[SEH] Add new intrinsics for recovering and restoring parent frames
[oota-llvm.git] / lib / Target / X86 / X86ISelLowering.cpp
index 90718e936af34cb7f1ef36251c15c7129bbdca3a..6d4f817ad67c1a7c3a8333fef18c1d99a6390c50 100644 (file)
@@ -25,7 +25,6 @@
 #include "llvm/ADT/Statistic.h"
 #include "llvm/ADT/StringExtras.h"
 #include "llvm/ADT/StringSwitch.h"
-#include "llvm/ADT/VariadicFunction.h"
 #include "llvm/CodeGen/IntrinsicLowering.h"
 #include "llvm/CodeGen/MachineFrameInfo.h"
 #include "llvm/CodeGen/MachineFunction.h"
@@ -33,6 +32,7 @@
 #include "llvm/CodeGen/MachineJumpTableInfo.h"
 #include "llvm/CodeGen/MachineModuleInfo.h"
 #include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/WinEHFuncInfo.h"
 #include "llvm/IR/CallSite.h"
 #include "llvm/IR/CallingConv.h"
 #include "llvm/IR/Constants.h"
@@ -67,129 +67,10 @@ static cl::opt<bool> ExperimentalVectorWideningLegalization(
              "rather than promotion."),
     cl::Hidden);
 
-static cl::opt<int> ReciprocalEstimateRefinementSteps(
-    "x86-recip-refinement-steps", cl::init(1),
-    cl::desc("Specify the number of Newton-Raphson iterations applied to the "
-             "result of the hardware reciprocal estimate instruction."),
-    cl::NotHidden);
-
 // Forward declarations.
 static SDValue getMOVL(SelectionDAG &DAG, SDLoc dl, EVT VT, SDValue V1,
                        SDValue V2);
 
-static SDValue ExtractSubVector(SDValue Vec, unsigned IdxVal,
-                                SelectionDAG &DAG, SDLoc dl,
-                                unsigned vectorWidth) {
-  assert((vectorWidth == 128 || vectorWidth == 256) &&
-         "Unsupported vector width");
-  EVT VT = Vec.getValueType();
-  EVT ElVT = VT.getVectorElementType();
-  unsigned Factor = VT.getSizeInBits()/vectorWidth;
-  EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
-                                  VT.getVectorNumElements()/Factor);
-
-  // Extract from UNDEF is UNDEF.
-  if (Vec.getOpcode() == ISD::UNDEF)
-    return DAG.getUNDEF(ResultVT);
-
-  // Extract the relevant vectorWidth bits.  Generate an EXTRACT_SUBVECTOR
-  unsigned ElemsPerChunk = vectorWidth / ElVT.getSizeInBits();
-
-  // This is the index of the first element of the vectorWidth-bit chunk
-  // we want.
-  unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / vectorWidth)
-                               * ElemsPerChunk);
-
-  // If the input is a buildvector just emit a smaller one.
-  if (Vec.getOpcode() == ISD::BUILD_VECTOR)
-    return DAG.getNode(ISD::BUILD_VECTOR, dl, ResultVT,
-                       makeArrayRef(Vec->op_begin() + NormalizedIdxVal,
-                                    ElemsPerChunk));
-
-  SDValue VecIdx = DAG.getIntPtrConstant(NormalizedIdxVal);
-  return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec, VecIdx);
-}
-
-/// Generate a DAG to grab 128-bits from a vector > 128 bits.  This
-/// sets things up to match to an AVX VEXTRACTF128 / VEXTRACTI128
-/// or AVX-512 VEXTRACTF32x4 / VEXTRACTI32x4
-/// instructions or a simple subregister reference. Idx is an index in the
-/// 128 bits we want.  It need not be aligned to a 128-bit boundary.  That makes
-/// lowering EXTRACT_VECTOR_ELT operations easier.
-static SDValue Extract128BitVector(SDValue Vec, unsigned IdxVal,
-                                   SelectionDAG &DAG, SDLoc dl) {
-  assert((Vec.getValueType().is256BitVector() ||
-          Vec.getValueType().is512BitVector()) && "Unexpected vector size!");
-  return ExtractSubVector(Vec, IdxVal, DAG, dl, 128);
-}
-
-/// Generate a DAG to grab 256-bits from a 512-bit vector.
-static SDValue Extract256BitVector(SDValue Vec, unsigned IdxVal,
-                                   SelectionDAG &DAG, SDLoc dl) {
-  assert(Vec.getValueType().is512BitVector() && "Unexpected vector size!");
-  return ExtractSubVector(Vec, IdxVal, DAG, dl, 256);
-}
-
-static SDValue InsertSubVector(SDValue Result, SDValue Vec,
-                               unsigned IdxVal, SelectionDAG &DAG,
-                               SDLoc dl, unsigned vectorWidth) {
-  assert((vectorWidth == 128 || vectorWidth == 256) &&
-         "Unsupported vector width");
-  // Inserting UNDEF is Result
-  if (Vec.getOpcode() == ISD::UNDEF)
-    return Result;
-  EVT VT = Vec.getValueType();
-  EVT ElVT = VT.getVectorElementType();
-  EVT ResultVT = Result.getValueType();
-
-  // Insert the relevant vectorWidth bits.
-  unsigned ElemsPerChunk = vectorWidth/ElVT.getSizeInBits();
-
-  // This is the index of the first element of the vectorWidth-bit chunk
-  // we want.
-  unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits())/vectorWidth)
-                               * ElemsPerChunk);
-
-  SDValue VecIdx = DAG.getIntPtrConstant(NormalizedIdxVal);
-  return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec, VecIdx);
-}
-
-/// Generate a DAG to put 128-bits into a vector > 128 bits.  This
-/// sets things up to match to an AVX VINSERTF128/VINSERTI128 or
-/// AVX-512 VINSERTF32x4/VINSERTI32x4 instructions or a
-/// simple superregister reference.  Idx is an index in the 128 bits
-/// we want.  It need not be aligned to a 128-bit boundary.  That makes
-/// lowering INSERT_VECTOR_ELT operations easier.
-static SDValue Insert128BitVector(SDValue Result, SDValue Vec, unsigned IdxVal,
-                                  SelectionDAG &DAG,SDLoc dl) {
-  assert(Vec.getValueType().is128BitVector() && "Unexpected vector size!");
-  return InsertSubVector(Result, Vec, IdxVal, DAG, dl, 128);
-}
-
-static SDValue Insert256BitVector(SDValue Result, SDValue Vec, unsigned IdxVal,
-                                  SelectionDAG &DAG, SDLoc dl) {
-  assert(Vec.getValueType().is256BitVector() && "Unexpected vector size!");
-  return InsertSubVector(Result, Vec, IdxVal, DAG, dl, 256);
-}
-
-/// Concat two 128-bit vectors into a 256 bit vector using VINSERTF128
-/// instructions. This is used because creating CONCAT_VECTOR nodes of
-/// BUILD_VECTORS returns a larger BUILD_VECTOR while we're trying to lower
-/// large BUILD_VECTORS.
-static SDValue Concat128BitVectors(SDValue V1, SDValue V2, EVT VT,
-                                   unsigned NumElems, SelectionDAG &DAG,
-                                   SDLoc dl) {
-  SDValue V = Insert128BitVector(DAG.getUNDEF(VT), V1, 0, DAG, dl);
-  return Insert128BitVector(V, V2, NumElems/2, DAG, dl);
-}
-
-static SDValue Concat256BitVectors(SDValue V1, SDValue V2, EVT VT,
-                                   unsigned NumElems, SelectionDAG &DAG,
-                                   SDLoc dl) {
-  SDValue V = Insert256BitVector(DAG.getUNDEF(VT), V1, 0, DAG, dl);
-  return Insert256BitVector(V, V2, NumElems/2, DAG, dl);
-}
-
 X86TargetLowering::X86TargetLowering(const X86TargetMachine &TM,
                                      const X86Subtarget &STI)
     : TargetLowering(TM), Subtarget(&STI) {
@@ -296,7 +177,7 @@ X86TargetLowering::X86TargetLowering(const X86TargetMachine &TM,
   if (Subtarget->is64Bit()) {
     setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
     setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
-  } else if (!TM.Options.UseSoftFloat) {
+  } else if (!Subtarget->useSoftFloat()) {
     // We have an algorithm for SSE2->double, and we turn this into a
     // 64-bit FILD followed by conditional FADD for other targets.
     setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
@@ -310,7 +191,7 @@ X86TargetLowering::X86TargetLowering(const X86TargetMachine &TM,
   setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
   setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
 
-  if (!TM.Options.UseSoftFloat) {
+  if (!Subtarget->useSoftFloat()) {
     // SSE has no i16 to fp conversion, only i32
     if (X86ScalarSSEf32) {
       setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
@@ -353,7 +234,7 @@ X86TargetLowering::X86TargetLowering(const X86TargetMachine &TM,
   if (Subtarget->is64Bit()) {
     setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
     setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
-  } else if (!TM.Options.UseSoftFloat) {
+  } else if (!Subtarget->useSoftFloat()) {
     // Since AVX is a superset of SSE3, only check for SSE here.
     if (Subtarget->hasSSE1() && !Subtarget->hasSSE3())
       // Expand FP_TO_UINT into a select.
@@ -481,7 +362,7 @@ X86TargetLowering::X86TargetLowering(const X86TargetMachine &TM,
   // Special handling for half-precision floating point conversions.
   // If we don't have F16C support, then lower half float conversions
   // into library calls.
-  if (TM.Options.UseSoftFloat || !Subtarget->hasF16C()) {
+  if (Subtarget->useSoftFloat() || !Subtarget->hasF16C()) {
     setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand);
     setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand);
   }
@@ -626,7 +507,11 @@ X86TargetLowering::X86TargetLowering(const X86TargetMachine &TM,
 
   setOperationAction(ISD::DYNAMIC_STACKALLOC, getPointerTy(), Custom);
 
-  if (!TM.Options.UseSoftFloat && X86ScalarSSEf64) {
+  // GC_TRANSITION_START and GC_TRANSITION_END need custom lowering.
+  setOperationAction(ISD::GC_TRANSITION_START, MVT::Other, Custom);
+  setOperationAction(ISD::GC_TRANSITION_END, MVT::Other, Custom);
+
+  if (!Subtarget->useSoftFloat() && X86ScalarSSEf64) {
     // f32 and f64 use SSE.
     // Set up the FP register classes.
     addRegisterClass(MVT::f32, &X86::FR32RegClass);
@@ -660,7 +545,7 @@ X86TargetLowering::X86TargetLowering(const X86TargetMachine &TM,
     // cases we handle.
     addLegalFPImmediate(APFloat(+0.0)); // xorpd
     addLegalFPImmediate(APFloat(+0.0f)); // xorps
-  } else if (!TM.Options.UseSoftFloat && X86ScalarSSEf32) {
+  } else if (!Subtarget->useSoftFloat() && X86ScalarSSEf32) {
     // Use SSE for f32, x87 for f64.
     // Set up the FP register classes.
     addRegisterClass(MVT::f32, &X86::FR32RegClass);
@@ -695,7 +580,7 @@ X86TargetLowering::X86TargetLowering(const X86TargetMachine &TM,
       setOperationAction(ISD::FCOS   , MVT::f64, Expand);
       setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
     }
-  } else if (!TM.Options.UseSoftFloat) {
+  } else if (!Subtarget->useSoftFloat()) {
     // f32 and f64 in x87.
     // Set up the FP register classes.
     addRegisterClass(MVT::f64, &X86::RFP64RegClass);
@@ -729,7 +614,7 @@ X86TargetLowering::X86TargetLowering(const X86TargetMachine &TM,
   setOperationAction(ISD::FMA, MVT::f32, Expand);
 
   // Long double always uses X87.
-  if (!TM.Options.UseSoftFloat) {
+  if (!Subtarget->useSoftFloat()) {
     addRegisterClass(MVT::f80, &X86::RFP80RegClass);
     setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
     setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
@@ -859,49 +744,35 @@ X86TargetLowering::X86TargetLowering(const X86TargetMachine &TM,
       // them legal.
       if (VT.getVectorElementType() == MVT::i1)
         setLoadExtAction(ISD::EXTLOAD, InnerVT, VT, Expand);
+
+      // EXTLOAD for MVT::f16 vectors is not legal because f16 vectors are
+      // split/scalarized right now.
+      if (VT.getVectorElementType() == MVT::f16)
+        setLoadExtAction(ISD::EXTLOAD, InnerVT, VT, Expand);
     }
   }
 
   // FIXME: In order to prevent SSE instructions being expanded to MMX ones
   // with -msoft-float, disable use of MMX as well.
-  if (!TM.Options.UseSoftFloat && Subtarget->hasMMX()) {
+  if (!Subtarget->useSoftFloat() && Subtarget->hasMMX()) {
     addRegisterClass(MVT::x86mmx, &X86::VR64RegClass);
     // No operations on x86mmx supported, everything uses intrinsics.
   }
 
   // MMX-sized vectors (other than x86mmx) are expected to be expanded
   // into smaller operations.
-  setOperationAction(ISD::MULHS,              MVT::v8i8,  Expand);
-  setOperationAction(ISD::MULHS,              MVT::v4i16, Expand);
-  setOperationAction(ISD::MULHS,              MVT::v2i32, Expand);
-  setOperationAction(ISD::MULHS,              MVT::v1i64, Expand);
-  setOperationAction(ISD::AND,                MVT::v8i8,  Expand);
-  setOperationAction(ISD::AND,                MVT::v4i16, Expand);
-  setOperationAction(ISD::AND,                MVT::v2i32, Expand);
-  setOperationAction(ISD::AND,                MVT::v1i64, Expand);
-  setOperationAction(ISD::OR,                 MVT::v8i8,  Expand);
-  setOperationAction(ISD::OR,                 MVT::v4i16, Expand);
-  setOperationAction(ISD::OR,                 MVT::v2i32, Expand);
-  setOperationAction(ISD::OR,                 MVT::v1i64, Expand);
-  setOperationAction(ISD::XOR,                MVT::v8i8,  Expand);
-  setOperationAction(ISD::XOR,                MVT::v4i16, Expand);
-  setOperationAction(ISD::XOR,                MVT::v2i32, Expand);
-  setOperationAction(ISD::XOR,                MVT::v1i64, Expand);
-  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Expand);
-  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Expand);
-  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Expand);
-  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Expand);
+  for (MVT MMXTy : {MVT::v8i8, MVT::v4i16, MVT::v2i32, MVT::v1i64}) {
+    setOperationAction(ISD::MULHS,              MMXTy,      Expand);
+    setOperationAction(ISD::AND,                MMXTy,      Expand);
+    setOperationAction(ISD::OR,                 MMXTy,      Expand);
+    setOperationAction(ISD::XOR,                MMXTy,      Expand);
+    setOperationAction(ISD::SCALAR_TO_VECTOR,   MMXTy,      Expand);
+    setOperationAction(ISD::SELECT,             MMXTy,      Expand);
+    setOperationAction(ISD::BITCAST,            MMXTy,      Expand);
+  }
   setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v1i64, Expand);
-  setOperationAction(ISD::SELECT,             MVT::v8i8,  Expand);
-  setOperationAction(ISD::SELECT,             MVT::v4i16, Expand);
-  setOperationAction(ISD::SELECT,             MVT::v2i32, Expand);
-  setOperationAction(ISD::SELECT,             MVT::v1i64, Expand);
-  setOperationAction(ISD::BITCAST,            MVT::v8i8,  Expand);
-  setOperationAction(ISD::BITCAST,            MVT::v4i16, Expand);
-  setOperationAction(ISD::BITCAST,            MVT::v2i32, Expand);
-  setOperationAction(ISD::BITCAST,            MVT::v1i64, Expand);
-
-  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE1()) {
+
+  if (!Subtarget->useSoftFloat() && Subtarget->hasSSE1()) {
     addRegisterClass(MVT::v4f32, &X86::VR128RegClass);
 
     setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
@@ -920,7 +791,7 @@ X86TargetLowering::X86TargetLowering(const X86TargetMachine &TM,
     setOperationAction(ISD::UINT_TO_FP,         MVT::v4i32, Custom);
   }
 
-  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE2()) {
+  if (!Subtarget->useSoftFloat() && Subtarget->hasSSE2()) {
     addRegisterClass(MVT::v2f64, &X86::VR128RegClass);
 
     // FIXME: Unfortunately, -soft-float and -no-implicit-float mean XMM
@@ -934,6 +805,7 @@ X86TargetLowering::X86TargetLowering(const X86TargetMachine &TM,
     setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
     setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
     setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
+    setOperationAction(ISD::MUL,                MVT::v16i8, Custom);
     setOperationAction(ISD::MUL,                MVT::v4i32, Custom);
     setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
     setOperationAction(ISD::UMUL_LOHI,          MVT::v4i32, Custom);
@@ -964,13 +836,10 @@ X86TargetLowering::X86TargetLowering(const X86TargetMachine &TM,
     setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
     setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
 
-    // Only provide customized ctpop vector bit twiddling for vector types we
-    // know to perform better than using the popcnt instructions on each vector
-    // element. If popcnt isn't supported, always provide the custom version.
-    if (!Subtarget->hasPOPCNT()) {
-      setOperationAction(ISD::CTPOP,            MVT::v4i32, Custom);
-      setOperationAction(ISD::CTPOP,            MVT::v2i64, Custom);
-    }
+    setOperationAction(ISD::CTPOP,              MVT::v16i8, Custom);
+    setOperationAction(ISD::CTPOP,              MVT::v8i16, Custom);
+    setOperationAction(ISD::CTPOP,              MVT::v4i32, Custom);
+    setOperationAction(ISD::CTPOP,              MVT::v2i64, Custom);
 
     // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
     for (int i = MVT::v16i8; i != MVT::v2i64; ++i) {
@@ -1046,6 +915,8 @@ X86TargetLowering::X86TargetLowering(const X86TargetMachine &TM,
     setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
     setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
 
+    setOperationAction(ISD::SINT_TO_FP,         MVT::v2i32, Custom);
+
     setOperationAction(ISD::UINT_TO_FP,         MVT::v4i8,  Custom);
     setOperationAction(ISD::UINT_TO_FP,         MVT::v4i16, Custom);
     // As there is no 64-bit GPR available, we need build a special custom
@@ -1064,28 +935,14 @@ X86TargetLowering::X86TargetLowering(const X86TargetMachine &TM,
     setOperationAction(ISD::BITCAST,            MVT::v8i8,  Custom);
   }
 
-  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE41()) {
-    setOperationAction(ISD::FFLOOR,             MVT::f32,   Legal);
-    setOperationAction(ISD::FCEIL,              MVT::f32,   Legal);
-    setOperationAction(ISD::FTRUNC,             MVT::f32,   Legal);
-    setOperationAction(ISD::FRINT,              MVT::f32,   Legal);
-    setOperationAction(ISD::FNEARBYINT,         MVT::f32,   Legal);
-    setOperationAction(ISD::FFLOOR,             MVT::f64,   Legal);
-    setOperationAction(ISD::FCEIL,              MVT::f64,   Legal);
-    setOperationAction(ISD::FTRUNC,             MVT::f64,   Legal);
-    setOperationAction(ISD::FRINT,              MVT::f64,   Legal);
-    setOperationAction(ISD::FNEARBYINT,         MVT::f64,   Legal);
-
-    setOperationAction(ISD::FFLOOR,             MVT::v4f32, Legal);
-    setOperationAction(ISD::FCEIL,              MVT::v4f32, Legal);
-    setOperationAction(ISD::FTRUNC,             MVT::v4f32, Legal);
-    setOperationAction(ISD::FRINT,              MVT::v4f32, Legal);
-    setOperationAction(ISD::FNEARBYINT,         MVT::v4f32, Legal);
-    setOperationAction(ISD::FFLOOR,             MVT::v2f64, Legal);
-    setOperationAction(ISD::FCEIL,              MVT::v2f64, Legal);
-    setOperationAction(ISD::FTRUNC,             MVT::v2f64, Legal);
-    setOperationAction(ISD::FRINT,              MVT::v2f64, Legal);
-    setOperationAction(ISD::FNEARBYINT,         MVT::v2f64, Legal);
+  if (!Subtarget->useSoftFloat() && Subtarget->hasSSE41()) {
+    for (MVT RoundedTy : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) {
+      setOperationAction(ISD::FFLOOR,           RoundedTy,  Legal);
+      setOperationAction(ISD::FCEIL,            RoundedTy,  Legal);
+      setOperationAction(ISD::FTRUNC,           RoundedTy,  Legal);
+      setOperationAction(ISD::FRINT,            RoundedTy,  Legal);
+      setOperationAction(ISD::FNEARBYINT,       RoundedTy,  Legal);
+    }
 
     // FIXME: Do we need to handle scalar-to-vector here?
     setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
@@ -1140,6 +997,10 @@ X86TargetLowering::X86TargetLowering(const X86TargetMachine &TM,
   }
 
   if (Subtarget->hasSSE2()) {
+    setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, MVT::v2i64, Custom);
+    setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, MVT::v4i32, Custom);
+    setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, MVT::v8i16, Custom);
+
     setOperationAction(ISD::SRL,               MVT::v8i16, Custom);
     setOperationAction(ISD::SRL,               MVT::v16i8, Custom);
 
@@ -1160,7 +1021,7 @@ X86TargetLowering::X86TargetLowering(const X86TargetMachine &TM,
     setOperationAction(ISD::SRA,               MVT::v4i32, Custom);
   }
 
