Make use of @llvm.assume in ValueTracking (computeKnownBits, etc.)
[oota-llvm.git] / lib / Transforms / InstCombine / InstCombineLoadStoreAlloca.cpp
index 4ab5b6e4a04165a6a97bd32a946931c922b9d96c..4aafc2e2cad7ab71030baab4f5ceb5b80dc6dac2 100644 (file)
 //===----------------------------------------------------------------------===//
 
 #include "InstCombine.h"
-#include "llvm/IntrinsicInst.h"
+#include "llvm/ADT/Statistic.h"
 #include "llvm/Analysis/Loads.h"
-#include "llvm/DataLayout.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/IntrinsicInst.h"
 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
 #include "llvm/Transforms/Utils/Local.h"
-#include "llvm/ADT/Statistic.h"
 using namespace llvm;
 
+#define DEBUG_TYPE "instcombine"
+
 STATISTIC(NumDeadStore,    "Number of dead stores eliminated");
 STATISTIC(NumGlobalCopies, "Number of allocas copied from constant global");
 
@@ -29,10 +31,13 @@ STATISTIC(NumGlobalCopies, "Number of allocas copied from constant global");
 static bool pointsToConstantGlobal(Value *V) {
   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
     return GV->isConstant();
-  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
+
+  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
     if (CE->getOpcode() == Instruction::BitCast ||
+        CE->getOpcode() == Instruction::AddrSpaceCast ||
         CE->getOpcode() == Instruction::GetElementPtr)
       return pointsToConstantGlobal(CE->getOperand(0));
+  }
   return false;
 }
 
@@ -45,95 +50,102 @@ static bool pointsToConstantGlobal(Value *V) {
 /// can optimize this.
 static bool
 isOnlyCopiedFromConstantGlobal(Value *V, MemTransferInst *&TheCopy,
-                               SmallVectorImpl<Instruction *> &ToDelete,
-                               bool IsOffset = false) {
+                               SmallVectorImpl<Instruction *> &ToDelete) {
   // We track lifetime intrinsics as we encounter them.  If we decide to go
   // ahead and replace the value with the global, this lets the caller quickly
   // eliminate the markers.
 
-  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
-    User *U = cast<Instruction>(*UI);
-
-    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
-      // Ignore non-volatile loads, they are always ok.
-      if (!LI->isSimple()) return false;
-      continue;
-    }
-
-    if (BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
-      // If uses of the bitcast are ok, we are ok.
-      if (!isOnlyCopiedFromConstantGlobal(BCI, TheCopy, ToDelete, IsOffset))
-        return false;
-      continue;
-    }
-    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
-      // If the GEP has all zero indices, it doesn't offset the pointer.  If it
-      // doesn't, it does.
-      if (!isOnlyCopiedFromConstantGlobal(GEP, TheCopy, ToDelete,
-                                          IsOffset || !GEP->hasAllZeroIndices()))
-        return false;
-      continue;
-    }
-
-    if (CallSite CS = U) {
-      // If this is the function being called then we treat it like a load and
-      // ignore it.
-      if (CS.isCallee(UI))
+  SmallVector<std::pair<Value *, bool>, 35> ValuesToInspect;
+  ValuesToInspect.push_back(std::make_pair(V, false));
+  while (!ValuesToInspect.empty()) {
+    auto ValuePair = ValuesToInspect.pop_back_val();
+    const bool IsOffset = ValuePair.second;
+    for (auto &U : ValuePair.first->uses()) {
+      Instruction *I = cast<Instruction>(U.getUser());
+
+      if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
+        // Ignore non-volatile loads, they are always ok.
+        if (!LI->isSimple()) return false;
         continue;
+      }
 
-      // If this is a readonly/readnone call site, then we know it is just a
-      // load (but one that potentially returns the value itself), so we can
-      // ignore it if we know that the value isn't captured.
-      unsigned ArgNo = CS.getArgumentNo(UI);
-      if (CS.onlyReadsMemory() &&
-          (CS.getInstruction()->use_empty() || CS.doesNotCapture(ArgNo)))
+      if (isa<BitCastInst>(I) || isa<AddrSpaceCastInst>(I)) {
+        // If uses of the bitcast are ok, we are ok.
+        ValuesToInspect.push_back(std::make_pair(I, IsOffset));
         continue;
-
-      // If this is being passed as a byval argument, the caller is making a
-      // copy, so it is only a read of the alloca.
-      if (CS.isByValArgument(ArgNo))
+      }
+      if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
+        // If the GEP has all zero indices, it doesn't offset the pointer. If it
+        // doesn't, it does.
+        ValuesToInspect.push_back(
+            std::make_pair(I, IsOffset || !GEP->hasAllZeroIndices()));
         continue;
-    }
+      }
 
