpRHSVal));
-    ConstantInt *CI = ConstantInt::get(AndRHS->getContext(),
-                                       AndRHS->getValue() & ShlMask);
+Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
+  SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end());
 
-    if (CI->getValue() == ShlMask) { 
-    // Masking out bits that the shift already masks
-      return ReplaceInstUsesWith(TheAnd, Op);   // No need for the and.
-    } else if (CI != AndRHS) {                  // Reducing bits set in and.
-      TheAnd.setOperand(1, CI);
-      return &TheAnd;
-    }
-    break;
-  }
-  case Instruction::LShr: {
-    // We know that the AND will not produce any of the bits shifted in, so if
-    // the anded constant includes them, clear them now!  This only applies to
-    // unsigned shifts, because a signed shr may bring in set bits!
-    //
-    uint32_t BitWidth = AndRHS->getType()->getBitWidth();
-    uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
-    APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
-    ConstantInt *CI = ConstantInt::get(Op->getContext(),
-                                       AndRHS->getValue() & ShrMask);
+  if (Value *V = SimplifyGEPInst(&Ops[0], Ops.size(), TD))
+    return ReplaceInstUsesWith(GEP, V);
 
-    if (CI->getValue() == ShrMask) {   
-    // Masking out bits that the shift already masks.
-      return ReplaceInstUsesWith(TheAnd, Op);
-    } else if (CI != AndRHS) {
-      TheAnd.setOperand(1, CI);  // Reduce bits set in and cst.
-      return &TheAnd;
-    }
-    break;
-  }
-  case Instruction::AShr:
-    // Signed shr.
-    // See if this is shifting in some sign extension, then masking it out
-    // with an and.
-    if (Op->hasOneUse()) {
-      uint32_t BitWidth = AndRHS->getType()->getBitWidth();
-      uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
-      APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
-      Constant *C = ConstantInt::get(Op->getContext(),
-                                     AndRHS->getValue() & ShrMask);
-      if (C == AndRHS) {          // Masking out bits shifted in.
-        // (Val ashr C1) & C2 -> (Val lshr C1) & C2
-        // Make the argument unsigned.
-        Value *ShVal = Op->getOperand(0);
-        ShVal = Builder->CreateLShr(ShVal, OpRHS, Op->getName());
-        return BinaryOperator::CreateAnd(ShVal, AndRHS, TheAnd.getName());
-      }
-    }
-    break;
-  }
-  return 0;
-}
+  Value *PtrOp = GEP.getOperand(0);
 
+  if (isa<UndefValue>(GEP.getOperand(0)))
+    return ReplaceInstUsesWith(GEP, UndefValue::get(GEP.getType()));
 
-/// InsertRangeTest - Emit a computation of: (V >= Lo && V < Hi) if Inside is
-/// true, otherwise (V < Lo || V >= Hi).  In pratice, we emit the more efficient
-/// (V-Lo) <u Hi-Lo.  This method expects that Lo <= Hi. isSigned indicates
-/// whether to treat the V, Lo and HI as signed or not. IB is the location to
-/// insert new instructions.
-Instruction *InstCombiner::InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
-                                           bool isSigned, bool Inside, 
-                                           Instruction &IB) {
-  assert(cast<ConstantInt>(ConstantExpr::getICmp((isSigned ? 
-            ICmpInst::ICMP_SLE:ICmpInst::ICMP_ULE), Lo, Hi))->getZExtValue() &&
-         "Lo is not <= Hi in range emission code!");
+  // Eliminate unneeded casts for indices.
+  if (TD) {
+    bool MadeChange = false;
+    unsigned PtrSize = TD->getPointerSizeInBits();
     
-  if (Inside) {
-    if (Lo == Hi)  // Trivially false.
-      return new ICmpInst(ICmpInst::ICMP_NE, V, V);
-
-    // V >= Min && V < Hi --> V < Hi
-    if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
-      ICmpInst::Predicate pred = (isSigned ? 
-        ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT);
-      return new ICmpInst(pred, V, Hi);
+    gep_type_iterator GTI = gep_type_begin(GEP);
+    for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end();
+         I != E; ++I, ++GTI) {
+      if (!isa<SequentialType>(*GTI)) continue;
+      
+      // If we are using a wider index than needed for this platform, shrink it
+      // to what we need.  If narrower, sign-extend it to what we need.  This
+      // explicit cast can make subsequent optimizations more obvious.
+      unsigned OpBits = cast<IntegerType>((*I)->getType())->getBitWidth();
+      if (OpBits == PtrSize)
+        continue;
+      
+      *I = Builder->CreateIntCast(*I, TD->getIntPtrType(GEP.getContext()),true);
+      MadeChange = true;
     }
-
-    // Emit V-Lo <u Hi-Lo
-    Constant *NegLo = ConstantExpr::getNeg(Lo);
-    Value *Add = Builder->CreateAdd(V, NegLo, V->getName()+".off");
-    Constant *UpperBound = ConstantExpr::getAdd(NegLo, Hi);
-    return new ICmpInst(ICmpInst::ICMP_ULT, Add, UpperBound);
-  }
-
-  if (Lo == Hi)  // Trivially true.
-    return new ICmpInst(ICmpInst::ICMP_EQ, V, V);
-
-  // V < Min || V >= Hi -> V > Hi-1
-  Hi = SubOne(cast<ConstantInt>(Hi));
-  if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
-    ICmpInst::Predicate pred = (isSigned ? 
-        ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT);
-    return new ICmpInst(pred, V, Hi);
+    if (MadeChange) return &GEP;
   }
 
-  // Emit V-Lo >u Hi-1-Lo
-  // Note that Hi has already had one subtracted from it, above.
-  ConstantInt *NegLo = cast<ConstantInt>(ConstantExpr::getNeg(Lo));
-  Value *Add = Builder->CreateAdd(V, NegLo, V->getName()+".off");
-  Constant *LowerBound = ConstantExpr::getAdd(NegLo, Hi);
-  return new ICmpInst(ICmpInst::ICMP_UGT, Add, LowerBound);
-}
-
-// isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s with
-// any number of 0s on either side.  The 1s are allowed to wrap from LSB to
-// MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs.  0x0F0F0000 is
-// not, since all 1s are not contiguous.
-static bool isRunOfOnes(ConstantInt *Val, uint32_t &MB, uint32_t &ME) {
-  const APInt& V = Val->getValue();
-  uint32_t BitWidth = Val->getType()->getBitWidth();
-  if (!APIntOps::isShiftedMask(BitWidth, V)) return false;
-
-  // look for the first zero bit after the run of ones
-  MB = BitWidth - ((V - 1) ^ V).countLeadingZeros();
-  // look for the first non-zero bit
-  ME = V.getActiveBits(); 
-  return true;
-}
+  // Combine Indices - If the source pointer to this getelementptr instruction
+  // is a getelementptr instruction, combine the indices of the two
+  // getelementptr instructions into a single instruction.
+  //
+  if (GEPOperator *Src = dyn_cast<GEPOperator>(PtrOp)) {
+    // Note that if our source is a gep chain itself that we wait for that
+    // chain to be resolved before we perform this transformation.  This
+    // avoids us creating a TON of code in some cases.
+    //
+    if (GetElementPtrInst *SrcGEP =
+          dyn_cast<GetElementPtrInst>(Src->getOperand(0)))
+      if (SrcGEP->getNumOperands() == 2)
+        return 0;   // Wait until our source is folded to completion.
 
-/// FoldLogicalPlusAnd - This is part of an expression (LHS +/- RHS) & Mask,
-/// where isSub determines whether the operator is a sub.  If we can fold one of
-/// the following xforms:
-/// 
-/// ((A & N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == Mask
-/// ((A | N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
-/// ((A ^ N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
-///
-/// return (A +/- B).
-///
-Value *InstCombiner::FoldLogicalPlusAnd(Value *LHS, Value *RHS,
-                                        ConstantInt *Mask, bool isSub,
-                                        Instruction &I) {
-  Instruction *LHSI = dyn_cast<Instruction>(LHS);
-  if (!LHSI || LHSI->getNumOperands() != 2 ||
-      !isa<ConstantInt>(LHSI->getOperand(1))) return 0;
+    SmallVector<Value*, 8> Indices;
 
-  ConstantInt *N = cast<ConstantInt>(LHSI->getOperand(1));
+    // Find out whether the last index in the source GEP is a sequential idx.
+    bool EndsWithSequential = false;
+    for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src);
+         I != E; ++I)
+      EndsWithSequential = !isa<StructType>(*I);
 
-  switch (LHSI->getOpcode()) {
-  default: return 0;
-  case Instruction::And:
-    if (ConstantExpr::getAnd(N, Mask) == Mask) {
-      // If the AndRHS is a power of two minus one (0+1+), this is simple.
-      if ((Mask->getValue().countLeadingZeros() + 
-           Mask->getValue().countPopulation()) == 
-          Mask->getValue().getBitWidth())
-        break;
+    // Can we combine the two pointer arithmetics offsets?
+    if (EndsWithSequential) {
+      // Replace: gep (gep %P, long B), long A, ...
+      // With:    T = long A+B; gep %P, T, ...
+      //
+      Value *Sum;
+      Value *SO1 = Src->getOperand(Src->getNumOperands()-1);
+      Value *GO1 = GEP.getOperand(1);
+      if (SO1 == Constant::getNullValue(SO1->getType())) {
+        Sum = GO1;
+      } else if (GO1 == Constant::getNullValue(GO1->getType())) {
+        Sum = SO1;
+      } else {
+        // If they aren't the same type, then the input hasn't been processed
+        // by the loop above yet (which canonicalizes sequential index types to
+        // intptr_t).  Just avoid transforming this until the input has been
+        // normalized.
+        if (SO1->getType() != GO1->getType())
+          return 0;
+        Sum = Builder->CreateAdd(SO1, GO1, PtrOp->getName()+".sum");
+      }
 
-      // Otherwise, if Mask is 0+1+0+, and if B is known to have the low 0+
-      // part, we don't need any explicit masks to take them out of A.  If that
-      // is all N is, ignore it.
-      uint32_t MB = 0, ME = 0;
-      if (isRunOfOnes(Mask, MB, ME)) {  // begin/end bit of run, inclusive
-        uint32_t BitWidth = cast<IntegerType>(RHS->getType())->getBitWidth();
-        APInt Mask(APInt::getLowBitsSet(BitWidth, MB-1));
-        if (MaskedValueIsZero(RHS, Mask))
-          break;
+      // Update the GEP in place if possible.
+      if (Src->getNumOperands() == 2) {
+        GEP.setOperand(0, Src->getOperand(0));
+        GEP.setOperand(1, Sum);
+        return &GEP;
       }
+      Indices.append(Src->op_begin()+1, Src->op_end()-1);
+      Indices.push_back(Sum);
+      Indices.append(GEP.op_begin()+2, GEP.op_end());
+    } else if (isa<Constant>(*GEP.idx_begin()) &&
+               cast<Constant>(*GEP.idx_begin())->isNullValue() &&
+               Src->getNumOperands() != 1) {
+      // Otherwise we can do the fold if the first index of the GEP is a zero
+      Indices.append(Src->op_begin()+1, Src->op_end());
+      Indices.append(GEP.idx_begin()+1, GEP.idx_end());
     }
-    return 0;
-  case Instruction::Or:
-  case Instruction::Xor:
-    // If the AndRHS is a power of two minus one (0+1+), and N&Mask == 0
-    if ((Mask->getValue().countLeadingZeros() + 
-         Mask->getValue().countPopulation()) == Mask->getValue().getBitWidth()
-        && ConstantExpr::getAnd(N, Mask)->isNullValue())
-      break;
-    return 0;
-  }
-  
-  if (isSub)
-    return Builder->CreateSub(LHSI->getOperand(0), RHS, "fold");
-  return Builder->CreateAdd(LHSI->getOperand(0), RHS, "fold");
-}
 
-/// FoldAndOfICmps - Fold (icmp)&(icmp) if possible.
-Instruction *InstCombiner::FoldAndOfICmps(Instruction &I,
-                                          ICmpInst *LHS, ICmpInst *RHS) {
-  ICmpInst::Predicate LHSCC = LHS->getPredicate(), RHSCC = RHS->getPredicate();
-
-  // (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
-  if (PredicatesFoldable(LHSCC, RHSCC)) {
-    if (LHS->getOperand(0) == RHS->getOperand(1) &&
-        LHS->getOperand(1) == RHS->getOperand(0))
-      LHS->swapOperands();
-    if (LHS->getOperand(0) == RHS->getOperand(0) &&
-        LHS->getOperand(1) == RHS->getOperand(1)) {
-      Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
-      unsigned Code = getICmpCode(LHS) & getICmpCode(RHS);
-      bool isSigned = LHS->isSigned() || RHS->isSigned();
-      Value *RV = getICmpValue(isSigned, Code, Op0, Op1);
-      if (Instruction *I = dyn_cast<Instruction>(RV))
-        return I;
-      // Otherwise, it's a constant boolean value.
-      return ReplaceInstUsesWith(I, RV);
-    }
-  }
-  
-  // This only handles icmp of constants: (icmp1 A, C1) & (icmp2 B, C2).
-  Value *Val = LHS->getOperand(0), *Val2 = RHS->getOperand(0);
-  ConstantInt *LHSCst = dyn_cast<ConstantInt>(LHS->getOperand(1));
-  ConstantInt *RHSCst = dyn_cast<ConstantInt>(RHS->getOperand(1));
-  if (LHSCst == 0 || RHSCst == 0) return 0;
-  
-  if (LHSCst == RHSCst && LHSCC == RHSCC) {
-    // (icmp ult A, C) & (icmp ult B, C) --> (icmp ult (A|B), C)
-    // where C is a power of 2
-    if (LHSCC == ICmpInst::ICMP_ULT &&
-        LHSCst->getValue().isPowerOf2()) {
-      Value *NewOr = Builder->CreateOr(Val, Val2);
-      return new ICmpInst(LHSCC, NewOr, LHSCst);
-    }
-    
-    // (icmp eq A, 0) & (icmp eq B, 0) --> (icmp eq (A|B), 0)
-    if (LHSCC == ICmpInst::ICMP_EQ && LHSCst->isZero()) {
-      Value *NewOr = Builder->CreateOr(Val, Val2);
-      return new ICmpInst(LHSCC, NewOr, LHSCst);
-    }
+    if (!Indices.empty())
+      return (GEP.isInBounds() && Src->isInBounds()) ?
+        GetElementPtrInst::CreateInBounds(Src->getOperand(0), Indices.begin(),
+                                          Indices.end(), GEP.getName()) :
+        GetElementPtrInst::Create(Src->getOperand(0), Indices.begin(),
+                                  Indices.end(), GEP.getName());
   }
   
-  // From here on, we only handle:
-  //    (icmp1 A, C1) & (icmp2 A, C2) --> something simpler.
-  if (Val != Val2) return 0;
-  
-  // ICMP_[US][GL]E X, CST is folded to ICMP_[US][GL]T elsewhere.
-  if (LHSCC == ICmpInst::ICMP_UGE || LHSCC == ICmpInst::ICMP_ULE ||
-      RHSCC == ICmpInst::ICMP_UGE || RHSCC == ICmpInst::ICMP_ULE ||
-      LHSCC == ICmpInst::ICMP_SGE || LHSCC == ICmpInst::ICMP_SLE ||
-      RHSCC == ICmpInst::ICMP_SGE || RHSCC == ICmpInst::ICMP_SLE)
-    return 0;
-  
-  // We can't fold (ugt x, C) & (sgt x, C2).
-  if (!PredicatesFoldable(LHSCC, RHSCC))
-    return 0;
-    
-  // Ensure that the larger constant is on the RHS.
-  bool ShouldSwap;
-  if (CmpInst::isSigned(LHSCC) ||
-      (ICmpInst::isEquality(LHSCC) && 
-       CmpInst::isSigned(RHSCC)))
-    ShouldSwap = LHSCst->getValue().sgt(RHSCst->getValue());
-  else
-    ShouldSwap = LHSCst->getValue().ugt(RHSCst->getValue());
-    
-  if (ShouldSwap) {
-    std::swap(LHS, RHS);
-    std::swap(LHSCst, RHSCst);
-    std::swap(LHSCC, RHSCC);
-  }
-
-  // At this point, we know we have have two icmp instructions
-  // comparing a value against two constants and and'ing the result
-  // together.  Because of the above check, we know that we only have
-  // icmp eq, icmp ne, icmp [su]lt, and icmp [SU]gt here. We also know 
-  // (from the icmp folding check above), that the two constants 
-  // are not equal and that the larger constant is on the RHS
-  assert(LHSCst != RHSCst && "Compares not folded above?");
+  // Handle gep(bitcast x) and gep(gep x, 0, 0, 0).