-  if (!TM.Options.UseSoftFloat && Subtarget->hasFp256()) {
+  if (!Subtarget->useSoftFloat() && Subtarget->hasFp256()) {
     addRegisterClass(MVT::v32i8,  &X86::VR256RegClass);
     addRegisterClass(MVT::v16i16, &X86::VR256RegClass);
     addRegisterClass(MVT::v8i32,  &X86::VR256RegClass);
@@ -1245,7 +1106,12 @@ X86TargetLowering::X86TargetLowering(const X86TargetMachine &TM,
     setOperationAction(ISD::TRUNCATE,          MVT::v8i16, Custom);
     setOperationAction(ISD::TRUNCATE,          MVT::v4i32, Custom);
 
-    if (Subtarget->hasFMA() || Subtarget->hasFMA4()) {
+    setOperationAction(ISD::CTPOP,             MVT::v32i8, Custom);
+    setOperationAction(ISD::CTPOP,             MVT::v16i16, Custom);
+    setOperationAction(ISD::CTPOP,             MVT::v8i32, Custom);
+    setOperationAction(ISD::CTPOP,             MVT::v4i64, Custom);
+
+    if (Subtarget->hasFMA() || Subtarget->hasFMA4() || Subtarget->hasAVX512()) {
       setOperationAction(ISD::FMA,             MVT::v8f32, Legal);
       setOperationAction(ISD::FMA,             MVT::v4f64, Legal);
       setOperationAction(ISD::FMA,             MVT::v4f32, Legal);
@@ -1268,7 +1134,7 @@ X86TargetLowering::X86TargetLowering(const X86TargetMachine &TM,
       setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
       setOperationAction(ISD::MUL,             MVT::v8i32, Legal);
       setOperationAction(ISD::MUL,             MVT::v16i16, Legal);
-      // Don't lower v32i8 because there is no 128-bit byte mul
+      setOperationAction(ISD::MUL,             MVT::v32i8, Custom);
 
       setOperationAction(ISD::UMUL_LOHI,       MVT::v8i32, Custom);
       setOperationAction(ISD::SMUL_LOHI,       MVT::v8i32, Custom);
@@ -1279,16 +1145,6 @@ X86TargetLowering::X86TargetLowering(const X86TargetMachine &TM,
       // when we have a 256bit-wide blend with immediate.
       setOperationAction(ISD::UINT_TO_FP, MVT::v8i32, Custom);
 
-      // Only provide customized ctpop vector bit twiddling for vector types we
-      // know to perform better than using the popcnt instructions on each
-      // vector element. If popcnt isn't supported, always provide the custom
-      // version.
-      if (!Subtarget->hasPOPCNT())
-        setOperationAction(ISD::CTPOP,           MVT::v4i64, Custom);
-
-      // Custom CTPOP always performs better on natively supported v8i32
-      setOperationAction(ISD::CTPOP,             MVT::v8i32, Custom);
-
       // AVX2 also has wider vector sign/zero extending loads, VPMOV[SZ]X
       setLoadExtAction(ISD::SEXTLOAD, MVT::v16i16, MVT::v16i8, Legal);
       setLoadExtAction(ISD::SEXTLOAD, MVT::v8i32,  MVT::v8i8,  Legal);
@@ -1317,7 +1173,7 @@ X86TargetLowering::X86TargetLowering(const X86TargetMachine &TM,
       setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
       setOperationAction(ISD::MUL,             MVT::v8i32, Custom);
       setOperationAction(ISD::MUL,             MVT::v16i16, Custom);
-      // Don't lower v32i8 because there is no 128-bit byte mul
+      setOperationAction(ISD::MUL,             MVT::v32i8, Custom);
     }
 
     // In the customized shift lowering, the legal cases in AVX2 will be
@@ -1380,7 +1236,7 @@ X86TargetLowering::X86TargetLowering(const X86TargetMachine &TM,
     }
   }
 
-  if (!TM.Options.UseSoftFloat && Subtarget->hasAVX512()) {
+  if (!Subtarget->useSoftFloat() && Subtarget->hasAVX512()) {
     addRegisterClass(MVT::v16i32, &X86::VR512RegClass);
     addRegisterClass(MVT::v16f32, &X86::VR512RegClass);
     addRegisterClass(MVT::v8i64,  &X86::VR512RegClass);
@@ -1393,11 +1249,27 @@ X86TargetLowering::X86TargetLowering(const X86TargetMachine &TM,
     for (MVT VT : MVT::fp_vector_valuetypes())
       setLoadExtAction(ISD::EXTLOAD, VT, MVT::v8f32, Legal);
 
+    setLoadExtAction(ISD::ZEXTLOAD, MVT::v16i32, MVT::v16i8, Legal);
+    setLoadExtAction(ISD::SEXTLOAD, MVT::v16i32, MVT::v16i8, Legal);
+    setLoadExtAction(ISD::ZEXTLOAD, MVT::v16i32, MVT::v16i16, Legal);
+    setLoadExtAction(ISD::SEXTLOAD, MVT::v16i32, MVT::v16i16, Legal);
+    setLoadExtAction(ISD::ZEXTLOAD, MVT::v32i16, MVT::v32i8, Legal);
+    setLoadExtAction(ISD::SEXTLOAD, MVT::v32i16, MVT::v32i8, Legal);
+    setLoadExtAction(ISD::ZEXTLOAD, MVT::v8i64,  MVT::v8i8,  Legal);
+    setLoadExtAction(ISD::SEXTLOAD, MVT::v8i64,  MVT::v8i8,  Legal);
+    setLoadExtAction(ISD::ZEXTLOAD, MVT::v8i64,  MVT::v8i16,  Legal);
+    setLoadExtAction(ISD::SEXTLOAD, MVT::v8i64,  MVT::v8i16,  Legal);
+    setLoadExtAction(ISD::ZEXTLOAD, MVT::v8i64,  MVT::v8i32,  Legal);
+    setLoadExtAction(ISD::SEXTLOAD, MVT::v8i64,  MVT::v8i32,  Legal);
+
     setOperationAction(ISD::BR_CC,              MVT::i1,    Expand);
     setOperationAction(ISD::SETCC,              MVT::i1,    Custom);
     setOperationAction(ISD::XOR,                MVT::i1,    Legal);
     setOperationAction(ISD::OR,                 MVT::i1,    Legal);
     setOperationAction(ISD::AND,                MVT::i1,    Legal);
+    setOperationAction(ISD::SUB,                MVT::i1,    Custom);
+    setOperationAction(ISD::ADD,                MVT::i1,    Custom);
+    setOperationAction(ISD::MUL,                MVT::i1,    Custom);
     setOperationAction(ISD::LOAD,               MVT::v16f32, Legal);
     setOperationAction(ISD::LOAD,               MVT::v8f64, Legal);
     setOperationAction(ISD::LOAD,               MVT::v8i64, Legal);
@@ -1442,23 +1314,34 @@ X86TargetLowering::X86TargetLowering(const X86TargetMachine &TM,
     setOperationAction(ISD::UINT_TO_FP,         MVT::v16i32, Legal);
     setOperationAction(ISD::UINT_TO_FP,         MVT::v8i32, Legal);
     setOperationAction(ISD::UINT_TO_FP,         MVT::v4i32, Legal);
+    setOperationAction(ISD::UINT_TO_FP,         MVT::v16i8, Custom);
+    setOperationAction(ISD::UINT_TO_FP,         MVT::v16i16, Custom);
     setOperationAction(ISD::FP_ROUND,           MVT::v8f32, Legal);
     setOperationAction(ISD::FP_EXTEND,          MVT::v8f32, Legal);
 
     setOperationAction(ISD::TRUNCATE,           MVT::i1, Custom);
     setOperationAction(ISD::TRUNCATE,           MVT::v16i8, Custom);
     setOperationAction(ISD::TRUNCATE,           MVT::v8i32, Custom);
+    if (Subtarget->hasDQI()) {
+      setOperationAction(ISD::TRUNCATE,           MVT::v2i1, Custom);
+      setOperationAction(ISD::TRUNCATE,           MVT::v4i1, Custom);
+    }
     setOperationAction(ISD::TRUNCATE,           MVT::v8i1, Custom);
     setOperationAction(ISD::TRUNCATE,           MVT::v16i1, Custom);
     setOperationAction(ISD::TRUNCATE,           MVT::v16i16, Custom);
     setOperationAction(ISD::ZERO_EXTEND,        MVT::v16i32, Custom);
     setOperationAction(ISD::ZERO_EXTEND,        MVT::v8i64, Custom);
+    setOperationAction(ISD::ANY_EXTEND,         MVT::v16i32, Custom);
+    setOperationAction(ISD::ANY_EXTEND,         MVT::v8i64, Custom);
     setOperationAction(ISD::SIGN_EXTEND,        MVT::v16i32, Custom);
     setOperationAction(ISD::SIGN_EXTEND,        MVT::v8i64, Custom);
     setOperationAction(ISD::SIGN_EXTEND,        MVT::v16i8, Custom);
     setOperationAction(ISD::SIGN_EXTEND,        MVT::v8i16, Custom);
     setOperationAction(ISD::SIGN_EXTEND,        MVT::v16i16, Custom);
-
+    if (Subtarget->hasDQI()) {
+      setOperationAction(ISD::SIGN_EXTEND,        MVT::v4i32, Custom);
+      setOperationAction(ISD::SIGN_EXTEND,        MVT::v2i64, Custom);
+    }
     setOperationAction(ISD::FFLOOR,             MVT::v16f32, Legal);
     setOperationAction(ISD::FFLOOR,             MVT::v8f64, Legal);
     setOperationAction(ISD::FCEIL,              MVT::v16f32, Legal);
@@ -1474,7 +1357,6 @@ X86TargetLowering::X86TargetLowering(const X86TargetMachine &TM,
     setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i64,  Custom);
     setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16f32,  Custom);
     setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i32,  Custom);
-    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i1,    Custom);
     setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i1, Legal);
 
     setOperationAction(ISD::SETCC,              MVT::v16i1, Custom);
@@ -1491,6 +1373,8 @@ X86TargetLowering::X86TargetLowering(const X86TargetMachine &TM,
     setOperationAction(ISD::SELECT,             MVT::v8f64, Custom);
     setOperationAction(ISD::SELECT,             MVT::v8i64, Custom);
     setOperationAction(ISD::SELECT,             MVT::v16f32, Custom);
+    setOperationAction(ISD::SELECT,             MVT::v16i1, Custom);
+    setOperationAction(ISD::SELECT,             MVT::v8i1,  Custom);
 
     setOperationAction(ISD::ADD,                MVT::v8i64, Legal);
     setOperationAction(ISD::ADD,                MVT::v16i32, Legal);
@@ -1520,10 +1404,23 @@ X86TargetLowering::X86TargetLowering(const X86TargetMachine &TM,
       setOperationAction(ISD::CTLZ,             MVT::v8i64, Legal);
       setOperationAction(ISD::CTLZ,             MVT::v16i32, Legal);
     }
-
+    if (Subtarget->hasDQI()) {
+      setOperationAction(ISD::MUL,             MVT::v2i64, Legal);
+      setOperationAction(ISD::MUL,             MVT::v4i64, Legal);
+      setOperationAction(ISD::MUL,             MVT::v8i64, Legal);
+    }
     // Custom lower several nodes.
     for (MVT VT : MVT::vector_valuetypes()) {
       unsigned EltSize = VT.getVectorElementType().getSizeInBits();
+      if (EltSize == 1) {
+        setOperationAction(ISD::AND, VT, Legal);
+        setOperationAction(ISD::OR,  VT, Legal);
+        setOperationAction(ISD::XOR,  VT, Legal);
+      }
+      if (EltSize >= 32 && VT.getSizeInBits() <= 512) {
+        setOperationAction(ISD::MGATHER,  VT, Custom);
+        setOperationAction(ISD::MSCATTER, VT, Custom);
+      }
       // Extract subvector is special because the value type
       // (result) is 256/128-bit but the source is 512-bit wide.
       if (VT.is128BitVector() || VT.is256BitVector()) {
@@ -1536,7 +1433,7 @@ X86TargetLowering::X86TargetLowering(const X86TargetMachine &TM,
       if (!VT.is512BitVector())
         continue;
 
-      if ( EltSize >= 32) {
+      if (EltSize >= 32) {
         setOperationAction(ISD::VECTOR_SHUFFLE,      VT, Custom);
         setOperationAction(ISD::INSERT_VECTOR_ELT,   VT, Custom);
         setOperationAction(ISD::BUILD_VECTOR,        VT, Custom);
@@ -1560,7 +1457,7 @@ X86TargetLowering::X86TargetLowering(const X86TargetMachine &TM,
     }
   }// has  AVX-512
 
-  if (!TM.Options.UseSoftFloat && Subtarget->hasBWI()) {
+  if (!Subtarget->useSoftFloat() && Subtarget->hasBWI()) {
     addRegisterClass(MVT::v32i16, &X86::VR512RegClass);
     addRegisterClass(MVT::v64i8,  &X86::VR512RegClass);
 
@@ -1576,6 +1473,24 @@ X86TargetLowering::X86TargetLowering(const X86TargetMachine &TM,
     setOperationAction(ISD::SUB,                MVT::v32i16, Legal);
     setOperationAction(ISD::SUB,                MVT::v64i8, Legal);
     setOperationAction(ISD::MUL,                MVT::v32i16, Legal);
+    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v32i1, Custom);
+    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v64i1, Custom);
+    setOperationAction(ISD::INSERT_SUBVECTOR,   MVT::v32i1, Custom);
+    setOperationAction(ISD::INSERT_SUBVECTOR,   MVT::v64i1, Custom);
+    setOperationAction(ISD::SELECT,             MVT::v32i1, Custom);
+    setOperationAction(ISD::SELECT,             MVT::v64i1, Custom);
+    setOperationAction(ISD::SIGN_EXTEND,        MVT::v32i8, Custom);
+    setOperationAction(ISD::ZERO_EXTEND,        MVT::v32i8, Custom);
+    setOperationAction(ISD::SIGN_EXTEND,        MVT::v32i16, Custom);
+    setOperationAction(ISD::ZERO_EXTEND,        MVT::v32i16, Custom);
+    setOperationAction(ISD::SIGN_EXTEND,        MVT::v64i8, Custom);
+    setOperationAction(ISD::ZERO_EXTEND,        MVT::v64i8, Custom);
+    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v32i1, Custom);
+    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v64i1, Custom);
+    setOperationAction(ISD::VSELECT,            MVT::v32i16, Legal);
+    setOperationAction(ISD::VSELECT,            MVT::v64i8, Legal);
+    setOperationAction(ISD::TRUNCATE,           MVT::v32i1, Custom);
+    setOperationAction(ISD::TRUNCATE,           MVT::v64i1, Custom);
 
     for (int i = MVT::v32i8; i != MVT::v8i64; ++i) {
       const MVT VT = (MVT::SimpleValueType)i;
@@ -1593,13 +1508,20 @@ X86TargetLowering::X86TargetLowering(const X86TargetMachine &TM,
     }
   }
 
-  if (!TM.Options.UseSoftFloat && Subtarget->hasVLX()) {
+  if (!Subtarget->useSoftFloat() && Subtarget->hasVLX()) {
     addRegisterClass(MVT::v4i1,   &X86::VK4RegClass);
     addRegisterClass(MVT::v2i1,   &X86::VK2RegClass);
 
     setOperationAction(ISD::SETCC,              MVT::v4i1, Custom);
     setOperationAction(ISD::SETCC,              MVT::v2i1, Custom);
-    setOperationAction(ISD::INSERT_SUBVECTOR,   MVT::v8i1, Legal);
+    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i1, Custom);
+    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i1, Custom);
+    setOperationAction(ISD::INSERT_SUBVECTOR,   MVT::v8i1, Custom);
+    setOperationAction(ISD::INSERT_SUBVECTOR,   MVT::v4i1, Custom);
+    setOperationAction(ISD::SELECT,             MVT::v4i1, Custom);
+    setOperationAction(ISD::SELECT,             MVT::v2i1, Custom);
+    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i1, Custom);
+    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i1, Custom);
 
     setOperationAction(ISD::AND,                MVT::v8i32, Legal);
     setOperationAction(ISD::OR,                 MVT::v8i32, Legal);
@@ -1607,13 +1529,10 @@ X86TargetLowering::X86TargetLowering(const X86TargetMachine &TM,
     setOperationAction(ISD::AND,                MVT::v4i32, Legal);
     setOperationAction(ISD::OR,                 MVT::v4i32, Legal);
     setOperationAction(ISD::XOR,                MVT::v4i32, Legal);
+    setOperationAction(ISD::SRA,                MVT::v2i64, Custom);
+    setOperationAction(ISD::SRA,                MVT::v4i64, Custom);
   }
 
-  // SIGN_EXTEND_INREGs are evaluated by the extend type. Handle the expansion
-  // of this type with custom code.
-  for (MVT VT : MVT::vector_valuetypes())
-    setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Custom);
-
   // We want to custom lower some of our intrinsics.
   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
@@ -1691,7 +1610,6 @@ X86TargetLowering::X86TargetLowering(const X86TargetMachine &TM,
   setTargetDAGCombine(ISD::ANY_EXTEND);
   setTargetDAGCombine(ISD::SIGN_EXTEND);
   setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
-  setTargetDAGCombine(ISD::TRUNCATE);
   setTargetDAGCombine(ISD::SINT_TO_FP);
   setTargetDAGCombine(ISD::SETCC);
   setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
@@ -1699,7 +1617,7 @@ X86TargetLowering::X86TargetLowering(const X86TargetMachine &TM,
   setTargetDAGCombine(ISD::MUL);
   setTargetDAGCombine(ISD::XOR);
 
-  computeRegisterProperties();
+  computeRegisterProperties(Subtarget->getRegisterInfo());
 
   // On Darwin, -Os means optimize for size without hurting performance,
   // do not reduce the limit.
@@ -1900,6 +1818,10 @@ unsigned X86TargetLowering::getJumpTableEncoding() const {
   return TargetLowering::getJumpTableEncoding();
 }
 
+bool X86TargetLowering::useSoftFloat() const {
+  return Subtarget->useSoftFloat();
+}
+
 const MCExpr *
 X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
                                              const MachineBasicBlock *MBB,
@@ -1908,7 +1830,7 @@ X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
          Subtarget->isPICStyleGOT());
   // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
   // entries.
-  return MCSymbolRefExpr::Create(MBB->getSymbol(),
+  return MCSymbolRefExpr::create(MBB->getSymbol(),
                                  MCSymbolRefExpr::VK_GOTOFF, Ctx);
 }
 
@@ -1932,17 +1854,17 @@ getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
 
   // Otherwise, the reference is relative to the PIC base.
-  return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx);
+  return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx);
 }
 
-// FIXME: Why this routine is here? Move to RegInfo!
-std::pair<const TargetRegisterClass*, uint8_t>
-X86TargetLowering::findRepresentativeClass(MVT VT) const{
+std::pair<const TargetRegisterClass *, uint8_t>
+X86TargetLowering::findRepresentativeClass(const TargetRegisterInfo *TRI,
+                                           MVT VT) const {
   const TargetRegisterClass *RRC = nullptr;
   uint8_t Cost = 1;
   switch (VT.SimpleTy) {
   default:
-    return TargetLowering::findRepresentativeClass(VT);
+    return TargetLowering::findRepresentativeClass(TRI, VT);
   case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
     RRC = Subtarget->is64Bit() ? &X86::GR64RegClass : &X86::GR32RegClass;
     break;
@@ -2025,7 +1947,7 @@ X86TargetLowering::LowerReturn(SDValue Chain,
   SmallVector<SDValue, 6> RetOps;
   RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
   // Operand #1 = Bytes To Pop
-  RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
+  RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(), dl,
                    MVT::i16));
 
   // Copy the result values into the output registers.
@@ -2040,10 +1962,14 @@ X86TargetLowering::LowerReturn(SDValue Chain,
       ValToCopy = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), ValToCopy);
     else if (VA.getLocInfo() == CCValAssign::ZExt)
       ValToCopy = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), ValToCopy);
-    else if (VA.getLocInfo() == CCValAssign::AExt)
-      ValToCopy = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), ValToCopy);
+    else if (VA.getLocInfo() == CCValAssign::AExt) {
+      if (ValVT.isVector() && ValVT.getScalarType() == MVT::i1)
+        ValToCopy = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), ValToCopy);
+      else
+        ValToCopy = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), ValToCopy);
+    }
     else if (VA.getLocInfo() == CCValAssign::BCvt)
-      ValToCopy = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), ValToCopy);
+      ValToCopy = DAG.getBitcast(VA.getLocVT(), ValToCopy);
 
     assert(VA.getLocInfo() != CCValAssign::FPExt &&
            "Unexpected FP-extend for return value.");
@@ -2080,13 +2006,13 @@ X86TargetLowering::LowerReturn(SDValue Chain,
     if (Subtarget->is64Bit()) {
       if (ValVT == MVT::x86mmx) {
         if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
-          ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy);
+          ValToCopy = DAG.getBitcast(MVT::i64, ValToCopy);
           ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
                                   ValToCopy);
           // If we don't have SSE2 available, convert to v4f32 so the generated
           // register is legal.
           if (!Subtarget->hasSSE2())
-            ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy);
+            ValToCopy = DAG.getBitcast(MVT::v4f32, ValToCopy);
         }
       }
     }
@@ -2096,9 +2022,8 @@ X86TargetLowering::LowerReturn(SDValue Chain,
     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
   }
 
-  // The x86-64 ABIs require that for returning structs by value we copy
+  // All x86 ABIs require that for returning structs by value we copy
   // the sret argument into %rax/%eax (depending on ABI) for the return.
-  // Win32 requires us to put the sret argument to %eax as well.
   // We saved the argument into a virtual register in the entry block,
   // so now we copy the value out and into %rax/%eax.
   //
@@ -2107,8 +2032,6 @@ X86TargetLowering::LowerReturn(SDValue Chain,
   // false, then an sret argument may be implicitly inserted in the SelDAG. In
   // either case FuncInfo->setSRetReturnReg() will have been called.
   if (unsigned SRetReg = FuncInfo->getSRetReturnReg()) {
-    assert((Subtarget->is64Bit() || Subtarget->isTargetKnownWindowsMSVC()) &&
-           "No need for an sret register");
     SDValue Val = DAG.getCopyFromReg(Chain, dl, SRetReg, getPointerTy());
 
     unsigned RetValReg
@@ -2203,7 +2126,7 @@ X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
   // Copy all of the result registers out of their specified physreg.
   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
     CCValAssign &VA = RVLocs[i];
-    EVT CopyVT = VA.getValVT();
+    EVT CopyVT = VA.getLocVT();
 