-    // Lifetime intrinsics can be handled by the caller.
-    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) {
-      if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
-          II->getIntrinsicID() == Intrinsic::lifetime_end) {
-        assert(II->use_empty() && "Lifetime markers have no result to use!");
-        ToDelete.push_back(II);
-        continue;
+      if (CallSite CS = I) {
+        // If this is the function being called then we treat it like a load and
+        // ignore it.
+        if (CS.isCallee(&U))
+          continue;
+
+        // Inalloca arguments are clobbered by the call.
+        unsigned ArgNo = CS.getArgumentNo(&U);
+        if (CS.isInAllocaArgument(ArgNo))
+          return false;
+
+        // If this is a readonly/readnone call site, then we know it is just a
+        // load (but one that potentially returns the value itself), so we can
+        // ignore it if we know that the value isn't captured.
+        if (CS.onlyReadsMemory() &&
+            (CS.getInstruction()->use_empty() || CS.doesNotCapture(ArgNo)))
+          continue;
+
+        // If this is being passed as a byval argument, the caller is making a
+        // copy, so it is only a read of the alloca.
+        if (CS.isByValArgument(ArgNo))
+          continue;
       }
-    }
 
-    // If this is isn't our memcpy/memmove, reject it as something we can't
-    // handle.
-    MemTransferInst *MI = dyn_cast<MemTransferInst>(U);
-    if (MI == 0)
-      return false;
+      // Lifetime intrinsics can be handled by the caller.
+      if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
+        if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
+            II->getIntrinsicID() == Intrinsic::lifetime_end) {
+          assert(II->use_empty() && "Lifetime markers have no result to use!");
+          ToDelete.push_back(II);
+          continue;
+        }
+      }
 
-    // If the transfer is using the alloca as a source of the transfer, then
-    // ignore it since it is a load (unless the transfer is volatile).
-    if (UI.getOperandNo() == 1) {
-      if (MI->isVolatile()) return false;
-      continue;
-    }
+      // If this is isn't our memcpy/memmove, reject it as something we can't
+      // handle.
+      MemTransferInst *MI = dyn_cast<MemTransferInst>(I);
+      if (!MI)
+        return false;
 
-    // If we already have seen a copy, reject the second one.
-    if (TheCopy) return false;
+      // If the transfer is using the alloca as a source of the transfer, then
+      // ignore it since it is a load (unless the transfer is volatile).
+      if (U.getOperandNo() == 1) {
+        if (MI->isVolatile()) return false;
+        continue;
+      }
 
-    // If the pointer has been offset from the start of the alloca, we can't
-    // safely handle this.
-    if (IsOffset) return false;
+      // If we already have seen a copy, reject the second one.
+      if (TheCopy) return false;
 
-    // If the memintrinsic isn't using the alloca as the dest, reject it.
-    if (UI.getOperandNo() != 0) return false;
+      // If the pointer has been offset from the start of the alloca, we can't
+      // safely handle this.
+      if (IsOffset) return false;
 
-    // If the source of the memcpy/move is not a constant global, reject it.
-    if (!pointsToConstantGlobal(MI->getSource()))
-      return false;
+      // If the memintrinsic isn't using the alloca as the dest, reject it.
+      if (U.getOperandNo() != 0) return false;
 
-    // Otherwise, the transform is safe.  Remember the copy instruction.
-    TheCopy = MI;
+      // If the source of the memcpy/move is not a constant global, reject it.
+      if (!pointsToConstantGlobal(MI->getSource()))
+        return false;
+
+      // Otherwise, the transform is safe.  Remember the copy instruction.
+      TheCopy = MI;
+    }
   }
   return true;
 }
@@ -144,36 +156,17 @@ isOnlyCopiedFromConstantGlobal(Value *V, MemTransferInst *&TheCopy,
 static MemTransferInst *
 isOnlyCopiedFromConstantGlobal(AllocaInst *AI,
                                SmallVectorImpl<Instruction *> &ToDelete) {
-  MemTransferInst *TheCopy = 0;
+  MemTransferInst *TheCopy = nullptr;
   if (isOnlyCopiedFromConstantGlobal(AI, TheCopy, ToDelete))
     return TheCopy;
-  return 0;
-}
-
-/// getPointeeAlignment - Compute the minimum alignment of the value pointed
-/// to by the given pointer.
-static unsigned getPointeeAlignment(Value *V, const DataLayout &TD) {
-  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
-    if (CE->getOpcode() == Instruction::BitCast ||
-        (CE->getOpcode() == Instruction::GetElementPtr &&
-         cast<GEPOperator>(CE)->hasAllZeroIndices()))
-      return getPointeeAlignment(CE->getOperand(0), TD);
-
-  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
-    if (!GV->isDeclaration())
-      return TD.getPreferredAlignment(GV);
-
-  if (PointerType *PT = dyn_cast<PointerType>(V->getType()))
-    return TD.getABITypeAlignment(PT->getElementType());
-
-  return 0;
+  return nullptr;
 }
 