+  Value *StrippedPtr = PtrOp->stripPointerCasts();
+  if (StrippedPtr != PtrOp) {
+    const PointerType *StrippedPtrTy =cast<PointerType>(StrippedPtr->getType());
 
-  switch (LHSCC) {
-  default: llvm_unreachable("Unknown integer condition code!");
-  case ICmpInst::ICMP_EQ:
-    switch (RHSCC) {
-    default: llvm_unreachable("Unknown integer condition code!");
-    case ICmpInst::ICMP_EQ:         // (X == 13 & X == 15) -> false
-    case ICmpInst::ICMP_UGT:        // (X == 13 & X >  15) -> false
-    case ICmpInst::ICMP_SGT:        // (X == 13 & X >  15) -> false
-      return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
-    case ICmpInst::ICMP_NE:         // (X == 13 & X != 15) -> X == 13
-    case ICmpInst::ICMP_ULT:        // (X == 13 & X <  15) -> X == 13
-    case ICmpInst::ICMP_SLT:        // (X == 13 & X <  15) -> X == 13
-      return ReplaceInstUsesWith(I, LHS);
-    }
-  case ICmpInst::ICMP_NE:
-    switch (RHSCC) {
-    default: llvm_unreachable("Unknown integer condition code!");
-    case ICmpInst::ICMP_ULT:
-      if (LHSCst == SubOne(RHSCst)) // (X != 13 & X u< 14) -> X < 13
-        return new ICmpInst(ICmpInst::ICMP_ULT, Val, LHSCst);
-      break;                        // (X != 13 & X u< 15) -> no change
-    case ICmpInst::ICMP_SLT:
-      if (LHSCst == SubOne(RHSCst)) // (X != 13 & X s< 14) -> X < 13
-        return new ICmpInst(ICmpInst::ICMP_SLT, Val, LHSCst);
-      break;                        // (X != 13 & X s< 15) -> no change
-    case ICmpInst::ICMP_EQ:         // (X != 13 & X == 15) -> X == 15
-    case ICmpInst::ICMP_UGT:        // (X != 13 & X u> 15) -> X u> 15
-    case ICmpInst::ICMP_SGT:        // (X != 13 & X s> 15) -> X s> 15
-      return ReplaceInstUsesWith(I, RHS);
-    case ICmpInst::ICMP_NE:
-      if (LHSCst == SubOne(RHSCst)){// (X != 13 & X != 14) -> X-13 >u 1
-        Constant *AddCST = ConstantExpr::getNeg(LHSCst);
-        Value *Add = Builder->CreateAdd(Val, AddCST, Val->getName()+".off");
-        return new ICmpInst(ICmpInst::ICMP_UGT, Add,
-                            ConstantInt::get(Add->getType(), 1));
-      }
-      break;                        // (X != 13 & X != 15) -> no change
-    }
-    break;
-  case ICmpInst::ICMP_ULT:
-    switch (RHSCC) {
-    default: llvm_unreachable("Unknown integer condition code!");
-    case ICmpInst::ICMP_EQ:         // (X u< 13 & X == 15) -> false
-    case ICmpInst::ICMP_UGT:        // (X u< 13 & X u> 15) -> false
-      return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
-    case ICmpInst::ICMP_SGT:        // (X u< 13 & X s> 15) -> no change
-      break;
-    case ICmpInst::ICMP_NE:         // (X u< 13 & X != 15) -> X u< 13
-    case ICmpInst::ICMP_ULT:        // (X u< 13 & X u< 15) -> X u< 13
-      return ReplaceInstUsesWith(I, LHS);
-    case ICmpInst::ICMP_SLT:        // (X u< 13 & X s< 15) -> no change
-      break;
-    }
-    break;
-  case ICmpInst::ICMP_SLT:
-    switch (RHSCC) {
-    default: llvm_unreachable("Unknown integer condition code!");
-    case ICmpInst::ICMP_EQ:         // (X s< 13 & X == 15) -> false
-    case ICmpInst::ICMP_SGT:        // (X s< 13 & X s> 15) -> false
-      return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
-    case ICmpInst::ICMP_UGT:        // (X s< 13 & X u> 15) -> no change
-      break;
-    case ICmpInst::ICMP_NE:         // (X s< 13 & X != 15) -> X < 13
-    case ICmpInst::ICMP_SLT:        // (X s< 13 & X s< 15) -> X < 13
-      return ReplaceInstUsesWith(I, LHS);
-    case ICmpInst::ICMP_ULT:        // (X s< 13 & X u< 15) -> no change
-      break;
-    }
-    break;
-  case ICmpInst::ICMP_UGT:
-    switch (RHSCC) {
-    default: llvm_unreachable("Unknown integer condition code!");
-    case ICmpInst::ICMP_EQ:         // (X u> 13 & X == 15) -> X == 15
-    case ICmpInst::ICMP_UGT:        // (X u> 13 & X u> 15) -> X u> 15
-      return ReplaceInstUsesWith(I, RHS);
-    case ICmpInst::ICMP_SGT:        // (X u> 13 & X s> 15) -> no change
-      break;
-    case ICmpInst::ICMP_NE:
-      if (RHSCst == AddOne(LHSCst)) // (X u> 13 & X != 14) -> X u> 14
-        return new ICmpInst(LHSCC, Val, RHSCst);
-      break;                        // (X u> 13 & X != 15) -> no change
-    case ICmpInst::ICMP_ULT:        // (X u> 13 & X u< 15) -> (X-14) <u 1
-      return InsertRangeTest(Val, AddOne(LHSCst),
-                             RHSCst, false, true, I);
-    case ICmpInst::ICMP_SLT:        // (X u> 13 & X s< 15) -> no change
-      break;
-    }
-    break;
-  case ICmpInst::ICMP_SGT:
-    switch (RHSCC) {
-    default: llvm_unreachable("Unknown integer condition code!");
-    case ICmpInst::ICMP_EQ:         // (X s> 13 & X == 15) -> X == 15
-    case ICmpInst::ICMP_SGT:        // (X s> 13 & X s> 15) -> X s> 15
-      return ReplaceInstUsesWith(I, RHS);
-    case ICmpInst::ICMP_UGT:        // (X s> 13 & X u> 15) -> no change
-      break;
-    case ICmpInst::ICMP_NE:
-      if (RHSCst == AddOne(LHSCst)) // (X s> 13 & X != 14) -> X s> 14
-        return new ICmpInst(LHSCC, Val, RHSCst);
-      break;                        // (X s> 13 & X != 15) -> no change
-    case ICmpInst::ICMP_SLT:        // (X s> 13 & X s< 15) -> (X-14) s< 1
-      return InsertRangeTest(Val, AddOne(LHSCst),
-                             RHSCst, true, true, I);
-    case ICmpInst::ICMP_ULT:        // (X s> 13 & X u< 15) -> no change
-      break;
-    }
-    break;
-  }
-  return 0;
-}
-
-Instruction *InstCombiner::FoldAndOfFCmps(Instruction &I, FCmpInst *LHS,
-                                          FCmpInst *RHS) {
-  
-  if (LHS->getPredicate() == FCmpInst::FCMP_ORD &&
-      RHS->getPredicate() == FCmpInst::FCMP_ORD) {
-    // (fcmp ord x, c) & (fcmp ord y, c)  -> (fcmp ord x, y)
-    if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
-      if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
-        // If either of the constants are nans, then the whole thing returns
-        // false.
-        if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
-          return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
-        return new FCmpInst(FCmpInst::FCMP_ORD,
-                            LHS->getOperand(0), RHS->getOperand(0));
-      }
-    
-    // Handle vector zeros.  This occurs because the canonical form of
-    // "fcmp ord x,x" is "fcmp ord x, 0".
-    if (isa<ConstantAggregateZero>(LHS->getOperand(1)) &&
-        isa<ConstantAggregateZero>(RHS->getOperand(1)))
-      return new FCmpInst(FCmpInst::FCMP_ORD,
-                          LHS->getOperand(0), RHS->getOperand(0));
-    return 0;
-  }
-  
-  Value *Op0LHS = LHS->getOperand(0), *Op0RHS = LHS->getOperand(1);
-  Value *Op1LHS = RHS->getOperand(0), *Op1RHS = RHS->getOperand(1);
-  FCmpInst::Predicate Op0CC = LHS->getPredicate(), Op1CC = RHS->getPredicate();
-  
-  
-  if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) {
-    // Swap RHS operands to match LHS.
-    Op1CC = FCmpInst::getSwappedPredicate(Op1CC);
-    std::swap(Op1LHS, Op1RHS);
-  }
-  
-  if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) {
-    // Simplify (fcmp cc0 x, y) & (fcmp cc1 x, y).
-    if (Op0CC == Op1CC)
-      return new FCmpInst((FCmpInst::Predicate)Op0CC, Op0LHS, Op0RHS);
-    
-    if (Op0CC == FCmpInst::FCMP_FALSE || Op1CC == FCmpInst::FCMP_FALSE)
-      return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
-    if (Op0CC == FCmpInst::FCMP_TRUE)
-      return ReplaceInstUsesWith(I, RHS);
-    if (Op1CC == FCmpInst::FCMP_TRUE)
-      return ReplaceInstUsesWith(I, LHS);
-    
-    bool Op0Ordered;
-    bool Op1Ordered;
-    unsigned Op0Pred = getFCmpCode(Op0CC, Op0Ordered);
-    unsigned Op1Pred = getFCmpCode(Op1CC, Op1Ordered);
-    if (Op1Pred == 0) {
-      std::swap(LHS, RHS);
-      std::swap(Op0Pred, Op1Pred);
-      std::swap(Op0Ordered, Op1Ordered);
-    }
-    if (Op0Pred == 0) {
-      // uno && ueq -> uno && (uno || eq) -> ueq
-      // ord && olt -> ord && (ord && lt) -> olt
-      if (Op0Ordered == Op1Ordered)
-        return ReplaceInstUsesWith(I, RHS);
-      
-      // uno && oeq -> uno && (ord && eq) -> false
-      // uno && ord -> false
-      if (!Op0Ordered)
-        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
-      // ord && ueq -> ord && (uno || eq) -> oeq
-      return cast<Instruction>(getFCmpValue(true, Op1Pred, Op0LHS, Op0RHS));
-    }
-  }
-
-  return 0;
-}
-
-
-Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
-  bool Changed = SimplifyCommutative(I);
-  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
-
-  if (Value *V = SimplifyAndInst(Op0, Op1, TD))
-    return ReplaceInstUsesWith(I, V);
-
-  // See if we can simplify any instructions used by the instruction whose sole 
-  // purpose is to compute bits we don't care about.
-  if (SimplifyDemandedInstructionBits(I))
-    return &I;  
-
-  if (ConstantInt *AndRHS = dyn_cast<ConstantInt>(Op1)) {
-    const APInt &AndRHSMask = AndRHS->getValue();
-    APInt NotAndRHS(~AndRHSMask);
-
-    // Optimize a variety of ((val OP C1) & C2) combinations...
-    if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
-      Value *Op0LHS = Op0I->getOperand(0);
-      Value *Op0RHS = Op0I->getOperand(1);
-      switch (Op0I->getOpcode()) {
-      default: break;
-      case Instruction::Xor:
-      case Instruction::Or:
-        // If the mask is only needed on one incoming arm, push it up.
-        if (!Op0I->hasOneUse()) break;
-          
-        if (MaskedValueIsZero(Op0LHS, NotAndRHS)) {
-          // Not masking anything out for the LHS, move to RHS.
-          Value *NewRHS = Builder->CreateAnd(Op0RHS, AndRHS,
-                                             Op0RHS->getName()+".masked");
-          return BinaryOperator::Create(Op0I->getOpcode(), Op0LHS, NewRHS);
-        }
-        if (!isa<Constant>(Op0RHS) &&
-            MaskedValueIsZero(Op0RHS, NotAndRHS)) {
-          // Not masking anything out for the RHS, move to LHS.
-          Value *NewLHS = Builder->CreateAnd(Op0LHS, AndRHS,
-                                             Op0LHS->getName()+".masked");
-          return BinaryOperator::Create(Op0I->getOpcode(), NewLHS, Op0RHS);
-        }
-
-        break;
-      case Instruction::Add:
-        // ((A & N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == AndRHS.
-        // ((A | N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
-        // ((A ^ N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
-        if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, false, I))
-          return BinaryOperator::CreateAnd(V, AndRHS);
-        if (Value *V = FoldLogicalPlusAnd(Op0RHS, Op0LHS, AndRHS, false, I))
-          return BinaryOperator::CreateAnd(V, AndRHS);  // Add commutes
-        break;
-
-      case Instruction::Sub:
-        // ((A & N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == AndRHS.
-        // ((A | N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
-        // ((A ^ N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
-        if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, true, I))
-          return BinaryOperator::CreateAnd(V, AndRHS);
-
-        // (A - N) & AndRHS -> -N & AndRHS iff A&AndRHS==0 and AndRHS
-        // has 1's for all bits that the subtraction with A might affect.
-        if (Op0I->hasOneUse()) {
-          uint32_t BitWidth = AndRHSMask.getBitWidth();
-          uint32_t Zeros = AndRHSMask.countLeadingZeros();
-          APInt Mask = APInt::getLowBitsSet(BitWidth, BitWidth - Zeros);
-
-          ConstantInt *A = dyn_cast<ConstantInt>(Op0LHS);
-          if (!(A && A->isZero()) &&               // avoid infinite recursion.
-              MaskedValueIsZero(Op0LHS, Mask)) {
-            Value *NewNeg = Builder->CreateNeg(Op0RHS);
-            return BinaryOperator::CreateAnd(NewNeg, AndRHS);
-          }
-        }
-        break;
-
-      case Instruction::Shl:
-      case Instruction::LShr:
-        // (1 << x) & 1 --> zext(x == 0)
-        // (1 >> x) & 1 --> zext(x == 0)
-        if (AndRHSMask == 1 && Op0LHS == AndRHS) {
-          Value *NewICmp =
-            Builder->CreateICmpEQ(Op0RHS, Constant::getNullValue(I.getType()));
-          return new ZExtInst(NewICmp, I.getType());
-        }
-        break;
-      }
-
-      if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1)))
-        if (Instruction *Res = OptAndOp(Op0I, Op0CI, AndRHS, I))
-          return Res;
-    } else if (CastInst *CI = dyn_cast<CastInst>(Op0)) {
-      // If this is an integer truncation or change from signed-to-unsigned, and
-      // if the source is an and/or with immediate, transform it.  This
-      // frequently occurs for bitfield accesses.
-      if (Instruction *CastOp = dyn_cast<Instruction>(CI->getOperand(0))) {
-        if ((isa<TruncInst>(CI) || isa<BitCastInst>(CI)) &&
-            CastOp->getNumOperands() == 2)
-          if (ConstantInt *AndCI =dyn_cast<ConstantInt>(CastOp->getOperand(1))){
-            if (CastOp->getOpcode() == Instruction::And) {
-              // Change: and (cast (and X, C1) to T), C2
-              // into  : and (cast X to T), trunc_or_bitcast(C1)&C2
-              // This will fold the two constants together, which may allow 
-              // other simplifications.
-              Value *NewCast = Builder->CreateTruncOrBitCast(
-                CastOp->getOperand(0), I.getType(), 
-                CastOp->getName()+".shrunk");
-              // trunc_or_bitcast(C1)&C2
-              Constant *C3 = ConstantExpr::getTruncOrBitCast(AndCI,I.getType());
-              C3 = ConstantExpr::getAnd(C3, AndRHS);
-              return BinaryOperator::CreateAnd(NewCast, C3);
-            } else if (CastOp->getOpcode() == Instruction::Or) {
-              // Change: and (cast (or X, C1) to T), C2
-              // into  : trunc(C1)&C2 iff trunc(C1)&C2 == C2
-              Constant *C3 = ConstantExpr::getTruncOrBitCast(AndCI,I.getType());
-              if (ConstantExpr::getAnd(C3, AndRHS) == AndRHS)
-                // trunc(C1)&C2
-                return ReplaceInstUsesWith(I, AndRHS);
-            }
-          }
-      }
-    }
-
-    // Try to fold constant and into select arguments.
-    if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
-      if (Instruction *R = FoldOpIntoSelect(I, SI))
-        return R;
-    if (isa<PHINode>(Op0))
-      if (Instruction *NV = FoldOpIntoPhi(I))
-        return NV;
-  }
-
-
-  // (~A & ~B) == (~(A | B)) - De Morgan's Law
-  if (Value *Op0NotVal = dyn_castNotVal(Op0))
-    if (Value *Op1NotVal = dyn_castNotVal(Op1))
-      if (Op0->hasOneUse() && Op1->hasOneUse()) {
-        Value *Or = Builder->CreateOr(Op0NotVal, Op1NotVal,
-                                      I.getName()+".demorgan");
-        return BinaryOperator::CreateNot(Or);
-      }
-
-  {
-    Value *A = 0, *B = 0, *C = 0, *D = 0;
-    // (A|B) & ~(A&B) -> A^B
-    if (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
-        match(Op1, m_Not(m_And(m_Value(C), m_Value(D)))) &&
-        ((A == C && B == D) || (A == D && B == C)))
-      return BinaryOperator::CreateXor(A, B);
-    
-    // ~(A&B) & (A|B) -> A^B
-    if (match(Op1, m_Or(m_Value(A), m_Value(B))) &&
-        match(Op0, m_Not(m_And(m_Value(C), m_Value(D)))) &&
-        ((A == C && B == D) || (A == D && B == C)))
-      return BinaryOperator::CreateXor(A, B);
-    
-    if (Op0->hasOneUse() &&
-        match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
-      if (A == Op1) {                                // (A^B)&A -> A&(A^B)
-        I.swapOperands();     // Simplify below
-        std::swap(Op0, Op1);
-      } else if (B == Op1) {                         // (A^B)&B -> B&(B^A)
-        cast<BinaryOperator>(Op0)->swapOperands();
-        I.swapOperands();     // Simplify below
-        std::swap(Op0, Op1);
-      }
-    }
-
-    if (Op1->hasOneUse() &&
-        match(Op1, m_Xor(m_Value(A), m_Value(B)))) {
-      if (B == Op0) {                                // B&(A^B) -> B&(B^A)
-        cast<BinaryOperator>(Op1)->swapOperands();
-        std::swap(A, B);
-      }
-      if (A == Op0)                                // A&(A^B) -> A & ~B
-        return BinaryOperator::CreateAnd(A, Builder->CreateNot(B, "tmp"));
-    }
-
-    // (A&((~A)|B)) -> A&B
-    if (match(Op0, m_Or(m_Not(m_Specific(Op1)), m_Value(A))) ||
-        match(Op0, m_Or(m_Value(A), m_Not(m_Specific(Op1)))))
-      return BinaryOperator::CreateAnd(A, Op1);
-    if (match(Op1, m_Or(m_Not(m_Specific(Op0)), m_Value(A))) ||
-        match(Op1, m_Or(m_Value(A), m_Not(m_Specific(Op0)))))
-      return BinaryOperator::CreateAnd(A, Op0);
-  }
-  
-  if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1))
-    if (ICmpInst *LHS = dyn_cast<ICmpInst>(Op0))
-      if (Instruction *Res = FoldAndOfICmps(I, LHS, RHS))
-        return Res;
-
-  // fold (and (cast A), (cast B)) -> (cast (and A, B))
-  if (CastInst *Op0C = dyn_cast<CastInst>(Op0))
-    if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
-      if (Op0C->getOpcode() == Op1C->getOpcode()) { // same cast kind ?
-        const Type *SrcTy = Op0C->getOperand(0)->getType();
-        if (SrcTy == Op1C->getOperand(0)->getType() &&
-            SrcTy->isIntOrIntVector() &&
-            // Only do this if the casts both really cause code to be generated.
-            ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0),
-                              I.getType()) &&
-            ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0), 
-                              I.getType())) {
-          Value *NewOp = Builder->CreateAnd(Op0C->getOperand(0),
-                                            Op1C->getOperand(0), I.getName());
-          return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
-        }
-      }
-    
-  // (X >> Z) & (Y >> Z)  -> (X&Y) >> Z  for all shifts.
-  if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) {
-    if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0))
-      if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() && 
-          SI0->getOperand(1) == SI1->getOperand(1) &&
-          (SI0->hasOneUse() || SI1->hasOneUse())) {
-        Value *NewOp =
-          Builder->CreateAnd(SI0->getOperand(0), SI1->getOperand(0),
-                             SI0->getName());
-        return BinaryOperator::Create(SI1->getOpcode(), NewOp, 
-                                      SI1->getOperand(1));
-      }
-  }
-
-  // If and'ing two fcmp, try combine them into one.
-  if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0))) {
-    if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
-      if (Instruction *Res = FoldAndOfFCmps(I, LHS, RHS))
-        return Res;
-  }
-
-  return Changed ? &I : 0;
-}
-
-/// CollectBSwapParts - Analyze the specified subexpression and see if it is
-/// capable of providing pieces of a bswap.  The subexpression provides pieces
-/// of a bswap if it is proven that each of the non-zero bytes in the output of
-/// the expression came from the corresponding "byte swapped" byte in some other
-/// value.  For example, if the current subexpression is "(shl i32 %X, 24)" then
-/// we know that the expression deposits the low byte of %X into the high byte
-/// of the bswap result and that all other bytes are zero.  This expression is
-/// accepted, the high byte of ByteValues is set to X to indicate a correct
-/// match.
-///
-/// This function returns true if the match was unsuccessful and false if so.
-/// On entry to the function the "OverallLeftShift" is a signed integer value
-/// indicating the number of bytes that the subexpression is later shifted.  For
-/// example, if the expression is later right shifted by 16 bits, the
-/// OverallLeftShift value would be -2 on entry.  This is used to specify which
-/// byte of ByteValues is actually being set.
-///
-/// Similarly, ByteMask is a bitmask where a bit is clear if its corresponding
-/// byte is masked to zero by a user.  For example, in (X & 255), X will be
-/// processed with a bytemask of 1.  Because bytemask is 32-bits, this limits
-/// this function to working on up to 32-byte (256 bit) values.  ByteMask is
-/// always in the local (OverallLeftShift) coordinate space.
-///
-static bool CollectBSwapParts(Value *V, int OverallLeftShift, uint32_t ByteMask,
-                              SmallVector<Value*, 8> &ByteValues) {
-  if (Instruction *I = dyn_cast<Instruction>(V)) {
-    // If this is an or instruction, it may be an inner node of the bswap.
-    if (I->getOpcode() == Instruction::Or) {
-      return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
-                               ByteValues) ||
-             CollectBSwapParts(I->getOperand(1), OverallLeftShift, ByteMask,
-                               ByteValues);
-    }
-  
-    // If this is a logical shift by a constant multiple of 8, recurse with
-    // OverallLeftShift and ByteMask adjusted.
-    if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) {
-      unsigned ShAmt = 
-        cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U);
-      // Ensure the shift amount is defined and of a byte value.
-      if ((ShAmt & 7) || (ShAmt > 8*ByteValues.size()))
-        return true;
-
-      unsigned ByteShift = ShAmt >> 3;
-      if (I->getOpcode() == Instruction::Shl) {
-        // X << 2 -> collect(X, +2)
-        OverallLeftShift += ByteShift;
-        ByteMask >>= ByteShift;
-      } else {
-        // X >>u 2 -> collect(X, -2)
-        OverallLeftShift -= ByteShift;
-        ByteMask <<= ByteShift;
-        ByteMask &= (~0U >> (32-ByteValues.size()));
-      }
-
-      if (OverallLeftShift >= (int)ByteValues.size()) return true;
-      if (OverallLeftShift <= -(int)ByteValues.size()) return true;
-
-      return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask, 
-                               ByteValues);
-    }
-
-    // If this is a logical 'and' with a mask that clears bytes, clear the
-    // corresponding bytes in ByteMask.
