Rename usesCustomDAGSchedInserter to usesCustomInserter, and update a
[oota-llvm.git] / lib / Target / X86 / X86InstrFPStack.td
index 9eaf454ae5fd3dc797b702db96a5f615a37b23f1..b0b0409ad2a5cf9ab549de7be26f9b11d424c68e 100644 (file)
@@ -1,9 +1,9 @@
-//==- X86InstrFPStack.td - Describe the X86 Instruction Set -------*- C++ -*-=//
+//==- X86InstrFPStack.td - Describe the X86 Instruction Set --*- tablegen -*-=//
 // 
 //                     The LLVM Compiler Infrastructure
 //
-// This file was developed by the Evan Cheng and is distributed under
-// the University of Illinois Open Source License. See LICENSE.TXT for details.
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
 // 
 //===----------------------------------------------------------------------===//
 //
@@ -17,8 +17,8 @@
 // FPStack specific DAG Nodes.
 //===----------------------------------------------------------------------===//
 
-def SDTX86FpGet     : SDTypeProfile<1, 0, [SDTCisFP<0>]>;
-def SDTX86FpSet     : SDTypeProfile<0, 1, [SDTCisFP<0>]>;
+def SDTX86FpGet2    : SDTypeProfile<2, 0, [SDTCisVT<0, f80>, 
+                                           SDTCisVT<1, f80>]>;
 def SDTX86Fld       : SDTypeProfile<1, 2, [SDTCisFP<0>,
                                            SDTCisPtrTy<1>, 
                                            SDTCisVT<2, OtherVT>]>;
@@ -29,28 +29,24 @@ def SDTX86Fild      : SDTypeProfile<1, 2, [SDTCisFP<0>, SDTCisPtrTy<1>,
                                            SDTCisVT<2, OtherVT>]>;
 def SDTX86FpToIMem  : SDTypeProfile<0, 2, [SDTCisFP<0>, SDTCisPtrTy<1>]>;
 
-def X86fpget        : SDNode<"X86ISD::FP_GET_RESULT", SDTX86FpGet,
-                        [SDNPHasChain, SDNPInFlag, SDNPOutFlag]>;
-def X86fpset        : SDNode<"X86ISD::FP_SET_RESULT", SDTX86FpSet,
-                        [SDNPHasChain, SDNPOutFlag]>;
-def X86fld          : SDNode<"X86ISD::FLD",      SDTX86Fld,
-                        [SDNPHasChain]>;
-def X86fst          : SDNode<"X86ISD::FST",      SDTX86Fst,
-                        [SDNPHasChain, SDNPInFlag]>;
-def X86fild         : SDNode<"X86ISD::FILD",     SDTX86Fild,
-                        [SDNPHasChain]>;
-def X86fildflag     : SDNode<"X86ISD::FILD_FLAG",SDTX86Fild,
-                        [SDNPHasChain, SDNPOutFlag]>;
+def SDTX86CwdStore  : SDTypeProfile<0, 1, [SDTCisPtrTy<0>]>;
+
+def X86fld          : SDNode<"X86ISD::FLD", SDTX86Fld,
+                             [SDNPHasChain, SDNPMayLoad]>;
+def X86fst          : SDNode<"X86ISD::FST", SDTX86Fst,
+                             [SDNPHasChain, SDNPInFlag, SDNPMayStore]>;
+def X86fild         : SDNode<"X86ISD::FILD", SDTX86Fild,
+                             [SDNPHasChain, SDNPMayLoad]>;
+def X86fildflag     : SDNode<"X86ISD::FILD_FLAG", SDTX86Fild,
+                             [SDNPHasChain, SDNPOutFlag, SDNPMayLoad]>;
 def X86fp_to_i16mem : SDNode<"X86ISD::FP_TO_INT16_IN_MEM", SDTX86FpToIMem,
-                        [SDNPHasChain]>;
+                             [SDNPHasChain, SDNPMayStore]>;
 def X86fp_to_i32mem : SDNode<"X86ISD::FP_TO_INT32_IN_MEM", SDTX86FpToIMem,
-                        [SDNPHasChain]>;
+                             [SDNPHasChain, SDNPMayStore]>;
 def X86fp_to_i64mem : SDNode<"X86ISD::FP_TO_INT64_IN_MEM", SDTX86FpToIMem,
-                        [SDNPHasChain]>;
-
-def extloadf80f32  : PatFrag<(ops node:$ptr), (f80 (extloadf32 node:$ptr))>;
-def extloadf80f64  : PatFrag<(ops node:$ptr), (f80 (extloadf64 node:$ptr))>;
-def extloadf64f32  : PatFrag<(ops node:$ptr), (f64 (extloadf32 node:$ptr))>;
+                             [SDNPHasChain, SDNPMayStore]>;
+def X86fp_cwd_get16 : SDNode<"X86ISD::FNSTCW16m",          SDTX86CwdStore,
+                             [SDNPHasChain, SDNPMayStore, SDNPSideEffect]>;
 
 //===----------------------------------------------------------------------===//
 // FPStack pattern fragments
@@ -73,49 +69,61 @@ def fpimmneg1 : PatLeaf<(fpimm), [{
 }]>;
 
 // Some 'special' instructions
-let usesCustomDAGSchedInserter = 1 in {  // Expanded by the scheduler.
+let usesCustomInserter = 1 in {  // Expanded after instruction selection.
   def FP32_TO_INT16_IN_MEM : I<0, Pseudo,
                               (outs), (ins i16mem:$dst, RFP32:$src),
-                              "#FP32_TO_INT16_IN_MEM PSEUDO!",
+                              "##FP32_TO_INT16_IN_MEM PSEUDO!",
                               [(X86fp_to_i16mem RFP32:$src, addr:$dst)]>;
   def FP32_TO_INT32_IN_MEM : I<0, Pseudo,
                               (outs), (ins i32mem:$dst, RFP32:$src),
-                              "#FP32_TO_INT32_IN_MEM PSEUDO!",
+                              "##FP32_TO_INT32_IN_MEM PSEUDO!",
                               [(X86fp_to_i32mem RFP32:$src, addr:$dst)]>;
   def FP32_TO_INT64_IN_MEM : I<0, Pseudo,
                               (outs), (ins i64mem:$dst, RFP32:$src),
-                              "#FP32_TO_INT64_IN_MEM PSEUDO!",
+                              "##FP32_TO_INT64_IN_MEM PSEUDO!",
                               [(X86fp_to_i64mem RFP32:$src, addr:$dst)]>;
   def FP64_TO_INT16_IN_MEM : I<0, Pseudo,
                               (outs), (ins i16mem:$dst, RFP64:$src),
-                              "#FP64_TO_INT16_IN_MEM PSEUDO!",
+                              "##FP64_TO_INT16_IN_MEM PSEUDO!",
                               [(X86fp_to_i16mem RFP64:$src, addr:$dst)]>;
   def FP64_TO_INT32_IN_MEM : I<0, Pseudo,
                               (outs), (ins i32mem:$dst, RFP64:$src),
-                              "#FP64_TO_INT32_IN_MEM PSEUDO!",
+                              "##FP64_TO_INT32_IN_MEM PSEUDO!",
                               [(X86fp_to_i32mem RFP64:$src, addr:$dst)]>;
   def FP64_TO_INT64_IN_MEM : I<0, Pseudo,
                               (outs), (ins i64mem:$dst, RFP64:$src),
-                              "#FP64_TO_INT64_IN_MEM PSEUDO!",
+                              "##FP64_TO_INT64_IN_MEM PSEUDO!",
                               [(X86fp_to_i64mem RFP64:$src, addr:$dst)]>;
+  def FP80_TO_INT16_IN_MEM : I<0, Pseudo,
+                              (outs), (ins i16mem:$dst, RFP80:$src),
+                              "##FP80_TO_INT16_IN_MEM PSEUDO!",
+                              [(X86fp_to_i16mem RFP80:$src, addr:$dst)]>;
+  def FP80_TO_INT32_IN_MEM : I<0, Pseudo,
+                              (outs), (ins i32mem:$dst, RFP80:$src),
+                              "##FP80_TO_INT32_IN_MEM PSEUDO!",
+                              [(X86fp_to_i32mem RFP80:$src, addr:$dst)]>;
+  def FP80_TO_INT64_IN_MEM : I<0, Pseudo,
+                              (outs), (ins i64mem:$dst, RFP80:$src),
+                              "##FP80_TO_INT64_IN_MEM PSEUDO!",
+                              [(X86fp_to_i64mem RFP80:$src, addr:$dst)]>;
 }
 