 Instruction *InstCombiner::visitAllocaInst(AllocaInst &AI) {
   // Ensure that the alloca array size argument has type intptr_t, so that
   // any casting is exposed early.
-  if (TD) {
-    Type *IntPtrTy = TD->getIntPtrType(AI.getContext());
+  if (DL) {
+    Type *IntPtrTy = DL->getIntPtrType(AI.getType());
     if (AI.getArraySize()->getType() != IntPtrTy) {
       Value *V = Builder->CreateIntCast(AI.getArraySize(),
                                         IntPtrTy, false);
@@ -185,9 +178,9 @@ Instruction *InstCombiner::visitAllocaInst(AllocaInst &AI) {
   // Convert: alloca Ty, C - where C is a constant != 1 into: alloca [C x Ty], 1
   if (AI.isArrayAllocation()) {  // Check C != 1
     if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) {
-      Type *NewTy = 
+      Type *NewTy =
         ArrayType::get(AI.getAllocatedType(), C->getZExtValue());
-      AllocaInst *New = Builder->CreateAlloca(NewTy, 0, AI.getName());
+      AllocaInst *New = Builder->CreateAlloca(NewTy, nullptr, AI.getName());
       New->setAlignment(AI.getAlignment());
 
       // Scan to the end of the allocation instructions, to skip over a block of
@@ -199,12 +192,13 @@ Instruction *InstCombiner::visitAllocaInst(AllocaInst &AI) {
       // Now that I is pointing to the first non-allocation-inst in the block,
       // insert our getelementptr instruction...
       //
-      Value *NullIdx =Constant::getNullValue(Type::getInt32Ty(AI.getContext()));
-      Value *Idx[2];
-      Idx[0] = NullIdx;
-      Idx[1] = NullIdx;
+      Type *IdxTy = DL
+                  ? DL->getIntPtrType(AI.getType())
+                  : Type::getInt64Ty(AI.getContext());
+      Value *NullIdx = Constant::getNullValue(IdxTy);
+      Value *Idx[2] = { NullIdx, NullIdx };
       Instruction *GEP =
-           GetElementPtrInst::CreateInBounds(New, Idx, New->getName()+".sub");
+        GetElementPtrInst::CreateInBounds(New, Idx, New->getName() + ".sub");
       InsertNewInstBefore(GEP, *It);
 
       // Now make everything use the getelementptr instead of the original
@@ -215,15 +209,15 @@ Instruction *InstCombiner::visitAllocaInst(AllocaInst &AI) {
     }
   }
 
-  if (TD && AI.getAllocatedType()->isSized()) {
+  if (DL && AI.getAllocatedType()->isSized()) {
     // If the alignment is 0 (unspecified), assign it the preferred alignment.
     if (AI.getAlignment() == 0)
-      AI.setAlignment(TD->getPrefTypeAlignment(AI.getAllocatedType()));
+      AI.setAlignment(DL->getPrefTypeAlignment(AI.getAllocatedType()));
 
     // Move all alloca's of zero byte objects to the entry block and merge them
     // together.  Note that we only do this for alloca's, because malloc should
     // allocate and return a unique pointer, even for a zero byte allocation.
-    if (TD->getTypeAllocSize(AI.getAllocatedType()) == 0) {
+    if (DL->getTypeAllocSize(AI.getAllocatedType()) == 0) {
       // For a zero sized alloca there is no point in doing an array allocation.
       // This is helpful if the array size is a complicated expression not used
       // elsewhere.
@@ -241,7 +235,7 @@ Instruction *InstCombiner::visitAllocaInst(AllocaInst &AI) {
         // dominance as the array size was forced to a constant earlier already.
         AllocaInst *EntryAI = dyn_cast<AllocaInst>(FirstInst);
         if (!EntryAI || !EntryAI->getAllocatedType()->isSized() ||
-            TD->getTypeAllocSize(EntryAI->getAllocatedType()) != 0) {
+            DL->getTypeAllocSize(EntryAI->getAllocatedType()) != 0) {
           AI.moveBefore(FirstInst);
           return &AI;
         }
@@ -250,7 +244,7 @@ Instruction *InstCombiner::visitAllocaInst(AllocaInst &AI) {
         // assign it the preferred alignment.
         if (EntryAI->getAlignment() == 0)
           EntryAI->setAlignment(
-            TD->getPrefTypeAlignment(EntryAI->getAllocatedType()));
+            DL->getPrefTypeAlignment(EntryAI->getAllocatedType()));
         // Replace this zero-sized alloca with the one at the start of the entry
         // block after ensuring that the address will be aligned enough for both
         // types.
@@ -264,7 +258,7 @@ Instruction *InstCombiner::visitAllocaInst(AllocaInst &AI) {
     }
   }
 