-    if (I->getOpcode() == Instruction::And &&
-        isa<ConstantInt>(I->getOperand(1))) {
-      // Scan every byte of the and mask, seeing if the byte is either 0 or 255.
-      unsigned NumBytes = ByteValues.size();
-      APInt Byte(I->getType()->getPrimitiveSizeInBits(), 255);
-      const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue();
-      
-      for (unsigned i = 0; i != NumBytes; ++i, Byte <<= 8) {
-        // If this byte is masked out by a later operation, we don't care what
-        // the and mask is.
-        if ((ByteMask & (1 << i)) == 0)
-          continue;
-        
-        // If the AndMask is all zeros for this byte, clear the bit.
-        APInt MaskB = AndMask & Byte;
-        if (MaskB == 0) {
-          ByteMask &= ~(1U << i);
-          continue;
-        }
-        
-        // If the AndMask is not all ones for this byte, it's not a bytezap.
-        if (MaskB != Byte)
-          return true;
-
-        // Otherwise, this byte is kept.
-      }
-
-      return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask, 
-                               ByteValues);
-    }
-  }
-  
-  // Okay, we got to something that isn't a shift, 'or' or 'and'.  This must be
-  // the input value to the bswap.  Some observations: 1) if more than one byte
-  // is demanded from this input, then it could not be successfully assembled
-  // into a byteswap.  At least one of the two bytes would not be aligned with
-  // their ultimate destination.
-  if (!isPowerOf2_32(ByteMask)) return true;
-  unsigned InputByteNo = CountTrailingZeros_32(ByteMask);
-  
-  // 2) The input and ultimate destinations must line up: if byte 3 of an i32
-  // is demanded, it needs to go into byte 0 of the result.  This means that the
-  // byte needs to be shifted until it lands in the right byte bucket.  The
-  // shift amount depends on the position: if the byte is coming from the high
-  // part of the value (e.g. byte 3) then it must be shifted right.  If from the
-  // low part, it must be shifted left.
-  unsigned DestByteNo = InputByteNo + OverallLeftShift;
-  if (InputByteNo < ByteValues.size()/2) {
-    if (ByteValues.size()-1-DestByteNo != InputByteNo)
-      return true;
-  } else {
-    if (ByteValues.size()-1-DestByteNo != InputByteNo)
-      return true;
-  }
-  
-  // If the destination byte value is already defined, the values are or'd
-  // together, which isn't a bswap (unless it's an or of the same bits).
-  if (ByteValues[DestByteNo] && ByteValues[DestByteNo] != V)
-    return true;
-  ByteValues[DestByteNo] = V;
-  return false;
-}
-
-/// MatchBSwap - Given an OR instruction, check to see if this is a bswap idiom.
-/// If so, insert the new bswap intrinsic and return it.
-Instruction *InstCombiner::MatchBSwap(BinaryOperator &I) {
-  const IntegerType *ITy = dyn_cast<IntegerType>(I.getType());
-  if (!ITy || ITy->getBitWidth() % 16 || 
-      // ByteMask only allows up to 32-byte values.
-      ITy->getBitWidth() > 32*8) 
-    return 0;   // Can only bswap pairs of bytes.  Can't do vectors.
-  
-  /// ByteValues - For each byte of the result, we keep track of which value
-  /// defines each byte.
-  SmallVector<Value*, 8> ByteValues;
-  ByteValues.resize(ITy->getBitWidth()/8);
-    
-  // Try to find all the pieces corresponding to the bswap.
-  uint32_t ByteMask = ~0U >> (32-ByteValues.size());
-  if (CollectBSwapParts(&I, 0, ByteMask, ByteValues))
-    return 0;
-  
-  // Check to see if all of the bytes come from the same value.
-  Value *V = ByteValues[0];
-  if (V == 0) return 0;  // Didn't find a byte?  Must be zero.
-  
-  // Check to make sure that all of the bytes come from the same value.
-  for (unsigned i = 1, e = ByteValues.size(); i != e; ++i)
-    if (ByteValues[i] != V)
-      return 0;
-  const Type *Tys[] = { ITy };
-  Module *M = I.getParent()->getParent()->getParent();
-  Function *F = Intrinsic::getDeclaration(M, Intrinsic::bswap, Tys, 1);
-  return CallInst::Create(F, V);
-}
-
-/// MatchSelectFromAndOr - We have an expression of the form (A&C)|(B&D).  Check
-/// If A is (cond?-1:0) and either B or D is ~(cond?-1,0) or (cond?0,-1), then
-/// we can simplify this expression to "cond ? C : D or B".
-static Instruction *MatchSelectFromAndOr(Value *A, Value *B,
-                                         Value *C, Value *D) {
-  // If A is not a select of -1/0, this cannot match.
-  Value *Cond = 0;
-  if (!match(A, m_SelectCst<-1, 0>(m_Value(Cond))))
-    return 0;
-
-  // ((cond?-1:0)&C) | (B&(cond?0:-1)) -> cond ? C : B.
-  if (match(D, m_SelectCst<0, -1>(m_Specific(Cond))))
-    return SelectInst::Create(Cond, C, B);
-  if (match(D, m_Not(m_SelectCst<-1, 0>(m_Specific(Cond)))))
-    return SelectInst::Create(Cond, C, B);
-  // ((cond?-1:0)&C) | ((cond?0:-1)&D) -> cond ? C : D.
-  if (match(B, m_SelectCst<0, -1>(m_Specific(Cond))))
-    return SelectInst::Create(Cond, C, D);
-  if (match(B, m_Not(m_SelectCst<-1, 0>(m_Specific(Cond)))))
-    return SelectInst::Create(Cond, C, D);
-  return 0;
-}
-
-/// FoldOrOfICmps - Fold (icmp)|(icmp) if possible.
-Instruction *InstCombiner::FoldOrOfICmps(Instruction &I,
-                                         ICmpInst *LHS, ICmpInst *RHS) {
-  ICmpInst::Predicate LHSCC = LHS->getPredicate(), RHSCC = RHS->getPredicate();
-
-  // (icmp1 A, B) | (icmp2 A, B) --> (icmp3 A, B)
-  if (PredicatesFoldable(LHSCC, RHSCC)) {
-    if (LHS->getOperand(0) == RHS->getOperand(1) &&
-        LHS->getOperand(1) == RHS->getOperand(0))
-      LHS->swapOperands();
-    if (LHS->getOperand(0) == RHS->getOperand(0) &&
-        LHS->getOperand(1) == RHS->getOperand(1)) {
-      Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
-      unsigned Code = getICmpCode(LHS) | getICmpCode(RHS);
-      bool isSigned = LHS->isSigned() || RHS->isSigned();
-      Value *RV = getICmpValue(isSigned, Code, Op0, Op1);
-      if (Instruction *I = dyn_cast<Instruction>(RV))
-        return I;
-      // Otherwise, it's a constant boolean value.
-      return ReplaceInstUsesWith(I, RV);
-    }
-  }
-  
-  // This only handles icmp of constants: (icmp1 A, C1) | (icmp2 B, C2).
-  Value *Val = LHS->getOperand(0), *Val2 = RHS->getOperand(0);
-  ConstantInt *LHSCst = dyn_cast<ConstantInt>(LHS->getOperand(1));
-  ConstantInt *RHSCst = dyn_cast<ConstantInt>(RHS->getOperand(1));
-  if (LHSCst == 0 || RHSCst == 0) return 0;
-
-  // (icmp ne A, 0) | (icmp ne B, 0) --> (icmp ne (A|B), 0)
-  if (LHSCst == RHSCst && LHSCC == RHSCC &&
-      LHSCC == ICmpInst::ICMP_NE && LHSCst->isZero()) {
-    Value *NewOr = Builder->CreateOr(Val, Val2);
-    return new ICmpInst(LHSCC, NewOr, LHSCst);
-  }
-  
-  // From here on, we only handle:
-  //    (icmp1 A, C1) | (icmp2 A, C2) --> something simpler.
-  if (Val != Val2) return 0;
-  
-  // ICMP_[US][GL]E X, CST is folded to ICMP_[US][GL]T elsewhere.
-  if (LHSCC == ICmpInst::ICMP_UGE || LHSCC == ICmpInst::ICMP_ULE ||
-      RHSCC == ICmpInst::ICMP_UGE || RHSCC == ICmpInst::ICMP_ULE ||
-      LHSCC == ICmpInst::ICMP_SGE || LHSCC == ICmpInst::ICMP_SLE ||
-      RHSCC == ICmpInst::ICMP_SGE || RHSCC == ICmpInst::ICMP_SLE)
-    return 0;
-  
-  // We can't fold (ugt x, C) | (sgt x, C2).
-  if (!PredicatesFoldable(LHSCC, RHSCC))
-    return 0;
-  
-  // Ensure that the larger constant is on the RHS.
-  bool ShouldSwap;
-  if (CmpInst::isSigned(LHSCC) ||
-      (ICmpInst::isEquality(LHSCC) && 
-       CmpInst::isSigned(RHSCC)))
-    ShouldSwap = LHSCst->getValue().sgt(RHSCst->getValue());
-  else
-    ShouldSwap = LHSCst->getValue().ugt(RHSCst->getValue());
-  
-  if (ShouldSwap) {
-    std::swap(LHS, RHS);
-    std::swap(LHSCst, RHSCst);
-    std::swap(LHSCC, RHSCC);
-  }
-  
-  // At this point, we know we have have two icmp instructions
-  // comparing a value against two constants and or'ing the result
-  // together.  Because of the above check, we know that we only have
-  // ICMP_EQ, ICMP_NE, ICMP_LT, and ICMP_GT here. We also know (from the
-  // icmp folding check above), that the two constants are not
-  // equal.
-  assert(LHSCst != RHSCst && "Compares not folded above?");
-
-  switch (LHSCC) {
-  default: llvm_unreachable("Unknown integer condition code!");
-  case ICmpInst::ICMP_EQ:
-    switch (RHSCC) {
-    default: llvm_unreachable("Unknown integer condition code!");
-    case ICmpInst::ICMP_EQ:
-      if (LHSCst == SubOne(RHSCst)) {
-        // (X == 13 | X == 14) -> X-13 <u 2
-        Constant *AddCST = ConstantExpr::getNeg(LHSCst);
-        Value *Add = Builder->CreateAdd(Val, AddCST, Val->getName()+".off");
-        AddCST = ConstantExpr::getSub(AddOne(RHSCst), LHSCst);
-        return new ICmpInst(ICmpInst::ICMP_ULT, Add, AddCST);
-      }
-      break;                         // (X == 13 | X == 15) -> no change
-    case ICmpInst::ICMP_UGT:         // (X == 13 | X u> 14) -> no change
-    case ICmpInst::ICMP_SGT:         // (X == 13 | X s> 14) -> no change
-      break;
-    case ICmpInst::ICMP_NE:          // (X == 13 | X != 15) -> X != 15
-    case ICmpInst::ICMP_ULT:         // (X == 13 | X u< 15) -> X u< 15
-    case ICmpInst::ICMP_SLT:         // (X == 13 | X s< 15) -> X s< 15
-      return ReplaceInstUsesWith(I, RHS);
-    }
-    break;
-  case ICmpInst::ICMP_NE:
-    switch (RHSCC) {
-    default: llvm_unreachable("Unknown integer condition code!");
-    case ICmpInst::ICMP_EQ:          // (X != 13 | X == 15) -> X != 13
-    case ICmpInst::ICMP_UGT:         // (X != 13 | X u> 15) -> X != 13
-    case ICmpInst::ICMP_SGT:         // (X != 13 | X s> 15) -> X != 13
-      return ReplaceInstUsesWith(I, LHS);
-    case ICmpInst::ICMP_NE:          // (X != 13 | X != 15) -> true
-    case ICmpInst::ICMP_ULT:         // (X != 13 | X u< 15) -> true
-    case ICmpInst::ICMP_SLT:         // (X != 13 | X s< 15) -> true
-      return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
-    }
-    break;
-  case ICmpInst::ICMP_ULT:
-    switch (RHSCC) {
-    default: llvm_unreachable("Unknown integer condition code!");
-    case ICmpInst::ICMP_EQ:         // (X u< 13 | X == 14) -> no change
-      break;
-    case ICmpInst::ICMP_UGT:        // (X u< 13 | X u> 15) -> (X-13) u> 2
-      // If RHSCst is [us]MAXINT, it is always false.  Not handling
-      // this can cause overflow.
-      if (RHSCst->isMaxValue(false))
-        return ReplaceInstUsesWith(I, LHS);
-      return InsertRangeTest(Val, LHSCst, AddOne(RHSCst),
-                             false, false, I);
-    case ICmpInst::ICMP_SGT:        // (X u< 13 | X s> 15) -> no change
-      break;
-    case ICmpInst::ICMP_NE:         // (X u< 13 | X != 15) -> X != 15
-    case ICmpInst::ICMP_ULT:        // (X u< 13 | X u< 15) -> X u< 15
-      return ReplaceInstUsesWith(I, RHS);
-    case ICmpInst::ICMP_SLT:        // (X u< 13 | X s< 15) -> no change
-      break;
-    }
-    break;
-  case ICmpInst::ICMP_SLT:
-    switch (RHSCC) {
-    default: llvm_unreachable("Unknown integer condition code!");
-    case ICmpInst::ICMP_EQ:         // (X s< 13 | X == 14) -> no change
-      break;
-    case ICmpInst::ICMP_SGT:        // (X s< 13 | X s> 15) -> (X-13) s> 2
-      // If RHSCst is [us]MAXINT, it is always false.  Not handling
-      // this can cause overflow.
-      if (RHSCst->isMaxValue(true))
-        return ReplaceInstUsesWith(I, LHS);
-      return InsertRangeTest(Val, LHSCst, AddOne(RHSCst),
-                             true, false, I);
-    case ICmpInst::ICMP_UGT:        // (X s< 13 | X u> 15) -> no change
-      break;
-    case ICmpInst::ICMP_NE:         // (X s< 13 | X != 15) -> X != 15
-    case ICmpInst::ICMP_SLT:        // (X s< 13 | X s< 15) -> X s< 15
-      return ReplaceInstUsesWith(I, RHS);
-    case ICmpInst::ICMP_ULT:        // (X s< 13 | X u< 15) -> no change
-      break;
-    }
-    break;
-  case ICmpInst::ICMP_UGT:
-    switch (RHSCC) {
-    default: llvm_unreachable("Unknown integer condition code!");
-    case ICmpInst::ICMP_EQ:         // (X u> 13 | X == 15) -> X u> 13
-    case ICmpInst::ICMP_UGT:        // (X u> 13 | X u> 15) -> X u> 13
-      return ReplaceInstUsesWith(I, LHS);
-    case ICmpInst::ICMP_SGT:        // (X u> 13 | X s> 15) -> no change
-      break;
-    case ICmpInst::ICMP_NE:         // (X u> 13 | X != 15) -> true
-    case ICmpInst::ICMP_ULT:        // (X u> 13 | X u< 15) -> true
-      return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
-    case ICmpInst::ICMP_SLT:        // (X u> 13 | X s< 15) -> no change
-      break;
-    }
-    break;
-  case ICmpInst::ICMP_SGT:
-    switch (RHSCC) {
-    default: llvm_unreachable("Unknown integer condition code!");
-    case ICmpInst::ICMP_EQ:         // (X s> 13 | X == 15) -> X > 13
-    case ICmpInst::ICMP_SGT:        // (X s> 13 | X s> 15) -> X > 13
-      return ReplaceInstUsesWith(I, LHS);
-    case ICmpInst::ICMP_UGT:        // (X s> 13 | X u> 15) -> no change
-      break;
-    case ICmpInst::ICMP_NE:         // (X s> 13 | X != 15) -> true
-    case ICmpInst::ICMP_SLT:        // (X s> 13 | X s< 15) -> true
-      return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
-    case ICmpInst::ICMP_ULT:        // (X s> 13 | X u< 15) -> no change
-      break;
-    }
-    break;
-  }
-  return 0;
-}
-
-Instruction *InstCombiner::FoldOrOfFCmps(Instruction &I, FCmpInst *LHS,
-                                         FCmpInst *RHS) {
-  if (LHS->getPredicate() == FCmpInst::FCMP_UNO &&
-      RHS->getPredicate() == FCmpInst::FCMP_UNO && 
-      LHS->getOperand(0)->getType() == RHS->getOperand(0)->getType()) {
-    if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
-      if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
-        // If either of the constants are nans, then the whole thing returns
-        // true.
-        if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
-          return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
-        
-        // Otherwise, no need to compare the two constants, compare the
-        // rest.
-        return new FCmpInst(FCmpInst::FCMP_UNO,
-                            LHS->getOperand(0), RHS->getOperand(0));
-      }
-    
-    // Handle vector zeros.  This occurs because the canonical form of
-    // "fcmp uno x,x" is "fcmp uno x, 0".
-    if (isa<ConstantAggregateZero>(LHS->getOperand(1)) &&
-        isa<ConstantAggregateZero>(RHS->getOperand(1)))
-      return new FCmpInst(FCmpInst::FCMP_UNO,
-                          LHS->getOperand(0), RHS->getOperand(0));
-    
-    return 0;
-  }
-  
-  Value *Op0LHS = LHS->getOperand(0), *Op0RHS = LHS->getOperand(1);
-  Value *Op1LHS = RHS->getOperand(0), *Op1RHS = RHS->getOperand(1);
-  FCmpInst::Predicate Op0CC = LHS->getPredicate(), Op1CC = RHS->getPredicate();
-  
-  if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) {
-    // Swap RHS operands to match LHS.
-    Op1CC = FCmpInst::getSwappedPredicate(Op1CC);
-    std::swap(Op1LHS, Op1RHS);
-  }
-  if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) {
-    // Simplify (fcmp cc0 x, y) | (fcmp cc1 x, y).
-    if (Op0CC == Op1CC)
-      return new FCmpInst((FCmpInst::Predicate)Op0CC,
-                          Op0LHS, Op0RHS);
-    if (Op0CC == FCmpInst::FCMP_TRUE || Op1CC == FCmpInst::FCMP_TRUE)
-      return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
-    if (Op0CC == FCmpInst::FCMP_FALSE)
-      return ReplaceInstUsesWith(I, RHS);
-    if (Op1CC == FCmpInst::FCMP_FALSE)
-      return ReplaceInstUsesWith(I, LHS);
-    bool Op0Ordered;
-    bool Op1Ordered;
-    unsigned Op0Pred = getFCmpCode(Op0CC, Op0Ordered);
-    unsigned Op1Pred = getFCmpCode(Op1CC, Op1Ordered);
-    if (Op0Ordered == Op1Ordered) {
-      // If both are ordered or unordered, return a new fcmp with
-      // or'ed predicates.
-      Value *RV = getFCmpValue(Op0Ordered, Op0Pred|Op1Pred, Op0LHS, Op0RHS);
-      if (Instruction *I = dyn_cast<Instruction>(RV))
-        return I;
-      // Otherwise, it's a constant boolean value...
-      return ReplaceInstUsesWith(I, RV);
-    }
-  }
-  return 0;
-}
-
-/// FoldOrWithConstants - This helper function folds:
-///
-///     ((A | B) & C1) | (B & C2)
-///
-/// into:
-/// 
-///     (A & C1) | B
-///
-/// when the XOR of the two constants is "all ones" (-1).
-Instruction *InstCombiner::FoldOrWithConstants(BinaryOperator &I, Value *Op,
-                                               Value *A, Value *B, Value *C) {
-  ConstantInt *CI1 = dyn_cast<ConstantInt>(C);
-  if (!CI1) return 0;
-
-  Value *V1 = 0;
-  ConstantInt *CI2 = 0;
-  if (!match(Op, m_And(m_Value(V1), m_ConstantInt(CI2)))) return 0;
-
-  APInt Xor = CI1->getValue() ^ CI2->getValue();
-  if (!Xor.isAllOnesValue()) return 0;
-
-  if (V1 == A || V1 == B) {
-    Value *NewOp = Builder->CreateAnd((V1 == A) ? B : A, CI1);
-    return BinaryOperator::CreateOr(NewOp, V1);
-  }
-
-  return 0;
-}
-
-Instruction *InstCombiner::visitOr(BinaryOperator &I) {
-  bool Changed = SimplifyCommutative(I);
-  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
-
-  if (Value *V = SimplifyOrInst(Op0, Op1, TD))
-    return ReplaceInstUsesWith(I, V);
-  
-  
-  // See if we can simplify any instructions used by the instruction whose sole 
-  // purpose is to compute bits we don't care about.