     // If this is x86-64, and we disabled SSE, we can't return FP values
     if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
@@ -2213,18 +2136,24 @@ X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
 
     // If we prefer to use the value in xmm registers, copy it out as f80 and
     // use a truncate to move it from fp stack reg to xmm reg.
+    bool RoundAfterCopy = false;
     if ((VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1) &&
-        isScalarFPTypeInSSEReg(VA.getValVT()))
+        isScalarFPTypeInSSEReg(VA.getValVT())) {
       CopyVT = MVT::f80;
+      RoundAfterCopy = (CopyVT != VA.getLocVT());
+    }
 
     Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
                                CopyVT, InFlag).getValue(1);
     SDValue Val = Chain.getValue(0);
 
-    if (CopyVT != VA.getValVT())
+    if (RoundAfterCopy)
       Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
                         // This truncation won't change the value.
-                        DAG.getIntPtrConstant(1));
+                        DAG.getIntPtrConstant(1, dl));
+
+    if (VA.isExtInLoc() && VA.getValVT().getScalarType() == MVT::i1)
+      Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
 
     InFlag = Chain.getValue(2);
     InVals.push_back(Val);
@@ -2284,10 +2213,11 @@ static SDValue
 CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
                           ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
                           SDLoc dl) {
-  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
+  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32);
 
   return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
                        /*isVolatile*/false, /*AlwaysInline=*/true,
+                       /*isTailCall*/false,
                        MachinePointerInfo(), MachinePointerInfo());
 }
 
@@ -2305,7 +2235,9 @@ static bool IsCCallConvention(CallingConv::ID CC) {
 }
 
 bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
-  if (!CI->isTailCall() || getTargetMachine().Options.DisableTailCalls)
+  auto Attr =
+      CI->getParent()->getParent()->getFnAttribute("disable-tail-calls");
+  if (!CI->isTailCall() || Attr.getValueAsString() == "true")
     return false;
 
   CallSite CS(CI);
@@ -2340,7 +2272,10 @@ X86TargetLowering::LowerMemArgument(SDValue Chain,
 
   // If value is passed by pointer we have address passed instead of the value
   // itself.
-  if (VA.getLocInfo() == CCValAssign::Indirect)
+  bool ExtendedInMem = VA.isExtInLoc() &&
+    VA.getValVT().getScalarType() == MVT::i1;
+
+  if (VA.getLocInfo() == CCValAssign::Indirect || ExtendedInMem)
     ValVT = VA.getLocVT();
   else
     ValVT = VA.getValVT();
@@ -2358,9 +2293,11 @@ X86TargetLowering::LowerMemArgument(SDValue Chain,
     int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
                                     VA.getLocMemOffset(), isImmutable);
     SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
-    return DAG.getLoad(ValVT, dl, Chain, FIN,
-                       MachinePointerInfo::getFixedStack(FI),
-                       false, false, false, 0);
+    SDValue Val =  DAG.getLoad(ValVT, dl, Chain, FIN,
+                               MachinePointerInfo::getFixedStack(FI),
+                               false, false, false, 0);
+    return ExtendedInMem ?
+      DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val) : Val;
   }
 }
 
@@ -2397,10 +2334,10 @@ static ArrayRef<MCPhysReg> get64BitArgumentXMMs(MachineFunction &MF,
 
   const Function *Fn = MF.getFunction();
   bool NoImplicitFloatOps = Fn->hasFnAttribute(Attribute::NoImplicitFloat);
-  assert(!(MF.getTarget().Options.UseSoftFloat && NoImplicitFloatOps) &&
+  bool isSoftFloat = Subtarget->useSoftFloat();
+  assert(!(isSoftFloat && NoImplicitFloatOps) &&
          "SSE register cannot be used when SSE is disabled!");
-  if (MF.getTarget().Options.UseSoftFloat || NoImplicitFloatOps ||
-      !Subtarget->hasSSE1())
+  if (isSoftFloat || NoImplicitFloatOps || !Subtarget->hasSSE1())
     // Kernel mode asks for SSE to be disabled, so there are no XMM argument
     // registers.
     return None;
@@ -2423,6 +2360,7 @@ X86TargetLowering::LowerFormalArguments(SDValue Chain,
                                           const {
   MachineFunction &MF = DAG.getMachineFunction();
   X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
+  const TargetFrameLowering &TFI = *Subtarget->getFrameLowering();
 
   const Function* Fn = MF.getFunction();
   if (Fn->hasExternalLinkage() &&
@@ -2503,11 +2441,11 @@ X86TargetLowering::LowerFormalArguments(SDValue Chain,
         ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
                                DAG.getValueType(VA.getValVT()));
       else if (VA.getLocInfo() == CCValAssign::BCvt)
-        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
+        ArgValue = DAG.getBitcast(VA.getValVT(), ArgValue);
 
       if (VA.isExtInLoc()) {
         // Handle MMX values passed in XMM regs.
-        if (RegVT.isVector())
+        if (RegVT.isVector() && VA.getValVT().getScalarType() != MVT::i1)
           ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(), ArgValue);
         else
           ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
@@ -2525,24 +2463,21 @@ X86TargetLowering::LowerFormalArguments(SDValue Chain,
     InVals.push_back(ArgValue);
   }
 
-  if (Subtarget->is64Bit() || Subtarget->isTargetKnownWindowsMSVC()) {
-    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
-      // The x86-64 ABIs require that for returning structs by value we copy
-      // the sret argument into %rax/%eax (depending on ABI) for the return.
-      // Win32 requires us to put the sret argument to %eax as well.
-      // Save the argument into a virtual register so that we can access it
-      // from the return points.
-      if (Ins[i].Flags.isSRet()) {
-        unsigned Reg = FuncInfo->getSRetReturnReg();
-        if (!Reg) {
-          MVT PtrTy = getPointerTy();
-          Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrTy));
-          FuncInfo->setSRetReturnReg(Reg);
-        }
-        SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[i]);
-        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
-        break;
+  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
+    // All x86 ABIs require that for returning structs by value we copy the
+    // sret argument into %rax/%eax (depending on ABI) for the return. Save
+    // the argument into a virtual register so that we can access it from the
+    // return points.
+    if (Ins[i].Flags.isSRet()) {
+      unsigned Reg = FuncInfo->getSRetReturnReg();
+      if (!Reg) {
+        MVT PtrTy = getPointerTy();
+        Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrTy));
+        FuncInfo->setSRetReturnReg(Reg);
       }
+      SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[i]);
+      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
+      break;
     }
   }
 
@@ -2562,8 +2497,15 @@ X86TargetLowering::LowerFormalArguments(SDValue Chain,
         MFI->CreateFixedObject(1, StackSize, true));
   }
 
+  MachineModuleInfo &MMI = MF.getMMI();
+  const Function *WinEHParent = nullptr;
+  if (IsWin64 && MMI.hasWinEHFuncInfo(Fn))
+    WinEHParent = MMI.getWinEHParent(Fn);
+  bool IsWinEHOutlined = WinEHParent && WinEHParent != Fn;
+  bool IsWinEHParent = WinEHParent && WinEHParent == Fn;
+
   // Figure out if XMM registers are in use.
-  assert(!(MF.getTarget().Options.UseSoftFloat &&
+  assert(!(Subtarget->useSoftFloat() &&
            Fn->hasFnAttribute(Attribute::NoImplicitFloat)) &&
          "SSE register cannot be used when SSE is disabled!");
 
@@ -2573,10 +2515,8 @@ X86TargetLowering::LowerFormalArguments(SDValue Chain,
     // Find the first unallocated argument registers.
     ArrayRef<MCPhysReg> ArgGPRs = get64BitArgumentGPRs(CallConv, Subtarget);
     ArrayRef<MCPhysReg> ArgXMMs = get64BitArgumentXMMs(MF, CallConv, Subtarget);
-    unsigned NumIntRegs =
-        CCInfo.getFirstUnallocated(ArgGPRs.data(), ArgGPRs.size());
-    unsigned NumXMMRegs =
-        CCInfo.getFirstUnallocated(ArgXMMs.data(), ArgXMMs.size());
+    unsigned NumIntRegs = CCInfo.getFirstUnallocated(ArgGPRs);
+    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(ArgXMMs);
     assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
            "SSE register cannot be used when SSE is disabled!");
 
@@ -2600,7 +2540,6 @@ X86TargetLowering::LowerFormalArguments(SDValue Chain,
     }
 
     if (IsWin64) {
-      const TargetFrameLowering &TFI = *Subtarget->getFrameLowering();
       // Get to the caller-allocated home save location.  Add 8 to account
       // for the return address.
       int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
@@ -2626,7 +2565,7 @@ X86TargetLowering::LowerFormalArguments(SDValue Chain,
     unsigned Offset = FuncInfo->getVarArgsGPOffset();
     for (SDValue Val : LiveGPRs) {
       SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
-                                DAG.getIntPtrConstant(Offset));
+                                DAG.getIntPtrConstant(Offset, dl));
       SDValue Store =
         DAG.getStore(Val.getValue(1), dl, Val, FIN,
                      MachinePointerInfo::getFixedStack(
@@ -2642,9 +2581,9 @@ X86TargetLowering::LowerFormalArguments(SDValue Chain,
       SaveXMMOps.push_back(Chain);
       SaveXMMOps.push_back(ALVal);
       SaveXMMOps.push_back(DAG.getIntPtrConstant(
-                             FuncInfo->getRegSaveFrameIndex()));
+                             FuncInfo->getRegSaveFrameIndex(), dl));
       SaveXMMOps.push_back(DAG.getIntPtrConstant(
-                             FuncInfo->getVarArgsFPOffset()));
+                             FuncInfo->getVarArgsFPOffset(), dl));
       SaveXMMOps.insert(SaveXMMOps.end(), LiveXMMRegs.begin(),
                         LiveXMMRegs.end());
       MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
@@ -2653,6 +2592,27 @@ X86TargetLowering::LowerFormalArguments(SDValue Chain,
 
     if (!MemOps.empty())
       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
+  } else if (IsWinEHOutlined) {
+    // Get to the caller-allocated home save location.  Add 8 to account
+    // for the return address.
+    int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
+    FuncInfo->setRegSaveFrameIndex(MFI->CreateFixedObject(
+        /*Size=*/1, /*SPOffset=*/HomeOffset + 8, /*Immutable=*/false));
+
+    MMI.getWinEHFuncInfo(Fn)
+        .CatchHandlerParentFrameObjIdx[const_cast<Function *>(Fn)] =
+        FuncInfo->getRegSaveFrameIndex();
+
+    // Store the second integer parameter (rdx) into rsp+16 relative to the
+    // stack pointer at the entry of the function.
+    SDValue RSFIN =
+        DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), getPointerTy());
+    unsigned GPR = MF.addLiveIn(X86::RDX, &X86::GR64RegClass);
+    SDValue Val = DAG.getCopyFromReg(Chain, dl, GPR, MVT::i64);
+    Chain = DAG.getStore(
+        Val.getValue(1), dl, Val, RSFIN,
+        MachinePointerInfo::getFixedStack(FuncInfo->getRegSaveFrameIndex()),
+        /*isVolatile=*/true, /*isNonTemporal=*/false, /*Alignment=*/0);
   }
 
   if (isVarArg && MFI->hasMustTailInVarArgFunc()) {
@@ -2719,6 +2679,17 @@ X86TargetLowering::LowerFormalArguments(SDValue Chain,
 
   FuncInfo->setArgumentStackSize(StackSize);
 
+  if (IsWinEHParent) {
+    int UnwindHelpFI = MFI->CreateStackObject(8, 8, /*isSS=*/false);
+    SDValue StackSlot = DAG.getFrameIndex(UnwindHelpFI, MVT::i64);
+    MMI.getWinEHFuncInfo(MF.getFunction()).UnwindHelpFrameIdx = UnwindHelpFI;
+    SDValue Neg2 = DAG.getConstant(-2, dl, MVT::i64);
+    Chain = DAG.getStore(Chain, dl, Neg2, StackSlot,
+                         MachinePointerInfo::getFixedStack(UnwindHelpFI),
+                         /*isVolatile=*/true,
+                         /*isNonTemporal=*/false, /*Alignment=*/0);
+  }
+
   return Chain;
 }
 
@@ -2729,7 +2700,7 @@ X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
                                     const CCValAssign &VA,
                                     ISD::ArgFlagsTy Flags) const {
   unsigned LocMemOffset = VA.getLocMemOffset();
-  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
+  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
   PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
   if (Flags.isByVal())
     return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
@@ -2795,10 +2766,24 @@ X86TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
   StructReturnType SR = callIsStructReturn(Outs);
   bool IsSibcall      = false;
   X86MachineFunctionInfo *X86Info = MF.getInfo<X86MachineFunctionInfo>();
+  auto Attr = MF.getFunction()->getFnAttribute("disable-tail-calls");
 
-  if (MF.getTarget().Options.DisableTailCalls)
+  if (Attr.getValueAsString() == "true")
     isTailCall = false;
 
+  if (Subtarget->isPICStyleGOT() &&
+      !MF.getTarget().Options.GuaranteedTailCallOpt) {
+    // If we are using a GOT, disable tail calls to external symbols with
+    // default visibility. Tail calling such a symbol requires using a GOT
+    // relocation, which forces early binding of the symbol. This breaks code
+    // that require lazy function symbol resolution. Using musttail or
+    // GuaranteedTailCallOpt will override this.
+    GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
+    if (!G || (!G->getGlobal()->hasLocalLinkage() &&
+               G->getGlobal()->hasDefaultVisibility()))
+      isTailCall = false;
+  }
+
   bool IsMustTail = CLI.CS && CLI.CS->isMustTailCall();
   if (IsMustTail) {
     // Force this to be a tail call.  The verifier rules are enough to ensure
@@ -2875,7 +2860,7 @@ X86TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
 
   if (!IsSibcall)
     Chain = DAG.getCALLSEQ_START(
-        Chain, DAG.getIntPtrConstant(NumBytesToPush, true), dl);
+        Chain, DAG.getIntPtrConstant(NumBytesToPush, dl, true), dl);
 
   SDValue RetAddrFrIdx;
   // Load return address for tail calls.
@@ -2912,16 +2897,19 @@ X86TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
       break;
     case CCValAssign::AExt:
-      if (RegVT.is128BitVector()) {
+      if (Arg.getValueType().isVector() &&
+          Arg.getValueType().getScalarType() == MVT::i1)
+        Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
+      else if (RegVT.is128BitVector()) {
         // Special case: passing MMX values in XMM registers.
-        Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
+        Arg = DAG.getBitcast(MVT::i64, Arg);
         Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
         Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
       } else
         Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
       break;
     case CCValAssign::BCvt:
-      Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg);
+      Arg = DAG.getBitcast(RegVT, Arg);
       break;
     case CCValAssign::Indirect: {
       // Store the argument.
@@ -2980,8 +2968,8 @@ X86TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
 
       // Note: The actual moving to ECX is done further down.
       GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
-      if (G && !G->getGlobal()->hasHiddenVisibility() &&
-          !G->getGlobal()->hasProtectedVisibility())
+      if (G && !G->getGlobal()->hasLocalLinkage() &&
+          G->getGlobal()->hasDefaultVisibility())
         Callee = LowerGlobalAddress(Callee, DAG);
       else if (isa<ExternalSymbolSDNode>(Callee))
         Callee = LowerExternalSymbol(Callee, DAG);
@@ -3002,12 +2990,13 @@ X86TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
       X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
       X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
     };
-    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
+    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs);
     assert((Subtarget->hasSSE1() || !NumXMMRegs)
            && "SSE registers cannot be used when SSE is disabled");
 
     RegsToPass.push_back(std::make_pair(unsigned(X86::AL),
-                                        DAG.getConstant(NumXMMRegs, MVT::i8)));
+                                        DAG.getConstant(NumXMMRegs, dl,
+                                                        MVT::i8)));
   }
 
   if (isVarArg && IsMustTail) {
@@ -3051,7 +3040,7 @@ X86TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
 
       if (Flags.isByVal()) {
         // Copy relative to framepointer.
-        SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
+        SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset(), dl);
         if (!StackPtr.getNode())
           StackPtr = DAG.getCopyFromReg(Chain, dl,
                                         RegInfo->getStackRegister(),
@@ -3177,8 +3166,8 @@ X86TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
 
   if (!IsSibcall && isTailCall) {
     Chain = DAG.getCALLSEQ_END(Chain,
-                               DAG.getIntPtrConstant(NumBytesToPop, true),
-                               DAG.getIntPtrConstant(0, true), InFlag, dl);
+                               DAG.getIntPtrConstant(NumBytesToPop, dl, true),
+                               DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
     InFlag = Chain.getValue(1);
   }
 
@@ -3186,7 +3175,7 @@ X86TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
   Ops.push_back(Callee);
 
   if (isTailCall)
-    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
+    Ops.push_back(DAG.getConstant(FPDiff, dl, MVT::i32));
 
   // Add argument registers to the end of the list so that they are known live
   // into the call.
@@ -3196,7 +3185,7 @@ X86TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
 
   // Add a register mask operand representing the call-preserved registers.
   const TargetRegisterInfo *TRI = Subtarget->getRegisterInfo();
-  const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
+  const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
   assert(Mask && "Missing call preserved mask for calling convention");
   Ops.push_back(DAG.getRegisterMask(Mask));
 
@@ -3210,6 +3199,7 @@ X86TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
     // This isn't right, although it's probably harmless on x86; liveouts
     // should be computed from returns not tail calls.  Consider a void
     // function making a tail call to a function returning int.
+    MF.getFrameInfo()->setHasTailCall();
     return DAG.getNode(X86ISD::TC_RETURN, dl, NodeTys, Ops);
   }
 
@@ -3235,8 +3225,8 @@ X86TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
   // Returns a flag for retval copy to use.
   if (!IsSibcall) {
     Chain = DAG.getCALLSEQ_END(Chain,
-                               DAG.getIntPtrConstant(NumBytesToPop, true),
-                               DAG.getIntPtrConstant(NumBytesForCalleeToPop,
+                               DAG.getIntPtrConstant(NumBytesToPop, dl, true),
+                               DAG.getIntPtrConstant(NumBytesForCalleeToPop, dl,
                                                      true),
                                InFlag, dl);
     InFlag = Chain.getValue(1);
@@ -3388,6 +3378,12 @@ X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
   bool IsCalleeWin64 = Subtarget->isCallingConvWin64(CalleeCC);
   bool IsCallerWin64 = Subtarget->isCallingConvWin64(CallerCC);
 
+  // Win64 functions have extra shadow space for argument homing. Don't do the
+  // sibcall if the caller and callee have mismatched expectations for this
+  // space.
+  if (IsCalleeWin64 != IsCallerWin64)
+    return false;
+
   if (DAG.getTarget().Options.GuaranteedTailCallOpt) {
     if (IsTailCallConvention(CalleeCC) && CCMatch)
       return true;
@@ -3617,7 +3613,8 @@ static SDValue getTargetShuffleNode(unsigned Opc, SDLoc dl, EVT VT,
   case X86ISD::PSHUFLW:
   case X86ISD::VPERMILPI:
   case X86ISD::VPERMI:
-    return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
+    return DAG.getNode(Opc, dl, VT, V1,
+                       DAG.getConstant(TargetMask, dl, MVT::i8));
   }
 }
 
@@ -3727,13 +3724,13 @@ static bool isX86CCUnsigned(unsigned X86CC) {
 /// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
 /// specific condition code, returning the condition code and the LHS/RHS of the
 /// comparison to make.
-static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
+static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, SDLoc DL, bool isFP,
                                SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
   if (!isFP) {
     if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
       if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
         // X > -1   -> X == 0, jump !sign.
-        RHS = DAG.getConstant(0, RHS.getValueType());
+        RHS = DAG.getConstant(0, DL, RHS.getValueType());
         return X86::COND_NS;
       }
       if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
@@ -3742,7 +3739,7 @@ static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
       }
       if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
         // X < 1   -> X <= 0
-        RHS = DAG.getConstant(0, RHS.getValueType());
+        RHS = DAG.getConstant(0, DL, RHS.getValueType());
         return X86::COND_LE;
       }
     }
@@ -3907,21 +3904,6 @@ static bool isSequentialOrUndefInRange(ArrayRef<int> Mask,
   return true;
 }
 