-  if (TD) {
+  if (AI.getAlignment()) {
     // Check to see if this allocation is only modified by a memcpy/memmove from
     // a constant global whose alignment is equal to or exceeds that of the
     // allocation.  If this is the case, we can change all users to use
@@ -273,15 +267,18 @@ Instruction *InstCombiner::visitAllocaInst(AllocaInst &AI) {
     // is only subsequently read.
     SmallVector<Instruction *, 4> ToDelete;
     if (MemTransferInst *Copy = isOnlyCopiedFromConstantGlobal(&AI, ToDelete)) {
-      if (AI.getAlignment() <= getPointeeAlignment(Copy->getSource(), *TD)) {
+      unsigned SourceAlign = getOrEnforceKnownAlignment(Copy->getSource(),
+                                                        AI.getAlignment(),
+                                                        DL, AT, &AI, DT);
+      if (AI.getAlignment() <= SourceAlign) {
         DEBUG(dbgs() << "Found alloca equal to global: " << AI << '\n');
         DEBUG(dbgs() << "  memcpy = " << *Copy << '\n');
         for (unsigned i = 0, e = ToDelete.size(); i != e; ++i)
           EraseInstFromFunction(*ToDelete[i]);
         Constant *TheSrc = cast<Constant>(Copy->getSource());
-        Instruction *NewI
-          = ReplaceInstUsesWith(AI, ConstantExpr::getBitCast(TheSrc,
-                                                             AI.getType()));
+        Constant *Cast
+          = ConstantExpr::getPointerBitCastOrAddrSpaceCast(TheSrc, AI.getType());
+        Instruction *NewI = ReplaceInstUsesWith(AI, Cast);
         EraseInstFromFunction(*Copy);
         ++NumGlobalCopies;
         return NewI;
@@ -297,7 +294,7 @@ Instruction *InstCombiner::visitAllocaInst(AllocaInst &AI) {
 
 /// InstCombineLoadCast - Fold 'load (cast P)' -> cast (load P)' when possible.
 static Instruction *InstCombineLoadCast(InstCombiner &IC, LoadInst &LI,
-                                        const DataLayout *TD) {
+                                        const DataLayout *DL) {
   User *CI = cast<User>(LI.getOperand(0));
   Value *CastOp = CI->getOperand(0);
 
@@ -307,11 +304,11 @@ static Instruction *InstCombineLoadCast(InstCombiner &IC, LoadInst &LI,
 
     // If the address spaces don't match, don't eliminate the cast.
     if (DestTy->getAddressSpace() != SrcTy->getAddressSpace())
-      return 0;
+      return nullptr;
 
     Type *SrcPTy = SrcTy->getElementType();
 
-    if (DestPTy->isIntegerTy() || DestPTy->isPointerTy() || 
+    if (DestPTy->isIntegerTy() || DestPTy->isPointerTy() ||
          DestPTy->isVectorTy()) {
       // If the source is an array, the code below will not succeed.  Check to
       // see if a trivial 'gep P, 0, 0' will help matters.  Only do this for
@@ -319,48 +316,59 @@ static Instruction *InstCombineLoadCast(InstCombiner &IC, LoadInst &LI,
       if (ArrayType *ASrcTy = dyn_cast<ArrayType>(SrcPTy))
         if (Constant *CSrc = dyn_cast<Constant>(CastOp))
           if (ASrcTy->getNumElements() != 0) {
-            Value *Idxs[2];
-            Idxs[0] = Constant::getNullValue(Type::getInt32Ty(LI.getContext()));
-            Idxs[1] = Idxs[0];
+            Type *IdxTy = DL
+                        ? DL->getIntPtrType(SrcTy)
+                        : Type::getInt64Ty(SrcTy->getContext());
+            Value *Idx = Constant::getNullValue(IdxTy);
+            Value *Idxs[2] = { Idx, Idx };
             CastOp = ConstantExpr::getGetElementPtr(CSrc, Idxs);
             SrcTy = cast<PointerType>(CastOp->getType());
             SrcPTy = SrcTy->getElementType();
           }
 
