De-constify Types in FunctionType::get().
[oota-llvm.git] / lib / Transforms / InstCombine / InstCombineCompares.cpp
index 698b715fd8b98cd4f28280149421d1b4c5744c8c..3cdb705c160ff720dbaa30ca9f5f5acdbe85cb94 100644 (file)
@@ -469,8 +469,7 @@ FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV,
 ///
 /// If we can't emit an optimized form for this expression, this returns null.
 /// 
-static Value *EvaluateGEPOffsetExpression(User *GEP, Instruction &I,
-                                          InstCombiner &IC) {
+static Value *EvaluateGEPOffsetExpression(User *GEP, InstCombiner &IC) {
   TargetData &TD = *IC.getTargetData();
   gep_type_iterator GTI = gep_type_begin(GEP);
   
@@ -533,10 +532,10 @@ static Value *EvaluateGEPOffsetExpression(User *GEP, Instruction &I,
     // Cast to intptrty in case a truncation occurs.  If an extension is needed,
     // we don't need to bother extending: the extension won't affect where the
     // computation crosses zero.
-    if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth)
-      VariableIdx = new TruncInst(VariableIdx, 
-                                  TD.getIntPtrType(VariableIdx->getContext()),
-                                  VariableIdx->getName(), &I);
+    if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth) {
+      const Type *IntPtrTy = TD.getIntPtrType(VariableIdx->getContext());
+      VariableIdx = IC.Builder->CreateTrunc(VariableIdx, IntPtrTy);
+    }
     return VariableIdx;
   }
   
@@ -558,11 +557,10 @@ static Value *EvaluateGEPOffsetExpression(User *GEP, Instruction &I,
   // Okay, we can do this evaluation.  Start by converting the index to intptr.
   const Type *IntPtrTy = TD.getIntPtrType(VariableIdx->getContext());
   if (VariableIdx->getType() != IntPtrTy)
-    VariableIdx = CastInst::CreateIntegerCast(VariableIdx, IntPtrTy,
-                                              true /*SExt*/, 
-                                              VariableIdx->getName(), &I);
+    VariableIdx = IC.Builder->CreateIntCast(VariableIdx, IntPtrTy,
+                                            true /*Signed*/);
   Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
-  return BinaryOperator::CreateAdd(VariableIdx, OffsetVal, "offset", &I);
+  return IC.Builder->CreateAdd(VariableIdx, OffsetVal, "offset");
 }
 
 /// FoldGEPICmp - Fold comparisons between a GEP instruction and something
@@ -580,7 +578,7 @@ Instruction *InstCombiner::FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
     // This transformation (ignoring the base and scales) is valid because we
     // know pointers can't overflow since the gep is inbounds.  See if we can
     // output an optimized form.
-    Value *Offset = EvaluateGEPOffsetExpression(GEPLHS, I, *this);
+    Value *Offset = EvaluateGEPOffsetExpression(GEPLHS, *this);
     
     // If not, synthesize the offset the hard way.
     if (Offset == 0)
@@ -634,6 +632,7 @@ Instruction *InstCombiner::FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
     if (AllZeros)
       return FoldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
 
+    bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds();
     if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
       // If the GEPs only differ by one index, compare it.
       unsigned NumDifferences = 0;  // Keep track of # differences.
@@ -656,7 +655,7 @@ Instruction *InstCombiner::FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
                                ConstantInt::get(Type::getInt1Ty(I.getContext()),
                                              ICmpInst::isTrueWhenEqual(Cond)));
 
-      else if (NumDifferences == 1) {
+      else if (NumDifferences == 1 && GEPsInBounds) {
         Value *LHSV = GEPLHS->getOperand(DiffOperand);
         Value *RHSV = GEPRHS->getOperand(DiffOperand);
         // Make sure we do a signed comparison here.
@@ -667,6 +666,7 @@ Instruction *InstCombiner::FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
     // Only lower this if the icmp is the only user of the GEP or if we expect
     // the result to fold to a constant!
     if (TD &&
+        GEPsInBounds &&
         (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
         (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
       // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)  --->  (OFFSET1 cmp OFFSET2)
@@ -699,7 +699,7 @@ Instruction *InstCombiner::FoldICmpAddOpCst(ICmpInst &ICI,
     return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(X->getContext()));
 
   // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
-  // so the values can never be equal.  Similiarly for all other "or equals"
+  // so the values can never be equal.  Similarly for all other "or equals"
   // operators.
   