-  if (SimplifyDemandedInstructionBits(I))
-    return &I;
-
-  if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
-    ConstantInt *C1 = 0; Value *X = 0;
-    // (X & C1) | C2 --> (X | C2) & (C1|C2)
-    if (match(Op0, m_And(m_Value(X), m_ConstantInt(C1))) &&
-        Op0->hasOneUse()) {
-      Value *Or = Builder->CreateOr(X, RHS);
-      Or->takeName(Op0);
-      return BinaryOperator::CreateAnd(Or, 
-                         ConstantInt::get(I.getContext(),
-                                          RHS->getValue() | C1->getValue()));
-    }
-
-    // (X ^ C1) | C2 --> (X | C2) ^ (C1&~C2)
-    if (match(Op0, m_Xor(m_Value(X), m_ConstantInt(C1))) &&
-        Op0->hasOneUse()) {
-      Value *Or = Builder->CreateOr(X, RHS);
-      Or->takeName(Op0);
-      return BinaryOperator::CreateXor(Or,
-                 ConstantInt::get(I.getContext(),
-                                  C1->getValue() & ~RHS->getValue()));
-    }
-
-    // Try to fold constant and into select arguments.
-    if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
-      if (Instruction *R = FoldOpIntoSelect(I, SI))
-        return R;
-    if (isa<PHINode>(Op0))
-      if (Instruction *NV = FoldOpIntoPhi(I))
-        return NV;
-  }
-
-  Value *A = 0, *B = 0;
-  ConstantInt *C1 = 0, *C2 = 0;
-
-  // (A | B) | C  and  A | (B | C)                  -> bswap if possible.
-  // (A >> B) | (C << D)  and  (A << B) | (B >> C)  -> bswap if possible.
-  if (match(Op0, m_Or(m_Value(), m_Value())) ||
-      match(Op1, m_Or(m_Value(), m_Value())) ||
-      (match(Op0, m_Shift(m_Value(), m_Value())) &&
-       match(Op1, m_Shift(m_Value(), m_Value())))) {
-    if (Instruction *BSwap = MatchBSwap(I))
-      return BSwap;
-  }
-  
-  // (X^C)|Y -> (X|Y)^C iff Y&C == 0
-  if (Op0->hasOneUse() &&
-      match(Op0, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
-      MaskedValueIsZero(Op1, C1->getValue())) {
-    Value *NOr = Builder->CreateOr(A, Op1);
-    NOr->takeName(Op0);
-    return BinaryOperator::CreateXor(NOr, C1);
-  }
-
-  // Y|(X^C) -> (X|Y)^C iff Y&C == 0
-  if (Op1->hasOneUse() &&
-      match(Op1, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
-      MaskedValueIsZero(Op0, C1->getValue())) {
-    Value *NOr = Builder->CreateOr(A, Op0);
-    NOr->takeName(Op0);
-    return BinaryOperator::CreateXor(NOr, C1);
-  }
-
-  // (A & C)|(B & D)
-  Value *C = 0, *D = 0;
-  if (match(Op0, m_And(m_Value(A), m_Value(C))) &&
-      match(Op1, m_And(m_Value(B), m_Value(D)))) {
-    Value *V1 = 0, *V2 = 0, *V3 = 0;
-    C1 = dyn_cast<ConstantInt>(C);
-    C2 = dyn_cast<ConstantInt>(D);
-    if (C1 && C2) {  // (A & C1)|(B & C2)
-      // If we have: ((V + N) & C1) | (V & C2)
-      // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
-      // replace with V+N.
-      if (C1->getValue() == ~C2->getValue()) {
-        if ((C2->getValue() & (C2->getValue()+1)) == 0 && // C2 == 0+1+
-            match(A, m_Add(m_Value(V1), m_Value(V2)))) {
-          // Add commutes, try both ways.
-          if (V1 == B && MaskedValueIsZero(V2, C2->getValue()))
-            return ReplaceInstUsesWith(I, A);
-          if (V2 == B && MaskedValueIsZero(V1, C2->getValue()))
-            return ReplaceInstUsesWith(I, A);
-        }
-        // Or commutes, try both ways.
-        if ((C1->getValue() & (C1->getValue()+1)) == 0 &&
-            match(B, m_Add(m_Value(V1), m_Value(V2)))) {
-          // Add commutes, try both ways.
-          if (V1 == A && MaskedValueIsZero(V2, C1->getValue()))
-            return ReplaceInstUsesWith(I, B);
-          if (V2 == A && MaskedValueIsZero(V1, C1->getValue()))
-            return ReplaceInstUsesWith(I, B);
-        }
-      }
-      
-      // ((V | N) & C1) | (V & C2) --> (V|N) & (C1|C2)
-      // iff (C1&C2) == 0 and (N&~C1) == 0
-      if ((C1->getValue() & C2->getValue()) == 0) {
-        if (match(A, m_Or(m_Value(V1), m_Value(V2))) &&
-            ((V1 == B && MaskedValueIsZero(V2, ~C1->getValue())) ||  // (V|N)
-             (V2 == B && MaskedValueIsZero(V1, ~C1->getValue()))))   // (N|V)
-          return BinaryOperator::CreateAnd(A,
-                               ConstantInt::get(A->getContext(),
-                                                C1->getValue()|C2->getValue()));
-        // Or commutes, try both ways.
-        if (match(B, m_Or(m_Value(V1), m_Value(V2))) &&
-            ((V1 == A && MaskedValueIsZero(V2, ~C2->getValue())) ||  // (V|N)
-             (V2 == A && MaskedValueIsZero(V1, ~C2->getValue()))))   // (N|V)
-          return BinaryOperator::CreateAnd(B,
-                               ConstantInt::get(B->getContext(),
-                                                C1->getValue()|C2->getValue()));
-      }
-    }
-    
-    // Check to see if we have any common things being and'ed.  If so, find the
-    // terms for V1 & (V2|V3).
-    if (Op0->hasOneUse() || Op1->hasOneUse()) {
-      V1 = 0;
-      if (A == B)      // (A & C)|(A & D) == A & (C|D)
-        V1 = A, V2 = C, V3 = D;
-      else if (A == D) // (A & C)|(B & A) == A & (B|C)
-        V1 = A, V2 = B, V3 = C;
-      else if (C == B) // (A & C)|(C & D) == C & (A|D)
-        V1 = C, V2 = A, V3 = D;
-      else if (C == D) // (A & C)|(B & C) == C & (A|B)
-        V1 = C, V2 = A, V3 = B;
-      
-      if (V1) {
-        Value *Or = Builder->CreateOr(V2, V3, "tmp");
-        return BinaryOperator::CreateAnd(V1, Or);
-      }
-    }
-
-    // (A & (C0?-1:0)) | (B & ~(C0?-1:0)) ->  C0 ? A : B, and commuted variants
-    if (Instruction *Match = MatchSelectFromAndOr(A, B, C, D))
-      return Match;
-    if (Instruction *Match = MatchSelectFromAndOr(B, A, D, C))
-      return Match;
-    if (Instruction *Match = MatchSelectFromAndOr(C, B, A, D))
-      return Match;
-    if (Instruction *Match = MatchSelectFromAndOr(D, A, B, C))
-      return Match;
-
-    // ((A&~B)|(~A&B)) -> A^B
-    if ((match(C, m_Not(m_Specific(D))) &&
-         match(B, m_Not(m_Specific(A)))))
-      return BinaryOperator::CreateXor(A, D);
-    // ((~B&A)|(~A&B)) -> A^B
-    if ((match(A, m_Not(m_Specific(D))) &&
-         match(B, m_Not(m_Specific(C)))))
-      return BinaryOperator::CreateXor(C, D);
-    // ((A&~B)|(B&~A)) -> A^B
-    if ((match(C, m_Not(m_Specific(B))) &&
-         match(D, m_Not(m_Specific(A)))))
-      return BinaryOperator::CreateXor(A, B);
-    // ((~B&A)|(B&~A)) -> A^B
-    if ((match(A, m_Not(m_Specific(B))) &&
-         match(D, m_Not(m_Specific(C)))))
-      return BinaryOperator::CreateXor(C, B);
-  }
-  
-  // (X >> Z) | (Y >> Z)  -> (X|Y) >> Z  for all shifts.
-  if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) {
-    if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0))
-      if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() && 
-          SI0->getOperand(1) == SI1->getOperand(1) &&
-          (SI0->hasOneUse() || SI1->hasOneUse())) {
-        Value *NewOp = Builder->CreateOr(SI0->getOperand(0), SI1->getOperand(0),
-                                         SI0->getName());
-        return BinaryOperator::Create(SI1->getOpcode(), NewOp, 
-                                      SI1->getOperand(1));
-      }
-  }
-
-  // ((A|B)&1)|(B&-2) -> (A&1) | B
-  if (match(Op0, m_And(m_Or(m_Value(A), m_Value(B)), m_Value(C))) ||
-      match(Op0, m_And(m_Value(C), m_Or(m_Value(A), m_Value(B))))) {
-    Instruction *Ret = FoldOrWithConstants(I, Op1, A, B, C);
-    if (Ret) return Ret;
-  }
-  // (B&-2)|((A|B)&1) -> (A&1) | B
-  if (match(Op1, m_And(m_Or(m_Value(A), m_Value(B)), m_Value(C))) ||
-      match(Op1, m_And(m_Value(C), m_Or(m_Value(A), m_Value(B))))) {
-    Instruction *Ret = FoldOrWithConstants(I, Op0, A, B, C);
-    if (Ret) return Ret;
-  }
-
-  // (~A | ~B) == (~(A & B)) - De Morgan's Law
-  if (Value *Op0NotVal = dyn_castNotVal(Op0))
-    if (Value *Op1NotVal = dyn_castNotVal(Op1))
-      if (Op0->hasOneUse() && Op1->hasOneUse()) {
-        Value *And = Builder->CreateAnd(Op0NotVal, Op1NotVal,
-                                        I.getName()+".demorgan");
-        return BinaryOperator::CreateNot(And);
-      }
-
-  if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1)))
-    if (ICmpInst *LHS = dyn_cast<ICmpInst>(I.getOperand(0)))
-      if (Instruction *Res = FoldOrOfICmps(I, LHS, RHS))
-        return Res;
-    
-  // fold (or (cast A), (cast B)) -> (cast (or A, B))
-  if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
-    if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
-      if (Op0C->getOpcode() == Op1C->getOpcode()) {// same cast kind ?
-        if (!isa<ICmpInst>(Op0C->getOperand(0)) ||
-            !isa<ICmpInst>(Op1C->getOperand(0))) {
-          const Type *SrcTy = Op0C->getOperand(0)->getType();
-          if (SrcTy == Op1C->getOperand(0)->getType() &&
-              SrcTy->isIntOrIntVector() &&
-              // Only do this if the casts both really cause code to be
-              // generated.
-              ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0), 
-                                I.getType()) &&
-              ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0), 
-                                I.getType())) {
-            Value *NewOp = Builder->CreateOr(Op0C->getOperand(0),
-                                             Op1C->getOperand(0), I.getName());
-            return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
-          }
-        }
-      }
-  }
-  
-    
-  // (fcmp uno x, c) | (fcmp uno y, c)  -> (fcmp uno x, y)
-  if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0))) {
-    if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
-      if (Instruction *Res = FoldOrOfFCmps(I, LHS, RHS))
-        return Res;
-  }
-
-  return Changed ? &I : 0;
-}
-
-Instruction *InstCombiner::visitXor(BinaryOperator &I) {
-  bool Changed = SimplifyCommutative(I);
-  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
-
-  if (isa<UndefValue>(Op1)) {
-    if (isa<UndefValue>(Op0))
-      // Handle undef ^ undef -> 0 special case. This is a common
-      // idiom (misuse).
-      return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
-    return ReplaceInstUsesWith(I, Op1);  // X ^ undef -> undef
-  }
-
-  // xor X, X = 0
-  if (Op0 == Op1)
-    return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
-  
-  // See if we can simplify any instructions used by the instruction whose sole 
-  // purpose is to compute bits we don't care about.
-  if (SimplifyDemandedInstructionBits(I))
-    return &I;
-  if (isa<VectorType>(I.getType()))
-    if (isa<ConstantAggregateZero>(Op1))
-      return ReplaceInstUsesWith(I, Op0);  // X ^ <0,0> -> X
-
-  // Is this a ~ operation?
-  if (Value *NotOp = dyn_castNotVal(&I)) {
-    if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(NotOp)) {
-      if (Op0I->getOpcode() == Instruction::And || 
-          Op0I->getOpcode() == Instruction::Or) {
-        // ~(~X & Y) --> (X | ~Y) - De Morgan's Law
-        // ~(~X | Y) === (X & ~Y) - De Morgan's Law
-        if (dyn_castNotVal(Op0I->getOperand(1)))
-          Op0I->swapOperands();
-        if (Value *Op0NotVal = dyn_castNotVal(Op0I->getOperand(0))) {
-          Value *NotY =
-            Builder->CreateNot(Op0I->getOperand(1),
-                               Op0I->getOperand(1)->getName()+".not");
-          if (Op0I->getOpcode() == Instruction::And)
-            return BinaryOperator::CreateOr(Op0NotVal, NotY);
-          return BinaryOperator::CreateAnd(Op0NotVal, NotY);
-        }
-        
-        // ~(X & Y) --> (~X | ~Y) - De Morgan's Law
-        // ~(X | Y) === (~X & ~Y) - De Morgan's Law
-        if (isFreeToInvert(Op0I->getOperand(0)) && 
-            isFreeToInvert(Op0I->getOperand(1))) {
-          Value *NotX =
-            Builder->CreateNot(Op0I->getOperand(0), "notlhs");
-          Value *NotY =
-            Builder->CreateNot(Op0I->getOperand(1), "notrhs");
-          if (Op0I->getOpcode() == Instruction::And)
-            return BinaryOperator::CreateOr(NotX, NotY);
-          return BinaryOperator::CreateAnd(NotX, NotY);
-        }
-      }
-    }
-  }
-  
-  
-  if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
-    if (RHS->isOne() && Op0->hasOneUse()) {
-      // xor (cmp A, B), true = not (cmp A, B) = !cmp A, B
-      if (ICmpInst *ICI = dyn_cast<ICmpInst>(Op0))
-        return new ICmpInst(ICI->getInversePredicate(),
-                            ICI->getOperand(0), ICI->getOperand(1));
-
-      if (FCmpInst *FCI = dyn_cast<FCmpInst>(Op0))
-        return new FCmpInst(FCI->getInversePredicate(),
-                            FCI->getOperand(0), FCI->getOperand(1));
-    }
-
-    // fold (xor(zext(cmp)), 1) and (xor(sext(cmp)), -1) to ext(!cmp).
-    if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
-      if (CmpInst *CI = dyn_cast<CmpInst>(Op0C->getOperand(0))) {
-        if (CI->hasOneUse() && Op0C->hasOneUse()) {
-          Instruction::CastOps Opcode = Op0C->getOpcode();
-          if ((Opcode == Instruction::ZExt || Opcode == Instruction::SExt) &&
-              (RHS == ConstantExpr::getCast(Opcode, 
-                                           ConstantInt::getTrue(I.getContext()),
-                                            Op0C->getDestTy()))) {
-            CI->setPredicate(CI->getInversePredicate());
-            return CastInst::Create(Opcode, CI, Op0C->getType());
-          }
-        }
-      }
-    }
-
-    if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
-      // ~(c-X) == X-c-1 == X+(-c-1)
-      if (Op0I->getOpcode() == Instruction::Sub && RHS->isAllOnesValue())
-        if (Constant *Op0I0C = dyn_cast<Constant>(Op0I->getOperand(0))) {
-          Constant *NegOp0I0C = ConstantExpr::getNeg(Op0I0C);
-          Constant *ConstantRHS = ConstantExpr::getSub(NegOp0I0C,
-                                      ConstantInt::get(I.getType(), 1));
-          return BinaryOperator::CreateAdd(Op0I->getOperand(1), ConstantRHS);
-        }
-          
-      if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
-        if (Op0I->getOpcode() == Instruction::Add) {
-          // ~(X-c) --> (-c-1)-X
-          if (RHS->isAllOnesValue()) {
-            Constant *NegOp0CI = ConstantExpr::getNeg(Op0CI);
-            return BinaryOperator::CreateSub(
-                           ConstantExpr::getSub(NegOp0CI,
-                                      ConstantInt::get(I.getType(), 1)),
-                                      Op0I->getOperand(0));
-          } else if (RHS->getValue().isSignBit()) {
-            // (X + C) ^ signbit -> (X + C + signbit)
-            Constant *C = ConstantInt::get(I.getContext(),
-                                           RHS->getValue() + Op0CI->getValue());
-            return BinaryOperator::CreateAdd(Op0I->getOperand(0), C);
-
-          }
-        } else if (Op0I->getOpcode() == Instruction::Or) {
-          // (X|C1)^C2 -> X^(C1|C2) iff X&~C1 == 0
-          if (MaskedValueIsZero(Op0I->getOperand(0), Op0CI->getValue())) {
-            Constant *NewRHS = ConstantExpr::getOr(Op0CI, RHS);
-            // Anything in both C1 and C2 is known to be zero, remove it from
-            // NewRHS.
-            Constant *CommonBits = ConstantExpr::getAnd(Op0CI, RHS);
-            NewRHS = ConstantExpr::getAnd(NewRHS, 
-                                       ConstantExpr::getNot(CommonBits));
-            Worklist.Add(Op0I);
-            I.setOperand(0, Op0I->getOperand(0));
-            I.setOperand(1, NewRHS);
-            return &I;
-          }
-        }
-      }
-    }
-
-    // Try to fold constant and into select arguments.
-    if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
-      if (Instruction *R = FoldOpIntoSelect(I, SI))
-        return R;
-    if (isa<PHINode>(Op0))
-      if (Instruction *NV = FoldOpIntoPhi(I))
-        return NV;
-  }
-
-  if (Value *X = dyn_castNotVal(Op0))   // ~A ^ A == -1
-    if (X == Op1)
-      return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
-
-  if (Value *X = dyn_castNotVal(Op1))   // A ^ ~A == -1
-    if (X == Op0)
-      return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
-
-  
-  BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1);
-  if (Op1I) {
-    Value *A, *B;
-    if (match(Op1I, m_Or(m_Value(A), m_Value(B)))) {
-      if (A == Op0) {              // B^(B|A) == (A|B)^B
-        Op1I->swapOperands();
-        I.swapOperands();
-        std::swap(Op0, Op1);
-      } else if (B == Op0) {       // B^(A|B) == (A|B)^B
-        I.swapOperands();     // Simplified below.
-        std::swap(Op0, Op1);
-      }
-    } else if (match(Op1I, m_Xor(m_Specific(Op0), m_Value(B)))) {
-      return ReplaceInstUsesWith(I, B);                      // A^(A^B) == B
-    } else if (match(Op1I, m_Xor(m_Value(A), m_Specific(Op0)))) {
-      return ReplaceInstUsesWith(I, A);                      // A^(B^A) == B
-    } else if (match(Op1I, m_And(m_Value(A), m_Value(B))) && 
-               Op1I->hasOneUse()){
-      if (A == Op0) {                                      // A^(A&B) -> A^(B&A)
-        Op1I->swapOperands();
-        std::swap(A, B);
-      }
-      if (B == Op0) {                                      // A^(B&A) -> (B&A)^A
-        I.swapOperands();     // Simplified below.