       if (IC.getDataLayout() &&
-          (SrcPTy->isIntegerTy() || SrcPTy->isPointerTy() || 
+          (SrcPTy->isIntegerTy() || SrcPTy->isPointerTy() ||
             SrcPTy->isVectorTy()) &&
           // Do not allow turning this into a load of an integer, which is then
           // casted to a pointer, this pessimizes pointer analysis a lot.
-          (SrcPTy->isPointerTy() == LI.getType()->isPointerTy()) &&
+          (SrcPTy->isPtrOrPtrVectorTy() ==
+           LI.getType()->isPtrOrPtrVectorTy()) &&
           IC.getDataLayout()->getTypeSizeInBits(SrcPTy) ==
                IC.getDataLayout()->getTypeSizeInBits(DestPTy)) {
 
         // Okay, we are casting from one integer or pointer type to another of
         // the same size.  Instead of casting the pointer before the load, cast
         // the result of the loaded value.
-        LoadInst *NewLoad = 
+        LoadInst *NewLoad =
           IC.Builder->CreateLoad(CastOp, LI.isVolatile(), CI->getName());
         NewLoad->setAlignment(LI.getAlignment());
         NewLoad->setAtomic(LI.getOrdering(), LI.getSynchScope());
         // Now cast the result of the load.
+        PointerType *OldTy = dyn_cast<PointerType>(NewLoad->getType());
+        PointerType *NewTy = dyn_cast<PointerType>(LI.getType());
+        if (OldTy && NewTy &&
+            OldTy->getAddressSpace() != NewTy->getAddressSpace()) {
+          return new AddrSpaceCastInst(NewLoad, LI.getType());
+        }
+
         return new BitCastInst(NewLoad, LI.getType());
       }
     }
   }
-  return 0;
+  return nullptr;
 }
 
 Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
   Value *Op = LI.getOperand(0);
 
   // Attempt to improve the alignment.
-  if (TD) {
+  if (DL) {
     unsigned KnownAlign =
-      getOrEnforceKnownAlignment(Op, TD->getPrefTypeAlignment(LI.getType()),TD);
+      getOrEnforceKnownAlignment(Op, DL->getPrefTypeAlignment(LI.getType()),
+                                 DL, AT, &LI, DT);
     unsigned LoadAlign = LI.getAlignment();
     unsigned EffectiveLoadAlign = LoadAlign != 0 ? LoadAlign :
-      TD->getABITypeAlignment(LI.getType());
+      DL->getABITypeAlignment(LI.getType());
 
     if (KnownAlign > EffectiveLoadAlign)
       LI.setAlignment(KnownAlign);
@@ -370,13 +378,13 @@ Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
 
   // load (cast X) --> cast (load X) iff safe.
   if (isa<CastInst>(Op))
-    if (Instruction *Res = InstCombineLoadCast(*this, LI, TD))
+    if (Instruction *Res = InstCombineLoadCast(*this, LI, DL))
       return Res;
 
   // None of the following transforms are legal for volatile/atomic loads.
   // FIXME: Some of it is okay for atomic loads; needs refactoring.
-  if (!LI.isSimple()) return 0;
-  
+  if (!LI.isSimple()) return nullptr;
+
   // Do really simple store-to-load forwarding and load CSE, to catch cases
   // where there are several consecutive memory accesses to the same location,
   // separated by a few arithmetic operations.
@@ -397,7 +405,7 @@ Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
                     Constant::getNullValue(Op->getType()), &LI);
       return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
     }
-  } 
+  }
 
   // load null/undef -> unreachable
   // TODO: Consider a target hook for valid address spaces for this xform.
@@ -414,9 +422,9 @@ Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
   // Instcombine load (constantexpr_cast global) -> cast (load global)
   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op))
     if (CE->isCast())
-      if (Instruction *Res = InstCombineLoadCast(*this, LI, TD))
+      if (Instruction *Res = InstCombineLoadCast(*this, LI, DL))
         return Res;
-  
+
   if (Op->hasOneUse()) {
     // Change select and PHI nodes to select values instead of addresses: this
     // helps alias analysis out a lot, allows many others simplifications, and
@@ -431,8 +439,8 @@ Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
     if (SelectInst *SI = dyn_cast<SelectInst>(Op)) {
       // load (select (Cond, &V1, &V2))  --> select(Cond, load &V1, load &V2).
       unsigned Align = LI.getAlignment();
-      if (isSafeToLoadUnconditionally(SI->getOperand(1), SI, Align, TD) &&
-          isSafeToLoadUnconditionally(SI->getOperand(2), SI, Align, TD)) {
+      if (isSafeToLoadUnconditionally(SI->getOperand(1), SI, Align, DL) &&
+          isSafeToLoadUnconditionally(SI->getOperand(2), SI, Align, DL)) {
         LoadInst *V1 = Builder->CreateLoad(SI->getOperand(1),
                                            SI->getOperand(1)->getName()+".val");
         LoadInst *V2 = Builder->CreateLoad(SI->getOperand(2),
@@ -457,7 +465,7 @@ Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
         }
     }
   }
-  return 0;
+  return nullptr;
 }
 