 let isTerminator = 1 in
   let Defs = [FP0, FP1, FP2, FP3, FP4, FP5, FP6] in
-    def FP_REG_KILL  : I<0, Pseudo, (outs), (ins), "#FP_REG_KILL", []>;
-
-// All FP Stack operations are represented with three instructions here.  The
-// first two instructions, generated by the instruction selector, uses "RFP32"
-// or "RFP64" registers: traditional register files to reference 32-bit or
-// 64-bit floating point values.  These sizes apply to the values, not the
-// registers, which are always 64 bits; RFP32 and RFP64 can be copied to
-// each other without losing information.  These instructions are all psuedo
-// instructions and use the "_Fp" suffix.
-// In some cases there are additional variants with a mixture of 32-bit and
-// 64-bit registers.
+    def FP_REG_KILL  : I<0, Pseudo, (outs), (ins), "##FP_REG_KILL", []>;
+
+// All FP Stack operations are represented with four instructions here.  The
+// first three instructions, generated by the instruction selector, use "RFP32"
+// "RFP64" or "RFP80" registers: traditional register files to reference 32-bit,
+// 64-bit or 80-bit floating point values.  These sizes apply to the values, 
+// not the registers, which are always 80 bits; RFP32, RFP64 and RFP80 can be
+// copied to each other without losing information.  These instructions are all
+// pseudo instructions and use the "_Fp" suffix.
+// In some cases there are additional variants with a mixture of different
+// register sizes.
 // The second instruction is defined with FPI, which is the actual instruction
 // emitted by the assembler.  These use "RST" registers, although frequently
-// the actual register(s) used are implicit.  These are always 64-bits.
+// the actual register(s) used are implicit.  These are always 80 bits.
 // The FP stackifier pass converts one to the other after register allocation 
 // occurs.
 //
@@ -123,43 +131,63 @@ let isTerminator = 1 in
 // a pattern) and the FPI instruction should have emission info (e.g. opcode
 // encoding and asm printing info).
 
-// Random Pseudo Instructions.
-def FpGETRESULT32 : FpI_<(outs RFP32:$dst), (ins), SpecialFP,
-                      [(set RFP32:$dst, X86fpget)]>;           // FPR = ST(0)
-
-def FpGETRESULT64 : FpI_<(outs RFP64:$dst), (ins), SpecialFP,
-                      [(set RFP64:$dst, X86fpget)]>;           // FPR = ST(0)
-
-def FpSETRESULT32 : FpI_<(outs), (ins RFP32:$src), SpecialFP,
-                      [(X86fpset RFP32:$src)]>, Imp<[], [ST0]>;// ST(0) = FPR
+// Pseudo Instructions for FP stack return values.
+def FpGET_ST0_32 : FpI_<(outs RFP32:$dst), (ins), SpecialFP, []>; // FPR = ST(0)
+def FpGET_ST0_64 : FpI_<(outs RFP64:$dst), (ins), SpecialFP, []>; // FPR = ST(0)
+def FpGET_ST0_80 : FpI_<(outs RFP80:$dst), (ins), SpecialFP, []>; // FPR = ST(0)
+
+// FpGET_ST1* should only be issued *after* an FpGET_ST0* has been issued when
+// there are two values live out on the stack from a call or inlineasm.  This
+// magic is handled by the stackifier.  It is not valid to emit FpGET_ST1* and
+// then FpGET_ST0*.  In addition, it is invalid for any FP-using operations to
+// occur between them.
+def FpGET_ST1_32 : FpI_<(outs RFP32:$dst), (ins), SpecialFP, []>; // FPR = ST(1)
+def FpGET_ST1_64 : FpI_<(outs RFP64:$dst), (ins), SpecialFP, []>; // FPR = ST(1)
+def FpGET_ST1_80 : FpI_<(outs RFP80:$dst), (ins), SpecialFP, []>; // FPR = ST(1)
+
+let Defs = [ST0] in {
+def FpSET_ST0_32 : FpI_<(outs), (ins RFP32:$src), SpecialFP, []>; // ST(0) = FPR
+def FpSET_ST0_64 : FpI_<(outs), (ins RFP64:$src), SpecialFP, []>; // ST(0) = FPR
+def FpSET_ST0_80 : FpI_<(outs), (ins RFP80:$src), SpecialFP, []>; // ST(0) = FPR
+}
 
-def FpSETRESULT64 : FpI_<(outs), (ins RFP64:$src), SpecialFP,
-                      [(X86fpset RFP64:$src)]>, Imp<[], [ST0]>;// ST(0) = FPR
+let Defs = [ST1] in {
+def FpSET_ST1_32 : FpI_<(outs), (ins RFP32:$src), SpecialFP, []>; // ST(1) = FPR
+def FpSET_ST1_64 : FpI_<(outs), (ins RFP64:$src), SpecialFP, []>; // ST(1) = FPR
+def FpSET_ST1_80 : FpI_<(outs), (ins RFP80:$src), SpecialFP, []>; // ST(1) = FPR
+}
 
-// FpI - Floating Point Psuedo Instruction template. Predicated on FPStack.
-class FpI<dag outs, dag ins, FPFormat fp, list<dag> pattern> :
-  FpI_<outs, ins, fp, pattern>, Requires<[FPStack]>;
+// FpIf32, FpIf64 - Floating Point Psuedo Instruction template.
+// f32 instructions can use SSE1 and are predicated on FPStackf32 == !SSE1.
+// f64 instructions can use SSE2 and are predicated on FPStackf64 == !SSE2.
+// f80 instructions cannot use SSE and use neither of these.
+class FpIf32<dag outs, dag ins, FPFormat fp, list<dag> pattern> :
+  FpI_<outs, ins, fp, pattern>, Requires<[FPStackf32]>;
+class FpIf64<dag outs, dag ins, FPFormat fp, list<dag> pattern> :
+  FpI_<outs, ins, fp, pattern>, Requires<[FPStackf64]>;
 