-        std::swap(Op0, Op1);
-      }
-    }
-  }
-  
-  BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0);
-  if (Op0I) {
-    Value *A, *B;
-    if (match(Op0I, m_Or(m_Value(A), m_Value(B))) &&
-        Op0I->hasOneUse()) {
-      if (A == Op1)                                  // (B|A)^B == (A|B)^B
-        std::swap(A, B);
-      if (B == Op1)                                  // (A|B)^B == A & ~B
-        return BinaryOperator::CreateAnd(A, Builder->CreateNot(Op1, "tmp"));
-    } else if (match(Op0I, m_Xor(m_Specific(Op1), m_Value(B)))) {
-      return ReplaceInstUsesWith(I, B);                      // (A^B)^A == B
-    } else if (match(Op0I, m_Xor(m_Value(A), m_Specific(Op1)))) {
-      return ReplaceInstUsesWith(I, A);                      // (B^A)^A == B
-    } else if (match(Op0I, m_And(m_Value(A), m_Value(B))) && 
-               Op0I->hasOneUse()){
-      if (A == Op1)                                        // (A&B)^A -> (B&A)^A
-        std::swap(A, B);
-      if (B == Op1 &&                                      // (B&A)^A == ~B & A
-          !isa<ConstantInt>(Op1)) {  // Canonical form is (B&C)^C
-        return BinaryOperator::CreateAnd(Builder->CreateNot(A, "tmp"), Op1);
-      }
-    }
-  }
-  
-  // (X >> Z) ^ (Y >> Z)  -> (X^Y) >> Z  for all shifts.
-  if (Op0I && Op1I && Op0I->isShift() && 
-      Op0I->getOpcode() == Op1I->getOpcode() && 
-      Op0I->getOperand(1) == Op1I->getOperand(1) &&
-      (Op1I->hasOneUse() || Op1I->hasOneUse())) {
-    Value *NewOp =
-      Builder->CreateXor(Op0I->getOperand(0), Op1I->getOperand(0),
-                         Op0I->getName());
-    return BinaryOperator::Create(Op1I->getOpcode(), NewOp, 
-                                  Op1I->getOperand(1));
-  }
-    
-  if (Op0I && Op1I) {
-    Value *A, *B, *C, *D;
-    // (A & B)^(A | B) -> A ^ B
-    if (match(Op0I, m_And(m_Value(A), m_Value(B))) &&
-        match(Op1I, m_Or(m_Value(C), m_Value(D)))) {
-      if ((A == C && B == D) || (A == D && B == C)) 
-        return BinaryOperator::CreateXor(A, B);
-    }
-    // (A | B)^(A & B) -> A ^ B
-    if (match(Op0I, m_Or(m_Value(A), m_Value(B))) &&
-        match(Op1I, m_And(m_Value(C), m_Value(D)))) {
-      if ((A == C && B == D) || (A == D && B == C)) 
-        return BinaryOperator::CreateXor(A, B);
-    }
-    
-    // (A & B)^(C & D)
-    if ((Op0I->hasOneUse() || Op1I->hasOneUse()) &&
-        match(Op0I, m_And(m_Value(A), m_Value(B))) &&
-        match(Op1I, m_And(m_Value(C), m_Value(D)))) {
-      // (X & Y)^(X & Y) -> (Y^Z) & X
-      Value *X = 0, *Y = 0, *Z = 0;
-      if (A == C)
-        X = A, Y = B, Z = D;
-      else if (A == D)
-        X = A, Y = B, Z = C;
-      else if (B == C)
-        X = B, Y = A, Z = D;
-      else if (B == D)
-        X = B, Y = A, Z = C;
-      
-      if (X) {
-        Value *NewOp = Builder->CreateXor(Y, Z, Op0->getName());
-        return BinaryOperator::CreateAnd(NewOp, X);
-      }
-    }
-  }
-    
-  // (icmp1 A, B) ^ (icmp2 A, B) --> (icmp3 A, B)
-  if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1)))
-    if (ICmpInst *LHS = dyn_cast<ICmpInst>(I.getOperand(0)))
-      if (PredicatesFoldable(LHS->getPredicate(), RHS->getPredicate())) {
-        if (LHS->getOperand(0) == RHS->getOperand(1) &&
-            LHS->getOperand(1) == RHS->getOperand(0))
-          LHS->swapOperands();
-        if (LHS->getOperand(0) == RHS->getOperand(0) &&
-            LHS->getOperand(1) == RHS->getOperand(1)) {
-          Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
-          unsigned Code = getICmpCode(LHS) ^ getICmpCode(RHS);
-          bool isSigned = LHS->isSigned() || RHS->isSigned();
-          Value *RV = getICmpValue(isSigned, Code, Op0, Op1);
-          if (Instruction *I = dyn_cast<Instruction>(RV))
-            return I;
-          // Otherwise, it's a constant boolean value.
-          return ReplaceInstUsesWith(I, RV);
-        }
-      }
-
-  // fold (xor (cast A), (cast B)) -> (cast (xor A, B))
-  if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
-    if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
-      if (Op0C->getOpcode() == Op1C->getOpcode()) { // same cast kind?
-        const Type *SrcTy = Op0C->getOperand(0)->getType();
-        if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isInteger() &&
-            // Only do this if the casts both really cause code to be generated.
-            ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0), 
-                              I.getType()) &&
-            ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0), 
-                              I.getType())) {
-          Value *NewOp = Builder->CreateXor(Op0C->getOperand(0),
-                                            Op1C->getOperand(0), I.getName());
-          return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
-        }
-      }
-  }
-
-  return Changed ? &I : 0;
-}
-
-
-Instruction *InstCombiner::visitShl(BinaryOperator &I) {
-  return commonShiftTransforms(I);
-}
-
-Instruction *InstCombiner::visitLShr(BinaryOperator &I) {
-  return commonShiftTransforms(I);
-}
-
-Instruction *InstCombiner::visitAShr(BinaryOperator &I) {
-  if (Instruction *R = commonShiftTransforms(I))
-    return R;
-  
-  Value *Op0 = I.getOperand(0);
-  
-  // ashr int -1, X = -1   (for any arithmetic shift rights of ~0)
-  if (ConstantInt *CSI = dyn_cast<ConstantInt>(Op0))
-    if (CSI->isAllOnesValue())
-      return ReplaceInstUsesWith(I, CSI);
-
-  // See if we can turn a signed shr into an unsigned shr.
-  if (MaskedValueIsZero(Op0,
-                        APInt::getSignBit(I.getType()->getScalarSizeInBits())))
-    return BinaryOperator::CreateLShr(Op0, I.getOperand(1));
-
-  // Arithmetic shifting an all-sign-bit value is a no-op.
-  unsigned NumSignBits = ComputeNumSignBits(Op0);
-  if (NumSignBits == Op0->getType()->getScalarSizeInBits())
-    return ReplaceInstUsesWith(I, Op0);
-
-  return 0;
-}
-
-Instruction *InstCombiner::commonShiftTransforms(BinaryOperator &I) {
-  assert(I.getOperand(1)->getType() == I.getOperand(0)->getType());
-  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
-
-  // shl X, 0 == X and shr X, 0 == X
-  // shl 0, X == 0 and shr 0, X == 0
-  if (Op1 == Constant::getNullValue(Op1->getType()) ||
-      Op0 == Constant::getNullValue(Op0->getType()))
-    return ReplaceInstUsesWith(I, Op0);
-  
-  if (isa<UndefValue>(Op0)) {            
-    if (I.getOpcode() == Instruction::AShr) // undef >>s X -> undef
-      return ReplaceInstUsesWith(I, Op0);
-    else                                    // undef << X -> 0, undef >>u X -> 0
-      return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
-  }
-  if (isa<UndefValue>(Op1)) {
-    if (I.getOpcode() == Instruction::AShr)  // X >>s undef -> X
-      return ReplaceInstUsesWith(I, Op0);          
-    else                                     // X << undef, X >>u undef -> 0
-      return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
-  }
-
-  // See if we can fold away this shift.
-  if (SimplifyDemandedInstructionBits(I))
-    return &I;
-
-  // Try to fold constant and into select arguments.
-  if (isa<Constant>(Op0))
-    if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
-      if (Instruction *R = FoldOpIntoSelect(I, SI))
-        return R;
-
-  if (ConstantInt *CUI = dyn_cast<ConstantInt>(Op1))
-    if (Instruction *Res = FoldShiftByConstant(Op0, CUI, I))
-      return Res;
-  return 0;
-}
-
-Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
-                                               BinaryOperator &I) {
-  bool isLeftShift = I.getOpcode() == Instruction::Shl;
-
-  // See if we can simplify any instructions used by the instruction whose sole 
-  // purpose is to compute bits we don't care about.
-  uint32_t TypeBits = Op0->getType()->getScalarSizeInBits();
-  
-  // shl i32 X, 32 = 0 and srl i8 Y, 9 = 0, ... just don't eliminate
-  // a signed shift.
-  //
-  if (Op1->uge(TypeBits)) {
-    if (I.getOpcode() != Instruction::AShr)
-      return ReplaceInstUsesWith(I, Constant::getNullValue(Op0->getType()));
-    else {
-      I.setOperand(1, ConstantInt::get(I.getType(), TypeBits-1));
-      return &I;
-    }
-  }
-  
-  // ((X*C1) << C2) == (X * (C1 << C2))
-  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0))
-    if (BO->getOpcode() == Instruction::Mul && isLeftShift)
-      if (Constant *BOOp = dyn_cast<Constant>(BO->getOperand(1)))
-        return BinaryOperator::CreateMul(BO->getOperand(0),
-                                        ConstantExpr::getShl(BOOp, Op1));
-  
-  // Try to fold constant and into select arguments.
-  if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
-    if (Instruction *R = FoldOpIntoSelect(I, SI))
-      return R;
-  if (isa<PHINode>(Op0))
-    if (Instruction *NV = FoldOpIntoPhi(I))
-      return NV;
-  
-  // Fold shift2(trunc(shift1(x,c1)), c2) -> trunc(shift2(shift1(x,c1),c2))
-  if (TruncInst *TI = dyn_cast<TruncInst>(Op0)) {
-    Instruction *TrOp = dyn_cast<Instruction>(TI->getOperand(0));
-    // If 'shift2' is an ashr, we would have to get the sign bit into a funny
-    // place.  Don't try to do this transformation in this case.  Also, we
-    // require that the input operand is a shift-by-constant so that we have
-    // confidence that the shifts will get folded together.  We could do this
-    // xform in more cases, but it is unlikely to be profitable.
-    if (TrOp && I.isLogicalShift() && TrOp->isShift() && 
-        isa<ConstantInt>(TrOp->getOperand(1))) {
-      // Okay, we'll do this xform.  Make the shift of shift.
-      Constant *ShAmt = ConstantExpr::getZExt(Op1, TrOp->getType());
-      // (shift2 (shift1 & 0x00FF), c2)
-      Value *NSh = Builder->CreateBinOp(I.getOpcode(), TrOp, ShAmt,I.getName());
-
-      // For logical shifts, the truncation has the effect of making the high
-      // part of the register be zeros.  Emulate this by inserting an AND to
-      // clear the top bits as needed.  This 'and' will usually be zapped by
-      // other xforms later if dead.
-      unsigned SrcSize = TrOp->getType()->getScalarSizeInBits();
-      unsigned DstSize = TI->getType()->getScalarSizeInBits();
-      APInt MaskV(APInt::getLowBitsSet(SrcSize, DstSize));
-      
-      // The mask we constructed says what the trunc would do if occurring
-      // between the shifts.  We want to know the effect *after* the second
-      // shift.  We know that it is a logical shift by a constant, so adjust the
-      // mask as appropriate.
-      if (I.getOpcode() == Instruction::Shl)
-        MaskV <<= Op1->getZExtValue();
-      else {
-        assert(I.getOpcode() == Instruction::LShr && "Unknown logical shift");
-        MaskV = MaskV.lshr(Op1->getZExtValue());
-      }
-
-      // shift1 & 0x00FF
-      Value *And = Builder->CreateAnd(NSh,
-                                      ConstantInt::get(I.getContext(), MaskV),
-                                      TI->getName());
-
-      // Return the value truncated to the interesting size.
-      return new TruncInst(And, I.getType());
-    }
-  }
-  
-  if (Op0->hasOneUse()) {
-    if (BinaryOperator *Op0BO = dyn_cast<BinaryOperator>(Op0)) {
-      // Turn ((X >> C) + Y) << C  ->  (X + (Y << C)) & (~0 << C)
-      Value *V1, *V2;
-      ConstantInt *CC;
-      switch (Op0BO->getOpcode()) {
-        default: break;
-        case Instruction::Add:
-        case Instruction::And:
-        case Instruction::Or:
-        case Instruction::Xor: {
-          // These operators commute.
-          // Turn (Y + (X >> C)) << C  ->  (X + (Y << C)) & (~0 << C)
-          if (isLeftShift && Op0BO->getOperand(1)->hasOneUse() &&
-              match(Op0BO->getOperand(1), m_Shr(m_Value(V1),
-                    m_Specific(Op1)))) {
-            Value *YS =         // (Y << C)
-              Builder->CreateShl(Op0BO->getOperand(0), Op1, Op0BO->getName());
-            // (X + (Y << C))
-            Value *X = Builder->CreateBinOp(Op0BO->getOpcode(), YS, V1,
-                                            Op0BO->getOperand(1)->getName());
-            uint32_t Op1Val = Op1->getLimitedValue(TypeBits);
-            return BinaryOperator::CreateAnd(X, ConstantInt::get(I.getContext(),
-                       APInt::getHighBitsSet(TypeBits, TypeBits-Op1Val)));
-          }
-          
-          // Turn (Y + ((X >> C) & CC)) << C  ->  ((X & (CC << C)) + (Y << C))
-          Value *Op0BOOp1 = Op0BO->getOperand(1);
-          if (isLeftShift && Op0BOOp1->hasOneUse() &&
-              match(Op0BOOp1, 
-                    m_And(m_Shr(m_Value(V1), m_Specific(Op1)),
-                          m_ConstantInt(CC))) &&
-              cast<BinaryOperator>(Op0BOOp1)->getOperand(0)->hasOneUse()) {
-            Value *YS =   // (Y << C)
-              Builder->CreateShl(Op0BO->getOperand(0), Op1,
-                                           Op0BO->getName());
-            // X & (CC << C)
-            Value *XM = Builder->CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
-                                           V1->getName()+".mask");
-            return BinaryOperator::Create(Op0BO->getOpcode(), YS, XM);
-          }
-        }
-          
-        // FALL THROUGH.
-        case Instruction::Sub: {
-          // Turn ((X >> C) + Y) << C  ->  (X + (Y << C)) & (~0 << C)
-          if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
-              match(Op0BO->getOperand(0), m_Shr(m_Value(V1),
-                    m_Specific(Op1)))) {
-            Value *YS =  // (Y << C)
-              Builder->CreateShl(Op0BO->getOperand(1), Op1, Op0BO->getName());
-            // (X + (Y << C))
-            Value *X = Builder->CreateBinOp(Op0BO->getOpcode(), V1, YS,
-                                            Op0BO->getOperand(0)->getName());
-            uint32_t Op1Val = Op1->getLimitedValue(TypeBits);
-            return BinaryOperator::CreateAnd(X, ConstantInt::get(I.getContext(),
-                       APInt::getHighBitsSet(TypeBits, TypeBits-Op1Val)));
-          }
-          
-          // Turn (((X >> C)&CC) + Y) << C  ->  (X + (Y << C)) & (CC << C)
-          if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
-              match(Op0BO->getOperand(0),
-                    m_And(m_Shr(m_Value(V1), m_Value(V2)),
-                          m_ConstantInt(CC))) && V2 == Op1 &&
-              cast<BinaryOperator>(Op0BO->getOperand(0))
-                  ->getOperand(0)->hasOneUse()) {
-            Value *YS = // (Y << C)
-              Builder->CreateShl(Op0BO->getOperand(1), Op1, Op0BO->getName());
-            // X & (CC << C)
-            Value *XM = Builder->CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
-                                           V1->getName()+".mask");
-            
-            return BinaryOperator::Create(Op0BO->getOpcode(), XM, YS);
-          }
-          
-          break;
-        }
-      }
-      
-      
-      // If the operand is an bitwise operator with a constant RHS, and the
-      // shift is the only use, we can pull it out of the shift.
-      if (ConstantInt *Op0C = dyn_cast<ConstantInt>(Op0BO->getOperand(1))) {
-        bool isValid = true;     // Valid only for And, Or, Xor
-        bool highBitSet = false; // Transform if high bit of constant set?
-        
-        switch (Op0BO->getOpcode()) {
-          default: isValid = false; break;   // Do not perform transform!
-          case Instruction::Add:
-            isValid = isLeftShift;
-            break;
-          case Instruction::Or:
-          case Instruction::Xor:
-            highBitSet = false;
-            break;
-          case Instruction::And:
-            highBitSet = true;
-            break;
-        }
-        
-        // If this is a signed shift right, and the high bit is modified
-        // by the logical operation, do not perform the transformation.
-        // The highBitSet boolean indicates the value of the high bit of
-        // the constant which would cause it to be modified for this
-        // operation.
-        //
-        if (isValid && I.getOpcode() == Instruction::AShr)
-          isValid = Op0C->getValue()[TypeBits-1] == highBitSet;
-        
-        if (isValid) {
-          Constant *NewRHS = ConstantExpr::get(I.getOpcode(), Op0C, Op1);
-          
-          Value *NewShift =
-            Builder->CreateBinOp(I.getOpcode(), Op0BO->getOperand(0), Op1);
-          NewShift->takeName(Op0BO);
-          
-          return BinaryOperator::Create(Op0BO->getOpcode(), NewShift,
-                                        NewRHS);
-        }
-      }
-    }
-  }
-  
-  // Find out if this is a shift of a shift by a constant.
-  BinaryOperator *ShiftOp = dyn_cast<BinaryOperator>(Op0);
-  if (ShiftOp && !ShiftOp->isShift())
-    ShiftOp = 0;
-  
-  if (ShiftOp && isa<ConstantInt>(ShiftOp->getOperand(1))) {
-    ConstantInt *ShiftAmt1C = cast<ConstantInt>(ShiftOp->getOperand(1));
-    uint32_t ShiftAmt1 = ShiftAmt1C->getLimitedValue(TypeBits);
-    uint32_t ShiftAmt2 = Op1->getLimitedValue(TypeBits);
-    assert(ShiftAmt2 != 0 && "Should have been simplified earlier");
-    if (ShiftAmt1 == 0) return 0;  // Will be simplified in the future.
-    Value *X = ShiftOp->getOperand(0);
-    
-    uint32_t AmtSum = ShiftAmt1+ShiftAmt2;   // Fold into one big shift.
-    
-    const IntegerType *Ty = cast<IntegerType>(I.getType());
-    
-    // Check for (X << c1) << c2  and  (X >> c1) >> c2
-    if (I.getOpcode() == ShiftOp->getOpcode()) {
-      // If this is oversized composite shift, then unsigned shifts get 0, ashr
-      // saturates.
-      if (AmtSum >= TypeBits) {
-        if (I.getOpcode() != Instruction::AShr)
-          return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
-        AmtSum = TypeBits-1;  // Saturate to 31 for i32 ashr.
-      }
-      
-      return BinaryOperator::Create(I.getOpcode(), X,
-                                    ConstantInt::get(Ty, AmtSum));
-    }
-    
-    if (ShiftOp->getOpcode() == Instruction::LShr &&
-        I.getOpcode() == Instruction::AShr) {
-      if (AmtSum >= TypeBits)
-        return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
-      
-      // ((X >>u C1) >>s C2) -> (X >>u (C1+C2))  since C1 != 0.
-      return BinaryOperator::CreateLShr(X, ConstantInt::get(Ty, AmtSum));
-    }
-    
-    if (ShiftOp->getOpcode() == Instruction::AShr &&
-        I.getOpcode() == Instruction::LShr) {
-      // ((X >>s C1) >>u C2) -> ((X >>s (C1+C2)) & mask) since C1 != 0.
-      if (AmtSum >= TypeBits)
-        AmtSum = TypeBits-1;
-      
-      Value *Shift = Builder->CreateAShr(X, ConstantInt::get(Ty, AmtSum));
-
-      APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
-      return BinaryOperator::CreateAnd(Shift,
-                                       ConstantInt::get(I.getContext(), Mask));
-    }
-    
-    // Okay, if we get here, one shift must be left, and the other shift must be
-    // right.  See if the amounts are equal.
-    if (ShiftAmt1 == ShiftAmt2) {
-      // If we have ((X >>? C) << C), turn this into X & (-1 << C).