 /// InstCombineStoreToCast - Fold store V, (cast P) -> store (cast V), P
@@ -467,21 +475,21 @@ static Instruction *InstCombineStoreToCast(InstCombiner &IC, StoreInst &SI) {
   User *CI = cast<User>(SI.getOperand(1));
   Value *CastOp = CI->getOperand(0);
 
-  Type *DestPTy = cast<PointerType>(CI->getType())->getElementType();
+  Type *DestPTy = CI->getType()->getPointerElementType();
   PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType());
-  if (SrcTy == 0) return 0;
-  
+  if (!SrcTy) return nullptr;
+
   Type *SrcPTy = SrcTy->getElementType();
 
   if (!DestPTy->isIntegerTy() && !DestPTy->isPointerTy())
-    return 0;
-  
+    return nullptr;
+
   /// NewGEPIndices - If SrcPTy is an aggregate type, we can emit a "noop gep"
   /// to its first element.  This allows us to handle things like:
   ///   store i32 xxx, (bitcast {foo*, float}* %P to i32*)
   /// on 32-bit hosts.
   SmallVector<Value*, 4> NewGEPIndices;
-  
+
   // If the source is an array, the code below will not succeed.  Check to
   // see if a trivial 'gep P, 0, 0' will help matters.  Only do this for
   // constants.
@@ -489,7 +497,7 @@ static Instruction *InstCombineStoreToCast(InstCombiner &IC, StoreInst &SI) {
     // Index through pointer.
     Constant *Zero = Constant::getNullValue(Type::getInt32Ty(SI.getContext()));
     NewGEPIndices.push_back(Zero);
-    
+
     while (1) {
       if (StructType *STy = dyn_cast<StructType>(SrcPTy)) {
         if (!STy->getNumElements()) /* Struct can be empty {} */
@@ -503,43 +511,54 @@ static Instruction *InstCombineStoreToCast(InstCombiner &IC, StoreInst &SI) {
         break;
       }
     }
-    
+
     SrcTy = PointerType::get(SrcPTy, SrcTy->getAddressSpace());
   }
 
   if (!SrcPTy->isIntegerTy() && !SrcPTy->isPointerTy())
-    return 0;
-  
-  // If the pointers point into different address spaces or if they point to
-  // values with different sizes, we can't do the transformation.
+    return nullptr;
+
+  // If the pointers point into different address spaces don't do the
+  // transformation.
+  if (SrcTy->getAddressSpace() != CI->getType()->getPointerAddressSpace())
+    return nullptr;
+
+  // If the pointers point to values of different sizes don't do the
+  // transformation.
   if (!IC.getDataLayout() ||
-      SrcTy->getAddressSpace() != 
-        cast<PointerType>(CI->getType())->getAddressSpace() ||
       IC.getDataLayout()->getTypeSizeInBits(SrcPTy) !=
       IC.getDataLayout()->getTypeSizeInBits(DestPTy))
-    return 0;
+    return nullptr;
+
+  // If the pointers point to pointers to different address spaces don't do the
+  // transformation. It is not safe to introduce an addrspacecast instruction in
+  // this case since, depending on the target, addrspacecast may not be a no-op
+  // cast.
+  if (SrcPTy->isPointerTy() && DestPTy->isPointerTy() &&
+      SrcPTy->getPointerAddressSpace() != DestPTy->getPointerAddressSpace())
+    return nullptr;
 