 // Register copies.  Just copies, the shortening ones do not truncate.
-def MOV_Fp3232       : FpI<(outs RFP32:$dst), (ins RFP32:$src), SpecialFP, []>; 
-def MOV_Fp3264       : FpI<(outs RFP64:$dst), (ins RFP32:$src), SpecialFP, []>; 
-def MOV_Fp6432       : FpI<(outs RFP32:$dst), (ins RFP64:$src), SpecialFP, []>; 
-def MOV_Fp6464       : FpI<(outs RFP64:$dst), (ins RFP64:$src), SpecialFP, []>; 
-def MOV_Fp8032       : FpI<(outs RFP32:$dst), (ins RFP80:$src), SpecialFP, []>; 
-def MOV_Fp3280       : FpI<(outs RFP80:$dst), (ins RFP32:$src), SpecialFP, []>; 
-def MOV_Fp8064       : FpI<(outs RFP64:$dst), (ins RFP80:$src), SpecialFP, []>; 
-def MOV_Fp6480       : FpI<(outs RFP80:$dst), (ins RFP64:$src), SpecialFP, []>; 
-def MOV_Fp8080       : FpI<(outs RFP80:$dst), (ins RFP80:$src), SpecialFP, []>; 
+let neverHasSideEffects = 1 in {
+  def MOV_Fp3232 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src), SpecialFP, []>; 
+  def MOV_Fp3264 : FpIf32<(outs RFP64:$dst), (ins RFP32:$src), SpecialFP, []>; 
+  def MOV_Fp6432 : FpIf32<(outs RFP32:$dst), (ins RFP64:$src), SpecialFP, []>; 
+  def MOV_Fp6464 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src), SpecialFP, []>; 
+  def MOV_Fp8032 : FpIf32<(outs RFP32:$dst), (ins RFP80:$src), SpecialFP, []>; 
+  def MOV_Fp3280 : FpIf32<(outs RFP80:$dst), (ins RFP32:$src), SpecialFP, []>; 
+  def MOV_Fp8064 : FpIf64<(outs RFP64:$dst), (ins RFP80:$src), SpecialFP, []>; 
+  def MOV_Fp6480 : FpIf64<(outs RFP80:$dst), (ins RFP64:$src), SpecialFP, []>; 
+  def MOV_Fp8080 : FpI_  <(outs RFP80:$dst), (ins RFP80:$src), SpecialFP, []>; 
+}
 
 // Factoring for arithmetic.
 multiclass FPBinary_rr<SDNode OpNode> {
 // Register op register -> register
 // These are separated out because they have no reversed form.
-def _Fp32 : FpI<(outs RFP32:$dst), (ins RFP32:$src1, RFP32:$src2), TwoArgFP,
+def _Fp32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, RFP32:$src2), TwoArgFP,
                 [(set RFP32:$dst, (OpNode RFP32:$src1, RFP32:$src2))]>;
-def _Fp64 : FpI<(outs RFP64:$dst), (ins RFP64:$src1, RFP64:$src2), TwoArgFP,
+def _Fp64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, RFP64:$src2), TwoArgFP,
                 [(set RFP64:$dst, (OpNode RFP64:$src1, RFP64:$src2))]>;
-def _Fp80 : FpI<(outs RFP80:$dst), (ins RFP80:$src1, RFP80:$src2), TwoArgFP,
+def _Fp80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, RFP80:$src2), TwoArgFP,
                 [(set RFP80:$dst, (OpNode RFP80:$src1, RFP80:$src2))]>;
 }
 // The FopST0 series are not included here because of the irregularities
@@ -167,48 +195,48 @@ def _Fp80 : FpI<(outs RFP80:$dst), (ins RFP80:$src1, RFP80:$src2), TwoArgFP,
 // These instructions cannot address 80-bit memory.
 multiclass FPBinary<SDNode OpNode, Format fp, string asmstring> {
 // ST(0) = ST(0) + [mem]
-def _Fp32m  : FpI<(outs RFP32:$dst), (ins RFP32:$src1, f32mem:$src2), OneArgFPRW,
+def _Fp32m  : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, f32mem:$src2), OneArgFPRW,
                   [(set RFP32:$dst, 
                     (OpNode RFP32:$src1, (loadf32 addr:$src2)))]>;
-def _Fp64m  : FpI<(outs RFP64:$dst), (ins RFP64:$src1, f64mem:$src2), OneArgFPRW,
+def _Fp64m  : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, f64mem:$src2), OneArgFPRW,
                   [(set RFP64:$dst, 
                     (OpNode RFP64:$src1, (loadf64 addr:$src2)))]>;
-def _Fp64m32: FpI<(outs RFP64:$dst), (ins RFP64:$src1, f32mem:$src2), OneArgFPRW,
+def _Fp64m32: FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, f32mem:$src2), OneArgFPRW,
                   [(set RFP64:$dst, 
-                    (OpNode RFP64:$src1, (extloadf64f32 addr:$src2)))]>;
-def _Fp80m32: FpI<(outs RFP80:$dst), (ins RFP80:$src1, f32mem:$src2), OneArgFPRW,
+                    (OpNode RFP64:$src1, (f64 (extloadf32 addr:$src2))))]>;
+def _Fp80m32: FpI_<(outs RFP80:$dst), (ins RFP80:$src1, f32mem:$src2), OneArgFPRW,
                   [(set RFP80:$dst, 
-                    (OpNode RFP80:$src1, (extloadf80f32 addr:$src2)))]>;
-def _Fp80m64: FpI<(outs RFP80:$dst), (ins RFP80:$src1, f64mem:$src2), OneArgFPRW,
+                    (OpNode RFP80:$src1, (f80 (extloadf32 addr:$src2))))]>;
+def _Fp80m64: FpI_<(outs RFP80:$dst), (ins RFP80:$src1, f64mem:$src2), OneArgFPRW,
                   [(set RFP80:$dst, 
-                    (OpNode RFP80:$src1, (extloadf80f64 addr:$src2)))]>;
+                    (OpNode RFP80:$src1, (f80 (extloadf64 addr:$src2))))]>;
 def _F32m  : FPI<0xD8, fp, (outs), (ins f32mem:$src), 
-                 !strconcat("f", !strconcat(asmstring, "{s}\t$src"))>;
+                 !strconcat("f", !strconcat(asmstring, "{s}\t$src"))> { let mayLoad = 1; }
 def _F64m  : FPI<0xDC, fp, (outs), (ins f64mem:$src), 
-                 !strconcat("f", !strconcat(asmstring, "{l}\t$src"))>;
+                 !strconcat("f", !strconcat(asmstring, "{l}\t$src"))> { let mayLoad = 1; }
 // ST(0) = ST(0) + [memint]
-def _FpI16m32 : FpI<(outs RFP32:$dst), (ins RFP32:$src1, i16mem:$src2), OneArgFPRW,
+def _FpI16m32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, i16mem:$src2), OneArgFPRW,
                     [(set RFP32:$dst, (OpNode RFP32:$src1,
                                        (X86fild addr:$src2, i16)))]>;
-def _FpI32m32 : FpI<(outs RFP32:$dst), (ins RFP32:$src1, i32mem:$src2), OneArgFPRW,
+def _FpI32m32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, i32mem:$src2), OneArgFPRW,
                     [(set RFP32:$dst, (OpNode RFP32:$src1,
                                        (X86fild addr:$src2, i32)))]>;
-def _FpI16m64 : FpI<(outs RFP64:$dst), (ins RFP64:$src1, i16mem:$src2), OneArgFPRW,
+def _FpI16m64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, i16mem:$src2), OneArgFPRW,
                     [(set RFP64:$dst, (OpNode RFP64:$src1,
                                        (X86fild addr:$src2, i16)))]>;
-def _FpI32m64 : FpI<(outs RFP64:$dst), (ins RFP64:$src1, i32mem:$src2), OneArgFPRW,
+def _FpI32m64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, i32mem:$src2), OneArgFPRW,
                     [(set RFP64:$dst, (OpNode RFP64:$src1,
                                        (X86fild addr:$src2, i32)))]>;
-def _FpI16m80 : FpI<(outs RFP80:$dst), (ins RFP80:$src1, i16mem:$src2), OneArgFPRW,
+def _FpI16m80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, i16mem:$src2), OneArgFPRW,
                     [(set RFP80:$dst, (OpNode RFP80:$src1,
                                        (X86fild addr:$src2, i16)))]>;
-def _FpI32m80 : FpI<(outs RFP80:$dst), (ins RFP80:$src1, i32mem:$src2), OneArgFPRW,
+def _FpI32m80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, i32mem:$src2), OneArgFPRW,
                     [(set RFP80:$dst, (OpNode RFP80:$src1,
                                        (X86fild addr:$src2, i32)))]>;
 def _FI16m  : FPI<0xDE, fp, (outs), (ins i16mem:$src), 
-                  !strconcat("fi", !strconcat(asmstring, "{s}\t$src"))>;
+                  !strconcat("fi", !strconcat(asmstring, "{s}\t$src"))> { let mayLoad = 1; }
 def _FI32m  : FPI<0xDA, fp, (outs), (ins i32mem:$src), 
-                  !strconcat("fi", !strconcat(asmstring, "{l}\t$src"))>;
+                  !strconcat("fi", !strconcat(asmstring, "{l}\t$src"))> { let mayLoad = 1; }
 }
 