-/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
-/// the two vector operands have swapped position.
-static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask,
-                                     unsigned NumElems) {
-  for (unsigned i = 0; i != NumElems; ++i) {
-    int idx = Mask[i];
-    if (idx < 0)
-      continue;
-    else if (idx < (int)NumElems)
-      Mask[i] = idx + NumElems;
-    else
-      Mask[i] = idx - NumElems;
-  }
-}
-
 /// isVEXTRACTIndex - Return true if the specified
 /// EXTRACT_SUBVECTOR operand specifies a vector extract that is
 /// suitable for instruction that extract 128 or 256 bit vectors
@@ -4060,100 +4042,260 @@ static SDValue getZeroVector(EVT VT, const X86Subtarget *Subtarget,
   SDValue Vec;
   if (VT.is128BitVector()) {  // SSE
     if (Subtarget->hasSSE2()) {  // SSE2
-      SDValue Cst = DAG.getConstant(0, MVT::i32);
+      SDValue Cst = DAG.getConstant(0, dl, MVT::i32);
       Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
     } else { // SSE1
-      SDValue Cst = DAG.getConstantFP(+0.0, MVT::f32);
+      SDValue Cst = DAG.getConstantFP(+0.0, dl, MVT::f32);
       Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
     }
   } else if (VT.is256BitVector()) { // AVX
     if (Subtarget->hasInt256()) { // AVX2
-      SDValue Cst = DAG.getConstant(0, MVT::i32);
+      SDValue Cst = DAG.getConstant(0, dl, MVT::i32);
       SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
       Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops);
     } else {
       // 256-bit logic and arithmetic instructions in AVX are all
       // floating-point, no support for integer ops. Emit fp zeroed vectors.
-      SDValue Cst = DAG.getConstantFP(+0.0, MVT::f32);
+      SDValue Cst = DAG.getConstantFP(+0.0, dl, MVT::f32);
       SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
       Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops);
     }
   } else if (VT.is512BitVector()) { // AVX-512
-      SDValue Cst = DAG.getConstant(0, MVT::i32);
+      SDValue Cst = DAG.getConstant(0, dl, MVT::i32);
       SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst,
                         Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
       Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i32, Ops);
   } else if (VT.getScalarType() == MVT::i1) {
-    assert(VT.getVectorNumElements() <= 16 && "Unexpected vector type");
-    SDValue Cst = DAG.getConstant(0, MVT::i1);
-    SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Cst);
+
+    assert((Subtarget->hasBWI() || VT.getVectorNumElements() <= 16)
+            && "Unexpected vector type");
+    assert((Subtarget->hasVLX() || VT.getVectorNumElements() >= 8)
+            && "Unexpected vector type");
+    SDValue Cst = DAG.getConstant(0, dl, MVT::i1);
+    SmallVector<SDValue, 64> Ops(VT.getVectorNumElements(), Cst);
     return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
   } else
     llvm_unreachable("Unexpected vector type");
 
-  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
+  return DAG.getBitcast(VT, Vec);
 }
 
-/// getOnesVector - Returns a vector of specified type with all bits set.
-/// Always build ones vectors as <4 x i32> or <8 x i32>. For 256-bit types with
-/// no AVX2 supprt, use two <4 x i32> inserted in a <8 x i32> appropriately.
-/// Then bitcast to their original type, ensuring they get CSE'd.
-static SDValue getOnesVector(MVT VT, bool HasInt256, SelectionDAG &DAG,
-                             SDLoc dl) {
-  assert(VT.isVector() && "Expected a vector type");
+static SDValue ExtractSubVector(SDValue Vec, unsigned IdxVal,
+                                SelectionDAG &DAG, SDLoc dl,
+                                unsigned vectorWidth) {
+  assert((vectorWidth == 128 || vectorWidth == 256) &&
+         "Unsupported vector width");
+  EVT VT = Vec.getValueType();
+  EVT ElVT = VT.getVectorElementType();
+  unsigned Factor = VT.getSizeInBits()/vectorWidth;
+  EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
+                                  VT.getVectorNumElements()/Factor);
 
-  SDValue Cst = DAG.getConstant(~0U, MVT::i32);
-  SDValue Vec;
-  if (VT.is256BitVector()) {
-    if (HasInt256) { // AVX2
-      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
-      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops);
-    } else { // AVX
-      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
-      Vec = Concat128BitVectors(Vec, Vec, MVT::v8i32, 8, DAG, dl);
-    }
-  } else if (VT.is128BitVector()) {
-    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
-  } else
-    llvm_unreachable("Unexpected vector type");
+  // Extract from UNDEF is UNDEF.
+  if (Vec.getOpcode() == ISD::UNDEF)
+    return DAG.getUNDEF(ResultVT);
 
-  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
-}
+  // Extract the relevant vectorWidth bits.  Generate an EXTRACT_SUBVECTOR
+  unsigned ElemsPerChunk = vectorWidth / ElVT.getSizeInBits();
 
-/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
-/// operation of specified width.
-static SDValue getMOVL(SelectionDAG &DAG, SDLoc dl, EVT VT, SDValue V1,
-                       SDValue V2) {
-  unsigned NumElems = VT.getVectorNumElements();
-  SmallVector<int, 8> Mask;
-  Mask.push_back(NumElems);
-  for (unsigned i = 1; i != NumElems; ++i)
-    Mask.push_back(i);
-  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
+  // This is the index of the first element of the vectorWidth-bit chunk
+  // we want.
+  unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / vectorWidth)
+                               * ElemsPerChunk);
+
+  // If the input is a buildvector just emit a smaller one.
+  if (Vec.getOpcode() == ISD::BUILD_VECTOR)
+    return DAG.getNode(ISD::BUILD_VECTOR, dl, ResultVT,
+                       makeArrayRef(Vec->op_begin() + NormalizedIdxVal,
+                                    ElemsPerChunk));
+
+  SDValue VecIdx = DAG.getIntPtrConstant(NormalizedIdxVal, dl);
+  return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec, VecIdx);
 }
 
-/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
-static SDValue getUnpackl(SelectionDAG &DAG, SDLoc dl, MVT VT, SDValue V1,
-                          SDValue V2) {
-  unsigned NumElems = VT.getVectorNumElements();
-  SmallVector<int, 8> Mask;
-  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
-    Mask.push_back(i);
-    Mask.push_back(i + NumElems);
-  }
-  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
+/// Generate a DAG to grab 128-bits from a vector > 128 bits.  This
+/// sets things up to match to an AVX VEXTRACTF128 / VEXTRACTI128
+/// or AVX-512 VEXTRACTF32x4 / VEXTRACTI32x4
+/// instructions or a simple subregister reference. Idx is an index in the
+/// 128 bits we want.  It need not be aligned to a 128-bit boundary.  That makes
+/// lowering EXTRACT_VECTOR_ELT operations easier.
+static SDValue Extract128BitVector(SDValue Vec, unsigned IdxVal,
+                                   SelectionDAG &DAG, SDLoc dl) {
+  assert((Vec.getValueType().is256BitVector() ||
+          Vec.getValueType().is512BitVector()) && "Unexpected vector size!");
+  return ExtractSubVector(Vec, IdxVal, DAG, dl, 128);
 }
 
-/// getUnpackh - Returns a vector_shuffle node for an unpackh operation.
-static SDValue getUnpackh(SelectionDAG &DAG, SDLoc dl, MVT VT, SDValue V1,
-                          SDValue V2) {
-  unsigned NumElems = VT.getVectorNumElements();
-  SmallVector<int, 8> Mask;
-  for (unsigned i = 0, Half = NumElems/2; i != Half; ++i) {
-    Mask.push_back(i + Half);
-    Mask.push_back(i + NumElems + Half);
-  }
-  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
+/// Generate a DAG to grab 256-bits from a 512-bit vector.
+static SDValue Extract256BitVector(SDValue Vec, unsigned IdxVal,
+                                   SelectionDAG &DAG, SDLoc dl) {
+  assert(Vec.getValueType().is512BitVector() && "Unexpected vector size!");
+  return ExtractSubVector(Vec, IdxVal, DAG, dl, 256);
+}
+
+static SDValue InsertSubVector(SDValue Result, SDValue Vec,
+                               unsigned IdxVal, SelectionDAG &DAG,
+                               SDLoc dl, unsigned vectorWidth) {
+  assert((vectorWidth == 128 || vectorWidth == 256) &&
+         "Unsupported vector width");
+  // Inserting UNDEF is Result
+  if (Vec.getOpcode() == ISD::UNDEF)
+    return Result;
+  EVT VT = Vec.getValueType();
+  EVT ElVT = VT.getVectorElementType();
+  EVT ResultVT = Result.getValueType();
+
+  // Insert the relevant vectorWidth bits.
+  unsigned ElemsPerChunk = vectorWidth/ElVT.getSizeInBits();
+
+  // This is the index of the first element of the vectorWidth-bit chunk
+  // we want.
+  unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits())/vectorWidth)
+                               * ElemsPerChunk);
+
+  SDValue VecIdx = DAG.getIntPtrConstant(NormalizedIdxVal, dl);
+  return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec, VecIdx);
+}
+
+/// Generate a DAG to put 128-bits into a vector > 128 bits.  This
+/// sets things up to match to an AVX VINSERTF128/VINSERTI128 or
+/// AVX-512 VINSERTF32x4/VINSERTI32x4 instructions or a
+/// simple superregister reference.  Idx is an index in the 128 bits
+/// we want.  It need not be aligned to a 128-bit boundary.  That makes
+/// lowering INSERT_VECTOR_ELT operations easier.
+static SDValue Insert128BitVector(SDValue Result, SDValue Vec, unsigned IdxVal,
+                                  SelectionDAG &DAG, SDLoc dl) {
+  assert(Vec.getValueType().is128BitVector() && "Unexpected vector size!");
+
+  // For insertion into the zero index (low half) of a 256-bit vector, it is
+  // more efficient to generate a blend with immediate instead of an insert*128.
+  // We are still creating an INSERT_SUBVECTOR below with an undef node to
+  // extend the subvector to the size of the result vector. Make sure that
+  // we are not recursing on that node by checking for undef here.
+  if (IdxVal == 0 && Result.getValueType().is256BitVector() &&
+      Result.getOpcode() != ISD::UNDEF) {
+    EVT ResultVT = Result.getValueType();
+    SDValue ZeroIndex = DAG.getIntPtrConstant(0, dl);
+    SDValue Undef = DAG.getUNDEF(ResultVT);
+    SDValue Vec256 = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Undef,
+                                 Vec, ZeroIndex);
+
+    // The blend instruction, and therefore its mask, depend on the data type.
+    MVT ScalarType = ResultVT.getScalarType().getSimpleVT();
+    if (ScalarType.isFloatingPoint()) {
+      // Choose either vblendps (float) or vblendpd (double).
+      unsigned ScalarSize = ScalarType.getSizeInBits();
+      assert((ScalarSize == 64 || ScalarSize == 32) && "Unknown float type");
+      unsigned MaskVal = (ScalarSize == 64) ? 0x03 : 0x0f;
+      SDValue Mask = DAG.getConstant(MaskVal, dl, MVT::i8);
+      return DAG.getNode(X86ISD::BLENDI, dl, ResultVT, Result, Vec256, Mask);
+    }
+
+    const X86Subtarget &Subtarget =
+    static_cast<const X86Subtarget &>(DAG.getSubtarget());
+
+    // AVX2 is needed for 256-bit integer blend support.
+    // Integers must be cast to 32-bit because there is only vpblendd;
+    // vpblendw can't be used for this because it has a handicapped mask.
+
+    // If we don't have AVX2, then cast to float. Using a wrong domain blend
+    // is still more efficient than using the wrong domain vinsertf128 that
+    // will be created by InsertSubVector().
+    MVT CastVT = Subtarget.hasAVX2() ? MVT::v8i32 : MVT::v8f32;
+
+    SDValue Mask = DAG.getConstant(0x0f, dl, MVT::i8);
+    Vec256 = DAG.getBitcast(CastVT, Vec256);
+    Vec256 = DAG.getNode(X86ISD::BLENDI, dl, CastVT, Result, Vec256, Mask);
+    return DAG.getBitcast(ResultVT, Vec256);
+  }
+
+  return InsertSubVector(Result, Vec, IdxVal, DAG, dl, 128);
+}
+
+static SDValue Insert256BitVector(SDValue Result, SDValue Vec, unsigned IdxVal,
+                                  SelectionDAG &DAG, SDLoc dl) {
+  assert(Vec.getValueType().is256BitVector() && "Unexpected vector size!");
+  return InsertSubVector(Result, Vec, IdxVal, DAG, dl, 256);
+}
+
+/// Concat two 128-bit vectors into a 256 bit vector using VINSERTF128
+/// instructions. This is used because creating CONCAT_VECTOR nodes of
+/// BUILD_VECTORS returns a larger BUILD_VECTOR while we're trying to lower
+/// large BUILD_VECTORS.
+static SDValue Concat128BitVectors(SDValue V1, SDValue V2, EVT VT,
+                                   unsigned NumElems, SelectionDAG &DAG,
+                                   SDLoc dl) {
+  SDValue V = Insert128BitVector(DAG.getUNDEF(VT), V1, 0, DAG, dl);
+  return Insert128BitVector(V, V2, NumElems/2, DAG, dl);
+}
+
+static SDValue Concat256BitVectors(SDValue V1, SDValue V2, EVT VT,
+                                   unsigned NumElems, SelectionDAG &DAG,
+                                   SDLoc dl) {
+  SDValue V = Insert256BitVector(DAG.getUNDEF(VT), V1, 0, DAG, dl);
+  return Insert256BitVector(V, V2, NumElems/2, DAG, dl);
+}
+
+/// getOnesVector - Returns a vector of specified type with all bits set.
+/// Always build ones vectors as <4 x i32> or <8 x i32>. For 256-bit types with
+/// no AVX2 supprt, use two <4 x i32> inserted in a <8 x i32> appropriately.
+/// Then bitcast to their original type, ensuring they get CSE'd.
+static SDValue getOnesVector(MVT VT, bool HasInt256, SelectionDAG &DAG,
+                             SDLoc dl) {
+  assert(VT.isVector() && "Expected a vector type");
+
+  SDValue Cst = DAG.getConstant(~0U, dl, MVT::i32);
+  SDValue Vec;
+  if (VT.is256BitVector()) {
+    if (HasInt256) { // AVX2
+      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
+      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops);
+    } else { // AVX
+      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
+      Vec = Concat128BitVectors(Vec, Vec, MVT::v8i32, 8, DAG, dl);
+    }
+  } else if (VT.is128BitVector()) {
+    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
+  } else
+    llvm_unreachable("Unexpected vector type");
+
+  return DAG.getBitcast(VT, Vec);
+}
+
+/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
+/// operation of specified width.
+static SDValue getMOVL(SelectionDAG &DAG, SDLoc dl, EVT VT, SDValue V1,
+                       SDValue V2) {
+  unsigned NumElems = VT.getVectorNumElements();
+  SmallVector<int, 8> Mask;
+  Mask.push_back(NumElems);
+  for (unsigned i = 1; i != NumElems; ++i)
+    Mask.push_back(i);
+  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
+}
+
+/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
+static SDValue getUnpackl(SelectionDAG &DAG, SDLoc dl, MVT VT, SDValue V1,
+                          SDValue V2) {
+  unsigned NumElems = VT.getVectorNumElements();
+  SmallVector<int, 8> Mask;
+  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
+    Mask.push_back(i);
+    Mask.push_back(i + NumElems);
+  }
+  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
+}
+
+/// getUnpackh - Returns a vector_shuffle node for an unpackh operation.
+static SDValue getUnpackh(SelectionDAG &DAG, SDLoc dl, MVT VT, SDValue V1,
+                          SDValue V2) {
+  unsigned NumElems = VT.getVectorNumElements();
+  SmallVector<int, 8> Mask;
+  for (unsigned i = 0, Half = NumElems/2; i != Half; ++i) {
+    Mask.push_back(i + Half);
+    Mask.push_back(i + NumElems + Half);
+  }
+  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
 }
 
 /// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
@@ -4279,7 +4421,8 @@ static bool getTargetShuffleMask(SDNode *N, MVT VT,
       return false;
 
     SDValue Ptr = MaskLoad->getBasePtr();
-    if (Ptr->getOpcode() == X86ISD::Wrapper)
+    if (Ptr->getOpcode() == X86ISD::Wrapper ||
+        Ptr->getOpcode() == X86ISD::WrapperRIP)
       Ptr = Ptr->getOperand(0);
 
     auto *MaskCP = dyn_cast<ConstantPoolSDNode>(Ptr);
@@ -4417,6 +4560,29 @@ static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
   SDLoc dl(Op);
   SDValue V;
   bool First = true;
+
+  // SSE4.1 - use PINSRB to insert each byte directly.
+  if (Subtarget->hasSSE41()) {
+    for (unsigned i = 0; i < 16; ++i) {
+      bool isNonZero = (NonZeros & (1 << i)) != 0;
+      if (isNonZero) {
+        if (First) {
+          if (NumZero)
+            V = getZeroVector(MVT::v16i8, Subtarget, DAG, dl);
+          else
+            V = DAG.getUNDEF(MVT::v16i8);
+          First = false;
+        }
+        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
+                        MVT::v16i8, V, Op.getOperand(i),
+                        DAG.getIntPtrConstant(i, dl));
+      }
+    }
+
+    return V;
+  }
+
+  // Pre-SSE4.1 - merge byte pairs and insert with PINSRW.
   for (unsigned i = 0; i < 16; ++i) {
     bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
     if (ThisIsNonZero && First) {
@@ -4437,7 +4603,7 @@ static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
       if (ThisIsNonZero) {
         ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
         ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
-                              ThisElt, DAG.getConstant(8, MVT::i8));
+                              ThisElt, DAG.getConstant(8, dl, MVT::i8));
         if (LastIsNonZero)
           ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
       } else
@@ -4445,11 +4611,11 @@ static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
 
       if (ThisElt.getNode())
         V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
-                        DAG.getIntPtrConstant(i/2));
+                        DAG.getIntPtrConstant(i/2, dl));
     }
   }
 
-  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V);
+  return DAG.getBitcast(MVT::v16i8, V);
 }
 
 /// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
@@ -4477,7 +4643,7 @@ static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
       }
       V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
                       MVT::v8i16, V, Op.getOperand(i),
-                      DAG.getIntPtrConstant(i));
+                      DAG.getIntPtrConstant(i, dl));
     }
   }
 
@@ -4584,9 +4750,10 @@ static SDValue LowerBuildVectorv4x32(SDValue Op, SelectionDAG &DAG,
 
   unsigned InsertPSMask = EltMaskIdx << 6 | EltIdx << 4 | ZMask;
   assert((InsertPSMask & ~0xFFu) == 0 && "Invalid mask!");
-  SDValue Result = DAG.getNode(X86ISD::INSERTPS, SDLoc(Op), MVT::v4f32, V1, V2,
-                               DAG.getIntPtrConstant(InsertPSMask));
-  return DAG.getNode(ISD::BITCAST, SDLoc(Op), VT, Result);
+  SDLoc DL(Op);
+  SDValue Result = DAG.getNode(X86ISD::INSERTPS, DL, MVT::v4f32, V1, V2,
+                               DAG.getIntPtrConstant(InsertPSMask, DL));
+  return DAG.getBitcast(VT, Result);
 }
 
 /// Return a vector logical shift node.
@@ -4596,12 +4763,11 @@ static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
   assert(VT.is128BitVector() && "Unknown type for VShift");
   MVT ShVT = MVT::v2i64;
   unsigned Opc = isLeft ? X86ISD::VSHLDQ : X86ISD::VSRLDQ;
-  SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp);
+  SrcOp = DAG.getBitcast(ShVT, SrcOp);
   MVT ScalarShiftTy = TLI.getScalarShiftAmountTy(SrcOp.getValueType());
   assert(NumBits % 8 == 0 && "Only support byte sized shifts");
-  SDValue ShiftVal = DAG.getConstant(NumBits/8, ScalarShiftTy);
-  return DAG.getNode(ISD::BITCAST, dl, VT,
-                     DAG.getNode(Opc, dl, ShVT, SrcOp, ShiftVal));
+  SDValue ShiftVal = DAG.getConstant(NumBits/8, dl, ScalarShiftTy);
+  return DAG.getBitcast(VT, DAG.getNode(Opc, dl, ShVT, SrcOp, ShiftVal));
 }
 
 static SDValue
@@ -4656,9 +4822,11 @@ LowerAsSplatVectorLoad(SDValue SrcOp, MVT VT, SDLoc dl, SelectionDAG &DAG) {
     if ((Offset % RequiredAlign) & 3)
       return SDValue();
     int64_t StartOffset = Offset & ~(RequiredAlign-1);
-    if (StartOffset)
-      Ptr = DAG.getNode(ISD::ADD, SDLoc(Ptr), Ptr.getValueType(),
-                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
+    if (StartOffset) {
+      SDLoc DL(Ptr);
+      Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr,
+                        DAG.getConstant(StartOffset, DL, Ptr.getValueType()));
+    }
 
     int EltNo = (Offset - StartOffset) >> 2;
     unsigned NumElems = VT.getVectorNumElements();
@@ -4784,7 +4952,7 @@ static SDValue EltsFromConsecutiveLoads(EVT VT, ArrayRef<SDValue> Elts,
                              SDValue(ResNode.getNode(), 1));
     }
 
-    return DAG.getNode(ISD::BITCAST, DL, VT, ResNode);
+    return DAG.getBitcast(VT, ResNode);
   }
   return SDValue();
 }
@@ -5051,95 +5219,117 @@ static SDValue buildFromShuffleMostly(SDValue Op, SelectionDAG &DAG) {
   for (unsigned i = 0, e = InsertIndices.size(); i != e; ++i) {
     unsigned Idx = InsertIndices[i];
     NV = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, NV, Op.getOperand(Idx),
-                     DAG.getIntPtrConstant(Idx));
+                     DAG.getIntPtrConstant(Idx, DL));
   }
 
   return NV;
 }
 
+static SDValue ConvertI1VectorToInterger(SDValue Op, SelectionDAG &DAG) {
+  assert(ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) &&
+         Op.getScalarValueSizeInBits() == 1 &&
+         "Can not convert non-constant vector");
+  uint64_t Immediate = 0;
+  for (unsigned idx = 0, e = Op.getNumOperands(); idx < e; ++idx) {
+    SDValue In = Op.getOperand(idx);
+    if (In.getOpcode() != ISD::UNDEF)
+      Immediate |= cast<ConstantSDNode>(In)->getZExtValue() << idx;
+  }
+  SDLoc dl(Op);
+  MVT VT =
+   MVT::getIntegerVT(std::max((int)Op.getValueType().getSizeInBits(), 8));
+  return DAG.getConstant(Immediate, dl, VT);
+}
 // Lower BUILD_VECTOR operation for v8i1 and v16i1 types.
 SDValue
 X86TargetLowering::LowerBUILD_VECTORvXi1(SDValue Op, SelectionDAG &DAG) const {
 