-      if (I.getOpcode() == Instruction::Shl) {
-        APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt1));
-        return BinaryOperator::CreateAnd(X,
-                                         ConstantInt::get(I.getContext(),Mask));
-      }
-      // If we have ((X << C) >>u C), turn this into X & (-1 >>u C).
-      if (I.getOpcode() == Instruction::LShr) {
-        APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt1));
-        return BinaryOperator::CreateAnd(X,
-                                        ConstantInt::get(I.getContext(), Mask));
-      }
-      // We can simplify ((X << C) >>s C) into a trunc + sext.
-      // NOTE: we could do this for any C, but that would make 'unusual' integer
-      // types.  For now, just stick to ones well-supported by the code
-      // generators.
-      const Type *SExtType = 0;
-      switch (Ty->getBitWidth() - ShiftAmt1) {
-      case 1  :
-      case 8  :
-      case 16 :
-      case 32 :
-      case 64 :
-      case 128:
-        SExtType = IntegerType::get(I.getContext(),
-                                    Ty->getBitWidth() - ShiftAmt1);
-        break;
-      default: break;
-      }
-      if (SExtType)
-        return new SExtInst(Builder->CreateTrunc(X, SExtType, "sext"), Ty);
-      // Otherwise, we can't handle it yet.
-    } else if (ShiftAmt1 < ShiftAmt2) {
-      uint32_t ShiftDiff = ShiftAmt2-ShiftAmt1;
-      
-      // (X >>? C1) << C2 --> X << (C2-C1) & (-1 << C2)
-      if (I.getOpcode() == Instruction::Shl) {
-        assert(ShiftOp->getOpcode() == Instruction::LShr ||
-               ShiftOp->getOpcode() == Instruction::AShr);
-        Value *Shift = Builder->CreateShl(X, ConstantInt::get(Ty, ShiftDiff));
-        
-        APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt2));
-        return BinaryOperator::CreateAnd(Shift,
-                                         ConstantInt::get(I.getContext(),Mask));
-      }
-      
-      // (X << C1) >>u C2  --> X >>u (C2-C1) & (-1 >> C2)
-      if (I.getOpcode() == Instruction::LShr) {
-        assert(ShiftOp->getOpcode() == Instruction::Shl);
-        Value *Shift = Builder->CreateLShr(X, ConstantInt::get(Ty, ShiftDiff));
-        
-        APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
-        return BinaryOperator::CreateAnd(Shift,
-                                         ConstantInt::get(I.getContext(),Mask));
-      }
-      
-      // We can't handle (X << C1) >>s C2, it shifts arbitrary bits in.
-    } else {
-      assert(ShiftAmt2 < ShiftAmt1);
-      uint32_t ShiftDiff = ShiftAmt1-ShiftAmt2;
-
-      // (X >>? C1) << C2 --> X >>? (C1-C2) & (-1 << C2)
-      if (I.getOpcode() == Instruction::Shl) {
-        assert(ShiftOp->getOpcode() == Instruction::LShr ||
-               ShiftOp->getOpcode() == Instruction::AShr);
-        Value *Shift = Builder->CreateBinOp(ShiftOp->getOpcode(), X,
-                                            ConstantInt::get(Ty, ShiftDiff));
-        
-        APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt2));
-        return BinaryOperator::CreateAnd(Shift,
-                                         ConstantInt::get(I.getContext(),Mask));
-      }
-      
-      // (X << C1) >>u C2  --> X << (C1-C2) & (-1 >> C2)
-      if (I.getOpcode() == Instruction::LShr) {
-        assert(ShiftOp->getOpcode() == Instruction::Shl);
-        Value *Shift = Builder->CreateShl(X, ConstantInt::get(Ty, ShiftDiff));
-        
-        APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
-        return BinaryOperator::CreateAnd(Shift,
-                                         ConstantInt::get(I.getContext(),Mask));
-      }
-      
-      // We can't handle (X << C1) >>a C2, it shifts arbitrary bits in.
-    }
-  }
-  return 0;
-}
-
-
-
-/// FindElementAtOffset - Given a type and a constant offset, determine whether
-/// or not there is a sequence of GEP indices into the type that will land us at
-/// the specified offset.  If so, fill them into NewIndices and return the
-/// resultant element type, otherwise return null.
-const Type *InstCombiner::FindElementAtOffset(const Type *Ty, int64_t Offset, 
-                                          SmallVectorImpl<Value*> &NewIndices) {
-  if (!TD) return 0;
-  if (!Ty->isSized()) return 0;
-  
-  // Start with the index over the outer type.  Note that the type size
-  // might be zero (even if the offset isn't zero) if the indexed type
-  // is something like [0 x {int, int}]
-  const Type *IntPtrTy = TD->getIntPtrType(Ty->getContext());
-  int64_t FirstIdx = 0;
-  if (int64_t TySize = TD->getTypeAllocSize(Ty)) {
-    FirstIdx = Offset/TySize;
-    Offset -= FirstIdx*TySize;
-    
-    // Handle hosts where % returns negative instead of values [0..TySize).
-    if (Offset < 0) {
-      --FirstIdx;
-      Offset += TySize;
-      assert(Offset >= 0);
-    }
-    assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset");
-  }
-  
-  NewIndices.push_back(ConstantInt::get(IntPtrTy, FirstIdx));
-    
-  // Index into the types.  If we fail, set OrigBase to null.
-  while (Offset) {
-    // Indexing into tail padding between struct/array elements.
-    if (uint64_t(Offset*8) >= TD->getTypeSizeInBits(Ty))
-      return 0;
-    
-    if (const StructType *STy = dyn_cast<StructType>(Ty)) {
-      const StructLayout *SL = TD->getStructLayout(STy);
-      assert(Offset < (int64_t)SL->getSizeInBytes() &&
-             "Offset must stay within the indexed type");
-      
-      unsigned Elt = SL->getElementContainingOffset(Offset);
-      NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
-                                            Elt));
-      
-      Offset -= SL->getElementOffset(Elt);
-      Ty = STy->getElementType(Elt);
-    } else if (const ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
-      uint64_t EltSize = TD->getTypeAllocSize(AT->getElementType());
-      assert(EltSize && "Cannot index into a zero-sized array");
-      NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize));
-      Offset %= EltSize;
-      Ty = AT->getElementType();
-    } else {
-      // Otherwise, we can't index into the middle of this atomic type, bail.
-      return 0;
-    }
-  }
-  
-  return Ty;
-}
-
-
-/// EnforceKnownAlignment - If the specified pointer points to an object that
-/// we control, modify the object's alignment to PrefAlign. This isn't
-/// often possible though. If alignment is important, a more reliable approach
-/// is to simply align all global variables and allocation instructions to
-/// their preferred alignment from the beginning.
-///
-static unsigned EnforceKnownAlignment(Value *V,
-                                      unsigned Align, unsigned PrefAlign) {
-
-  User *U = dyn_cast<User>(V);
-  if (!U) return Align;
-
-  switch (Operator::getOpcode(U)) {
-  default: break;
-  case Instruction::BitCast:
-    return EnforceKnownAlignment(U->getOperand(0), Align, PrefAlign);
-  case Instruction::GetElementPtr: {
-    // If all indexes are zero, it is just the alignment of the base pointer.
-    bool AllZeroOperands = true;
-    for (User::op_iterator i = U->op_begin() + 1, e = U->op_end(); i != e; ++i)
-      if (!isa<Constant>(*i) ||
-          !cast<Constant>(*i)->isNullValue()) {
-        AllZeroOperands = false;
-        break;
-      }
-
-    if (AllZeroOperands) {
-      // Treat this like a bitcast.
-      return EnforceKnownAlignment(U->getOperand(0), Align, PrefAlign);
-    }
-    break;
-  }
-  }
-
-  if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
-    // If there is a large requested alignment and we can, bump up the alignment
-    // of the global.
-    if (!GV->isDeclaration()) {
-      if (GV->getAlignment() >= PrefAlign)
-        Align = GV->getAlignment();
-      else {
-        GV->setAlignment(PrefAlign);
-        Align = PrefAlign;
-      }
-    }
-  } else if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
-    // If there is a requested alignment and if this is an alloca, round up.
-    if (AI->getAlignment() >= PrefAlign)
-      Align = AI->getAlignment();
-    else {
-      AI->setAlignment(PrefAlign);
-      Align = PrefAlign;
-    }
-  }
-
-  return Align;
-}
-
-/// GetOrEnforceKnownAlignment - If the specified pointer has an alignment that
-/// we can determine, return it, otherwise return 0.  If PrefAlign is specified,
-/// and it is more than the alignment of the ultimate object, see if we can
-/// increase the alignment of the ultimate object, making this check succeed.
-unsigned InstCombiner::GetOrEnforceKnownAlignment(Value *V,
-                                                  unsigned PrefAlign) {
-  unsigned BitWidth = TD ? TD->getTypeSizeInBits(V->getType()) :
-                      sizeof(PrefAlign) * CHAR_BIT;
-  APInt Mask = APInt::getAllOnesValue(BitWidth);
-  APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
-  ComputeMaskedBits(V, Mask, KnownZero, KnownOne);
-  unsigned TrailZ = KnownZero.countTrailingOnes();
-  unsigned Align = 1u << std::min(BitWidth - 1, TrailZ);
-
-  if (PrefAlign > Align)
-    Align = EnforceKnownAlignment(V, Align, PrefAlign);
-  
-    // We don't need to make any adjustment.
-  return Align;
-}
-
-Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) {
-  unsigned DstAlign = GetOrEnforceKnownAlignment(MI->getOperand(1));
-  unsigned SrcAlign = GetOrEnforceKnownAlignment(MI->getOperand(2));
-  unsigned MinAlign = std::min(DstAlign, SrcAlign);
-  unsigned CopyAlign = MI->getAlignment();
-
-  if (CopyAlign < MinAlign) {
-    MI->setAlignment(ConstantInt::get(MI->getAlignmentType(), 
-                                             MinAlign, false));
-    return MI;
-  }
-  
-  // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with
-  // load/store.
-  ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getOperand(3));
-  if (MemOpLength == 0) return 0;
-  
-  // Source and destination pointer types are always "i8*" for intrinsic.  See
-  // if the size is something we can handle with a single primitive load/store.
-  // A single load+store correctly handles overlapping memory in the memmove
-  // case.
-  unsigned Size = MemOpLength->getZExtValue();
-  if (Size == 0) return MI;  // Delete this mem transfer.
-  
-  if (Size > 8 || (Size&(Size-1)))
-    return 0;  // If not 1/2/4/8 bytes, exit.
-  
-  // Use an integer load+store unless we can find something better.
-  Type *NewPtrTy =
-            PointerType::getUnqual(IntegerType::get(MI->getContext(), Size<<3));
-  
-  // Memcpy forces the use of i8* for the source and destination.  That means
-  // that if you're using memcpy to move one double around, you'll get a cast
-  // from double* to i8*.  We'd much rather use a double load+store rather than
-  // an i64 load+store, here because this improves the odds that the source or
-  // dest address will be promotable.  See if we can find a better type than the
-  // integer datatype.
-  if (Value *Op = getBitCastOperand(MI->getOperand(1))) {
-    const Type *SrcETy = cast<PointerType>(Op->getType())->getElementType();
-    if (TD && SrcETy->isSized() && TD->getTypeStoreSize(SrcETy) == Size) {
-      // The SrcETy might be something like {{{double}}} or [1 x double].  Rip
-      // down through these levels if so.
-      while (!SrcETy->isSingleValueType()) {
-        if (const StructType *STy = dyn_cast<StructType>(SrcETy)) {
-          if (STy->getNumElements() == 1)
-            SrcETy = STy->getElementType(0);
-          else
-            break;
-        } else if (const ArrayType *ATy = dyn_cast<ArrayType>(SrcETy)) {
-          if (ATy->getNumElements() == 1)
-            SrcETy = ATy->getElementType();
-          else
-            break;
-        } else
-          break;
-      }
-      
-      if (SrcETy->isSingleValueType())
-        NewPtrTy = PointerType::getUnqual(SrcETy);
-    }
-  }
-  
-  
-  // If the memcpy/memmove provides better alignment info than we can
-  // infer, use it.
-  SrcAlign = std::max(SrcAlign, CopyAlign);
-  DstAlign = std::max(DstAlign, CopyAlign);
-  
-  Value *Src = Builder->CreateBitCast(MI->getOperand(2), NewPtrTy);
-  Value *Dest = Builder->CreateBitCast(MI->getOperand(1), NewPtrTy);
-  Instruction *L = new LoadInst(Src, "tmp", false, SrcAlign);
-  InsertNewInstBefore(L, *MI);
-  InsertNewInstBefore(new StoreInst(L, Dest, false, DstAlign), *MI);
-
-  // Set the size of the copy to 0, it will be deleted on the next iteration.
-  MI->setOperand(3, Constant::getNullValue(MemOpLength->getType()));
-  return MI;
-}
-
-Instruction *InstCombiner::SimplifyMemSet(MemSetInst *MI) {
-  unsigned Alignment = GetOrEnforceKnownAlignment(MI->getDest());
-  if (MI->getAlignment() < Alignment) {
-    MI->setAlignment(ConstantInt::get(MI->getAlignmentType(),
-                                             Alignment, false));
-    return MI;
-  }
-  
-  // Extract the length and alignment and fill if they are constant.
-  ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength());
-  ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue());
-  if (!LenC || !FillC || FillC->getType() != Type::getInt8Ty(MI->getContext()))
-    return 0;
-  uint64_t Len = LenC->getZExtValue();
-  Alignment = MI->getAlignment();
-  
-  // If the length is zero, this is a no-op
-  if (Len == 0) return MI; // memset(d,c,0,a) -> noop
-  
-  // memset(s,c,n) -> store s, c (for n=1,2,4,8)
-  if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) {
-    const Type *ITy = IntegerType::get(MI->getContext(), Len*8);  // n=1 -> i8.
-    
-    Value *Dest = MI->getDest();
-    Dest = Builder->CreateBitCast(Dest, PointerType::getUnqual(ITy));
-
-    // Alignment 0 is identity for alignment 1 for memset, but not store.
-    if (Alignment == 0) Alignment = 1;
-    
-    // Extract the fill value and store.
-    uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL;
-    InsertNewInstBefore(new StoreInst(ConstantInt::get(ITy, Fill),
-                                      Dest, false, Alignment), *MI);
-    
-    // Set the size of the copy to 0, it will be deleted on the next iteration.
-    MI->setLength(Constant::getNullValue(LenC->getType()));
-    return MI;
-  }
-
-  return 0;
-}
-
-
-/// visitCallInst - CallInst simplification.  This mostly only handles folding 
-/// of intrinsic instructions.  For normal calls, it allows visitCallSite to do
-/// the heavy lifting.
-///
-Instruction *InstCombiner::visitCallInst(CallInst &CI) {
-  if (isFreeCall(&CI))
-    return visitFree(CI);
-
-  // If the caller function is nounwind, mark the call as nounwind, even if the
-  // callee isn't.
-  if (CI.getParent()->getParent()->doesNotThrow() &&
-      !CI.doesNotThrow()) {
-    CI.setDoesNotThrow();
-    return &CI;
-  }
-  
-  IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
-  if (!II) return visitCallSite(&CI);
-  
-  // Intrinsics cannot occur in an invoke, so handle them here instead of in
-  // visitCallSite.
-  if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(II)) {
-    bool Changed = false;
-
-    // memmove/cpy/set of zero bytes is a noop.
-    if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
-      if (NumBytes->isNullValue()) return EraseInstFromFunction(CI);
-
-      if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes))
-        if (CI->getZExtValue() == 1) {
-          // Replace the instruction with just byte operations.  We would
-          // transform other cases to loads/stores, but we don't know if
-          // alignment is sufficient.
-        }
-    }
-
-    // If we have a memmove and the source operation is a constant global,
-    // then the source and dest pointers can't alias, so we can change this
-    // into a call to memcpy.
-    if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(MI)) {
-      if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
-        if (GVSrc->isConstant()) {
-          Module *M = CI.getParent()->getParent()->getParent();
-          Intrinsic::ID MemCpyID = Intrinsic::memcpy;
-          const Type *Tys[1];
-          Tys[0] = CI.getOperand(3)->getType();
-          CI.setOperand(0, 
-                        Intrinsic::getDeclaration(M, MemCpyID, Tys, 1));
-          Changed = true;
-        }
-    }
-
-    if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
-      // memmove(x,x,size) -> noop.
-      if (MTI->getSource() == MTI->getDest())
-        return EraseInstFromFunction(CI);
-    }
-
-    // If we can determine a pointer alignment that is bigger than currently
-    // set, update the alignment.
-    if (isa<MemTransferInst>(MI)) {
-      if (Instruction *I = SimplifyMemTransfer(MI))
-        return I;
-    } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(MI)) {
-      if (Instruction *I = SimplifyMemSet(MSI))
-        return I;
-    }
-          
-    if (Changed) return II;
-  }
-  
-  switch (II->getIntrinsicID()) {
-  default: break;
-  case Intrinsic::bswap:
-    // bswap(bswap(x)) -> x
-    if (IntrinsicInst *Operand = dyn_cast<IntrinsicInst>(II->getOperand(1)))
-      if (Operand->getIntrinsicID() == Intrinsic::bswap)
-        return ReplaceInstUsesWith(CI, Operand->getOperand(1));
-      
-    // bswap(trunc(bswap(x))) -> trunc(lshr(x, c))
-    if (TruncInst *TI = dyn_cast<TruncInst>(II->getOperand(1))) {
-      if (IntrinsicInst *Operand = dyn_cast<IntrinsicInst>(TI->getOperand(0)))
-        if (Operand->getIntrinsicID() == Intrinsic::bswap) {
-          unsigned C = Operand->getType()->getPrimitiveSizeInBits() -
-                       TI->getType()->getPrimitiveSizeInBits();
-          Value *CV = ConstantInt::get(Operand->getType(), C);
-          Value *V = Builder->CreateLShr(Operand->getOperand(1), CV);
-          return new TruncInst(V, TI->getType());
-        }
-    }
-      
-    break;
-  case Intrinsic::powi:
-    if (ConstantInt *Power = dyn_cast<ConstantInt>(II->getOperand(2))) {
-      // powi(x, 0) -> 1.0
-      if (Power->isZero())
-        return ReplaceInstUsesWith(CI, ConstantFP::get(CI.getType(), 1.0));
-      // powi(x, 1) -> x
-      if (Power->isOne())
-        return ReplaceInstUsesWith(CI, II->getOperand(1));
-      // powi(x, -1) -> 1/x
-      if (Power->isAllOnesValue())
-        return BinaryOperator::CreateFDiv(ConstantFP::get(CI.getType(), 1.0),
-                                          II->getOperand(1));
-    }
-    break;
-      
-  case Intrinsic::uadd_with_overflow: {
-    Value *LHS = II->getOperand(1), *RHS = II->getOperand(2);
-    const IntegerType *IT = cast<IntegerType>(II->getOperand(1)->getType());
-    uint32_t BitWidth = IT->getBitWidth();
-    APInt Mask = APInt::getSignBit(BitWidth);
-    APInt LHSKnownZero(BitWidth, 0);
-    APInt LHSKnownOne(BitWidth, 0);
-    ComputeMaskedBits(LHS, Mask, LHSKnownZero, LHSKnownOne);
-    bool LHSKnownNegative = LHSKnownOne[BitWidth - 1];
-    bool LHSKnownPositive = LHSKnownZero[BitWidth - 1];
-
-    if (LHSKnownNegative || LHSKnownPositive) {
-      APInt RHSKnownZero(BitWidth, 0);
-      APInt RHSKnownOne(BitWidth, 0);
-      ComputeMaskedBits(RHS, Mask, RHSKnownZero, RHSKnownOne);
-      bool RHSKnownNegative = RHSKnownOne[BitWidth - 1];
-      bool RHSKnownPositive = RHSKnownZero[BitWidth - 1];
-      if (LHSKnownNegative && RHSKnownNegative) {
-        // The sign bit is set in both cases: this MUST overflow.
-        // Create a simple add instruction, and insert it into the struct.