 defm ADD : FPBinary_rr<fadd>;
@@ -253,11 +281,11 @@ def DIVR_FPrST0 : FPrST0PInst<0xF0, "fdiv{|r}p\t$op">;
 
 // Unary operations.
 multiclass FPUnary<SDNode OpNode, bits<8> opcode, string asmstring> {
-def _Fp32  : FpI<(outs RFP32:$dst), (ins RFP32:$src), OneArgFPRW,
+def _Fp32  : FpIf32<(outs RFP32:$dst), (ins RFP32:$src), OneArgFPRW,
                  [(set RFP32:$dst, (OpNode RFP32:$src))]>;
-def _Fp64  : FpI<(outs RFP64:$dst), (ins RFP64:$src), OneArgFPRW,
+def _Fp64  : FpIf64<(outs RFP64:$dst), (ins RFP64:$src), OneArgFPRW,
                  [(set RFP64:$dst, (OpNode RFP64:$src))]>;
-def _Fp80  : FpI<(outs RFP80:$dst), (ins RFP80:$src), OneArgFPRW,
+def _Fp80  : FpI_<(outs RFP80:$dst), (ins RFP80:$src), OneArgFPRW,
                  [(set RFP80:$dst, (OpNode RFP80:$src))]>;
 def _F     : FPI<opcode, RawFrm, (outs), (ins), asmstring>, D9;
 }
@@ -268,27 +296,54 @@ defm SQRT: FPUnary<fsqrt,0xFA, "fsqrt">;
 defm SIN : FPUnary<fsin, 0xFE, "fsin">;
 defm COS : FPUnary<fcos, 0xFF, "fcos">;
 
-def TST_Fp32  : FpI<(outs), (ins RFP32:$src), OneArgFP,
-                 []>;
-def TST_Fp64  : FpI<(outs), (ins RFP64:$src), OneArgFP,
-                 []>;
-def TST_Fp80  : FpI<(outs), (ins RFP80:$src), OneArgFP,
-                 []>;
+let neverHasSideEffects = 1 in {
+def TST_Fp32  : FpIf32<(outs), (ins RFP32:$src), OneArgFP, []>;
+def TST_Fp64  : FpIf64<(outs), (ins RFP64:$src), OneArgFP, []>;
+def TST_Fp80  : FpI_<(outs), (ins RFP80:$src), OneArgFP, []>;
+}
 def TST_F  : FPI<0xE4, RawFrm, (outs), (ins), "ftst">, D9;
 
+// Versions of FP instructions that take a single memory operand.  Added for the
+//   disassembler; remove as they are included with patterns elsewhere.
+def FCOM32m  : FPI<0xD8, MRM2m, (outs), (ins f32mem:$src), "fcom\t$src">;
+def FCOMP32m : FPI<0xD8, MRM3m, (outs), (ins f32mem:$src), "fcomp\t$src">;
+
+def FLDENVm  : FPI<0xD9, MRM4m, (outs), (ins f32mem:$src), "fldenv\t$src">;
+def FSTENVm  : FPI<0xD9, MRM6m, (outs f32mem:$dst), (ins), "fstenv\t$dst">;
+
+def FICOM32m : FPI<0xDA, MRM2m, (outs), (ins i32mem:$src), "ficom{l}\t$src">;
+def FICOMP32m: FPI<0xDA, MRM3m, (outs), (ins i32mem:$src), "ficomp{l}\t$src">;
+
+def FCOM64m  : FPI<0xDC, MRM2m, (outs), (ins f64mem:$src), "fcom\t$src">;
+def FCOMP64m : FPI<0xDC, MRM3m, (outs), (ins f64mem:$src), "fcomp\t$src">;
+
+def FISTTP32m: FPI<0xDD, MRM1m, (outs i32mem:$dst), (ins), "fisttp{l}\t$dst">;
+def FRSTORm  : FPI<0xDD, MRM4m, (outs f32mem:$dst), (ins), "frstor\t$dst">;
+def FSAVEm   : FPI<0xDD, MRM6m, (outs f32mem:$dst), (ins), "fsave\t$dst">;
+def FSTSWm   : FPI<0xDD, MRM7m, (outs f32mem:$dst), (ins), "fstsw\t$dst">;
+
+def FICOM16m : FPI<0xDE, MRM2m, (outs), (ins i16mem:$src), "ficom{w}\t$src">;
+def FICOMP16m: FPI<0xDE, MRM3m, (outs), (ins i16mem:$src), "ficomp{w}\t$src">;
+
+def FBLDm    : FPI<0xDF, MRM4m, (outs), (ins f32mem:$src), "fbld\t$src">;
+def FBSTPm   : FPI<0xDF, MRM6m, (outs f32mem:$dst), (ins), "fbstp\t$dst">;
+
 // Floating point cmovs.
 multiclass FPCMov<PatLeaf cc> {
-  def _Fp32  : FpI<(outs RFP32:$dst), (ins RFP32:$src1, RFP32:$src2), CondMovFP,
+  def _Fp32  : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, RFP32:$src2),
+                       CondMovFP,
                      [(set RFP32:$dst, (X86cmov RFP32:$src1, RFP32:$src2,
-                                        cc))]>;
-  def _Fp64  : FpI<(outs RFP64:$dst), (ins RFP64:$src1, RFP64:$src2), CondMovFP,
+                                        cc, EFLAGS))]>;
+  def _Fp64  : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, RFP64:$src2),
+                       CondMovFP,
                      [(set RFP64:$dst, (X86cmov RFP64:$src1, RFP64:$src2,
-                                        cc))]>;
-  def _Fp80  : FpI<(outs RFP80:$dst), (ins RFP80:$src1, RFP80:$src2), CondMovFP,
+                                        cc, EFLAGS))]>;
+  def _Fp80  : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, RFP80:$src2),
+                     CondMovFP,
                      [(set RFP80:$dst, (X86cmov RFP80:$src1, RFP80:$src2,
-                                        cc))]>;
+                                        cc, EFLAGS))]>;
 }
-let isTwoAddress = 1 in {
+let Uses = [EFLAGS], isTwoAddress = 1 in {
 defm CMOVB  : FPCMov<X86_COND_B>;
 defm CMOVBE : FPCMov<X86_COND_BE>;
 defm CMOVE  : FPCMov<X86_COND_E>;
@@ -318,66 +373,82 @@ def CMOVNP_F : FPI<0xD8, AddRegFrm, (outs RST:$op), (ins),
                   "fcmovnu\t{$op, %st(0)|%ST(0), $op}">, DB;
 