   MVT VT = Op.getSimpleValueType();
-  assert((VT.getVectorElementType() == MVT::i1) && (VT.getSizeInBits() <= 16) &&
+  assert((VT.getVectorElementType() == MVT::i1) &&
          "Unexpected type in LowerBUILD_VECTORvXi1!");
 
   SDLoc dl(Op);
   if (ISD::isBuildVectorAllZeros(Op.getNode())) {
-    SDValue Cst = DAG.getTargetConstant(0, MVT::i1);
+    SDValue Cst = DAG.getTargetConstant(0, dl, MVT::i1);
     SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Cst);
     return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
   }
 
   if (ISD::isBuildVectorAllOnes(Op.getNode())) {
-    SDValue Cst = DAG.getTargetConstant(1, MVT::i1);
+    SDValue Cst = DAG.getTargetConstant(1, dl, MVT::i1);
     SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Cst);
     return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
   }
 
-  bool AllContants = true;
+  if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) {
+    SDValue Imm = ConvertI1VectorToInterger(Op, DAG);
+    if (Imm.getValueSizeInBits() == VT.getSizeInBits())
+      return DAG.getBitcast(VT, Imm);
+    SDValue ExtVec = DAG.getBitcast(MVT::v8i1, Imm);
+    return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, ExtVec,
+                        DAG.getIntPtrConstant(0, dl));
+  }
+
+  // Vector has one or more non-const elements
   uint64_t Immediate = 0;
-  int NonConstIdx = -1;
+  SmallVector<unsigned, 16> NonConstIdx;
   bool IsSplat = true;
-  unsigned NumNonConsts = 0;
-  unsigned NumConsts = 0;
+  bool HasConstElts = false;
+  int SplatIdx = -1;
   for (unsigned idx = 0, e = Op.getNumOperands(); idx < e; ++idx) {
     SDValue In = Op.getOperand(idx);
     if (In.getOpcode() == ISD::UNDEF)
       continue;
-    if (!isa<ConstantSDNode>(In)) {
-      AllContants = false;
-      NonConstIdx = idx;
-      NumNonConsts++;
-    } else {
-      NumConsts++;
-      if (cast<ConstantSDNode>(In)->getZExtValue())
-      Immediate |= (1ULL << idx);
+    if (!isa<ConstantSDNode>(In))
+      NonConstIdx.push_back(idx);
+    else {
+      Immediate |= cast<ConstantSDNode>(In)->getZExtValue() << idx;
+      HasConstElts = true;
     }
-    if (In != Op.getOperand(0))
+    if (SplatIdx == -1)
+      SplatIdx = idx;
+    else if (In != Op.getOperand(SplatIdx))
       IsSplat = false;
   }
 
-  if (AllContants) {
-    SDValue FullMask = DAG.getNode(ISD::BITCAST, dl, MVT::v16i1,
-      DAG.getConstant(Immediate, MVT::i16));
-    return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, FullMask,
-                       DAG.getIntPtrConstant(0));
-  }
-
-  if (NumNonConsts == 1 && NonConstIdx != 0) {
-    SDValue DstVec;
-    if (NumConsts) {
-      SDValue VecAsImm = DAG.getConstant(Immediate,
-                                         MVT::getIntegerVT(VT.getSizeInBits()));
-      DstVec = DAG.getNode(ISD::BITCAST, dl, VT, VecAsImm);
-    }
-    else
-      DstVec = DAG.getUNDEF(VT);
-    return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, DstVec,
-                       Op.getOperand(NonConstIdx),
-                       DAG.getIntPtrConstant(NonConstIdx));
-  }
-  if (!IsSplat && (NonConstIdx != 0))
-    llvm_unreachable("Unsupported BUILD_VECTOR operation");
-  MVT SelectVT = (VT == MVT::v16i1)? MVT::i16 : MVT::i8;
-  SDValue Select;
+  // for splat use " (select i1 splat_elt, all-ones, all-zeroes)"
   if (IsSplat)
-    Select = DAG.getNode(ISD::SELECT, dl, SelectVT, Op.getOperand(0),
-                          DAG.getConstant(-1, SelectVT),
-                          DAG.getConstant(0, SelectVT));
+    return DAG.getNode(ISD::SELECT, dl, VT, Op.getOperand(SplatIdx),
+                       DAG.getConstant(1, dl, VT),
+                       DAG.getConstant(0, dl, VT));
+
+  // insert elements one by one
+  SDValue DstVec;
+  SDValue Imm;
+  if (Immediate) {
+    MVT ImmVT = MVT::getIntegerVT(std::max((int)VT.getSizeInBits(), 8));
+    Imm = DAG.getConstant(Immediate, dl, ImmVT);
+  }
+  else if (HasConstElts)
+    Imm = DAG.getConstant(0, dl, VT);
   else
-    Select = DAG.getNode(ISD::SELECT, dl, SelectVT, Op.getOperand(0),
-                         DAG.getConstant((Immediate | 1), SelectVT),
-                         DAG.getConstant(Immediate, SelectVT));
-  return DAG.getNode(ISD::BITCAST, dl, VT, Select);
+    Imm = DAG.getUNDEF(VT);
+  if (Imm.getValueSizeInBits() == VT.getSizeInBits())
+    DstVec = DAG.getBitcast(VT, Imm);
+  else {
+    SDValue ExtVec = DAG.getBitcast(MVT::v8i1, Imm);
+    DstVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, ExtVec,
+                         DAG.getIntPtrConstant(0, dl));
+  }
+
+  for (unsigned i = 0; i < NonConstIdx.size(); ++i) {
+    unsigned InsertIdx = NonConstIdx[i];
+    DstVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, DstVec,
+                         Op.getOperand(InsertIdx),
+                         DAG.getIntPtrConstant(InsertIdx, dl));
+  }
+  return DstVec;
 }
 
 /// \brief Return true if \p N implements a horizontal binop and return the
 /// operands for the horizontal binop into V0 and V1.
 ///
-/// This is a helper function of PerformBUILD_VECTORCombine.
+/// This is a helper function of LowerToHorizontalOp().
 /// This function checks that the build_vector \p N in input implements a
 /// horizontal operation. Parameter \p Opcode defines the kind of horizontal
 /// operation to match.
@@ -5202,11 +5392,17 @@ static bool isHorizontalBinOp(const BuildVectorSDNode *N, unsigned Opcode,
     unsigned I1 = cast<ConstantSDNode>(Op1.getOperand(1))->getZExtValue();
 
     if (i * 2 < NumElts) {
-      if (V0.getOpcode() == ISD::UNDEF)
+      if (V0.getOpcode() == ISD::UNDEF) {
         V0 = Op0.getOperand(0);
+        if (V0.getValueType() != VT)
+          return false;
+      }
     } else {
-      if (V1.getOpcode() == ISD::UNDEF)
+      if (V1.getOpcode() == ISD::UNDEF) {
         V1 = Op0.getOperand(0);
+        if (V1.getValueType() != VT)
+          return false;
+      }
       if (i * 2 == NumElts)
         ExpectedVExtractIdx = BaseIdx;
     }
@@ -5230,7 +5426,7 @@ static bool isHorizontalBinOp(const BuildVectorSDNode *N, unsigned Opcode,
 /// \brief Emit a sequence of two 128-bit horizontal add/sub followed by
 /// a concat_vector.
 ///
-/// This is a helper function of PerformBUILD_VECTORCombine.
+/// This is a helper function of LowerToHorizontalOp().
 /// This function expects two 256-bit vectors called V0 and V1.
 /// At first, each vector is split into two separate 128-bit vectors.
 /// Then, the resulting 128-bit vectors are used to implement two
@@ -5250,7 +5446,7 @@ static bool isHorizontalBinOp(const BuildVectorSDNode *N, unsigned Opcode,
 ///
 /// Otherwise, the first horizontal binop dag node takes as input the lower
 /// 128-bit of V0 and the lower 128-bit of V1, and the second horizontal binop
-/// dag node takes the the upper 128-bit of V0 and the upper 128-bit of V1.
+/// dag node takes the upper 128-bit of V0 and the upper 128-bit of V1.
 ///   Example:
 ///     HADD V0_LO, V1_LO
 ///     HADD V0_HI, V1_HI
@@ -5296,12 +5492,16 @@ static SDValue ExpandHorizontalBinOp(const SDValue &V0, const SDValue &V1,
   return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, LO, HI);
 }
 
-/// \brief Try to fold a build_vector that performs an 'addsub' into the
-/// sequence of 'vadd + vsub + blendi'.
-static SDValue matchAddSub(const BuildVectorSDNode *BV, SelectionDAG &DAG,
-                           const X86Subtarget *Subtarget) {
-  SDLoc DL(BV);
+/// Try to fold a build_vector that performs an 'addsub' to an X86ISD::ADDSUB
+/// node.
+static SDValue LowerToAddSub(const BuildVectorSDNode *BV,
+                             const X86Subtarget *Subtarget, SelectionDAG &DAG) {
   EVT VT = BV->getValueType(0);
+  if ((!Subtarget->hasSSE3() || (VT != MVT::v4f32 && VT != MVT::v2f64)) &&
+      (!Subtarget->hasAVX() || (VT != MVT::v8f32 && VT != MVT::v4f64)))
+    return SDValue();
+
+  SDLoc DL(BV);
   unsigned NumElts = VT.getVectorNumElements();
   SDValue InVec0 = DAG.getUNDEF(VT);
   SDValue InVec1 = DAG.getUNDEF(VT);
@@ -5356,10 +5556,16 @@ static SDValue matchAddSub(const BuildVectorSDNode *BV, SelectionDAG &DAG,
       SubFound = true;
 
     // Update InVec0 and InVec1.
-    if (InVec0.getOpcode() == ISD::UNDEF)
+    if (InVec0.getOpcode() == ISD::UNDEF) {
       InVec0 = Op0.getOperand(0);
-    if (InVec1.getOpcode() == ISD::UNDEF)
+      if (InVec0.getValueType() != VT)
+        return SDValue();
+    }
+    if (InVec1.getOpcode() == ISD::UNDEF) {
       InVec1 = Op1.getOperand(0);
+      if (InVec1.getValueType() != VT)
+        return SDValue();
+    }
 
     // Make sure that operands in input to each add/sub node always
     // come from a same pair of vectors.
@@ -5389,23 +5595,12 @@ static SDValue matchAddSub(const BuildVectorSDNode *BV, SelectionDAG &DAG,
   return SDValue();
 }
 
-static SDValue PerformBUILD_VECTORCombine(SDNode *N, SelectionDAG &DAG,
-                                          const X86Subtarget *Subtarget) {
-  SDLoc DL(N);
-  EVT VT = N->getValueType(0);
+/// Lower BUILD_VECTOR to a horizontal add/sub operation if possible.
+static SDValue LowerToHorizontalOp(const BuildVectorSDNode *BV,
+                                   const X86Subtarget *Subtarget,
+                                   SelectionDAG &DAG) {
+  EVT VT = BV->getValueType(0);
   unsigned NumElts = VT.getVectorNumElements();
-  BuildVectorSDNode *BV = cast<BuildVectorSDNode>(N);
-  SDValue InVec0, InVec1;
-
-  // Try to match an ADDSUB.
-  if ((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
-      (Subtarget->hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))) {
-    SDValue Value = matchAddSub(BV, DAG, Subtarget);
-    if (Value.getNode())
-      return Value;
-  }
-
-  // Try to match horizontal ADD/SUB.
   unsigned NumUndefsLO = 0;
   unsigned NumUndefsHI = 0;
   unsigned Half = NumElts/2;
@@ -5424,6 +5619,8 @@ static SDValue PerformBUILD_VECTORCombine(SDNode *N, SelectionDAG &DAG,
   if (NumUndefsLO + NumUndefsHI + 1 >= NumElts)
     return SDValue();
 
+  SDLoc DL(BV);
+  SDValue InVec0, InVec1;
   if ((VT == MVT::v4f32 || VT == MVT::v2f64) && Subtarget->hasSSE3()) {
     // Try to match an SSE3 float HADD/HSUB.
     if (isHorizontalBinOp(BV, ISD::FADD, DAG, 0, NumElts, InVec0, InVec1))
@@ -5568,8 +5765,12 @@ X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
       return getOnesVector(VT, Subtarget->hasInt256(), DAG, dl);
   }
 
-  SDValue Broadcast = LowerVectorBroadcast(Op, Subtarget, DAG);
-  if (Broadcast.getNode())
+  BuildVectorSDNode *BV = cast<BuildVectorSDNode>(Op.getNode());
+  if (SDValue AddSub = LowerToAddSub(BV, Subtarget, DAG))
+    return AddSub;
+  if (SDValue HorizontalOp = LowerToHorizontalOp(BV, Subtarget, DAG))
+    return HorizontalOp;
+  if (SDValue Broadcast = LowerVectorBroadcast(Op, Subtarget, DAG))
     return Broadcast;
 
   unsigned EVTBits = ExtVT.getSizeInBits();
@@ -5620,9 +5821,8 @@ X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
         // convert it to a vector with movd (S2V+shuffle to zero extend).
         Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
         Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
-        return DAG.getNode(
-            ISD::BITCAST, dl, VT,
-            getShuffleVectorZeroOrUndef(Item, Idx * 2, true, Subtarget, DAG));
+        return DAG.getBitcast(VT, getShuffleVectorZeroOrUndef(
+                                      Item, Idx * 2, true, Subtarget, DAG));
       }
     }
 
@@ -5636,28 +5836,39 @@ X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
 
       if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
           (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
-        if (VT.is256BitVector() || VT.is512BitVector()) {
+        if (VT.is512BitVector()) {
           SDValue ZeroVec = getZeroVector(VT, Subtarget, DAG, dl);
           return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, ZeroVec,
-                             Item, DAG.getIntPtrConstant(0));
+                             Item, DAG.getIntPtrConstant(0, dl));
         }
-        assert(VT.is128BitVector() && "Expected an SSE value type!");
+        assert((VT.is128BitVector() || VT.is256BitVector()) &&
+               "Expected an SSE value type!");
         Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
         // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
         return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
       }
 
+      // We can't directly insert an i8 or i16 into a vector, so zero extend
+      // it to i32 first.
       if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
         Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
-        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, Item);
         if (VT.is256BitVector()) {
-          SDValue ZeroVec = getZeroVector(MVT::v8i32, Subtarget, DAG, dl);
-          Item = Insert128BitVector(ZeroVec, Item, 0, DAG, dl);
+          if (Subtarget->hasAVX()) {
+            Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v8i32, Item);
+            Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
+          } else {
+            // Without AVX, we need to extend to a 128-bit vector and then
+            // insert into the 256-bit vector.
+            Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, Item);
+            SDValue ZeroVec = getZeroVector(MVT::v8i32, Subtarget, DAG, dl);
+            Item = Insert128BitVector(ZeroVec, Item, 0, DAG, dl);
+          }
         } else {
           assert(VT.is128BitVector() && "Expected an SSE value type!");
+          Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, Item);
           Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
         }
-        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
+        return DAG.getBitcast(VT, Item);
       }
     }
 
@@ -5743,24 +5954,20 @@ X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
   }
 
   // If element VT is < 32 bits, convert it to inserts into a zero vector.
-  if (EVTBits == 8 && NumElems == 16) {
-    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
-                                        Subtarget, *this);
-    if (V.getNode()) return V;
-  }
+  if (EVTBits == 8 && NumElems == 16)
+    if (SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
+                                        Subtarget, *this))
+      return V;
 
-  if (EVTBits == 16 && NumElems == 8) {
-    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
-                                      Subtarget, *this);
-    if (V.getNode()) return V;
-  }
+  if (EVTBits == 16 && NumElems == 8)
+    if (SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
+                                      Subtarget, *this))
+      return V;
 
   // If element VT is == 32 bits and has 4 elems, try to generate an INSERTPS
-  if (EVTBits == 32 && NumElems == 4) {
-    SDValue V = LowerBuildVectorv4x32(Op, DAG, Subtarget, *this);
-    if (V.getNode())
+  if (EVTBits == 32 && NumElems == 4)
+    if (SDValue V = LowerBuildVectorv4x32(Op, DAG, Subtarget, *this))
       return V;
-  }
 
   // If element VT is == 32 bits, turn it into a number of shuffles.
   SmallVector<SDValue, 8> V(NumElems);
@@ -5808,13 +6015,11 @@ X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
       V[i] = Op.getOperand(i);
 
     // Check for elements which are consecutive loads.
-    SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG, false);
-    if (LD.getNode())
+    if (SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG, false))
       return LD;
 
     // Check for a build vector from mostly shuffle plus few inserting.
-    SDValue Sh = buildFromShuffleMostly(Op, DAG);
-    if (Sh.getNode())
+    if (SDValue Sh = buildFromShuffleMostly(Op, DAG))
       return Sh;
 
     // For SSE 4.1, use insertps to put the high elements into the low element.
@@ -5828,7 +6033,7 @@ X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
       for (unsigned i = 1; i < NumElems; ++i) {
         if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
         Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
-                             Op.getOperand(i), DAG.getIntPtrConstant(i));
+                             Op.getOperand(i), DAG.getIntPtrConstant(i, dl));
       }
       return Result;
     }
@@ -5880,7 +6085,7 @@ static SDValue LowerAVXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
   SDValue V1 = Op.getOperand(0);
   SDValue V2 = Op.getOperand(1);
   unsigned NumElems = ResVT.getVectorNumElements();
-  if(ResVT.is256BitVector())
+  if (ResVT.is256BitVector())
     return Concat128BitVectors(V1, V2, ResVT, NumElems, DAG, dl);
 
   if (Op.getNumOperands() == 4) {
@@ -5894,8 +6099,64 @@ static SDValue LowerAVXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
   return Concat256BitVectors(V1, V2, ResVT, NumElems, DAG, dl);
 }
 
-static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
-  MVT LLVM_ATTRIBUTE_UNUSED VT = Op.getSimpleValueType();
+static SDValue LowerCONCAT_VECTORSvXi1(SDValue Op,
+                                       const X86Subtarget *Subtarget,
+                                       SelectionDAG & DAG) {
+  SDLoc dl(Op);
+  MVT ResVT = Op.getSimpleValueType();
+  unsigned NumOfOperands = Op.getNumOperands();
+
+  assert(isPowerOf2_32(NumOfOperands) &&
+         "Unexpected number of operands in CONCAT_VECTORS");
+
+  if (NumOfOperands > 2) {
+    MVT HalfVT = MVT::getVectorVT(ResVT.getScalarType(),
+                                  ResVT.getVectorNumElements()/2);
+    SmallVector<SDValue, 2> Ops;
+    for (unsigned i = 0; i < NumOfOperands/2; i++)
+      Ops.push_back(Op.getOperand(i));
+    SDValue Lo = DAG.getNode(ISD::CONCAT_VECTORS, dl, HalfVT, Ops);
+    Ops.clear();
+    for (unsigned i = NumOfOperands/2; i < NumOfOperands; i++)
+      Ops.push_back(Op.getOperand(i));
+    SDValue Hi = DAG.getNode(ISD::CONCAT_VECTORS, dl, HalfVT, Ops);
+    return DAG.getNode(ISD::CONCAT_VECTORS, dl, ResVT, Lo, Hi);
+  }
+
+  SDValue V1 = Op.getOperand(0);
+  SDValue V2 = Op.getOperand(1);
+  bool IsZeroV1 = ISD::isBuildVectorAllZeros(V1.getNode());
+  bool IsZeroV2 = ISD::isBuildVectorAllZeros(V2.getNode());
+
+  if (IsZeroV1 && IsZeroV2)
+    return getZeroVector(ResVT, Subtarget, DAG, dl);
+
+  SDValue ZeroIdx = DAG.getIntPtrConstant(0, dl);
+  SDValue Undef = DAG.getUNDEF(ResVT);
+  unsigned NumElems = ResVT.getVectorNumElements();
+  SDValue ShiftBits = DAG.getConstant(NumElems/2, dl, MVT::i8);
+
+  V2 = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResVT, Undef, V2, ZeroIdx);
+  V2 = DAG.getNode(X86ISD::VSHLI, dl, ResVT, V2, ShiftBits);
+  if (IsZeroV1)
+    return V2;
+
+  V1 = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResVT, Undef, V1, ZeroIdx);
+  // Zero the upper bits of V1
+  V1 = DAG.getNode(X86ISD::VSHLI, dl, ResVT, V1, ShiftBits);
+  V1 = DAG.getNode(X86ISD::VSRLI, dl, ResVT, V1, ShiftBits);
+  if (IsZeroV2)
+    return V1;
+  return DAG.getNode(ISD::OR, dl, ResVT, V1, V2);
+}
+
+static SDValue LowerCONCAT_VECTORS(SDValue Op,
+                                   const X86Subtarget *Subtarget,
+                                   SelectionDAG &DAG) {
+  MVT VT = Op.getSimpleValueType();
+  if (VT.getVectorElementType() == MVT::i1)
+    return LowerCONCAT_VECTORSvXi1(Op, Subtarget, DAG);
+
   assert((VT.is256BitVector() && Op.getNumOperands() == 2) ||
          (VT.is512BitVector() && (Op.getNumOperands() == 2 ||
           Op.getNumOperands() == 4)));
@@ -5998,57 +6259,39 @@ is128BitLaneRepeatedShuffleMask(MVT VT, ArrayRef<int> Mask,
   return true;
 }
 