   // (X+1) <u X        --> X >u (MAXUINT-1)        --> X == 255
@@ -919,11 +919,11 @@ Instruction *InstCombiner::FoldICmpShrCst(ICmpInst &ICI, BinaryOperator *Shr,
     if (ICI.isSigned() != (Shr->getOpcode() == Instruction::AShr))
       return 0;
     
-    // Otherwise, all lshr and all exact ashr's are equivalent to a udiv/sdiv by
-    // a power of 2.  Since we already have logic to simplify these, transform
-    // to div and then simplify the resultant comparison.
+    // Otherwise, all lshr and most exact ashr's are equivalent to a udiv/sdiv
+    // by a power of 2.  Since we already have logic to simplify these,
+    // transform to div and then simplify the resultant comparison.
     if (Shr->getOpcode() == Instruction::AShr &&
-        !Shr->isExact())
+        (!Shr->isExact() || ShAmtVal == TypeBits - 1))
       return 0;
     
     // Revisit the shift (to delete it).
@@ -1087,22 +1087,33 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
         // have its sign bit set or if it is an equality comparison. 
         // Extending a relational comparison when we're checking the sign
         // bit would not work.
-        if (Cast->hasOneUse() &&
-            (ICI.isEquality() ||
-             (AndCST->getValue().isNonNegative() && RHSV.isNonNegative()))) {
-          uint32_t BitWidth = 
-            cast<IntegerType>(Cast->getOperand(0)->getType())->getBitWidth();
-          APInt NewCST = AndCST->getValue().zext(BitWidth);
-          APInt NewCI = RHSV.zext(BitWidth);
-          Value *NewAnd = 
+        if (ICI.isEquality() ||
+            (AndCST->getValue().isNonNegative() && RHSV.isNonNegative())) {
+          Value *NewAnd =
             Builder->CreateAnd(Cast->getOperand(0),
-                           ConstantInt::get(ICI.getContext(), NewCST),
-                               LHSI->getName());
+                               ConstantExpr::getZExt(AndCST, Cast->getSrcTy()));
+          NewAnd->takeName(LHSI);
           return new ICmpInst(ICI.getPredicate(), NewAnd,
-                              ConstantInt::get(ICI.getContext(), NewCI));
+                              ConstantExpr::getZExt(RHS, Cast->getSrcTy()));
         }
       }
-      
+
+      // If the LHS is an AND of a zext, and we have an equality compare, we can
+      // shrink the and/compare to the smaller type, eliminating the cast.
+      if (ZExtInst *Cast = dyn_cast<ZExtInst>(LHSI->getOperand(0))) {
+        const IntegerType *Ty = cast<IntegerType>(Cast->getSrcTy());
+        // Make sure we don't compare the upper bits, SimplifyDemandedBits
+        // should fold the icmp to true/false in that case.
+        if (ICI.isEquality() && RHSV.getActiveBits() <= Ty->getBitWidth()) {
+          Value *NewAnd =
+            Builder->CreateAnd(Cast->getOperand(0),
+                               ConstantExpr::getTrunc(AndCST, Ty));
+          NewAnd->takeName(LHSI);
+          return new ICmpInst(ICI.getPredicate(), NewAnd,
+                              ConstantExpr::getTrunc(RHS, Ty));
+        }
+      }
+
       // If this is: (X >> C1) & C2 != C3 (where any shift and any compare
       // could exist), turn it into (X & (C2 << C1)) != (C3 << C1).  This
       // happens a LOT in code produced by the C front-end, for bitfield
@@ -1384,9 +1395,9 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
           