 // Floating point loads & stores.
-def LD_Fp32m   : FpI<(outs RFP32:$dst), (ins f32mem:$src), ZeroArgFP,
+let canFoldAsLoad = 1 in {
+def LD_Fp32m   : FpIf32<(outs RFP32:$dst), (ins f32mem:$src), ZeroArgFP,
                   [(set RFP32:$dst, (loadf32 addr:$src))]>;
-def LD_Fp64m   : FpI<(outs RFP64:$dst), (ins f64mem:$src), ZeroArgFP,
+let isReMaterializable = 1, mayHaveSideEffects = 1 in
+  def LD_Fp64m : FpIf64<(outs RFP64:$dst), (ins f64mem:$src), ZeroArgFP,
                   [(set RFP64:$dst, (loadf64 addr:$src))]>;
-def LD_Fp80m   : FpI<(outs RFP80:$dst), (ins f80mem:$src), ZeroArgFP,
+def LD_Fp80m   : FpI_<(outs RFP80:$dst), (ins f80mem:$src), ZeroArgFP,
                   [(set RFP80:$dst, (loadf80 addr:$src))]>;
-def ILD_Fp16m32: FpI<(outs RFP32:$dst), (ins i16mem:$src), ZeroArgFP,
+}
+def LD_Fp32m64 : FpIf64<(outs RFP64:$dst), (ins f32mem:$src), ZeroArgFP,
+                  [(set RFP64:$dst, (f64 (extloadf32 addr:$src)))]>;
+def LD_Fp64m80 : FpI_<(outs RFP80:$dst), (ins f64mem:$src), ZeroArgFP,
+                  [(set RFP80:$dst, (f80 (extloadf64 addr:$src)))]>;
+def LD_Fp32m80 : FpI_<(outs RFP80:$dst), (ins f32mem:$src), ZeroArgFP,
+                  [(set RFP80:$dst, (f80 (extloadf32 addr:$src)))]>;
+def ILD_Fp16m32: FpIf32<(outs RFP32:$dst), (ins i16mem:$src), ZeroArgFP,
                   [(set RFP32:$dst, (X86fild addr:$src, i16))]>;
-def ILD_Fp32m32: FpI<(outs RFP32:$dst), (ins i32mem:$src), ZeroArgFP,
+def ILD_Fp32m32: FpIf32<(outs RFP32:$dst), (ins i32mem:$src), ZeroArgFP,
                   [(set RFP32:$dst, (X86fild addr:$src, i32))]>;
-def ILD_Fp64m32: FpI<(outs RFP32:$dst), (ins i64mem:$src), ZeroArgFP,
+def ILD_Fp64m32: FpIf32<(outs RFP32:$dst), (ins i64mem:$src), ZeroArgFP,
                   [(set RFP32:$dst, (X86fild addr:$src, i64))]>;
-def ILD_Fp16m64: FpI<(outs RFP64:$dst), (ins i16mem:$src), ZeroArgFP,
+def ILD_Fp16m64: FpIf64<(outs RFP64:$dst), (ins i16mem:$src), ZeroArgFP,
                   [(set RFP64:$dst, (X86fild addr:$src, i16))]>;
-def ILD_Fp32m64: FpI<(outs RFP64:$dst), (ins i32mem:$src), ZeroArgFP,
+def ILD_Fp32m64: FpIf64<(outs RFP64:$dst), (ins i32mem:$src), ZeroArgFP,
                   [(set RFP64:$dst, (X86fild addr:$src, i32))]>;
-def ILD_Fp64m64: FpI<(outs RFP64:$dst), (ins i64mem:$src), ZeroArgFP,
+def ILD_Fp64m64: FpIf64<(outs RFP64:$dst), (ins i64mem:$src), ZeroArgFP,
                   [(set RFP64:$dst, (X86fild addr:$src, i64))]>;
-def ILD_Fp16m80: FpI<(outs RFP80:$dst), (ins i16mem:$src), ZeroArgFP,
+def ILD_Fp16m80: FpI_<(outs RFP80:$dst), (ins i16mem:$src), ZeroArgFP,
                   [(set RFP80:$dst, (X86fild addr:$src, i16))]>;
-def ILD_Fp32m80: FpI<(outs RFP80:$dst), (ins i32mem:$src), ZeroArgFP,
+def ILD_Fp32m80: FpI_<(outs RFP80:$dst), (ins i32mem:$src), ZeroArgFP,
                   [(set RFP80:$dst, (X86fild addr:$src, i32))]>;
-def ILD_Fp64m80: FpI<(outs RFP80:$dst), (ins i64mem:$src), ZeroArgFP,
+def ILD_Fp64m80: FpI_<(outs RFP80:$dst), (ins i64mem:$src), ZeroArgFP,
                   [(set RFP80:$dst, (X86fild addr:$src, i64))]>;
 
-def ST_Fp32m   : FpI<(outs), (ins f32mem:$op, RFP32:$src), OneArgFP,
+def ST_Fp32m   : FpIf32<(outs), (ins f32mem:$op, RFP32:$src), OneArgFP,
                   [(store RFP32:$src, addr:$op)]>;
-def ST_Fp64m32 : FpI<(outs), (ins f32mem:$op, RFP64:$src), OneArgFP,
+def ST_Fp64m32 : FpIf64<(outs), (ins f32mem:$op, RFP64:$src), OneArgFP,
                   [(truncstoref32 RFP64:$src, addr:$op)]>;
-def ST_Fp64m   : FpI<(outs), (ins f64mem:$op, RFP64:$src), OneArgFP,
+def ST_Fp64m   : FpIf64<(outs), (ins f64mem:$op, RFP64:$src), OneArgFP,
                   [(store RFP64:$src, addr:$op)]>;
-def ST_Fp80m32 : FpI<(outs), (ins f32mem:$op, RFP80:$src), OneArgFP,
+def ST_Fp80m32 : FpI_<(outs), (ins f32mem:$op, RFP80:$src), OneArgFP,
                   [(truncstoref32 RFP80:$src, addr:$op)]>;
-def ST_Fp80m64 : FpI<(outs), (ins f64mem:$op, RFP80:$src), OneArgFP,
+def ST_Fp80m64 : FpI_<(outs), (ins f64mem:$op, RFP80:$src), OneArgFP,
                   [(truncstoref64 RFP80:$src, addr:$op)]>;
 // FST does not support 80-bit memory target; FSTP must be used.
 