-/// \brief Base case helper for testing a single mask element.
-static bool isShuffleEquivalentImpl(SDValue V1, SDValue V2,
-                                    BuildVectorSDNode *BV1,
-                                    BuildVectorSDNode *BV2, ArrayRef<int> Mask,
-                                    int i, int Arg) {
-  int Size = Mask.size();
-  if (Mask[i] != -1 && Mask[i] != Arg) {
-    auto *MaskBV = Mask[i] < Size ? BV1 : BV2;
-    auto *ArgsBV = Arg < Size ? BV1 : BV2;
-    if (!MaskBV || !ArgsBV ||
-        MaskBV->getOperand(Mask[i] % Size) != ArgsBV->getOperand(Arg % Size))
-      return false;
-  }
-  return true;
-}
-
-/// \brief Recursive helper to peel off and test each mask element.
-template <typename... Ts>
-static bool isShuffleEquivalentImpl(SDValue V1, SDValue V2,
-                                    BuildVectorSDNode *BV1,
-                                    BuildVectorSDNode *BV2, ArrayRef<int> Mask,
-                                    int i, int Arg, Ts... Args) {
-  if (!isShuffleEquivalentImpl(V1, V2, BV1, BV2, Mask, i, Arg))
-    return false;
-
-  return isShuffleEquivalentImpl(V1, V2, BV1, BV2, Mask, i + 1, Args...);
-}
-
 /// \brief Checks whether a shuffle mask is equivalent to an explicit list of
 /// arguments.
 ///
 /// This is a fast way to test a shuffle mask against a fixed pattern:
 ///
-///   if (isShuffleEquivalent(Mask, 3, 2, 1, 0)) { ... }
+///   if (isShuffleEquivalent(Mask, 3, 2, {1, 0})) { ... }
 ///
 /// It returns true if the mask is exactly as wide as the argument list, and
 /// each element of the mask is either -1 (signifying undef) or the value given
 /// in the argument.
-template <typename... Ts>
 static bool isShuffleEquivalent(SDValue V1, SDValue V2, ArrayRef<int> Mask,
-                                Ts... Args) {
-  if (Mask.size() != sizeof...(Args))
+                                ArrayRef<int> ExpectedMask) {
+  if (Mask.size() != ExpectedMask.size())
     return false;
 
+  int Size = Mask.size();
+
   // If the values are build vectors, we can look through them to find
   // equivalent inputs that make the shuffles equivalent.
   auto *BV1 = dyn_cast<BuildVectorSDNode>(V1);
   auto *BV2 = dyn_cast<BuildVectorSDNode>(V2);
 
-  // Recursively peel off arguments and test them against the mask.
-  return isShuffleEquivalentImpl(V1, V2, BV1, BV2, Mask, 0, Args...);
+  for (int i = 0; i < Size; ++i)
+    if (Mask[i] != -1 && Mask[i] != ExpectedMask[i]) {
+      auto *MaskBV = Mask[i] < Size ? BV1 : BV2;
+      auto *ExpectedBV = ExpectedMask[i] < Size ? BV1 : BV2;
+      if (!MaskBV || !ExpectedBV ||
+          MaskBV->getOperand(Mask[i] % Size) !=
+              ExpectedBV->getOperand(ExpectedMask[i] % Size))
+        return false;
+    }
+
+  return true;
 }
 
 /// \brief Get a 4-lane 8-bit shuffle immediate for a mask.
@@ -6059,7 +6302,7 @@ static bool isShuffleEquivalent(SDValue V1, SDValue V2, ArrayRef<int> Mask,
 /// example.
 ///
 /// NB: We rely heavily on "undef" masks preserving the input lane.
-static SDValue getV4X86ShuffleImm8ForMask(ArrayRef<int> Mask,
+static SDValue getV4X86ShuffleImm8ForMask(ArrayRef<int> Mask, SDLoc DL,
                                           SelectionDAG &DAG) {
   assert(Mask.size() == 4 && "Only 4-lane shuffle masks");
   assert(Mask[0] >= -1 && Mask[0] < 4 && "Out of bound mask element!");
@@ -6072,7 +6315,7 @@ static SDValue getV4X86ShuffleImm8ForMask(ArrayRef<int> Mask,
   Imm |= (Mask[1] == -1 ? 1 : Mask[1]) << 2;
   Imm |= (Mask[2] == -1 ? 2 : Mask[2]) << 4;
   Imm |= (Mask[3] == -1 ? 3 : Mask[3]) << 6;
-  return DAG.getConstant(Imm, MVT::i8);
+  return DAG.getConstant(Imm, DL, MVT::i8);
 }
 
 /// \brief Try to emit a blend instruction for a shuffle using bit math.
@@ -6086,8 +6329,9 @@ static SDValue lowerVectorShuffleAsBitBlend(SDLoc DL, MVT VT, SDValue V1,
   assert(VT.isInteger() && "Only supports integer vector types!");
   MVT EltVT = VT.getScalarType();
   int NumEltBits = EltVT.getSizeInBits();
-  SDValue Zero = DAG.getConstant(0, EltVT);
-  SDValue AllOnes = DAG.getConstant(APInt::getAllOnesValue(NumEltBits), EltVT);
+  SDValue Zero = DAG.getConstant(0, DL, EltVT);
+  SDValue AllOnes = DAG.getConstant(APInt::getAllOnesValue(NumEltBits), DL,
+                                    EltVT);
   SmallVector<SDValue, 16> MaskOps;
   for (int i = 0, Size = Mask.size(); i < Size; ++i) {
     if (Mask[i] != -1 && Mask[i] != i && Mask[i] != i + Size)
@@ -6099,10 +6343,9 @@ static SDValue lowerVectorShuffleAsBitBlend(SDLoc DL, MVT VT, SDValue V1,
   V1 = DAG.getNode(ISD::AND, DL, VT, V1, V1Mask);
   // We have to cast V2 around.
   MVT MaskVT = MVT::getVectorVT(MVT::i64, VT.getSizeInBits() / 64);
-  V2 = DAG.getNode(ISD::BITCAST, DL, VT,
-                   DAG.getNode(X86ISD::ANDNP, DL, MaskVT,
-                               DAG.getNode(ISD::BITCAST, DL, MaskVT, V1Mask),
-                               DAG.getNode(ISD::BITCAST, DL, MaskVT, V2)));
+  V2 = DAG.getBitcast(VT, DAG.getNode(X86ISD::ANDNP, DL, MaskVT,
+                                      DAG.getBitcast(MaskVT, V1Mask),
+                                      DAG.getBitcast(MaskVT, V2)));
   return DAG.getNode(ISD::OR, DL, VT, V1, V2);
 }
 
@@ -6133,7 +6376,7 @@ static SDValue lowerVectorShuffleAsBlend(SDLoc DL, MVT VT, SDValue V1,
   case MVT::v4f64:
   case MVT::v8f32:
     return DAG.getNode(X86ISD::BLENDI, DL, VT, V1, V2,
-                       DAG.getConstant(BlendMask, MVT::i8));
+                       DAG.getConstant(BlendMask, DL, MVT::i8));
 
   case MVT::v4i64:
   case MVT::v8i32:
@@ -6153,11 +6396,11 @@ static SDValue lowerVectorShuffleAsBlend(SDLoc DL, MVT VT, SDValue V1,
             BlendMask |= 1u << (i * Scale + j);
 
       MVT BlendVT = VT.getSizeInBits() > 128 ? MVT::v8i32 : MVT::v4i32;
-      V1 = DAG.getNode(ISD::BITCAST, DL, BlendVT, V1);
-      V2 = DAG.getNode(ISD::BITCAST, DL, BlendVT, V2);
-      return DAG.getNode(ISD::BITCAST, DL, VT,
-                         DAG.getNode(X86ISD::BLENDI, DL, BlendVT, V1, V2,
-                                     DAG.getConstant(BlendMask, MVT::i8)));
+      V1 = DAG.getBitcast(BlendVT, V1);
+      V2 = DAG.getBitcast(BlendVT, V2);
+      return DAG.getBitcast(
+          VT, DAG.getNode(X86ISD::BLENDI, DL, BlendVT, V1, V2,
+                          DAG.getConstant(BlendMask, DL, MVT::i8)));
     }
     // FALLTHROUGH
   case MVT::v8i16: {
@@ -6170,11 +6413,11 @@ static SDValue lowerVectorShuffleAsBlend(SDLoc DL, MVT VT, SDValue V1,
         for (int j = 0; j < Scale; ++j)
           BlendMask |= 1u << (i * Scale + j);
 
-    V1 = DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, V1);
-    V2 = DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, V2);
-    return DAG.getNode(ISD::BITCAST, DL, VT,
-                       DAG.getNode(X86ISD::BLENDI, DL, MVT::v8i16, V1, V2,
-                                   DAG.getConstant(BlendMask, MVT::i8)));
+    V1 = DAG.getBitcast(MVT::v8i16, V1);
+    V2 = DAG.getBitcast(MVT::v8i16, V2);
+    return DAG.getBitcast(VT,
+                          DAG.getNode(X86ISD::BLENDI, DL, MVT::v8i16, V1, V2,
+                                      DAG.getConstant(BlendMask, DL, MVT::i8)));
   }
 
   case MVT::v16i16: {
@@ -6188,12 +6431,15 @@ static SDValue lowerVectorShuffleAsBlend(SDLoc DL, MVT VT, SDValue V1,
         if (RepeatedMask[i] >= 16)
           BlendMask |= 1u << i;
       return DAG.getNode(X86ISD::BLENDI, DL, MVT::v16i16, V1, V2,
-                         DAG.getConstant(BlendMask, MVT::i8));
+                         DAG.getConstant(BlendMask, DL, MVT::i8));
     }
   }
     // FALLTHROUGH
   case MVT::v16i8:
   case MVT::v32i8: {
+    assert((VT.getSizeInBits() == 128 || Subtarget->hasAVX2()) &&
+           "256-bit byte-blends require AVX2 support!");
+
     // Scale the blend by the number of bytes per element.
     int Scale = VT.getScalarSizeInBits() / 8;
 
@@ -6217,15 +6463,15 @@ static SDValue lowerVectorShuffleAsBlend(SDLoc DL, MVT VT, SDValue V1,
       for (int j = 0; j < Scale; ++j)
         VSELECTMask.push_back(
             Mask[i] < 0 ? DAG.getUNDEF(MVT::i8)
-                        : DAG.getConstant(Mask[i] < Size ? -1 : 0, MVT::i8));
+                        : DAG.getConstant(Mask[i] < Size ? -1 : 0, DL,
+                                          MVT::i8));
 
-    V1 = DAG.getNode(ISD::BITCAST, DL, BlendVT, V1);
-    V2 = DAG.getNode(ISD::BITCAST, DL, BlendVT, V2);
-    return DAG.getNode(
-        ISD::BITCAST, DL, VT,
-        DAG.getNode(ISD::VSELECT, DL, BlendVT,
-                    DAG.getNode(ISD::BUILD_VECTOR, DL, BlendVT, VSELECTMask),
-                    V1, V2));
+    V1 = DAG.getBitcast(BlendVT, V1);
+    V2 = DAG.getBitcast(BlendVT, V2);
+    return DAG.getBitcast(VT, DAG.getNode(ISD::VSELECT, DL, BlendVT,
+                                          DAG.getNode(ISD::BUILD_VECTOR, DL,
+                                                      BlendVT, VSELECTMask),
+                                          V1, V2));
   }
 
   default:
@@ -6406,12 +6652,12 @@ static SDValue lowerVectorShuffleAsByteRotate(SDLoc DL, MVT VT, SDValue V1,
   if (Subtarget->hasSSSE3()) {
     // Cast the inputs to i8 vector of correct length to match PALIGNR.
     MVT AlignVT = MVT::getVectorVT(MVT::i8, 16 * NumLanes);
-    Lo = DAG.getNode(ISD::BITCAST, DL, AlignVT, Lo);
-    Hi = DAG.getNode(ISD::BITCAST, DL, AlignVT, Hi);
+    Lo = DAG.getBitcast(AlignVT, Lo);
+    Hi = DAG.getBitcast(AlignVT, Hi);
 
-    return DAG.getNode(ISD::BITCAST, DL, VT,
-                       DAG.getNode(X86ISD::PALIGNR, DL, AlignVT, Hi, Lo,
-                                   DAG.getConstant(Rotation * Scale, MVT::i8)));
+    return DAG.getBitcast(
+        VT, DAG.getNode(X86ISD::PALIGNR, DL, AlignVT, Hi, Lo,
+                        DAG.getConstant(Rotation * Scale, DL, MVT::i8)));
   }
 
   assert(VT.getSizeInBits() == 128 &&
@@ -6424,15 +6670,15 @@ static SDValue lowerVectorShuffleAsByteRotate(SDLoc DL, MVT VT, SDValue V1,
   int HiByteShift = Rotation * Scale;
 
   // Cast the inputs to v2i64 to match PSLLDQ/PSRLDQ.
-  Lo = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Lo);
-  Hi = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Hi);
+  Lo = DAG.getBitcast(MVT::v2i64, Lo);
+  Hi = DAG.getBitcast(MVT::v2i64, Hi);
 
   SDValue LoShift = DAG.getNode(X86ISD::VSHLDQ, DL, MVT::v2i64, Lo,
-                                DAG.getConstant(LoByteShift, MVT::i8));
+                                DAG.getConstant(LoByteShift, DL, MVT::i8));
   SDValue HiShift = DAG.getNode(X86ISD::VSRLDQ, DL, MVT::v2i64, Hi,
-                                DAG.getConstant(HiByteShift, MVT::i8));
-  return DAG.getNode(ISD::BITCAST, DL, VT,
-                     DAG.getNode(ISD::OR, DL, MVT::v2i64, LoShift, HiShift));
+                                DAG.getConstant(HiByteShift, DL, MVT::i8));
+  return DAG.getBitcast(VT,
+                        DAG.getNode(ISD::OR, DL, MVT::v2i64, LoShift, HiShift));
 }
 
 /// \brief Compute whether each element of a shuffle is zeroable.
@@ -6489,11 +6735,12 @@ static SDValue lowerVectorShuffleAsBitMask(SDLoc DL, MVT VT, SDValue V1,
   MVT EltVT = VT.getScalarType();
   int NumEltBits = EltVT.getSizeInBits();
   MVT IntEltVT = MVT::getIntegerVT(NumEltBits);
-  SDValue Zero = DAG.getConstant(0, IntEltVT);
-  SDValue AllOnes = DAG.getConstant(APInt::getAllOnesValue(NumEltBits), IntEltVT);
+  SDValue Zero = DAG.getConstant(0, DL, IntEltVT);
+  SDValue AllOnes = DAG.getConstant(APInt::getAllOnesValue(NumEltBits), DL,
+                                    IntEltVT);
   if (EltVT.isFloatingPoint()) {
-    Zero = DAG.getNode(ISD::BITCAST, DL, EltVT, Zero);
-    AllOnes = DAG.getNode(ISD::BITCAST, DL, EltVT, AllOnes);
+    Zero = DAG.getBitcast(EltVT, Zero);
+    AllOnes = DAG.getBitcast(EltVT, AllOnes);
   }
   SmallVector<SDValue, 16> VMaskOps(Mask.size(), Zero);
   SmallBitVector Zeroable = computeZeroableShuffleElements(Mask, V1, V2);
@@ -6585,10 +6832,11 @@ static SDValue lowerVectorShuffleAsShift(SDLoc DL, MVT VT, SDValue V1,
     MVT ShiftVT = MVT::getVectorVT(ShiftSVT, Size / Scale);
     assert(DAG.getTargetLoweringInfo().isTypeLegal(ShiftVT) &&
            "Illegal integer vector type");
-    V = DAG.getNode(ISD::BITCAST, DL, ShiftVT, V);
+    V = DAG.getBitcast(ShiftVT, V);
 
-    V = DAG.getNode(OpCode, DL, ShiftVT, V, DAG.getConstant(ShiftAmt, MVT::i8));
-    return DAG.getNode(ISD::BITCAST, DL, VT, V);
+    V = DAG.getNode(OpCode, DL, ShiftVT, V,
+                    DAG.getConstant(ShiftAmt, DL, MVT::i8));
+    return DAG.getBitcast(VT, V);
   };
 
   // SSE/AVX supports logical shifts up to 64-bit integers - so we can just
@@ -6629,31 +6877,28 @@ static SDValue lowerVectorShuffleAsSpecificZeroOrAnyExtend(
   if (Subtarget->hasSSE41()) {
     MVT ExtVT = MVT::getVectorVT(MVT::getIntegerVT(EltBits * Scale),
                                  NumElements / Scale);
-    return DAG.getNode(ISD::BITCAST, DL, VT,
-                       DAG.getNode(X86ISD::VZEXT, DL, ExtVT, InputV));
+    return DAG.getBitcast(VT, DAG.getNode(X86ISD::VZEXT, DL, ExtVT, InputV));
   }
 
   // For any extends we can cheat for larger element sizes and use shuffle
   // instructions that can fold with a load and/or copy.
   if (AnyExt && EltBits == 32) {
     int PSHUFDMask[4] = {0, -1, 1, -1};
-    return DAG.getNode(
-        ISD::BITCAST, DL, VT,
-        DAG.getNode(X86ISD::PSHUFD, DL, MVT::v4i32,
-                    DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, InputV),
-                    getV4X86ShuffleImm8ForMask(PSHUFDMask, DAG)));
+    return DAG.getBitcast(
+        VT, DAG.getNode(X86ISD::PSHUFD, DL, MVT::v4i32,
+                        DAG.getBitcast(MVT::v4i32, InputV),
+                        getV4X86ShuffleImm8ForMask(PSHUFDMask, DL, DAG)));
   }
   if (AnyExt && EltBits == 16 && Scale > 2) {
     int PSHUFDMask[4] = {0, -1, 0, -1};
     InputV = DAG.getNode(X86ISD::PSHUFD, DL, MVT::v4i32,
-                         DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, InputV),
-                         getV4X86ShuffleImm8ForMask(PSHUFDMask, DAG));
+                         DAG.getBitcast(MVT::v4i32, InputV),
+                         getV4X86ShuffleImm8ForMask(PSHUFDMask, DL, DAG));
     int PSHUFHWMask[4] = {1, -1, -1, -1};
-    return DAG.getNode(
-        ISD::BITCAST, DL, VT,
-        DAG.getNode(X86ISD::PSHUFHW, DL, MVT::v8i16,
-                    DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, InputV),
-                    getV4X86ShuffleImm8ForMask(PSHUFHWMask, DAG)));
+    return DAG.getBitcast(
+        VT, DAG.getNode(X86ISD::PSHUFHW, DL, MVT::v8i16,
+                        DAG.getBitcast(MVT::v8i16, InputV),
+                        getV4X86ShuffleImm8ForMask(PSHUFHWMask, DL, DAG)));
   }
 
   // If this would require more than 2 unpack instructions to expand, use
@@ -6664,12 +6909,12 @@ static SDValue lowerVectorShuffleAsSpecificZeroOrAnyExtend(
     SDValue PSHUFBMask[16];
     for (int i = 0; i < 16; ++i)
       PSHUFBMask[i] =
-          DAG.getConstant((i % Scale == 0) ? i / Scale : 0x80, MVT::i8);
-    InputV = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, InputV);
-    return DAG.getNode(ISD::BITCAST, DL, VT,
-                       DAG.getNode(X86ISD::PSHUFB, DL, MVT::v16i8, InputV,
-                                   DAG.getNode(ISD::BUILD_VECTOR, DL,
-                                               MVT::v16i8, PSHUFBMask)));
+          DAG.getConstant((i % Scale == 0) ? i / Scale : 0x80, DL, MVT::i8);
+    InputV = DAG.getBitcast(MVT::v16i8, InputV);
+    return DAG.getBitcast(VT,
+                          DAG.getNode(X86ISD::PSHUFB, DL, MVT::v16i8, InputV,
+                                      DAG.getNode(ISD::BUILD_VECTOR, DL,
+                                                  MVT::v16i8, PSHUFBMask)));
   }
 
   // Otherwise emit a sequence of unpacks.
@@ -6677,13 +6922,13 @@ static SDValue lowerVectorShuffleAsSpecificZeroOrAnyExtend(
     MVT InputVT = MVT::getVectorVT(MVT::getIntegerVT(EltBits), NumElements);
     SDValue Ext = AnyExt ? DAG.getUNDEF(InputVT)
                          : getZeroVector(InputVT, Subtarget, DAG, DL);
-    InputV = DAG.getNode(ISD::BITCAST, DL, InputVT, InputV);
+    InputV = DAG.getBitcast(InputVT, InputV);
     InputV = DAG.getNode(X86ISD::UNPCKL, DL, InputVT, InputV, Ext);
     Scale /= 2;
     EltBits *= 2;
     NumElements /= 2;
   } while (Scale > 1);
-  return DAG.getNode(ISD::BITCAST, DL, VT, InputV);
+  return DAG.getBitcast(VT, InputV);
 }
 
 /// \brief Try to lower a vector shuffle as a zero extension on any microarch.
@@ -6781,9 +7026,9 @@ static SDValue lowerVectorShuffleAsZeroOrAnyExtend(
   };
 
   if (SDValue V = CanZExtLowHalf()) {
-    V = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, V);
+    V = DAG.getBitcast(MVT::v2i64, V);
     V = DAG.getNode(X86ISD::VZEXT_MOVL, DL, MVT::v2i64, V);
-    return DAG.getNode(ISD::BITCAST, DL, VT, V);
+    return DAG.getBitcast(VT, V);
   }
 