           if (Value *NegVal = dyn_castNegVal(BOp1))
             return new ICmpInst(ICI.getPredicate(), BOp0, NegVal);
-          else if (Value *NegVal = dyn_castNegVal(BOp0))
+          if (Value *NegVal = dyn_castNegVal(BOp0))
             return new ICmpInst(ICI.getPredicate(), NegVal, BOp1);
-          else if (BO->hasOneUse()) {
+          if (BO->hasOneUse()) {
             Value *Neg = Builder->CreateNeg(BOp1);
             Neg->takeName(BO);
             return new ICmpInst(ICI.getPredicate(), BOp0, Neg);
@@ -1396,18 +1407,27 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
       case Instruction::Xor:
         // For the xor case, we can xor two constants together, eliminating
         // the explicit xor.
-        if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1)))
-          return new ICmpInst(ICI.getPredicate(), BO->getOperand(0), 
+        if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1))) {
+          return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
                               ConstantExpr::getXor(RHS, BOC));
-        
-        // FALLTHROUGH
+        } else if (RHSV == 0) {
+          // Replace ((xor A, B) != 0) with (A != B)
+          return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
+                              BO->getOperand(1));
+        }
+        break;
       case Instruction::Sub:
-        // Replace (([sub|xor] A, B) != 0) with (A != B)
-        if (RHSV == 0)
+        // Replace ((sub A, B) != C) with (B != A-C) if A & C are constants.
+        if (ConstantInt *BOp0C = dyn_cast<ConstantInt>(BO->getOperand(0))) {
+          if (BO->hasOneUse())
+            return new ICmpInst(ICI.getPredicate(), BO->getOperand(1),
+                                ConstantExpr::getSub(BOp0C, RHS));
+        } else if (RHSV == 0) {
+          // Replace ((sub A, B) != 0) with (A != B)
           return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
                               BO->getOperand(1));
+        }
         break;
-        
       case Instruction::Or:
         // If bits are being or'd in that are not present in the constant we
         // are comparing against, then the comparison could never succeed!
@@ -1434,7 +1454,11 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
             return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ :
                                 ICmpInst::ICMP_NE, LHSI,
                                 Constant::getNullValue(RHS->getType()));
-          
+
+          // Don't perform the following transforms if the AND has multiple uses
+          if (!BO->hasOneUse())
+            break;
+
           // Replace (and X, (1 << size(X)-1) != 0) with x s< 0
           if (BOC->getValue().isSignBit()) {
             Value *X = BO->getOperand(0);
@@ -1659,7 +1683,7 @@ static Instruction *ProcessUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B,
   // result and the overflow bit.
   Module *M = I.getParent()->getParent()->getParent();
   
-  const Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth);
+  Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth);
   Value *F = Intrinsic::getDeclaration(M, Intrinsic::sadd_with_overflow,
                                        &NewType, 1);
 
@@ -1701,7 +1725,7 @@ static Instruction *ProcessUAddIdiom(Instruction &I, Value *OrigAddV,
   Builder->SetInsertPoint(OrigAdd);
 
   Module *M = I.getParent()->getParent()->getParent();
-  const Type *Ty = LHS->getType();
+  Type *Ty = LHS->getType();
   Value *F = Intrinsic::getDeclaration(M, Intrinsic::uadd_with_overflow, &Ty,1);
   CallInst *Call = Builder->CreateCall2(F, LHS, RHS, "uadd");
   Value *Add = Builder->CreateExtractValue(Call, 0);
@@ -2400,7 +2424,7 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
         // fall-through
       case Instruction::SDiv:
       case Instruction::AShr:
-        if (!BO0->isExact() && !BO1->isExact())
+        if (!BO0->isExact() || !BO1->isExact())
           break;
         return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
                             BO1->getOperand(0));
@@ -2483,9 +2507,8 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
     }
 
     // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
-    if (Op0->hasOneUse() && Op1->hasOneUse() &&
-        match(Op0, m_And(m_Value(A), m_Value(B))) && 
-        match(Op1, m_And(m_Value(C), m_Value(D)))) {
+    if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) && 
+        match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) {
       Value *X = 0, *Y = 0, *Z = 0;
       
       if (A == C) {
@@ -2506,6 +2529,32 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
         return &I;
       }
     }
+    
+    // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to
+    // "icmp (and X, mask), cst"
+    uint64_t ShAmt = 0;
+    ConstantInt *Cst1;
+    if (Op0->hasOneUse() &&
+        match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A),
+                                           m_ConstantInt(ShAmt))))) &&
+        match(Op1, m_ConstantInt(Cst1)) &&
+        // Only do this when A has multiple uses.  This is most important to do
+        // when it exposes other optimizations.
+        !A->hasOneUse()) {
+      unsigned ASize =cast<IntegerType>(A->getType())->getPrimitiveSizeInBits();
+      
+      if (ShAmt < ASize) {
+        APInt MaskV =
+          APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits());
+        MaskV <<= ShAmt;
+        
+        APInt CmpV = Cst1->getValue().zext(ASize);
+        CmpV <<= ShAmt;
+        
+        Value *Mask = Builder->CreateAnd(A, Builder->getInt(MaskV));
+        return new ICmpInst(I.getPredicate(), Mask, Builder->getInt(CmpV));
+      }
+    }
   }
   
   {
@@ -2762,6 +2811,42 @@ Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
   if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
     if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
       switch (LHSI->getOpcode()) {
+      case Instruction::FPExt: {
+        // fcmp (fpext x), C -> fcmp x, (fptrunc C) if fptrunc is lossless
+        FPExtInst *LHSExt = cast<FPExtInst>(LHSI);
+        ConstantFP *RHSF = dyn_cast<ConstantFP>(RHSC);
+        if (!RHSF)
+          break;
+
+        // We can't convert a PPC double double.
+        if (RHSF->getType()->isPPC_FP128Ty())
+          break;
+
+        const fltSemantics *Sem;
+        // FIXME: This shouldn't be here.
+        if (LHSExt->getSrcTy()->isFloatTy())
+          Sem = &APFloat::IEEEsingle;
+        else if (LHSExt->getSrcTy()->isDoubleTy())
+          Sem = &APFloat::IEEEdouble;
+        else if (LHSExt->getSrcTy()->isFP128Ty())
+          Sem = &APFloat::IEEEquad;
+        else if (LHSExt->getSrcTy()->isX86_FP80Ty())
+          Sem = &APFloat::x87DoubleExtended;
+        else
+          break;
+
+        bool Lossy;
+        APFloat F = RHSF->getValueAPF();
+        F.convert(*Sem, APFloat::rmNearestTiesToEven, &Lossy);
+
+        // Avoid lossy conversions and denormals.
+        if (!Lossy &&
+            F.compare(APFloat::getSmallestNormalized(*Sem)) !=
+                                                           APFloat::cmpLessThan)
+          return new FCmpInst(I.getPredicate(), LHSExt->getOperand(0),
+                              ConstantFP::get(RHSC->getContext(), F));
+        break;
+      }
       case Instruction::PHI:
         // Only fold fcmp into the PHI if the phi and fcmp are in the same
         // block.  If in the same block, we're encouraging jump threading.  If
@@ -2800,6 +2885,14 @@ Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
           return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
         break;
       }
+      case Instruction::FSub: {
+        // fcmp pred (fneg x), C -> fcmp swap(pred) x, -C
+        Value *Op;
+        if (match(LHSI, m_FNeg(m_Value(Op))))
+          return new FCmpInst(I.getSwappedPredicate(), Op,
+                              ConstantExpr::getFNeg(RHSC));
+        break;
+      }
       case Instruction::Load:
         if (GetElementPtrInst *GEP =
             dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
@@ -2813,6 +2906,11 @@ Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
       }
   }
 
+  // fcmp pred (fneg x), (fneg y) -> fcmp swap(pred) x, y
+  Value *X, *Y;
+  if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
+    return new FCmpInst(I.getSwappedPredicate(), X, Y);
+
   // fcmp (fpext x), (fpext y) -> fcmp x, y
   if (FPExtInst *LHSExt = dyn_cast<FPExtInst>(Op0))
     if (FPExtInst *RHSExt = dyn_cast<FPExtInst>(Op1))