-def ST_FpP32m    : FpI<(outs), (ins f32mem:$op, RFP32:$src), OneArgFP, []>;
-def ST_FpP64m32  : FpI<(outs), (ins f32mem:$op, RFP64:$src), OneArgFP, []>;
-def ST_FpP64m    : FpI<(outs), (ins f64mem:$op, RFP64:$src), OneArgFP, []>;
-def ST_FpP80m32  : FpI<(outs), (ins f32mem:$op, RFP80:$src), OneArgFP, []>;
-def ST_FpP80m64  : FpI<(outs), (ins f64mem:$op, RFP80:$src), OneArgFP, []>;
-def ST_FpP80m    : FpI<(outs), (ins f80mem:$op, RFP80:$src), OneArgFP,
+let mayStore = 1, neverHasSideEffects = 1 in {
+def ST_FpP32m    : FpIf32<(outs), (ins f32mem:$op, RFP32:$src), OneArgFP, []>;
+def ST_FpP64m32  : FpIf64<(outs), (ins f32mem:$op, RFP64:$src), OneArgFP, []>;
+def ST_FpP64m    : FpIf64<(outs), (ins f64mem:$op, RFP64:$src), OneArgFP, []>;
+def ST_FpP80m32  : FpI_<(outs), (ins f32mem:$op, RFP80:$src), OneArgFP, []>;
+def ST_FpP80m64  : FpI_<(outs), (ins f64mem:$op, RFP80:$src), OneArgFP, []>;
+}
+def ST_FpP80m    : FpI_<(outs), (ins f80mem:$op, RFP80:$src), OneArgFP,
                     [(store RFP80:$src, addr:$op)]>;
-def IST_Fp16m32  : FpI<(outs), (ins i16mem:$op, RFP32:$src), OneArgFP, []>;
-def IST_Fp32m32  : FpI<(outs), (ins i32mem:$op, RFP32:$src), OneArgFP, []>;
-def IST_Fp64m32  : FpI<(outs), (ins i64mem:$op, RFP32:$src), OneArgFP, []>;
-def IST_Fp16m64  : FpI<(outs), (ins i16mem:$op, RFP64:$src), OneArgFP, []>;
-def IST_Fp32m64  : FpI<(outs), (ins i32mem:$op, RFP64:$src), OneArgFP, []>;
-def IST_Fp64m64  : FpI<(outs), (ins i64mem:$op, RFP64:$src), OneArgFP, []>;
-def IST_Fp16m80  : FpI<(outs), (ins i16mem:$op, RFP80:$src), OneArgFP, []>;
-def IST_Fp32m80  : FpI<(outs), (ins i32mem:$op, RFP80:$src), OneArgFP, []>;
-def IST_Fp64m80  : FpI<(outs), (ins i64mem:$op, RFP80:$src), OneArgFP, []>;
+let mayStore = 1, neverHasSideEffects = 1 in {
+def IST_Fp16m32  : FpIf32<(outs), (ins i16mem:$op, RFP32:$src), OneArgFP, []>;
+def IST_Fp32m32  : FpIf32<(outs), (ins i32mem:$op, RFP32:$src), OneArgFP, []>;
+def IST_Fp64m32  : FpIf32<(outs), (ins i64mem:$op, RFP32:$src), OneArgFP, []>;
+def IST_Fp16m64  : FpIf64<(outs), (ins i16mem:$op, RFP64:$src), OneArgFP, []>;
+def IST_Fp32m64  : FpIf64<(outs), (ins i32mem:$op, RFP64:$src), OneArgFP, []>;
+def IST_Fp64m64  : FpIf64<(outs), (ins i64mem:$op, RFP64:$src), OneArgFP, []>;
+def IST_Fp16m80  : FpI_<(outs), (ins i16mem:$op, RFP80:$src), OneArgFP, []>;
+def IST_Fp32m80  : FpI_<(outs), (ins i32mem:$op, RFP80:$src), OneArgFP, []>;
+def IST_Fp64m80  : FpI_<(outs), (ins i64mem:$op, RFP80:$src), OneArgFP, []>;
+}
 
+let mayLoad = 1 in {
 def LD_F32m   : FPI<0xD9, MRM0m, (outs), (ins f32mem:$src), "fld{s}\t$src">;
 def LD_F64m   : FPI<0xDD, MRM0m, (outs), (ins f64mem:$src), "fld{l}\t$src">;
 def LD_F80m   : FPI<0xDB, MRM5m, (outs), (ins f80mem:$src), "fld{t}\t$src">;
 def ILD_F16m  : FPI<0xDF, MRM0m, (outs), (ins i16mem:$src), "fild{s}\t$src">;
 def ILD_F32m  : FPI<0xDB, MRM0m, (outs), (ins i32mem:$src), "fild{l}\t$src">;
 def ILD_F64m  : FPI<0xDF, MRM5m, (outs), (ins i64mem:$src), "fild{ll}\t$src">;
+}
+let mayStore = 1 in {
 def ST_F32m   : FPI<0xD9, MRM2m, (outs), (ins f32mem:$dst), "fst{s}\t$dst">;
 def ST_F64m   : FPI<0xDD, MRM2m, (outs), (ins f64mem:$dst), "fst{l}\t$dst">;
 def ST_FP32m  : FPI<0xD9, MRM3m, (outs), (ins f32mem:$dst), "fstp{s}\t$dst">;
@@ -388,6 +459,7 @@ def IST_F32m  : FPI<0xDB, MRM2m, (outs), (ins i32mem:$dst), "fist{l}\t$dst">;
 def IST_FP16m : FPI<0xDF, MRM3m, (outs), (ins i16mem:$dst), "fistp{s}\t$dst">;
 def IST_FP32m : FPI<0xDB, MRM3m, (outs), (ins i32mem:$dst), "fistp{l}\t$dst">;
 def IST_FP64m : FPI<0xDF, MRM7m, (outs), (ins i64mem:$dst), "fistp{ll}\t$dst">;
+}
 