   // Okay, we are casting from one integer or pointer type to another of
-  // the same size.  Instead of casting the pointer before 
+  // the same size.  Instead of casting the pointer before
   // the store, cast the value to be stored.
   Value *NewCast;
-  Value *SIOp0 = SI.getOperand(0);
   Instruction::CastOps opcode = Instruction::BitCast;
-  Type* CastSrcTy = SIOp0->getType();
+  Type* CastSrcTy = DestPTy;
   Type* CastDstTy = SrcPTy;
   if (CastDstTy->isPointerTy()) {
     if (CastSrcTy->isIntegerTy())
       opcode = Instruction::IntToPtr;
   } else if (CastDstTy->isIntegerTy()) {
-    if (SIOp0->getType()->isPointerTy())
+    if (CastSrcTy->isPointerTy())
       opcode = Instruction::PtrToInt;
   }
-  
+
   // SIOp0 is a pointer to aggregate and this is a store to the first field,
   // emit a GEP to index into its first field.
   if (!NewGEPIndices.empty())
     CastOp = IC.Builder->CreateInBoundsGEP(CastOp, NewGEPIndices);
-  
+
+  Value *SIOp0 = SI.getOperand(0);
   NewCast = IC.Builder->CreateCast(opcode, SIOp0, CastDstTy,
                                    SIOp0->getName()+".c");
   SI.setOperand(0, NewCast);
@@ -558,7 +577,7 @@ static Instruction *InstCombineStoreToCast(InstCombiner &IC, StoreInst &SI) {
 static bool equivalentAddressValues(Value *A, Value *B) {
   // Test if the values are trivially equivalent.
   if (A == B) return true;
-  
+
   // Test if the values come form identical arithmetic instructions.
   // This uses isIdenticalToWhenDefined instead of isIdenticalTo because
   // its only used to compare two uses within the same basic block, which
@@ -571,7 +590,7 @@ static bool equivalentAddressValues(Value *A, Value *B) {
     if (Instruction *BI = dyn_cast<Instruction>(B))
       if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
         return true;
-  
+
   // Otherwise they may not be equivalent.
   return false;
 }
@@ -581,13 +600,13 @@ Instruction *InstCombiner::visitStoreInst(StoreInst &SI) {
   Value *Ptr = SI.getOperand(1);
 
   // Attempt to improve the alignment.
-  if (TD) {
+  if (DL) {
     unsigned KnownAlign =
-      getOrEnforceKnownAlignment(Ptr, TD->getPrefTypeAlignment(Val->getType()),
-                                 TD);
+      getOrEnforceKnownAlignment(Ptr, DL->getPrefTypeAlignment(Val->getType()),
+                                 DL, AT, &SI, DT);
     unsigned StoreAlign = SI.getAlignment();
     unsigned EffectiveStoreAlign = StoreAlign != 0 ? StoreAlign :
-      TD->getABITypeAlignment(Val->getType());
+      DL->getABITypeAlignment(Val->getType());
 
     if (KnownAlign > EffectiveStoreAlign)
       SI.setAlignment(KnownAlign);
@@ -597,12 +616,12 @@ Instruction *InstCombiner::visitStoreInst(StoreInst &SI) {
 
   // Don't hack volatile/atomic stores.
   // FIXME: Some bits are legal for atomic stores; needs refactoring.
-  if (!SI.isSimple()) return 0;
+  if (!SI.isSimple()) return nullptr;
 
   // If the RHS is an alloca with a single use, zapify the store, making the
   // alloca dead.
   if (Ptr->hasOneUse()) {
-    if (isa<AllocaInst>(Ptr)) 
+    if (isa<AllocaInst>(Ptr))
       return EraseInstFromFunction(SI);
     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
       if (isa<AllocaInst>(GEP->getOperand(0))) {
@@ -625,8 +644,8 @@ Instruction *InstCombiner::visitStoreInst(StoreInst &SI) {
         (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) {
       ScanInsts++;
       continue;
-    }    
-    
+    }
+
     if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) {
       // Prev store isn't volatile, and stores to the same location?
       if (PrevSI->isSimple() && equivalentAddressValues(PrevSI->getOperand(1),
@@ -638,7 +657,7 @@ Instruction *InstCombiner::visitStoreInst(StoreInst &SI) {
       }
       break;
     }
-    
+
     // If this is a load, we have to stop.  However, if the loaded value is from
     // the pointer we're loading and is producing the pointer we're storing,
     // then *this* store is dead (X = load P; store X -> P).
@@ -646,12 +665,12 @@ Instruction *InstCombiner::visitStoreInst(StoreInst &SI) {
       if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr) &&
           LI->isSimple())
         return EraseInstFromFunction(SI);
-      
+
       // Otherwise, this is a load from some other location.  Stores before it
       // may not be dead.
       break;
     }
-    
+
     // Don't skip over loads or things that can modify memory.
     if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory())
       break;
@@ -664,7 +683,7 @@ Instruction *InstCombiner::visitStoreInst(StoreInst &SI) {
       if (Instruction *U = dyn_cast<Instruction>(Val))
         Worklist.Add(U);  // Dropped a use.
     }
-    return 0;  // Do not modify these!
+    return nullptr;  // Do not modify these!
   }
 