-        Instruction *Add = BinaryOperator::CreateAdd(LHS, RHS, "", &CI);
-        Worklist.Add(Add);
-        Constant *V[] = {
-          UndefValue::get(LHS->getType()),ConstantInt::getTrue(II->getContext())
-        };
-        Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false);
-        return InsertValueInst::Create(Struct, Add, 0);
-      }
-      
-      if (LHSKnownPositive && RHSKnownPositive) {
-        // The sign bit is clear in both cases: this CANNOT overflow.
-        // Create a simple add instruction, and insert it into the struct.
-        Instruction *Add = BinaryOperator::CreateNUWAdd(LHS, RHS, "", &CI);
-        Worklist.Add(Add);
-        Constant *V[] = {
-          UndefValue::get(LHS->getType()),
-          ConstantInt::getFalse(II->getContext())
-        };
-        Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false);
-        return InsertValueInst::Create(Struct, Add, 0);
-      }
-    }
-  }
-  // FALL THROUGH uadd into sadd
-  case Intrinsic::sadd_with_overflow:
-    // Canonicalize constants into the RHS.
-    if (isa<Constant>(II->getOperand(1)) &&
-        !isa<Constant>(II->getOperand(2))) {
-      Value *LHS = II->getOperand(1);
-      II->setOperand(1, II->getOperand(2));
-      II->setOperand(2, LHS);
-      return II;
-    }
-
-    // X + undef -> undef
-    if (isa<UndefValue>(II->getOperand(2)))
-      return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
-      
-    if (ConstantInt *RHS = dyn_cast<ConstantInt>(II->getOperand(2))) {
-      // X + 0 -> {X, false}
-      if (RHS->isZero()) {
-        Constant *V[] = {
-          UndefValue::get(II->getOperand(0)->getType()),
-          ConstantInt::getFalse(II->getContext())
-        };
-        Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false);
-        return InsertValueInst::Create(Struct, II->getOperand(1), 0);
-      }
-    }
-    break;
-  case Intrinsic::usub_with_overflow:
-  case Intrinsic::ssub_with_overflow:
-    // undef - X -> undef
-    // X - undef -> undef
-    if (isa<UndefValue>(II->getOperand(1)) ||
-        isa<UndefValue>(II->getOperand(2)))
-      return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
-      
-    if (ConstantInt *RHS = dyn_cast<ConstantInt>(II->getOperand(2))) {
-      // X - 0 -> {X, false}
-      if (RHS->isZero()) {
-        Constant *V[] = {
-          UndefValue::get(II->getOperand(1)->getType()),
-          ConstantInt::getFalse(II->getContext())
-        };
-        Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false);
-        return InsertValueInst::Create(Struct, II->getOperand(1), 0);
-      }
-    }
-    break;
-  case Intrinsic::umul_with_overflow:
-  case Intrinsic::smul_with_overflow:
-    // Canonicalize constants into the RHS.
-    if (isa<Constant>(II->getOperand(1)) &&
-        !isa<Constant>(II->getOperand(2))) {
-      Value *LHS = II->getOperand(1);
-      II->setOperand(1, II->getOperand(2));
-      II->setOperand(2, LHS);
-      return II;
-    }
-
-    // X * undef -> undef
-    if (isa<UndefValue>(II->getOperand(2)))
-      return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
-      
-    if (ConstantInt *RHSI = dyn_cast<ConstantInt>(II->getOperand(2))) {
-      // X*0 -> {0, false}
-      if (RHSI->isZero())
-        return ReplaceInstUsesWith(CI, Constant::getNullValue(II->getType()));
-      
-      // X * 1 -> {X, false}
-      if (RHSI->equalsInt(1)) {
-        Constant *V[] = {
-          UndefValue::get(II->getOperand(1)->getType()),
-          ConstantInt::getFalse(II->getContext())
-        };
-        Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false);
-        return InsertValueInst::Create(Struct, II->getOperand(1), 0);
-      }
-    }
-    break;
-  case Intrinsic::ppc_altivec_lvx:
-  case Intrinsic::ppc_altivec_lvxl:
-  case Intrinsic::x86_sse_loadu_ps:
-  case Intrinsic::x86_sse2_loadu_pd:
-  case Intrinsic::x86_sse2_loadu_dq:
-    // Turn PPC lvx     -> load if the pointer is known aligned.
-    // Turn X86 loadups -> load if the pointer is known aligned.
-    if (GetOrEnforceKnownAlignment(II->getOperand(1), 16) >= 16) {
-      Value *Ptr = Builder->CreateBitCast(II->getOperand(1),
-                                         PointerType::getUnqual(II->getType()));
-      return new LoadInst(Ptr);
-    }
-    break;
-  case Intrinsic::ppc_altivec_stvx:
-  case Intrinsic::ppc_altivec_stvxl:
-    // Turn stvx -> store if the pointer is known aligned.
-    if (GetOrEnforceKnownAlignment(II->getOperand(2), 16) >= 16) {
-      const Type *OpPtrTy = 
-        PointerType::getUnqual(II->getOperand(1)->getType());
-      Value *Ptr = Builder->CreateBitCast(II->getOperand(2), OpPtrTy);
-      return new StoreInst(II->getOperand(1), Ptr);
-    }
-    break;
-  case Intrinsic::x86_sse_storeu_ps:
-  case Intrinsic::x86_sse2_storeu_pd:
-  case Intrinsic::x86_sse2_storeu_dq:
-    // Turn X86 storeu -> store if the pointer is known aligned.
-    if (GetOrEnforceKnownAlignment(II->getOperand(1), 16) >= 16) {
-      const Type *OpPtrTy = 
-        PointerType::getUnqual(II->getOperand(2)->getType());
-      Value *Ptr = Builder->CreateBitCast(II->getOperand(1), OpPtrTy);
-      return new StoreInst(II->getOperand(2), Ptr);
-    }
-    break;
-    
-  case Intrinsic::x86_sse_cvttss2si: {
-    // These intrinsics only demands the 0th element of its input vector.  If
-    // we can simplify the input based on that, do so now.
-    unsigned VWidth =
-      cast<VectorType>(II->getOperand(1)->getType())->getNumElements();
-    APInt DemandedElts(VWidth, 1);
-    APInt UndefElts(VWidth, 0);
-    if (Value *V = SimplifyDemandedVectorElts(II->getOperand(1), DemandedElts,
-                                              UndefElts)) {
-      II->setOperand(1, V);
-      return II;
-    }
-    break;
-  }
-    
-  case Intrinsic::ppc_altivec_vperm:
-    // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
-    if (ConstantVector *Mask = dyn_cast<ConstantVector>(II->getOperand(3))) {
-      assert(Mask->getNumOperands() == 16 && "Bad type for intrinsic!");
-      
-      // Check that all of the elements are integer constants or undefs.
-      bool AllEltsOk = true;
-      for (unsigned i = 0; i != 16; ++i) {
-        if (!isa<ConstantInt>(Mask->getOperand(i)) && 
-            !isa<UndefValue>(Mask->getOperand(i))) {
-          AllEltsOk = false;
-          break;
-        }
-      }
-      
-      if (AllEltsOk) {
-        // Cast the input vectors to byte vectors.
-        Value *Op0 = Builder->CreateBitCast(II->getOperand(1), Mask->getType());
-        Value *Op1 = Builder->CreateBitCast(II->getOperand(2), Mask->getType());
-        Value *Result = UndefValue::get(Op0->getType());
-        
-        // Only extract each element once.
-        Value *ExtractedElts[32];
-        memset(ExtractedElts, 0, sizeof(ExtractedElts));
-        
-        for (unsigned i = 0; i != 16; ++i) {
-          if (isa<UndefValue>(Mask->getOperand(i)))
-            continue;
-          unsigned Idx=cast<ConstantInt>(Mask->getOperand(i))->getZExtValue();
-          Idx &= 31;  // Match the hardware behavior.
-          
-          if (ExtractedElts[Idx] == 0) {
-            ExtractedElts[Idx] = 
-              Builder->CreateExtractElement(Idx < 16 ? Op0 : Op1, 
-                  ConstantInt::get(Type::getInt32Ty(II->getContext()),
-                                   Idx&15, false), "tmp");
-          }
-        
-          // Insert this value into the result vector.
-          Result = Builder->CreateInsertElement(Result, ExtractedElts[Idx],
-                         ConstantInt::get(Type::getInt32Ty(II->getContext()),
-                                          i, false), "tmp");
-        }
-        return CastInst::Create(Instruction::BitCast, Result, CI.getType());
-      }
-    }
-    break;
-
-  case Intrinsic::stackrestore: {
-    // If the save is right next to the restore, remove the restore.  This can
-    // happen when variable allocas are DCE'd.
-    if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getOperand(1))) {
-      if (SS->getIntrinsicID() == Intrinsic::stacksave) {
-        BasicBlock::iterator BI = SS;
-        if (&*++BI == II)
-          return EraseInstFromFunction(CI);
-      }
-    }
-    
-    // Scan down this block to see if there is another stack restore in the
-    // same block without an intervening call/alloca.
-    BasicBlock::iterator BI = II;
-    TerminatorInst *TI = II->getParent()->getTerminator();
-    bool CannotRemove = false;
-    for (++BI; &*BI != TI; ++BI) {
-      if (isa<AllocaInst>(BI) || isMalloc(BI)) {
-        CannotRemove = true;
-        break;
-      }
-      if (CallInst *BCI = dyn_cast<CallInst>(BI)) {
-        if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(BCI)) {
-          // If there is a stackrestore below this one, remove this one.
-          if (II->getIntrinsicID() == Intrinsic::stackrestore)
-            return EraseInstFromFunction(CI);
-          // Otherwise, ignore the intrinsic.
-        } else {
-          // If we found a non-intrinsic call, we can't remove the stack
-          // restore.
-          CannotRemove = true;
-          break;
-        }
-      }
-    }
-    
-    // If the stack restore is in a return/unwind block and if there are no
-    // allocas or calls between the restore and the return, nuke the restore.
-    if (!CannotRemove && (isa<ReturnInst>(TI) || isa<UnwindInst>(TI)))
-      return EraseInstFromFunction(CI);
-    break;
-  }
-  }
-
-  return visitCallSite(II);
-}
-
-// InvokeInst simplification
-//
-Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) {
-  return visitCallSite(&II);
-}
-
-/// isSafeToEliminateVarargsCast - If this cast does not affect the value 
-/// passed through the varargs area, we can eliminate the use of the cast.
-static bool isSafeToEliminateVarargsCast(const CallSite CS,
-                                         const CastInst * const CI,
-                                         const TargetData * const TD,
-                                         const int ix) {
-  if (!CI->isLosslessCast())
-    return false;
-
-  // The size of ByVal arguments is derived from the type, so we
-  // can't change to a type with a different size.  If the size were
-  // passed explicitly we could avoid this check.
-  if (!CS.paramHasAttr(ix, Attribute::ByVal))
-    return true;
-
-  const Type* SrcTy = 
-            cast<PointerType>(CI->getOperand(0)->getType())->getElementType();
-  const Type* DstTy = cast<PointerType>(CI->getType())->getElementType();
-  if (!SrcTy->isSized() || !DstTy->isSized())
-    return false;
-  if (!TD || TD->getTypeAllocSize(SrcTy) != TD->getTypeAllocSize(DstTy))
-    return false;
-  return true;
-}
-
-// visitCallSite - Improvements for call and invoke instructions.
-//
-Instruction *InstCombiner::visitCallSite(CallSite CS) {
-  bool Changed = false;
-
-  // If the callee is a constexpr cast of a function, attempt to move the cast
-  // to the arguments of the call/invoke.
-  if (transformConstExprCastCall(CS)) return 0;
-
-  Value *Callee = CS.getCalledValue();
-
-  if (Function *CalleeF = dyn_cast<Function>(Callee))
-    if (CalleeF->getCallingConv() != CS.getCallingConv()) {
-      Instruction *OldCall = CS.getInstruction();
-      // If the call and callee calling conventions don't match, this call must
-      // be unreachable, as the call is undefined.
-      new StoreInst(ConstantInt::getTrue(Callee->getContext()),
-                UndefValue::get(Type::getInt1PtrTy(Callee->getContext())), 
-                                  OldCall);
-      // If OldCall dues not return void then replaceAllUsesWith undef.
-      // This allows ValueHandlers and custom metadata to adjust itself.
-      if (!OldCall->getType()->isVoidTy())
-        OldCall->replaceAllUsesWith(UndefValue::get(OldCall->getType()));
-      if (isa<CallInst>(OldCall))   // Not worth removing an invoke here.
-        return EraseInstFromFunction(*OldCall);
-      return 0;
-    }
-
-  if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
-    // This instruction is not reachable, just remove it.  We insert a store to
-    // undef so that we know that this code is not reachable, despite the fact
-    // that we can't modify the CFG here.
-    new StoreInst(ConstantInt::getTrue(Callee->getContext()),
-               UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
-                  CS.getInstruction());
-
-    // If CS dues not return void then replaceAllUsesWith undef.
-    // This allows ValueHandlers and custom metadata to adjust itself.
-    if (!CS.getInstruction()->getType()->isVoidTy())
-      CS.getInstruction()->
-        replaceAllUsesWith(UndefValue::get(CS.getInstruction()->getType()));
-
-    if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) {
-      // Don't break the CFG, insert a dummy cond branch.
-      BranchInst::Create(II->getNormalDest(), II->getUnwindDest(),
-                         ConstantInt::getTrue(Callee->getContext()), II);
-    }
-    return EraseInstFromFunction(*CS.getInstruction());
-  }
-
-  if (BitCastInst *BC = dyn_cast<BitCastInst>(Callee))
-    if (IntrinsicInst *In = dyn_cast<IntrinsicInst>(BC->getOperand(0)))
-      if (In->getIntrinsicID() == Intrinsic::init_trampoline)
-        return transformCallThroughTrampoline(CS);
-
-  const PointerType *PTy = cast<PointerType>(Callee->getType());
-  const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
-  if (FTy->isVarArg()) {
-    int ix = FTy->getNumParams() + (isa<InvokeInst>(Callee) ? 3 : 1);
-    // See if we can optimize any arguments passed through the varargs area of
-    // the call.
-    for (CallSite::arg_iterator I = CS.arg_begin()+FTy->getNumParams(),
-           E = CS.arg_end(); I != E; ++I, ++ix) {
-      CastInst *CI = dyn_cast<CastInst>(*I);
-      if (CI && isSafeToEliminateVarargsCast(CS, CI, TD, ix)) {
-        *I = CI->getOperand(0);
-        Changed = true;
-      }
-    }
-  }
-
-  if (isa<InlineAsm>(Callee) && !CS.doesNotThrow()) {
-    // Inline asm calls cannot throw - mark them 'nounwind'.
-    CS.setDoesNotThrow();
-    Changed = true;
-  }
-
-  return Changed ? CS.getInstruction() : 0;
-}
-
-// transformConstExprCastCall - If the callee is a constexpr cast of a function,
-// attempt to move the cast to the arguments of the call/invoke.
-//
-bool InstCombiner::transformConstExprCastCall(CallSite CS) {
-  if (!isa<ConstantExpr>(CS.getCalledValue())) return false;
-  ConstantExpr *CE = cast<ConstantExpr>(CS.getCalledValue());
-  if (CE->getOpcode() != Instruction::BitCast || 
-      !isa<Function>(CE->getOperand(0)))
-    return false;
-  Function *Callee = cast<Function>(CE->getOperand(0));
-  Instruction *Caller = CS.getInstruction();
-  const AttrListPtr &CallerPAL = CS.getAttributes();
-
-  // Okay, this is a cast from a function to a different type.  Unless doing so
-  // would cause a type conversion of one of our arguments, change this call to
-  // be a direct call with arguments casted to the appropriate types.
-  //
-  const FunctionType *FT = Callee->getFunctionType();
-  const Type *OldRetTy = Caller->getType();
-  const Type *NewRetTy = FT->getReturnType();
-
-  if (isa<StructType>(NewRetTy))
-    return false; // TODO: Handle multiple return values.
-
-  // Check to see if we are changing the return type...
-  if (OldRetTy != NewRetTy) {
-    if (Callee->isDeclaration() &&
-        // Conversion is ok if changing from one pointer type to another or from
-        // a pointer to an integer of the same size.
-        !((isa<PointerType>(OldRetTy) || !TD ||
-           OldRetTy == TD->getIntPtrType(Caller->getContext())) &&
-          (isa<PointerType>(NewRetTy) || !TD ||
-           NewRetTy == TD->getIntPtrType(Caller->getContext()))))
-      return false;   // Cannot transform this return value.
-
-    if (!Caller->use_empty() &&
-        // void -> non-void is handled specially
-        !NewRetTy->isVoidTy() && !CastInst::isCastable(NewRetTy, OldRetTy))
-      return false;   // Cannot transform this return value.
-
-    if (!CallerPAL.isEmpty() && !Caller->use_empty()) {
-      Attributes RAttrs = CallerPAL.getRetAttributes();
-      if (RAttrs & Attribute::typeIncompatible(NewRetTy))
-        return false;   // Attribute not compatible with transformed value.
-    }
-
-    // If the callsite is an invoke instruction, and the return value is used by
-    // a PHI node in a successor, we cannot change the return type of the call
-    // because there is no place to put the cast instruction (without breaking
-    // the critical edge).  Bail out in this case.
-    if (!Caller->use_empty())
-      if (InvokeInst *II = dyn_cast<InvokeInst>(Caller))
-        for (Value::use_iterator UI = II->use_begin(), E = II->use_end();
-             UI != E; ++UI)
-          if (PHINode *PN = dyn_cast<PHINode>(*UI))
-            if (PN->getParent() == II->getNormalDest() ||
-                PN->getParent() == II->getUnwindDest())
-              return false;
-  }
-
-  unsigned NumActualArgs = unsigned(CS.arg_end()-CS.arg_begin());
-  unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
-
-  CallSite::arg_iterator AI = CS.arg_begin();
-  for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
-    const Type *ParamTy = FT->getParamType(i);
-    const Type *ActTy = (*AI)->getType();
-
-    if (!CastInst::isCastable(ActTy, ParamTy))
-      return false;   // Cannot transform this parameter value.
-
-    if (CallerPAL.getParamAttributes(i + 1) 
-        & Attribute::typeIncompatible(ParamTy))
-      return false;   // Attribute not compatible with transformed value.
-
-    // Converting from one pointer type to another or between a pointer and an
-    // integer of the same size is safe even if we do not have a body.
-    bool isConvertible = ActTy == ParamTy ||
-      (TD && ((isa<PointerType>(ParamTy) ||
-      ParamTy == TD->getIntPtrType(Caller->getContext())) &&
-              (isa<PointerType>(ActTy) ||
-              ActTy == TD->getIntPtrType(Caller->getContext()))));
-    if (Callee->isDeclaration() && !isConvertible) return false;
-  }
-
-  if (FT->getNumParams() < NumActualArgs && !FT->isVarArg() &&
-      Callee->isDeclaration())
-    return false;   // Do not delete arguments unless we have a function body.
-
-  if (FT->getNumParams() < NumActualArgs && FT->isVarArg() &&
-      !CallerPAL.isEmpty())
-    // In this case we have more arguments than the new function type, but we
-    // won't be dropping them.  Check that these extra arguments have attributes
-    // that are compatible with being a vararg call argument.
-    for (unsigned i = CallerPAL.getNumSlots(); i; --i) {
-      if (CallerPAL.getSlot(i - 1).Index <= FT->getNumParams())
-        break;
-      Attributes PAttrs = CallerPAL.getSlot(i - 1).Attrs;
-      if (PAttrs & Attribute::VarArgsIncompatible)
-        return false;
-    }
-
-  // Okay, we decided that this is a safe thing to do: go ahead and start
-  // inserting cast instructions as necessary...
-  std::vector<Value*> Args;
-  Args.reserve(NumActualArgs);
-  SmallVector<AttributeWithIndex, 8> attrVec;
-  attrVec.reserve(NumCommonArgs);
-
-  // Get any return attributes.
-  Attributes RAttrs = CallerPAL.getRetAttributes();
-
-  // If the return value is not being used, the type may not be compatible
-  // with the existing attributes.  Wipe out any problematic attributes.
-  RAttrs &= ~Attribute::typeIncompatible(NewRetTy);
-
-  // Add the new return attributes.