 // FISTTP requires SSE3 even though it's a FPStack op.
 def ISTT_Fp16m32 : FpI_<(outs), (ins i16mem:$op, RFP32:$src), OneArgFP,
@@ -408,10 +480,21 @@ def ISTT_Fp32m64 : FpI_<(outs), (ins i32mem:$op, RFP64:$src), OneArgFP,
 def ISTT_Fp64m64 : FpI_<(outs), (ins i64mem:$op, RFP64:$src), OneArgFP,
                     [(X86fp_to_i64mem RFP64:$src, addr:$op)]>,
                     Requires<[HasSSE3]>;
+def ISTT_Fp16m80 : FpI_<(outs), (ins i16mem:$op, RFP80:$src), OneArgFP,
+                    [(X86fp_to_i16mem RFP80:$src, addr:$op)]>,
+                    Requires<[HasSSE3]>;
+def ISTT_Fp32m80 : FpI_<(outs), (ins i32mem:$op, RFP80:$src), OneArgFP,
+                    [(X86fp_to_i32mem RFP80:$src, addr:$op)]>,
+                    Requires<[HasSSE3]>;
+def ISTT_Fp64m80 : FpI_<(outs), (ins i64mem:$op, RFP80:$src), OneArgFP,
+                    [(X86fp_to_i64mem RFP80:$src, addr:$op)]>,
+                    Requires<[HasSSE3]>;
 
+let mayStore = 1 in {
 def ISTT_FP16m : FPI<0xDF, MRM1m, (outs), (ins i16mem:$dst), "fisttp{s}\t$dst">;
 def ISTT_FP32m : FPI<0xDB, MRM1m, (outs), (ins i32mem:$dst), "fisttp{l}\t$dst">;
 def ISTT_FP64m : FPI<0xDD, MRM1m, (outs), (ins i64mem:$dst), "fisttp{ll}\t$dst">;
+}
 
 // FP Stack manipulation instructions.
 def LD_Frr   : FPI<0xC0, AddRegFrm, (outs), (ins RST:$op), "fld\t$op">, D9;
@@ -421,17 +504,17 @@ def XCH_F    : FPI<0xC8, AddRegFrm, (outs), (ins RST:$op), "fxch\t$op">, D9;
 
 // Floating point constant loads.
 let isReMaterializable = 1 in {
-def LD_Fp032 : FpI<(outs RFP32:$dst), (ins), ZeroArgFP,
+def LD_Fp032 : FpIf32<(outs RFP32:$dst), (ins), ZeroArgFP,
                 [(set RFP32:$dst, fpimm0)]>;
-def LD_Fp132 : FpI<(outs RFP32:$dst), (ins), ZeroArgFP,
+def LD_Fp132 : FpIf32<(outs RFP32:$dst), (ins), ZeroArgFP,
                 [(set RFP32:$dst, fpimm1)]>;
-def LD_Fp064 : FpI<(outs RFP64:$dst), (ins), ZeroArgFP,
+def LD_Fp064 : FpIf64<(outs RFP64:$dst), (ins), ZeroArgFP,
                 [(set RFP64:$dst, fpimm0)]>;
-def LD_Fp164 : FpI<(outs RFP64:$dst), (ins), ZeroArgFP,
+def LD_Fp164 : FpIf64<(outs RFP64:$dst), (ins), ZeroArgFP,
                 [(set RFP64:$dst, fpimm1)]>;
-def LD_Fp080 : FpI<(outs RFP80:$dst), (ins), ZeroArgFP,
+def LD_Fp080 : FpI_<(outs RFP80:$dst), (ins), ZeroArgFP,
                 [(set RFP80:$dst, fpimm0)]>;
-def LD_Fp180 : FpI<(outs RFP80:$dst), (ins), ZeroArgFP,
+def LD_Fp180 : FpI_<(outs RFP80:$dst), (ins), ZeroArgFP,
                 [(set RFP80:$dst, fpimm1)]>;
 }
 
@@ -440,42 +523,54 @@ def LD_F1 : FPI<0xE8, RawFrm, (outs), (ins), "fld1">, D9;
 
 
 // Floating point compares.
-def UCOM_Fpr32 : FpI<(outs), (ins RFP32:$lhs, RFP32:$rhs), CompareFP,
-                  []>;  // FPSW = cmp ST(0) with ST(i)
-def UCOM_FpIr32: FpI<(outs), (ins RFP32:$lhs, RFP32:$rhs), CompareFP,
-                  [(X86cmp RFP32:$lhs, RFP32:$rhs)]>; // CC = ST(0) cmp ST(i)
-def UCOM_Fpr64 : FpI<(outs), (ins RFP64:$lhs, RFP64:$rhs), CompareFP,
-                  []>;  // FPSW = cmp ST(0) with ST(i)
-def UCOM_FpIr64: FpI<(outs), (ins RFP64:$lhs, RFP64:$rhs), CompareFP,
-                  [(X86cmp RFP64:$lhs, RFP64:$rhs)]>; // CC = ST(0) cmp ST(i)
-def UCOM_Fpr80 : FpI<(outs), (ins RFP80:$lhs, RFP80:$rhs), CompareFP,
-                  []>;  // FPSW = cmp ST(0) with ST(i)
-def UCOM_FpIr80: FpI<(outs), (ins RFP80:$lhs, RFP80:$rhs), CompareFP,
-                  [(X86cmp RFP80:$lhs, RFP80:$rhs)]>; // CC = ST(0) cmp ST(i)
+let Defs = [EFLAGS] in {
+def UCOM_Fpr32 : FpIf32<(outs), (ins RFP32:$lhs, RFP32:$rhs), CompareFP,
+                        []>;  // FPSW = cmp ST(0) with ST(i)
+def UCOM_Fpr64 : FpIf64<(outs), (ins RFP64:$lhs, RFP64:$rhs), CompareFP,
+                        []>;  // FPSW = cmp ST(0) with ST(i)
+def UCOM_Fpr80 : FpI_  <(outs), (ins RFP80:$lhs, RFP80:$rhs), CompareFP,
+                        []>;  // FPSW = cmp ST(0) with ST(i)
+                        
+def UCOM_FpIr32: FpIf32<(outs), (ins RFP32:$lhs, RFP32:$rhs), CompareFP,
+                  [(X86cmp RFP32:$lhs, RFP32:$rhs),
+                   (implicit EFLAGS)]>; // CC = ST(0) cmp ST(i)
+def UCOM_FpIr64: FpIf64<(outs), (ins RFP64:$lhs, RFP64:$rhs), CompareFP,
+                  [(X86cmp RFP64:$lhs, RFP64:$rhs),
+                   (implicit EFLAGS)]>; // CC = ST(0) cmp ST(i)
+def UCOM_FpIr80: FpI_<(outs), (ins RFP80:$lhs, RFP80:$rhs), CompareFP,
+                  [(X86cmp RFP80:$lhs, RFP80:$rhs),
+                   (implicit EFLAGS)]>; // CC = ST(0) cmp ST(i)
+}
 