   // store undef, Ptr -> noop
@@ -681,11 +700,11 @@ Instruction *InstCombiner::visitStoreInst(StoreInst &SI) {
       if (Instruction *Res = InstCombineStoreToCast(*this, SI))
         return Res;
 
-  
+
   // If this store is the last instruction in the basic block (possibly
   // excepting debug info instructions), and if the block ends with an
   // unconditional branch, try to move it to the successor block.
-  BBI = &SI; 
+  BBI = &SI;
   do {
     ++BBI;
   } while (isa<DbgInfoIntrinsic>(BBI) ||
@@ -693,9 +712,9 @@ Instruction *InstCombiner::visitStoreInst(StoreInst &SI) {
   if (BranchInst *BI = dyn_cast<BranchInst>(BBI))
     if (BI->isUnconditional())
       if (SimplifyStoreAtEndOfBlock(SI))
-        return 0;  // xform done!
-  
-  return 0;
+        return nullptr;  // xform done!
+
+  return nullptr;
 }
 
 /// SimplifyStoreAtEndOfBlock - Turn things like:
@@ -708,24 +727,24 @@ Instruction *InstCombiner::visitStoreInst(StoreInst &SI) {
 ///
 bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) {
   BasicBlock *StoreBB = SI.getParent();
-  
+
   // Check to see if the successor block has exactly two incoming edges.  If
   // so, see if the other predecessor contains a store to the same location.
   // if so, insert a PHI node (if needed) and move the stores down.
   BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0);
-  
+
   // Determine whether Dest has exactly two predecessors and, if so, compute
   // the other predecessor.
   pred_iterator PI = pred_begin(DestBB);
   BasicBlock *P = *PI;
-  BasicBlock *OtherBB = 0;
+  BasicBlock *OtherBB = nullptr;
 
   if (P != StoreBB)
     OtherBB = P;
 
   if (++PI == pred_end(DestBB))
     return false;
-  
+
   P = *PI;
   if (P != StoreBB) {
     if (OtherBB)
@@ -745,10 +764,10 @@ bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) {
   BranchInst *OtherBr = dyn_cast<BranchInst>(BBI);
   if (!OtherBr || BBI == OtherBB->begin())
     return false;
-  
+
   // If the other block ends in an unconditional branch, check for the 'if then
   // else' case.  there is an instruction before the branch.
-  StoreInst *OtherStore = 0;
+  StoreInst *OtherStore = nullptr;
   if (OtherBr->isUnconditional()) {
     --BBI;
     // Skip over debugging info.
@@ -767,10 +786,10 @@ bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) {
   } else {
     // Otherwise, the other block ended with a conditional branch. If one of the
     // destinations is StoreBB, then we have the if/then case.
-    if (OtherBr->getSuccessor(0) != StoreBB && 
+    if (OtherBr->getSuccessor(0) != StoreBB &&
         OtherBr->getSuccessor(1) != StoreBB)
       return false;
-    
+
     // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an
     // if/then triangle.  See if there is a store to the same ptr as SI that
     // lives in OtherBB.
@@ -788,7 +807,7 @@ bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) {
           BBI == OtherBB->begin())
         return false;
     }
-    
+
     // In order to eliminate the store in OtherBr, we have to
     // make sure nothing reads or overwrites the stored value in
     // StoreBB.
@@ -798,7 +817,7 @@ bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) {
         return false;
     }
   }
-  
+
   // Insert a PHI node now if we need it.
   Value *MergedVal = OtherStore->getOperand(0);
   if (MergedVal != SI.getOperand(0)) {
@@ -807,7 +826,7 @@ bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) {
     PN->addIncoming(OtherStore->getOperand(0), OtherBB);
     MergedVal = InsertNewInstBefore(PN, DestBB->front());
   }
-  
+
   // Advance to a place where it is safe to insert the new store and
   // insert it.
   BBI = DestBB->getFirstInsertionPt();
@@ -817,7 +836,15 @@ bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) {
                                    SI.getOrdering(),
                                    SI.getSynchScope());
   InsertNewInstBefore(NewSI, *BBI);
-  NewSI->setDebugLoc(OtherStore->getDebugLoc()); 
+  NewSI->setDebugLoc(OtherStore->getDebugLoc());
+
+  // If the two stores had AA tags, merge them.
+  AAMDNodes AATags;
+  SI.getAAMetadata(AATags);
+  if (AATags) {
+    OtherStore->getAAMetadata(AATags, /* Merge = */ true);
+    NewSI->setAAMetadata(AATags);
+  }
 
   // Nuke the old stores.
   EraseInstFromFunction(SI);