   // No viable ext lowering found.
@@ -6806,8 +7051,13 @@ static SDValue getScalarValueForVectorElement(SDValue V, int Idx,
     return SDValue();
 
   if (V.getOpcode() == ISD::BUILD_VECTOR ||
-      (Idx == 0 && V.getOpcode() == ISD::SCALAR_TO_VECTOR))
-    return DAG.getNode(ISD::BITCAST, SDLoc(V), EltVT, V.getOperand(Idx));
+      (Idx == 0 && V.getOpcode() == ISD::SCALAR_TO_VECTOR)) {
+    // Ensure the scalar operand is the same size as the destination.
+    // FIXME: Add support for scalar truncation where possible.
+    SDValue S = V.getOperand(Idx);
+    if (EltVT.getSizeInBits() == S.getSimpleValueType().getSizeInBits())
+      return DAG.getNode(ISD::BITCAST, SDLoc(V), EltVT, S);
+  }
 
   return SDValue();
 }
@@ -6828,7 +7078,7 @@ static bool isShuffleFoldableLoad(SDValue V) {
 /// This is a common pattern that we have especially efficient patterns to lower
 /// across all subtarget feature sets.
 static SDValue lowerVectorShuffleAsElementInsertion(
-    MVT VT, SDLoc DL, SDValue V1, SDValue V2, ArrayRef<int> Mask,
+    SDLoc DL, MVT VT, SDValue V1, SDValue V2, ArrayRef<int> Mask,
     const X86Subtarget *Subtarget, SelectionDAG &DAG) {
   SmallBitVector Zeroable = computeZeroableShuffleElements(Mask, V1, V2);
   MVT ExtVT = VT;
@@ -6852,7 +7102,7 @@ static SDValue lowerVectorShuffleAsElementInsertion(
   if (SDValue V2S = getScalarValueForVectorElement(
           V2, Mask[V2Index] - Mask.size(), DAG)) {
     // We need to zext the scalar if it is smaller than an i32.
-    V2S = DAG.getNode(ISD::BITCAST, DL, EltVT, V2S);
+    V2S = DAG.getBitcast(EltVT, V2S);
     if (EltVT == MVT::i8 || EltVT == MVT::i16) {
       // Using zext to expand a narrow element won't work for non-zero
       // insertions.
@@ -6901,7 +7151,7 @@ static SDValue lowerVectorShuffleAsElementInsertion(
 
   V2 = DAG.getNode(X86ISD::VZEXT_MOVL, DL, ExtVT, V2);
   if (ExtVT != VT)
-    V2 = DAG.getNode(ISD::BITCAST, DL, VT, V2);
+    V2 = DAG.getBitcast(VT, V2);
 
   if (V2Index != 0) {
     // If we have 4 or fewer lanes we can cheaply shuffle the element into
@@ -6913,13 +7163,13 @@ static SDValue lowerVectorShuffleAsElementInsertion(
       V2Shuffle[V2Index] = 0;
       V2 = DAG.getVectorShuffle(VT, DL, V2, DAG.getUNDEF(VT), V2Shuffle);
     } else {
-      V2 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, V2);
+      V2 = DAG.getBitcast(MVT::v2i64, V2);
       V2 = DAG.getNode(
           X86ISD::VSHLDQ, DL, MVT::v2i64, V2,
           DAG.getConstant(
-              V2Index * EltVT.getSizeInBits()/8,
+              V2Index * EltVT.getSizeInBits()/8, DL,
               DAG.getTargetLoweringInfo().getScalarShiftAmountTy(MVT::v2i64)));
-      V2 = DAG.getNode(ISD::BITCAST, DL, VT, V2);
+      V2 = DAG.getBitcast(VT, V2);
     }
   }
   return V2;
@@ -6930,7 +7180,7 @@ static SDValue lowerVectorShuffleAsElementInsertion(
 /// For convenience, this code also bundles all of the subtarget feature set
 /// filtering. While a little annoying to re-dispatch on type here, there isn't
 /// a convenient way to factor it out.
-static SDValue lowerVectorShuffleAsBroadcast(MVT VT, SDLoc DL, SDValue V,
+static SDValue lowerVectorShuffleAsBroadcast(SDLoc DL, MVT VT, SDValue V,
                                              ArrayRef<int> Mask,
                                              const X86Subtarget *Subtarget,
                                              SelectionDAG &DAG) {
@@ -6951,8 +7201,8 @@ static SDValue lowerVectorShuffleAsBroadcast(MVT VT, SDLoc DL, SDValue V,
                                             "a sorted mask where the broadcast "
                                             "comes from V1.");
 
-  // Go up the chain of (vector) values to try and find a scalar load that
-  // we can combine with the broadcast.
+  // Go up the chain of (vector) values to find a scalar load that we can
+  // combine with the broadcast.
   for (;;) {
     switch (V.getOpcode()) {
     case ISD::CONCAT_VECTORS: {
@@ -6989,12 +7239,12 @@ static SDValue lowerVectorShuffleAsBroadcast(MVT VT, SDLoc DL, SDValue V,
       (V.getOpcode() == ISD::SCALAR_TO_VECTOR && BroadcastIdx == 0)) {
     V = V.getOperand(BroadcastIdx);
 
-    // If the scalar isn't a load we can't broadcast from it in AVX1, only with
-    // AVX2.
+    // If the scalar isn't a load, we can't broadcast from it in AVX1.
+    // Only AVX2 has register broadcasts.
     if (!Subtarget->hasAVX2() && !isShuffleFoldableLoad(V))
       return SDValue();
   } else if (BroadcastIdx != 0 || !Subtarget->hasAVX2()) {
-    // We can't broadcast from a vector register w/o AVX2, and we can only
+    // We can't broadcast from a vector register without AVX2, and we can only
     // broadcast from the zero-element of a vector register.
     return SDValue();
   }
@@ -7077,7 +7327,7 @@ static SDValue lowerVectorShuffleAsInsertPS(SDValue Op, SDValue V1, SDValue V2,
   // Insert the V2 element into the desired position.
   SDLoc DL(Op);
   return DAG.getNode(X86ISD::INSERTPS, DL, MVT::v4f32, V1, V2,
-                     DAG.getConstant(InsertPSMask, MVT::i8));
+                     DAG.getConstant(InsertPSMask, DL, MVT::i8));
 }
 
 /// \brief Try to lower a shuffle as a permute of the inputs followed by an
@@ -7089,7 +7339,7 @@ static SDValue lowerVectorShuffleAsInsertPS(SDValue Op, SDValue V1, SDValue V2,
 /// because for floating point vectors we have a generalized SHUFPS lowering
 /// strategy that handles everything that doesn't *exactly* match an unpack,
 /// making this clever lowering unnecessary.
-static SDValue lowerVectorShuffleAsUnpack(MVT VT, SDLoc DL, SDValue V1,
+static SDValue lowerVectorShuffleAsUnpack(SDLoc DL, MVT VT, SDValue V1,
                                           SDValue V2, ArrayRef<int> Mask,
                                           SelectionDAG &DAG) {
   assert(!VT.isFloatingPoint() &&
@@ -7142,13 +7392,13 @@ static SDValue lowerVectorShuffleAsUnpack(MVT VT, SDLoc DL, SDValue V1,
     V2 = DAG.getVectorShuffle(VT, DL, V2, DAG.getUNDEF(VT), V2Mask);
 
     // Cast the inputs to the type we will use to unpack them.
-    V1 = DAG.getNode(ISD::BITCAST, DL, UnpackVT, V1);
-    V2 = DAG.getNode(ISD::BITCAST, DL, UnpackVT, V2);
+    V1 = DAG.getBitcast(UnpackVT, V1);
+    V2 = DAG.getBitcast(UnpackVT, V2);
 
     // Unpack the inputs and cast the result back to the desired type.
-    return DAG.getNode(ISD::BITCAST, DL, VT,
-                       DAG.getNode(UnpackLo ? X86ISD::UNPCKL : X86ISD::UNPCKH,
-                                   DL, UnpackVT, V1, V2));
+    return DAG.getBitcast(
+        VT, DAG.getNode(UnpackLo ? X86ISD::UNPCKL : X86ISD::UNPCKH, DL,
+                        UnpackVT, V1, V2));
   };
 
   // We try each unpack from the largest to the smallest to try and find one
@@ -7216,7 +7466,7 @@ static SDValue lowerV2F64VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
   if (isSingleInputShuffleMask(Mask)) {
     // Use low duplicate instructions for masks that match their pattern.
     if (Subtarget->hasSSE3())
-      if (isShuffleEquivalent(V1, V2, Mask, 0, 0))
+      if (isShuffleEquivalent(V1, V2, Mask, {0, 0}))
         return DAG.getNode(X86ISD::MOVDDUP, DL, MVT::v2f64, V1);
 
     // Straight shuffle of a single input vector. Simulate this by using the
@@ -7227,11 +7477,11 @@ static SDValue lowerV2F64VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
       // If we have AVX, we can use VPERMILPS which will allow folding a load
       // into the shuffle.
       return DAG.getNode(X86ISD::VPERMILPI, DL, MVT::v2f64, V1,
-                         DAG.getConstant(SHUFPDMask, MVT::i8));
+                         DAG.getConstant(SHUFPDMask, DL, MVT::i8));
     }
 
-    return DAG.getNode(X86ISD::SHUFP, SDLoc(Op), MVT::v2f64, V1, V1,
-                       DAG.getConstant(SHUFPDMask, MVT::i8));
+    return DAG.getNode(X86ISD::SHUFP, DL, MVT::v2f64, V1, V1,
+                       DAG.getConstant(SHUFPDMask, DL, MVT::i8));
   }
   assert(Mask[0] >= 0 && Mask[0] < 2 && "Non-canonicalized blend!");
   assert(Mask[1] >= 2 && "Non-canonicalized blend!");
@@ -7239,20 +7489,21 @@ static SDValue lowerV2F64VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
   // If we have a single input, insert that into V1 if we can do so cheaply.
   if ((Mask[0] >= 2) + (Mask[1] >= 2) == 1) {
     if (SDValue Insertion = lowerVectorShuffleAsElementInsertion(
-            MVT::v2f64, DL, V1, V2, Mask, Subtarget, DAG))
+            DL, MVT::v2f64, V1, V2, Mask, Subtarget, DAG))
       return Insertion;
     // Try inverting the insertion since for v2 masks it is easy to do and we
     // can't reliably sort the mask one way or the other.
     int InverseMask[2] = {Mask[0] < 0 ? -1 : (Mask[0] ^ 2),
                           Mask[1] < 0 ? -1 : (Mask[1] ^ 2)};
     if (SDValue Insertion = lowerVectorShuffleAsElementInsertion(
-            MVT::v2f64, DL, V2, V1, InverseMask, Subtarget, DAG))
+            DL, MVT::v2f64, V2, V1, InverseMask, Subtarget, DAG))
       return Insertion;
   }
 
   // Try to use one of the special instruction patterns to handle two common
   // blend patterns if a zero-blend above didn't work.
-  if (isShuffleEquivalent(V1, V2, Mask, 0, 3) || isShuffleEquivalent(V1, V2, Mask, 1, 3))
+  if (isShuffleEquivalent(V1, V2, Mask, {0, 3}) ||
+      isShuffleEquivalent(V1, V2, Mask, {1, 3}))
     if (SDValue V1S = getScalarValueForVectorElement(V1, Mask[0], DAG))
       // We can either use a special instruction to load over the low double or
       // to move just the low double.
@@ -7267,14 +7518,14 @@ static SDValue lowerV2F64VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
       return Blend;
 
   // Use dedicated unpack instructions for masks that match their pattern.
-  if (isShuffleEquivalent(V1, V2, Mask, 0, 2))
+  if (isShuffleEquivalent(V1, V2, Mask, {0, 2}))
     return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v2f64, V1, V2);
-  if (isShuffleEquivalent(V1, V2, Mask, 1, 3))
+  if (isShuffleEquivalent(V1, V2, Mask, {1, 3}))
     return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v2f64, V1, V2);
 
   unsigned SHUFPDMask = (Mask[0] == 1) | (((Mask[1] - 2) == 1) << 1);
-  return DAG.getNode(X86ISD::SHUFP, SDLoc(Op), MVT::v2f64, V1, V2,
-                     DAG.getConstant(SHUFPDMask, MVT::i8));
+  return DAG.getNode(X86ISD::SHUFP, DL, MVT::v2f64, V1, V2,
+                     DAG.getConstant(SHUFPDMask, DL, MVT::i8));
 }
 
 /// \brief Handle lowering of 2-lane 64-bit integer shuffles.
@@ -7296,21 +7547,21 @@ static SDValue lowerV2I64VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
 
   if (isSingleInputShuffleMask(Mask)) {
     // Check for being able to broadcast a single element.
-    if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(MVT::v2i64, DL, V1,
+    if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v2i64, V1,
                                                           Mask, Subtarget, DAG))
       return Broadcast;
 
     // Straight shuffle of a single input vector. For everything from SSE2
     // onward this has a single fast instruction with no scary immediates.
     // We have to map the mask as it is actually a v4i32 shuffle instruction.
-    V1 = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, V1);
+    V1 = DAG.getBitcast(MVT::v4i32, V1);
     int WidenedMask[4] = {
         std::max(Mask[0], 0) * 2, std::max(Mask[0], 0) * 2 + 1,
         std::max(Mask[1], 0) * 2, std::max(Mask[1], 0) * 2 + 1};
-    return DAG.getNode(
-        ISD::BITCAST, DL, MVT::v2i64,
-        DAG.getNode(X86ISD::PSHUFD, SDLoc(Op), MVT::v4i32, V1,
-                    getV4X86ShuffleImm8ForMask(WidenedMask, DAG)));
+    return DAG.getBitcast(
+        MVT::v2i64,
+        DAG.getNode(X86ISD::PSHUFD, DL, MVT::v4i32, V1,
+                    getV4X86ShuffleImm8ForMask(WidenedMask, DL, DAG)));
   }
   assert(Mask[0] != -1 && "No undef lanes in multi-input v2 shuffles!");
   assert(Mask[1] != -1 && "No undef lanes in multi-input v2 shuffles!");
@@ -7329,12 +7580,12 @@ static SDValue lowerV2I64VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
   };
   if (SDValue V1Pack = GetPackNode(V1))
     if (SDValue V2Pack = GetPackNode(V2))
-      return DAG.getNode(ISD::BITCAST, DL, MVT::v2i64,
-                         DAG.getNode(X86ISD::PACKUS, DL, MVT::v16i8,
-                                     Mask[0] == 0 ? V1Pack.getOperand(0)
-                                                  : V1Pack.getOperand(1),
-                                     Mask[1] == 2 ? V2Pack.getOperand(0)
-                                                  : V2Pack.getOperand(1)));
+      return DAG.getBitcast(MVT::v2i64,
+                            DAG.getNode(X86ISD::PACKUS, DL, MVT::v16i8,
+                                        Mask[0] == 0 ? V1Pack.getOperand(0)
+                                                     : V1Pack.getOperand(1),
+                                        Mask[1] == 2 ? V2Pack.getOperand(0)
+                                                     : V2Pack.getOperand(1)));
 
   // Try to use shift instructions.
   if (SDValue Shift =
@@ -7344,13 +7595,13 @@ static SDValue lowerV2I64VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
   // When loading a scalar and then shuffling it into a vector we can often do
   // the insertion cheaply.
   if (SDValue Insertion = lowerVectorShuffleAsElementInsertion(
-          MVT::v2i64, DL, V1, V2, Mask, Subtarget, DAG))
+          DL, MVT::v2i64, V1, V2, Mask, Subtarget, DAG))
     return Insertion;
   // Try inverting the insertion since for v2 masks it is easy to do and we
   // can't reliably sort the mask one way or the other.
   int InverseMask[2] = {Mask[0] ^ 2, Mask[1] ^ 2};
   if (SDValue Insertion = lowerVectorShuffleAsElementInsertion(
-          MVT::v2i64, DL, V2, V1, InverseMask, Subtarget, DAG))
+          DL, MVT::v2i64, V2, V1, InverseMask, Subtarget, DAG))
     return Insertion;
 
   // We have different paths for blend lowering, but they all must use the
@@ -7362,9 +7613,9 @@ static SDValue lowerV2I64VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
       return Blend;
 
   // Use dedicated unpack instructions for masks that match their pattern.
-  if (isShuffleEquivalent(V1, V2, Mask, 0, 2))
+  if (isShuffleEquivalent(V1, V2, Mask, {0, 2}))
     return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v2i64, V1, V2);
-  if (isShuffleEquivalent(V1, V2, Mask, 1, 3))
+  if (isShuffleEquivalent(V1, V2, Mask, {1, 3}))
     return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v2i64, V1, V2);
 
   // Try to use byte rotation instructions.
@@ -7384,10 +7635,10 @@ static SDValue lowerV2I64VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
   // incur 2 cycles of stall for integer vectors on Nehalem and older chips.
   // However, all the alternatives are still more cycles and newer chips don't
   // have this problem. It would be really nice if x86 had better shuffles here.
-  V1 = DAG.getNode(ISD::BITCAST, DL, MVT::v2f64, V1);
-  V2 = DAG.getNode(ISD::BITCAST, DL, MVT::v2f64, V2);
-  return DAG.getNode(ISD::BITCAST, DL, MVT::v2i64,
-                     DAG.getVectorShuffle(MVT::v2f64, DL, V1, V2, Mask));
+  V1 = DAG.getBitcast(MVT::v2f64, V1);
+  V2 = DAG.getBitcast(MVT::v2f64, V2);
+  return DAG.getBitcast(MVT::v2i64,
+                        DAG.getVectorShuffle(MVT::v2f64, DL, V1, V2, Mask));
 }
 
 /// \brief Test whether this can be lowered with a single SHUFPS instruction.
@@ -7444,7 +7695,7 @@ static SDValue lowerVectorShuffleWithSHUFPS(SDLoc DL, MVT VT,
       int V1Index = V2AdjIndex;
       int BlendMask[4] = {Mask[V2Index] - 4, 0, Mask[V1Index], 0};
       V2 = DAG.getNode(X86ISD::SHUFP, DL, VT, V2, V1,
-                       getV4X86ShuffleImm8ForMask(BlendMask, DAG));
+                       getV4X86ShuffleImm8ForMask(BlendMask, DL, DAG));
 
       // Now proceed to reconstruct the final blend as we have the necessary
       // high or low half formed.
@@ -7483,7 +7734,7 @@ static SDValue lowerVectorShuffleWithSHUFPS(SDLoc DL, MVT VT,
                           (Mask[0] >= 4 ? Mask[0] : Mask[1]) - 4,
                           (Mask[2] >= 4 ? Mask[2] : Mask[3]) - 4};
       V1 = DAG.getNode(X86ISD::SHUFP, DL, VT, V1, V2,
-                       getV4X86ShuffleImm8ForMask(BlendMask, DAG));
+                       getV4X86ShuffleImm8ForMask(BlendMask, DL, DAG));
 
       // Now we do a normal shuffle of V1 by giving V1 as both operands to
       // a blend.
@@ -7495,7 +7746,7 @@ static SDValue lowerVectorShuffleWithSHUFPS(SDLoc DL, MVT VT,
     }
   }
   return DAG.getNode(X86ISD::SHUFP, DL, VT, LowV, HighV,
-                     getV4X86ShuffleImm8ForMask(NewMask, DAG));
+                     getV4X86ShuffleImm8ForMask(NewMask, DL, DAG));
 }
 
 /// \brief Lower 4-lane 32-bit floating point shuffles.
@@ -7519,15 +7770,15 @@ static SDValue lowerV4F32VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
 
   if (NumV2Elements == 0) {
     // Check for being able to broadcast a single element.
-    if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(MVT::v4f32, DL, V1,
+    if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v4f32, V1,
                                                           Mask, Subtarget, DAG))
       return Broadcast;
 
     // Use even/odd duplicate instructions for masks that match their pattern.
     if (Subtarget->hasSSE3()) {
-      if (isShuffleEquivalent(V1, V2, Mask, 0, 0, 2, 2))
+      if (isShuffleEquivalent(V1, V2, Mask, {0, 0, 2, 2}))
         return DAG.getNode(X86ISD::MOVSLDUP, DL, MVT::v4f32, V1);
-      if (isShuffleEquivalent(V1, V2, Mask, 1, 1, 3, 3))
+      if (isShuffleEquivalent(V1, V2, Mask, {1, 1, 3, 3}))
         return DAG.getNode(X86ISD::MOVSHDUP, DL, MVT::v4f32, V1);
     }
 
@@ -7535,13 +7786,13 @@ static SDValue lowerV4F32VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
       // If we have AVX, we can use VPERMILPS which will allow folding a load
       // into the shuffle.
       return DAG.getNode(X86ISD::VPERMILPI, DL, MVT::v4f32, V1,
-                         getV4X86ShuffleImm8ForMask(Mask, DAG));
+                         getV4X86ShuffleImm8ForMask(Mask, DL, DAG));
     }
 
     // Otherwise, use a straight shuffle of a single input vector. We pass the
     // input vector to both operands to simulate this with a SHUFPS.
     return DAG.getNode(X86ISD::SHUFP, DL, MVT::v4f32, V1, V1,
-                       getV4X86ShuffleImm8ForMask(Mask, DAG));
+                       getV4X86ShuffleImm8ForMask(Mask, DL, DAG));
   }
 
   // There are special ways we can lower some single-element blends. However, we
@@ -7550,7 +7801,7 @@ static SDValue lowerV4F32VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
   // when the V2 input is targeting element 0 of the mask -- that is the fast
   // case here.
   if (NumV2Elements == 1 && Mask[0] >= 4)
-    if (SDValue V = lowerVectorShuffleAsElementInsertion(MVT::v4f32, DL, V1, V2,
+    if (SDValue V = lowerVectorShuffleAsElementInsertion(DL, MVT::v4f32, V1, V2,
                                                          Mask, Subtarget, DAG))
       return V;
 
@@ -7570,13 +7821,13 @@ static SDValue lowerV4F32VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
   }
 