+let Defs = [EFLAGS], Uses = [ST0] in {
 def UCOM_Fr    : FPI<0xE0, AddRegFrm,    // FPSW = cmp ST(0) with ST(i)
                     (outs), (ins RST:$reg),
-                    "fucom\t$reg">, DD, Imp<[ST0],[]>;
+                    "fucom\t$reg">, DD;
 def UCOM_FPr   : FPI<0xE8, AddRegFrm,    // FPSW = cmp ST(0) with ST(i), pop
                     (outs), (ins RST:$reg),
-                    "fucomp\t$reg">, DD, Imp<[ST0],[]>;
+                    "fucomp\t$reg">, DD;
 def UCOM_FPPr  : FPI<0xE9, RawFrm,       // cmp ST(0) with ST(1), pop, pop
                     (outs), (ins),
-                    "fucompp">, DA, Imp<[ST0],[]>;
+                    "fucompp">, DA;
 
 def UCOM_FIr   : FPI<0xE8, AddRegFrm,     // CC = cmp ST(0) with ST(i)
                     (outs), (ins RST:$reg),
-                    "fucomi\t{$reg, %st(0)|%ST(0), $reg}">, DB, Imp<[ST0],[]>;
+                    "fucomi\t{$reg, %st(0)|%ST(0), $reg}">, DB;
 def UCOM_FIPr  : FPI<0xE8, AddRegFrm,     // CC = cmp ST(0) with ST(i), pop
                     (outs), (ins RST:$reg),
-                    "fucomip\t{$reg, %st(0)|%ST(0), $reg}">, DF, Imp<[ST0],[]>;
+                    "fucomip\t{$reg, %st(0)|%ST(0), $reg}">, DF;
+}
 
 // Floating point flag ops.
+let Defs = [AX] in
 def FNSTSW8r  : I<0xE0, RawFrm,                  // AX = fp flags
-                  (outs), (ins), "fnstsw", []>, DF, Imp<[],[AX]>;
+                  (outs), (ins), "fnstsw", []>, DF;
 
 def FNSTCW16m : I<0xD9, MRM7m,                   // [mem16] = X87 control world
-                  (outs), (ins i16mem:$dst), "fnstcw\t$dst", []>;
+                  (outs), (ins i16mem:$dst), "fnstcw\t$dst",
+                  [(X86fp_cwd_get16 addr:$dst)]>;
+                  
+let mayLoad = 1 in
 def FLDCW16m  : I<0xD9, MRM5m,                   // X87 control world = [mem16]
                   (outs), (ins i16mem:$dst), "fldcw\t$dst", []>;
 
@@ -483,34 +578,45 @@ def FLDCW16m  : I<0xD9, MRM5m,                   // X87 control world = [mem16]
 // Non-Instruction Patterns
 //===----------------------------------------------------------------------===//
 
-// Required for RET of f32 / f64 values.
+// Required for RET of f32 / f64 / f80 values.
 def : Pat<(X86fld addr:$src, f32), (LD_Fp32m addr:$src)>;
 def : Pat<(X86fld addr:$src, f64), (LD_Fp64m addr:$src)>;
 def : Pat<(X86fld addr:$src, f80), (LD_Fp80m addr:$src)>;
 
-// Required for CALL which return f32 / f64 values.
+// Required for CALL which return f32 / f64 / f80 values.
 def : Pat<(X86fst RFP32:$src, addr:$op, f32), (ST_Fp32m addr:$op, RFP32:$src)>;
 def : Pat<(X86fst RFP64:$src, addr:$op, f32), (ST_Fp64m32 addr:$op, RFP64:$src)>;
 def : Pat<(X86fst RFP64:$src, addr:$op, f64), (ST_Fp64m addr:$op, RFP64:$src)>;
+def : Pat<(X86fst RFP80:$src, addr:$op, f32), (ST_Fp80m32 addr:$op, RFP80:$src)>;
+def : Pat<(X86fst RFP80:$src, addr:$op, f64), (ST_Fp80m64 addr:$op, RFP80:$src)>;
+def : Pat<(X86fst RFP80:$src, addr:$op, f80), (ST_FpP80m addr:$op, RFP80:$src)>;
 
 // Floating point constant -0.0 and -1.0
-def : Pat<(f32 fpimmneg0), (CHS_Fp32 (LD_Fp032))>, Requires<[FPStack]>;
-def : Pat<(f32 fpimmneg1), (CHS_Fp32 (LD_Fp132))>, Requires<[FPStack]>;
-def : Pat<(f64 fpimmneg0), (CHS_Fp64 (LD_Fp064))>, Requires<[FPStack]>;
-def : Pat<(f64 fpimmneg1), (CHS_Fp64 (LD_Fp164))>, Requires<[FPStack]>;
-def : Pat<(f80 fpimmneg0), (CHS_Fp80 (LD_Fp080))>, Requires<[FPStack]>;
-def : Pat<(f80 fpimmneg1), (CHS_Fp80 (LD_Fp180))>, Requires<[FPStack]>;
+def : Pat<(f32 fpimmneg0), (CHS_Fp32 (LD_Fp032))>, Requires<[FPStackf32]>;
+def : Pat<(f32 fpimmneg1), (CHS_Fp32 (LD_Fp132))>, Requires<[FPStackf32]>;
+def : Pat<(f64 fpimmneg0), (CHS_Fp64 (LD_Fp064))>, Requires<[FPStackf64]>;
+def : Pat<(f64 fpimmneg1), (CHS_Fp64 (LD_Fp164))>, Requires<[FPStackf64]>;
+def : Pat<(f80 fpimmneg0), (CHS_Fp80 (LD_Fp080))>;
+def : Pat<(f80 fpimmneg1), (CHS_Fp80 (LD_Fp180))>;
 
 // Used to conv. i64 to f64 since there isn't a SSE version.
 def : Pat<(X86fildflag addr:$src, i64), (ILD_Fp64m64 addr:$src)>;
 
-def : Pat<(extloadf80f32 addr:$src), 
-           (MOV_Fp3280 (LD_Fp32m addr:$src))>, Requires<[FPStack]>;
-def : Pat<(extloadf80f64 addr:$src), 
-           (MOV_Fp6480 (LD_Fp64m addr:$src))>, Requires<[FPStack]>;
-def : Pat<(extloadf64f32 addr:$src), 
-           (MOV_Fp3264 (LD_Fp32m addr:$src))>, Requires<[FPStack]>;
-
-def : Pat<(f64 (fextend RFP32:$src)), (MOV_Fp3264 RFP32:$src)>, Requires<[FPStack]>;
-def : Pat<(f80 (fextend RFP32:$src)), (MOV_Fp3280 RFP32:$src)>, Requires<[FPStack]>;
-def : Pat<(f80 (fextend RFP64:$src)), (MOV_Fp6480 RFP64:$src)>, Requires<[FPStack]>;
+// FP extensions map onto simple pseudo-value conversions if they are to/from
+// the FP stack.
+def : Pat<(f64 (fextend RFP32:$src)), (MOV_Fp3264 RFP32:$src)>,
+          Requires<[FPStackf32]>;
+def : Pat<(f80 (fextend RFP32:$src)), (MOV_Fp3280 RFP32:$src)>,
+           Requires<[FPStackf32]>;
+def : Pat<(f80 (fextend RFP64:$src)), (MOV_Fp6480 RFP64:$src)>,
+           Requires<[FPStackf64]>;
+
+// FP truncations map onto simple pseudo-value conversions if they are to/from
+// the FP stack.  We have validated that only value-preserving truncations make
+// it through isel.
+def : Pat<(f32 (fround RFP64:$src)), (MOV_Fp6432 RFP64:$src)>,
+          Requires<[FPStackf32]>;
+def : Pat<(f32 (fround RFP80:$src)), (MOV_Fp8032 RFP80:$src)>,
+           Requires<[FPStackf32]>;
+def : Pat<(f64 (fround RFP80:$src)), (MOV_Fp8064 RFP80:$src)>,
+           Requires<[FPStackf64]>;