-  if (RAttrs)
-    attrVec.push_back(AttributeWithIndex::get(0, RAttrs));
-
-  AI = CS.arg_begin();
-  for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
-    const Type *ParamTy = FT->getParamType(i);
-    if ((*AI)->getType() == ParamTy) {
-      Args.push_back(*AI);
-    } else {
-      Instruction::CastOps opcode = CastInst::getCastOpcode(*AI,
-          false, ParamTy, false);
-      Args.push_back(Builder->CreateCast(opcode, *AI, ParamTy, "tmp"));
-    }
-
-    // Add any parameter attributes.
-    if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1))
-      attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs));
-  }
-
-  // If the function takes more arguments than the call was taking, add them
-  // now.
-  for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i)
-    Args.push_back(Constant::getNullValue(FT->getParamType(i)));
-
-  // If we are removing arguments to the function, emit an obnoxious warning.
-  if (FT->getNumParams() < NumActualArgs) {
-    if (!FT->isVarArg()) {
-      errs() << "WARNING: While resolving call to function '"
-             << Callee->getName() << "' arguments were dropped!\n";
-    } else {
-      // Add all of the arguments in their promoted form to the arg list.
-      for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
-        const Type *PTy = getPromotedType((*AI)->getType());
-        if (PTy != (*AI)->getType()) {
-          // Must promote to pass through va_arg area!
-          Instruction::CastOps opcode =
-            CastInst::getCastOpcode(*AI, false, PTy, false);
-          Args.push_back(Builder->CreateCast(opcode, *AI, PTy, "tmp"));
-        } else {
-          Args.push_back(*AI);
-        }
-
-        // Add any parameter attributes.
-        if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1))
-          attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs));
-      }
-    }
-  }
-
-  if (Attributes FnAttrs =  CallerPAL.getFnAttributes())
-    attrVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
-
-  if (NewRetTy->isVoidTy())
-    Caller->setName("");   // Void type should not have a name.
-
-  const AttrListPtr &NewCallerPAL = AttrListPtr::get(attrVec.begin(),
-                                                     attrVec.end());
-
-  Instruction *NC;
-  if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
-    NC = InvokeInst::Create(Callee, II->getNormalDest(), II->getUnwindDest(),
-                            Args.begin(), Args.end(),
-                            Caller->getName(), Caller);
-    cast<InvokeInst>(NC)->setCallingConv(II->getCallingConv());
-    cast<InvokeInst>(NC)->setAttributes(NewCallerPAL);
-  } else {
-    NC = CallInst::Create(Callee, Args.begin(), Args.end(),
-                          Caller->getName(), Caller);
-    CallInst *CI = cast<CallInst>(Caller);
-    if (CI->isTailCall())
-      cast<CallInst>(NC)->setTailCall();
-    cast<CallInst>(NC)->setCallingConv(CI->getCallingConv());
-    cast<CallInst>(NC)->setAttributes(NewCallerPAL);
-  }
-
-  // Insert a cast of the return type as necessary.
-  Value *NV = NC;
-  if (OldRetTy != NV->getType() && !Caller->use_empty()) {
-    if (!NV->getType()->isVoidTy()) {
-      Instruction::CastOps opcode = CastInst::getCastOpcode(NC, false, 
-                                                            OldRetTy, false);
-      NV = NC = CastInst::Create(opcode, NC, OldRetTy, "tmp");
-
-      // If this is an invoke instruction, we should insert it after the first
-      // non-phi, instruction in the normal successor block.
-      if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
-        BasicBlock::iterator I = II->getNormalDest()->getFirstNonPHI();
-        InsertNewInstBefore(NC, *I);
-      } else {
-        // Otherwise, it's a call, just insert cast right after the call instr
-        InsertNewInstBefore(NC, *Caller);
-      }
-      Worklist.AddUsersToWorkList(*Caller);
-    } else {
-      NV = UndefValue::get(Caller->getType());
-    }
-  }
-
-
-  if (!Caller->use_empty())
-    Caller->replaceAllUsesWith(NV);
-  
-  EraseInstFromFunction(*Caller);
-  return true;
-}
-
-// transformCallThroughTrampoline - Turn a call to a function created by the
-// init_trampoline intrinsic into a direct call to the underlying function.
-//
-Instruction *InstCombiner::transformCallThroughTrampoline(CallSite CS) {
-  Value *Callee = CS.getCalledValue();
-  const PointerType *PTy = cast<PointerType>(Callee->getType());
-  const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
-  const AttrListPtr &Attrs = CS.getAttributes();
-
-  // If the call already has the 'nest' attribute somewhere then give up -
-  // otherwise 'nest' would occur twice after splicing in the chain.
-  if (Attrs.hasAttrSomewhere(Attribute::Nest))
-    return 0;
-
-  IntrinsicInst *Tramp =
-    cast<IntrinsicInst>(cast<BitCastInst>(Callee)->getOperand(0));
-
-  Function *NestF = cast<Function>(Tramp->getOperand(2)->stripPointerCasts());
-  const PointerType *NestFPTy = cast<PointerType>(NestF->getType());
-  const FunctionType *NestFTy = cast<FunctionType>(NestFPTy->getElementType());
-
-  const AttrListPtr &NestAttrs = NestF->getAttributes();
-  if (!NestAttrs.isEmpty()) {
-    unsigned NestIdx = 1;
-    const Type *NestTy = 0;
-    Attributes NestAttr = Attribute::None;
-
-    // Look for a parameter marked with the 'nest' attribute.
-    for (FunctionType::param_iterator I = NestFTy->param_begin(),
-         E = NestFTy->param_end(); I != E; ++NestIdx, ++I)
-      if (NestAttrs.paramHasAttr(NestIdx, Attribute::Nest)) {
-        // Record the parameter type and any other attributes.
-        NestTy = *I;
-        NestAttr = NestAttrs.getParamAttributes(NestIdx);
-        break;
-      }
-
-    if (NestTy) {
-      Instruction *Caller = CS.getInstruction();
-      std::vector<Value*> NewArgs;
-      NewArgs.reserve(unsigned(CS.arg_end()-CS.arg_begin())+1);
-
-      SmallVector<AttributeWithIndex, 8> NewAttrs;
-      NewAttrs.reserve(Attrs.getNumSlots() + 1);
-
-      // Insert the nest argument into the call argument list, which may
-      // mean appending it.  Likewise for attributes.
-
-      // Add any result attributes.
-      if (Attributes Attr = Attrs.getRetAttributes())
-        NewAttrs.push_back(AttributeWithIndex::get(0, Attr));
-
-      {
-        unsigned Idx = 1;
-        CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
-        do {
-          if (Idx == NestIdx) {
-            // Add the chain argument and attributes.
-            Value *NestVal = Tramp->getOperand(3);
-            if (NestVal->getType() != NestTy)
-              NestVal = new BitCastInst(NestVal, NestTy, "nest", Caller);
-            NewArgs.push_back(NestVal);
-            NewAttrs.push_back(AttributeWithIndex::get(NestIdx, NestAttr));
-          }
-
-          if (I == E)
-            break;
-
-          // Add the original argument and attributes.
-          NewArgs.push_back(*I);
-          if (Attributes Attr = Attrs.getParamAttributes(Idx))
-            NewAttrs.push_back
-              (AttributeWithIndex::get(Idx + (Idx >= NestIdx), Attr));
-
-          ++Idx, ++I;
-        } while (1);
-      }
-
-      // Add any function attributes.
-      if (Attributes Attr = Attrs.getFnAttributes())
-        NewAttrs.push_back(AttributeWithIndex::get(~0, Attr));
-
-      // The trampoline may have been bitcast to a bogus type (FTy).
-      // Handle this by synthesizing a new function type, equal to FTy
-      // with the chain parameter inserted.
-
-      std::vector<const Type*> NewTypes;
-      NewTypes.reserve(FTy->getNumParams()+1);
-
-      // Insert the chain's type into the list of parameter types, which may
-      // mean appending it.
-      {
-        unsigned Idx = 1;
-        FunctionType::param_iterator I = FTy->param_begin(),
-          E = FTy->param_end();
-
-        do {
-          if (Idx == NestIdx)
-            // Add the chain's type.
-            NewTypes.push_back(NestTy);
-
-          if (I == E)
-            break;
-
-          // Add the original type.
-          NewTypes.push_back(*I);
-
-          ++Idx, ++I;
-        } while (1);
-      }
-
-      // Replace the trampoline call with a direct call.  Let the generic
-      // code sort out any function type mismatches.
-      FunctionType *NewFTy = FunctionType::get(FTy->getReturnType(), NewTypes, 
-                                                FTy->isVarArg());
-      Constant *NewCallee =
-        NestF->getType() == PointerType::getUnqual(NewFTy) ?
-        NestF : ConstantExpr::getBitCast(NestF, 
-                                         PointerType::getUnqual(NewFTy));
-      const AttrListPtr &NewPAL = AttrListPtr::get(NewAttrs.begin(),
-                                                   NewAttrs.end());
-
-      Instruction *NewCaller;
-      if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
-        NewCaller = InvokeInst::Create(NewCallee,
-                                       II->getNormalDest(), II->getUnwindDest(),
-                                       NewArgs.begin(), NewArgs.end(),
-                                       Caller->getName(), Caller);
-        cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv());
-        cast<InvokeInst>(NewCaller)->setAttributes(NewPAL);
-      } else {
-        NewCaller = CallInst::Create(NewCallee, NewArgs.begin(), NewArgs.end(),
-                                     Caller->getName(), Caller);
-        if (cast<CallInst>(Caller)->isTailCall())
-          cast<CallInst>(NewCaller)->setTailCall();
-        cast<CallInst>(NewCaller)->
-          setCallingConv(cast<CallInst>(Caller)->getCallingConv());
-        cast<CallInst>(NewCaller)->setAttributes(NewPAL);
-      }
-      if (!Caller->getType()->isVoidTy())
-        Caller->replaceAllUsesWith(NewCaller);
-      Caller->eraseFromParent();
-      Worklist.Remove(Caller);
-      return 0;
-    }
-  }
-
-  // Replace the trampoline call with a direct call.  Since there is no 'nest'
-  // parameter, there is no need to adjust the argument list.  Let the generic
-  // code sort out any function type mismatches.
-  Constant *NewCallee =
-    NestF->getType() == PTy ? NestF : 
-                              ConstantExpr::getBitCast(NestF, PTy);
-  CS.setCalledFunction(NewCallee);
-  return CS.getInstruction();
-}
-
-
-
-Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
-  SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end());
-
-  if (Value *V = SimplifyGEPInst(&Ops[0], Ops.size(), TD))
-    return ReplaceInstUsesWith(GEP, V);
-
-  Value *PtrOp = GEP.getOperand(0);
-
-  if (isa<UndefValue>(GEP.getOperand(0)))
-    return ReplaceInstUsesWith(GEP, UndefValue::get(GEP.getType()));
-
-  // Eliminate unneeded casts for indices.
-  if (TD) {
-    bool MadeChange = false;
-    unsigned PtrSize = TD->getPointerSizeInBits();
-    
-    gep_type_iterator GTI = gep_type_begin(GEP);
-    for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end();
-         I != E; ++I, ++GTI) {
-      if (!isa<SequentialType>(*GTI)) continue;
-      
-      // If we are using a wider index than needed for this platform, shrink it
-      // to what we need.  If narrower, sign-extend it to what we need.  This
-      // explicit cast can make subsequent optimizations more obvious.
-      unsigned OpBits = cast<IntegerType>((*I)->getType())->getBitWidth();
-      if (OpBits == PtrSize)
-        continue;
-      
-      *I = Builder->CreateIntCast(*I, TD->getIntPtrType(GEP.getContext()),true);
-      MadeChange = true;
-    }
-    if (MadeChange) return &GEP;
-  }
-
-  // Combine Indices - If the source pointer to this getelementptr instruction
-  // is a getelementptr instruction, combine the indices of the two
-  // getelementptr instructions into a single instruction.
-  //
-  if (GEPOperator *Src = dyn_cast<GEPOperator>(PtrOp)) {
-    // Note that if our source is a gep chain itself that we wait for that
-    // chain to be resolved before we perform this transformation.  This
-    // avoids us creating a TON of code in some cases.
-    //
-    if (GetElementPtrInst *SrcGEP =
-          dyn_cast<GetElementPtrInst>(Src->getOperand(0)))
-      if (SrcGEP->getNumOperands() == 2)
-        return 0;   // Wait until our source is folded to completion.
-
-    SmallVector<Value*, 8> Indices;
-
-    // Find out whether the last index in the source GEP is a sequential idx.
-    bool EndsWithSequential = false;
-    for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src);
-         I != E; ++I)
-      EndsWithSequential = !isa<StructType>(*I);
-
-    // Can we combine the two pointer arithmetics offsets?
-    if (EndsWithSequential) {
-      // Replace: gep (gep %P, long B), long A, ...
-      // With:    T = long A+B; gep %P, T, ...
-      //
-      Value *Sum;
-      Value *SO1 = Src->getOperand(Src->getNumOperands()-1);
-      Value *GO1 = GEP.getOperand(1);
-      if (SO1 == Constant::getNullValue(SO1->getType())) {
-        Sum = GO1;
-      } else if (GO1 == Constant::getNullValue(GO1->getType())) {
-        Sum = SO1;
-      } else {
-        // If they aren't the same type, then the input hasn't been processed
-        // by the loop above yet (which canonicalizes sequential index types to
-        // intptr_t).  Just avoid transforming this until the input has been
-        // normalized.
-        if (SO1->getType() != GO1->getType())
-          return 0;
-        Sum = Builder->CreateAdd(SO1, GO1, PtrOp->getName()+".sum");
-      }
-
-      // Update the GEP in place if possible.
-      if (Src->getNumOperands() == 2) {
-        GEP.setOperand(0, Src->getOperand(0));
-        GEP.setOperand(1, Sum);
-        return &GEP;
-      }
-      Indices.append(Src->op_begin()+1, Src->op_end()-1);
-      Indices.push_back(Sum);
-      Indices.append(GEP.op_begin()+2, GEP.op_end());
-    } else if (isa<Constant>(*GEP.idx_begin()) &&
-               cast<Constant>(*GEP.idx_begin())->isNullValue() &&
-               Src->getNumOperands() != 1) {
-      // Otherwise we can do the fold if the first index of the GEP is a zero
-      Indices.append(Src->op_begin()+1, Src->op_end());
-      Indices.append(GEP.idx_begin()+1, GEP.idx_end());
-    }
-
-    if (!Indices.empty())
-      return (cast<GEPOperator>(&GEP)->isInBounds() &&
-              Src->isInBounds()) ?
-        GetElementPtrInst::CreateInBounds(Src->getOperand(0), Indices.begin(),
-                                          Indices.end(), GEP.getName()) :
-        GetElementPtrInst::Create(Src->getOperand(0), Indices.begin(),
-                                  Indices.end(), GEP.getName());
-  }
-  
-  // Handle gep(bitcast x) and gep(gep x, 0, 0, 0).
-  if (Value *X = getBitCastOperand(PtrOp)) {
-    assert(isa<PointerType>(X->getType()) && "Must be cast from pointer");
-
-    // If the input bitcast is actually "bitcast(bitcast(x))", then we don't 
-    // want to change the gep until the bitcasts are eliminated.
-    if (getBitCastOperand(X)) {
-      Worklist.AddValue(PtrOp);
-      return 0;
-    }
-    
     bool HasZeroPointerIndex = false;
     if (ConstantInt *C = dyn_cast<ConstantInt>(GEP.getOperand(1)))
       HasZeroPointerIndex = C->isZero();
@@ -4056,21 +552,21 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
     // This occurs when the program declares an array extern like "int X[];"
     if (HasZeroPointerIndex) {
       const PointerType *CPTy = cast<PointerType>(PtrOp->getType());
-      const PointerType *XTy = cast<PointerType>(X->getType());
       if (const ArrayType *CATy =
           dyn_cast<ArrayType>(CPTy->getElementType())) {
         // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ?
-        if (CATy->getElementType() == XTy->getElementType()) {
+        if (CATy->getElementType() == StrippedPtrTy->getElementType()) {
           // -> GEP i8* X, ...
-          SmallVector<Value*, 8> Indices(GEP.idx_begin()+1, GEP.idx_end());
-          return cast<GEPOperator>(&GEP)->isInBounds() ?
-            GetElementPtrInst::CreateInBounds(X, Indices.begin(), Indices.end(),
-                                              GEP.getName()) :
-            GetElementPtrInst::Create(X, Indices.begin(), Indices.end(),
-                                      GEP.getName());
+          SmallVector<Value*, 8> Idx(GEP.idx_begin()+1, GEP.idx_end());
+          GetElementPtrInst *Res =
+            GetElementPtrInst::Create(StrippedPtr, Idx.begin(),
+                                      Idx.end(), GEP.getName());
+          Res->setIsInBounds(GEP.isInBounds());
+          return Res;
         }
         
-        if (const ArrayType *XATy = dyn_cast<ArrayType>(XTy->getElementType())){
+        if (const ArrayType *XATy =
+              dyn_cast<ArrayType>(StrippedPtrTy->getElementType())){
           // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ?
           if (CATy->getElementType() == XATy->getElementType()) {
             // -> GEP [10 x i8]* X, i32 0, ...
@@ -4078,7 +574,7 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
             // to an array of the same type as the destination pointer
             // array.  Because the array type is never stepped over (there
             // is a leading zero) we can fold the cast into this GEP.
-            GEP.setOperand(0, X);
+            GEP.setOperand(0, StrippedPtr);
             return &GEP;
           }
         }
@@ -4087,7 +583,7 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
       // Transform things like:
       // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V
       // into:  %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast
-      const Type *SrcElTy = cast<PointerType>(X->getType())->getElementType();
+      const Type *SrcElTy = StrippedPtrTy->getElementType();
       const Type *ResElTy=cast<PointerType>(PtrOp->getType())->getElementType();
       if (TD && isa<ArrayType>(SrcElTy) &&
           TD->getTypeAllocSize(cast<ArrayType>(SrcElTy)->getElementType()) ==
@@ -4095,9 +591,9 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
         Value *Idx[2];
         Idx[0] = Constant::getNullValue(Type::getInt32Ty(GEP.getContext()));
         Idx[1] = GEP.getOperand(1);
-        Value *NewGEP = cast<GEPOperator>(&GEP)->isInBounds() ?
-          Builder->CreateInBoundsGEP(X, Idx, Idx + 2, GEP.getName()) :
-          Builder->CreateGEP(X, Idx, Idx + 2, GEP.getName());
+        Value *NewGEP = GEP.isInBounds() ?
+          Builder->CreateInBoundsGEP(StrippedPtr, Idx, Idx + 2, GEP.getName()) :
+          Builder->CreateGEP(StrippedPtr, Idx, Idx + 2, GEP.getName());
         // V and GEP are both pointer types --> BitCast
         return new BitCastInst(NewGEP, GEP.getType());
       }
@@ -4155,9 +651,9 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
           Value *Idx[2];
           Idx[0] = Constant::getNullValue(Type::getInt32Ty(GEP.getContext()));
           Idx[1] = NewIdx;
-          Value *NewGEP = cast<GEPOperator>(&GEP)->isInBounds() ?
-            Builder->CreateInBoundsGEP(X, Idx, Idx + 2, GEP.getName()) :
-            Builder->CreateGEP(X, Idx, Idx + 2, GEP.getName());
+          Value *NewGEP = GEP.isInBounds() ?
+            Builder->CreateInBoundsGEP(StrippedPtr, Idx, Idx + 2,GEP.getName()):
+            Builder->CreateGEP(StrippedPtr, Idx, Idx + 2, GEP.getName());
           // The NewGEP must be pointer typed, so must the old one -> BitCast
           return new BitCastInst(NewGEP, GEP.getType());
         }
@@ -4205,7 +701,7 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
       const Type *InTy =
         cast<PointerType>(BCI->getOperand(0)->getType())->getElementType();
       if (FindElementAtOffset(InTy, Offset, NewIndices)) {
-        Value *NGEP = cast<GEPOperator>(&GEP)->isInBounds() ?
+        Value *NGEP = GEP.isInBounds() ?
           Builder->CreateInBoundsGEP(BCI->getOperand(0), NewIndices.begin(),
                                      NewIndices.end()) :
           Builder->CreateGEP(BCI->getOperand(0), NewIndices.begin(),