   // Use dedicated unpack instructions for masks that match their pattern.
-  if (isShuffleEquivalent(V1, V2, Mask, 0, 4, 1, 5))
+  if (isShuffleEquivalent(V1, V2, Mask, {0, 4, 1, 5}))
     return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v4f32, V1, V2);
-  if (isShuffleEquivalent(V1, V2, Mask, 2, 6, 3, 7))
+  if (isShuffleEquivalent(V1, V2, Mask, {2, 6, 3, 7}))
     return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v4f32, V1, V2);
-  if (isShuffleEquivalent(V1, V2, Mask, 4, 0, 5, 1))
+  if (isShuffleEquivalent(V1, V2, Mask, {4, 0, 5, 1}))
     return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v4f32, V2, V1);
-  if (isShuffleEquivalent(V1, V2, Mask, 6, 2, 7, 3))
+  if (isShuffleEquivalent(V1, V2, Mask, {6, 2, 7, 3}))
     return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v4f32, V2, V1);
 
   // Otherwise fall back to a SHUFPS lowering strategy.
@@ -7610,7 +7861,7 @@ static SDValue lowerV4I32VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
 
   if (NumV2Elements == 0) {
     // Check for being able to broadcast a single element.
-    if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(MVT::v4i32, DL, V1,
+    if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v4i32, V1,
                                                           Mask, Subtarget, DAG))
       return Broadcast;
 
@@ -7621,13 +7872,13 @@ static SDValue lowerV4I32VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
     // so prevents folding a load into this instruction or making a copy.
     const int UnpackLoMask[] = {0, 0, 1, 1};
     const int UnpackHiMask[] = {2, 2, 3, 3};
-    if (isShuffleEquivalent(V1, V2, Mask, 0, 0, 1, 1))
+    if (isShuffleEquivalent(V1, V2, Mask, {0, 0, 1, 1}))
       Mask = UnpackLoMask;
-    else if (isShuffleEquivalent(V1, V2, Mask, 2, 2, 3, 3))
+    else if (isShuffleEquivalent(V1, V2, Mask, {2, 2, 3, 3}))
       Mask = UnpackHiMask;
 
     return DAG.getNode(X86ISD::PSHUFD, DL, MVT::v4i32, V1,
-                       getV4X86ShuffleImm8ForMask(Mask, DAG));
+                       getV4X86ShuffleImm8ForMask(Mask, DL, DAG));
   }
 
   // Try to use shift instructions.
@@ -7637,7 +7888,7 @@ static SDValue lowerV4I32VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
 
   // There are special ways we can lower some single-element blends.
   if (NumV2Elements == 1)
-    if (SDValue V = lowerVectorShuffleAsElementInsertion(MVT::v4i32, DL, V1, V2,
+    if (SDValue V = lowerVectorShuffleAsElementInsertion(DL, MVT::v4i32, V1, V2,
                                                          Mask, Subtarget, DAG))
       return V;
 
@@ -7654,13 +7905,13 @@ static SDValue lowerV4I32VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
     return Masked;
 
   // Use dedicated unpack instructions for masks that match their pattern.
-  if (isShuffleEquivalent(V1, V2, Mask, 0, 4, 1, 5))
+  if (isShuffleEquivalent(V1, V2, Mask, {0, 4, 1, 5}))
     return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v4i32, V1, V2);
-  if (isShuffleEquivalent(V1, V2, Mask, 2, 6, 3, 7))
+  if (isShuffleEquivalent(V1, V2, Mask, {2, 6, 3, 7}))
     return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v4i32, V1, V2);
-  if (isShuffleEquivalent(V1, V2, Mask, 4, 0, 5, 1))
+  if (isShuffleEquivalent(V1, V2, Mask, {4, 0, 5, 1}))
     return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v4i32, V2, V1);
-  if (isShuffleEquivalent(V1, V2, Mask, 6, 2, 7, 3))
+  if (isShuffleEquivalent(V1, V2, Mask, {6, 2, 7, 3}))
     return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v4i32, V2, V1);
 
   // Try to use byte rotation instructions.
@@ -7678,7 +7929,7 @@ static SDValue lowerV4I32VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
 
   // Try to lower by permuting the inputs into an unpack instruction.
   if (SDValue Unpack =
-          lowerVectorShuffleAsUnpack(MVT::v4i32, DL, V1, V2, Mask, DAG))
+          lowerVectorShuffleAsUnpack(DL, MVT::v4i32, V1, V2, Mask, DAG))
     return Unpack;
 
   // We implement this with SHUFPS because it can blend from two vectors.
@@ -7686,11 +7937,10 @@ static SDValue lowerV4I32VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
   // up the inputs, bypassing domain shift penalties that we would encur if we
   // directly used PSHUFD on Nehalem and older. For newer chips, this isn't
   // relevant.
-  return DAG.getNode(ISD::BITCAST, DL, MVT::v4i32,
-                     DAG.getVectorShuffle(
-                         MVT::v4f32, DL,
-                         DAG.getNode(ISD::BITCAST, DL, MVT::v4f32, V1),
-                         DAG.getNode(ISD::BITCAST, DL, MVT::v4f32, V2), Mask));
+  return DAG.getBitcast(
+      MVT::v4i32,
+      DAG.getVectorShuffle(MVT::v4f32, DL, DAG.getBitcast(MVT::v4f32, V1),
+                           DAG.getBitcast(MVT::v4f32, V2), Mask));
 }
 
 /// \brief Lowering of single-input v8i16 shuffles is the cornerstone of SSE2
@@ -7704,10 +7954,18 @@ static SDValue lowerV4I32VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
 /// The exact breakdown of how to form these dword pairs and align them on the
 /// correct sides is really tricky. See the comments within the function for
 /// more of the details.
-static SDValue lowerV8I16SingleInputVectorShuffle(
-    SDLoc DL, SDValue V, MutableArrayRef<int> Mask,
+///
+/// This code also handles repeated 128-bit lanes of v8i16 shuffles, but each
+/// lane must shuffle the *exact* same way. In fact, you must pass a v8 Mask to
+/// this routine for it to work correctly. To shuffle a 256-bit or 512-bit i16
+/// vector, form the analogous 128-bit 8-element Mask.
+static SDValue lowerV8I16GeneralSingleInputVectorShuffle(
+    SDLoc DL, MVT VT, SDValue V, MutableArrayRef<int> Mask,
     const X86Subtarget *Subtarget, SelectionDAG &DAG) {
-  assert(V.getSimpleValueType() == MVT::v8i16 && "Bad input type!");
+  assert(VT.getScalarType() == MVT::i16 && "Bad input type!");
+  MVT PSHUFDVT = MVT::getVectorVT(MVT::i32, VT.getVectorNumElements() / 2);
+
+  assert(Mask.size() == 8 && "Shuffle mask length doen't match!");
   MutableArrayRef<int> LoMask = Mask.slice(0, 4);
   MutableArrayRef<int> HiMask = Mask.slice(4, 4);
 
@@ -7732,27 +7990,6 @@ static SDValue lowerV8I16SingleInputVectorShuffle(
   MutableArrayRef<int> HToLInputs(LoInputs.data() + NumLToL, NumHToL);
   MutableArrayRef<int> HToHInputs(HiInputs.data() + NumLToH, NumHToH);
 
-  // Check for being able to broadcast a single element.
-  if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(MVT::v8i16, DL, V,
-                                                        Mask, Subtarget, DAG))
-    return Broadcast;
-
-  // Try to use shift instructions.
-  if (SDValue Shift =
-          lowerVectorShuffleAsShift(DL, MVT::v8i16, V, V, Mask, DAG))
-    return Shift;
-
-  // Use dedicated unpack instructions for masks that match their pattern.
-  if (isShuffleEquivalent(V, V, Mask, 0, 0, 1, 1, 2, 2, 3, 3))
-    return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v8i16, V, V);
-  if (isShuffleEquivalent(V, V, Mask, 4, 4, 5, 5, 6, 6, 7, 7))
-    return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v8i16, V, V);
-
-  // Try to use byte rotation instructions.
-  if (SDValue Rotate = lowerVectorShuffleAsByteRotate(
-          DL, MVT::v8i16, V, V, Mask, Subtarget, DAG))
-    return Rotate;
-
   // Simplify the 1-into-3 and 3-into-1 cases with a single pshufd. For all
   // such inputs we can swap two of the dwords across the half mark and end up
   // with <=2 inputs to each half in each half. Once there, we can fall through
@@ -7857,7 +8094,7 @@ static SDValue lowerV8I16SingleInputVectorShuffle(
           std::swap(PSHUFHalfMask[FixFreeIdx % 4], PSHUFHalfMask[FixIdx % 4]);
           V = DAG.getNode(FixIdx < 4 ? X86ISD::PSHUFLW : X86ISD::PSHUFHW, DL,
                           MVT::v8i16, V,
-                          getV4X86ShuffleImm8ForMask(PSHUFHalfMask, DAG));
+                          getV4X86ShuffleImm8ForMask(PSHUFHalfMask, DL, DAG));
 
           for (int &M : Mask)
             if (M != -1 && M == FixIdx)
@@ -7881,10 +8118,10 @@ static SDValue lowerV8I16SingleInputVectorShuffle(
     int PSHUFDMask[] = {0, 1, 2, 3};
     PSHUFDMask[ADWord] = BDWord;
     PSHUFDMask[BDWord] = ADWord;
-    V = DAG.getNode(ISD::BITCAST, DL, MVT::v8i16,
-                    DAG.getNode(X86ISD::PSHUFD, DL, MVT::v4i32,
-                                DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, V),
-                                getV4X86ShuffleImm8ForMask(PSHUFDMask, DAG)));
+    V = DAG.getBitcast(
+        VT,
+        DAG.getNode(X86ISD::PSHUFD, DL, PSHUFDVT, DAG.getBitcast(PSHUFDVT, V),
+                    getV4X86ShuffleImm8ForMask(PSHUFDMask, DL, DAG)));
 
     // Adjust the mask to match the new locations of A and B.
     for (int &M : Mask)
@@ -7895,8 +8132,8 @@ static SDValue lowerV8I16SingleInputVectorShuffle(
 
     // Recurse back into this routine to re-compute state now that this isn't
     // a 3 and 1 problem.
-    return DAG.getVectorShuffle(MVT::v8i16, DL, V, DAG.getUNDEF(MVT::v8i16),
-                                Mask);
+    return lowerV8I16GeneralSingleInputVectorShuffle(DL, VT, V, Mask, Subtarget,
+                                                     DAG);
   };
   if ((NumLToL == 3 && NumHToL == 1) || (NumLToL == 1 && NumHToL == 3))
     return balanceSides(LToLInputs, HToLInputs, HToHInputs, LToHInputs, 0, 4);
@@ -8119,16 +8356,16 @@ static SDValue lowerV8I16SingleInputVectorShuffle(
   // Now enact all the shuffles we've computed to move the inputs into their
   // target half.
   if (!isNoopShuffleMask(PSHUFLMask))
-    V = DAG.getNode(X86ISD::PSHUFLW, DL, MVT::v8i16, V,
-                    getV4X86ShuffleImm8ForMask(PSHUFLMask, DAG));
+    V = DAG.getNode(X86ISD::PSHUFLW, DL, VT, V,
+                    getV4X86ShuffleImm8ForMask(PSHUFLMask, DL, DAG));
   if (!isNoopShuffleMask(PSHUFHMask))
-    V = DAG.getNode(X86ISD::PSHUFHW, DL, MVT::v8i16, V,
-                    getV4X86ShuffleImm8ForMask(PSHUFHMask, DAG));
+    V = DAG.getNode(X86ISD::PSHUFHW, DL, VT, V,
+                    getV4X86ShuffleImm8ForMask(PSHUFHMask, DL, DAG));
   if (!isNoopShuffleMask(PSHUFDMask))
-    V = DAG.getNode(ISD::BITCAST, DL, MVT::v8i16,
-                    DAG.getNode(X86ISD::PSHUFD, DL, MVT::v4i32,
-                                DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, V),
-                                getV4X86ShuffleImm8ForMask(PSHUFDMask, DAG)));
+    V = DAG.getBitcast(
+        VT,
+        DAG.getNode(X86ISD::PSHUFD, DL, PSHUFDVT, DAG.getBitcast(PSHUFDVT, V),
+                    getV4X86ShuffleImm8ForMask(PSHUFDMask, DL, DAG)));
 
   // At this point, each half should contain all its inputs, and we can then
   // just shuffle them into their final position.
@@ -8141,16 +8378,16 @@ static SDValue lowerV8I16SingleInputVectorShuffle(
 
   // Do a half shuffle for the low mask.
   if (!isNoopShuffleMask(LoMask))
-    V = DAG.getNode(X86ISD::PSHUFLW, DL, MVT::v8i16, V,
-                    getV4X86ShuffleImm8ForMask(LoMask, DAG));
+    V = DAG.getNode(X86ISD::PSHUFLW, DL, VT, V,
+                    getV4X86ShuffleImm8ForMask(LoMask, DL, DAG));
 
   // Do a half shuffle with the high mask after shifting its values down.
   for (int &M : HiMask)
     if (M >= 0)
       M -= 4;
   if (!isNoopShuffleMask(HiMask))
-    V = DAG.getNode(X86ISD::PSHUFHW, DL, MVT::v8i16, V,
-                    getV4X86ShuffleImm8ForMask(HiMask, DAG));
+    V = DAG.getNode(X86ISD::PSHUFHW, DL, VT, V,
+                    getV4X86ShuffleImm8ForMask(HiMask, DL, DAG));
 
   return V;
 }
@@ -8180,8 +8417,8 @@ static SDValue lowerVectorShuffleAsPSHUFB(SDLoc DL, MVT VT, SDValue V1,
                       : (Mask[i / Scale] - Size) * Scale + i % Scale;
       if (Zeroable[i / Scale])
         V1Idx = V2Idx = ZeroMask;
-      V1Mask[i] = DAG.getConstant(V1Idx, MVT::i8);
-      V2Mask[i] = DAG.getConstant(V2Idx, MVT::i8);
+      V1Mask[i] = DAG.getConstant(V1Idx, DL, MVT::i8);
+      V2Mask[i] = DAG.getConstant(V2Idx, DL, MVT::i8);
       V1InUse |= (ZeroMask != V1Idx);
       V2InUse |= (ZeroMask != V2Idx);
     }
@@ -8189,11 +8426,11 @@ static SDValue lowerVectorShuffleAsPSHUFB(SDLoc DL, MVT VT, SDValue V1,
 
   if (V1InUse)
     V1 = DAG.getNode(X86ISD::PSHUFB, DL, MVT::v16i8,
-                     DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, V1),
+                     DAG.getBitcast(MVT::v16i8, V1),
                      DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v16i8, V1Mask));
   if (V2InUse)
     V2 = DAG.getNode(X86ISD::PSHUFB, DL, MVT::v16i8,
-                     DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, V2),
+                     DAG.getBitcast(MVT::v16i8, V2),
                      DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v16i8, V2Mask));
 
   // If we need shuffled inputs from both, blend the two.
@@ -8204,7 +8441,7 @@ static SDValue lowerVectorShuffleAsPSHUFB(SDLoc DL, MVT VT, SDValue V1,
     V = V1InUse ? V1 : V2;
 
   // Cast the result back to the correct type.
-  return DAG.getNode(ISD::BITCAST, DL, VT, V);
+  return DAG.getBitcast(VT, V);
 }
 
 /// \brief Generic lowering of 8-lane i16 shuffles.
@@ -8241,16 +8478,40 @@ static SDValue lowerV8I16VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
     return ZExt;
 
   auto isV1 = [](int M) { return M >= 0 && M < 8; };
+  (void)isV1;
   auto isV2 = [](int M) { return M >= 8; };
 
-  int NumV1Inputs = std::count_if(Mask.begin(), Mask.end(), isV1);
   int NumV2Inputs = std::count_if(Mask.begin(), Mask.end(), isV2);
 
-  if (NumV2Inputs == 0)
-    return lowerV8I16SingleInputVectorShuffle(DL, V1, Mask, Subtarget, DAG);
+  if (NumV2Inputs == 0) {
+    // Check for being able to broadcast a single element.
+    if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v8i16, V1,
+                                                          Mask, Subtarget, DAG))
+      return Broadcast;
+
+    // Try to use shift instructions.
+    if (SDValue Shift =
+            lowerVectorShuffleAsShift(DL, MVT::v8i16, V1, V1, Mask, DAG))
+      return Shift;
 
-  assert(NumV1Inputs > 0 && "All single-input shuffles should be canonicalized "
-                            "to be V1-input shuffles.");
+    // Use dedicated unpack instructions for masks that match their pattern.
+    if (isShuffleEquivalent(V1, V1, Mask, {0, 0, 1, 1, 2, 2, 3, 3}))
+      return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v8i16, V1, V1);
+    if (isShuffleEquivalent(V1, V1, Mask, {4, 4, 5, 5, 6, 6, 7, 7}))
+      return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v8i16, V1, V1);
+
+    // Try to use byte rotation instructions.
+    if (SDValue Rotate = lowerVectorShuffleAsByteRotate(DL, MVT::v8i16, V1, V1,
+                                                        Mask, Subtarget, DAG))
+      return Rotate;
+
+    return lowerV8I16GeneralSingleInputVectorShuffle(DL, MVT::v8i16, V1, Mask,
+                                                     Subtarget, DAG);
+  }
+
+  assert(std::any_of(Mask.begin(), Mask.end(), isV1) &&
+         "All single-input shuffles should be canonicalized to be V1-input "
+         "shuffles.");
 
   // Try to use shift instructions.
   if (SDValue Shift =
@@ -8259,7 +8520,7 @@ static SDValue lowerV8I16VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
 
   // There are special ways we can lower some single-element blends.
   if (NumV2Inputs == 1)
-    if (SDValue V = lowerVectorShuffleAsElementInsertion(MVT::v8i16, DL, V1, V2,
+    if (SDValue V = lowerVectorShuffleAsElementInsertion(DL, MVT::v8i16, V1, V2,
                                                          Mask, Subtarget, DAG))
       return V;
 
@@ -8276,9 +8537,9 @@ static SDValue lowerV8I16VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
     return Masked;
 
   // Use dedicated unpack instructions for masks that match their pattern.
-  if (isShuffleEquivalent(V1, V2, Mask, 0, 8, 1, 9, 2, 10, 3, 11))
+  if (isShuffleEquivalent(V1, V2, Mask, {0, 8, 1, 9, 2, 10, 3, 11}))
     return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v8i16, V1, V2);
-  if (isShuffleEquivalent(V1, V2, Mask, 4, 12, 5, 13, 6, 14, 7, 15))
+  if (isShuffleEquivalent(V1, V2, Mask, {4, 12, 5, 13, 6, 14, 7, 15}))
     return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v8i16, V1, V2);
 
   // Try to use byte rotation instructions.
@@ -8291,7 +8552,7 @@ static SDValue lowerV8I16VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
     return BitBlend;
 
   if (SDValue Unpack =
-          lowerVectorShuffleAsUnpack(MVT::v8i16, DL, V1, V2, Mask, DAG))
+          lowerVectorShuffleAsUnpack(DL, MVT::v8i16, V1, V2, Mask, DAG))
     return Unpack;
 
   // If we can't directly blend but can use PSHUFB, that will be better as it
@@ -8415,7 +8676,7 @@ static SDValue lowerV16I8VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
   // For single-input shuffles, there are some nicer lowering tricks we can use.
   if (NumV2Elements == 0) {
     // Check for being able to broadcast a single element.
-    if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(MVT::v16i8, DL, V1,
+    if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v16i8, V1,
                                                           Mask, Subtarget, DAG))
       return Broadcast;
 
@@ -8481,10 +8742,9 @@ static SDValue lowerV16I8VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
         // Update the lane map based on the mapping we ended up with.
         LaneMap[MovingInputs[i]] = 2 * j + MovingInputs[i] % 2;
       }
-      V1 = DAG.getNode(
-          ISD::BITCAST, DL, MVT::v16i8,
-          DAG.getVectorShuffle(MVT::v8i16, DL,
-                               DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, V1),
+      V1 = DAG.getBitcast(
+          MVT::v16i8,
+          DAG.getVectorShuffle(MVT::v8i16, DL, DAG.getBitcast(MVT::v8i16, V1),
                                DAG.getUNDEF(MVT::v8i16), PreDupI16Shuffle));
 
       // Unpack the bytes to form the i16s that will be shuffled into place.
@@ -8502,10 +8762,9 @@ static SDValue lowerV16I8VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
             assert(PostDupI16Shuffle[i / 2] == MappedMask &&
                    "Conflicting entrties in the original shuffle!");
         }
-      return DAG.getNode(
-          ISD::BITCAST, DL, MVT::v16i8,
-          DAG.getVectorShuffle(MVT::v8i16, DL,
-                               DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, V1),
+      return DAG.getBitcast(
+          MVT::v16i8,
+          DAG.getVectorShuffle(MVT::v8i16, DL, DAG.getBitcast(MVT::v8i16, V1),
                                DAG.getUNDEF(MVT::v8i16), PostDupI16Shuffle));
     };
     if (SDValue V = tryToWidenViaDuplication())
@@ -8513,13 +8772,15 @@ static SDValue lowerV16I8VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
   }
 
   // Use dedicated unpack instructions for masks that match their pattern.
-  if (isShuffleEquivalent(V1, V2, Mask,
-                          0,  16,  1, 17,  2, 18,  3, 19,
-                          4,  20,  5, 21,  6, 22,  7, 23))
+  if (isShuffleEquivalent(V1, V2, Mask, {// Low half.
+                                         0, 16, 1, 17, 2, 18, 3, 19,
+                                         // High half.
+                                         4, 20, 5, 21, 6, 22, 7, 23}))
     return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v16i8, V1, V2);
-  if (isShuffleEquivalent(V1, V2, Mask,
-                          8,  24,  9, 25, 10, 26, 11, 27,
-                          12, 28, 13, 29, 14, 30, 15, 31))
+  if (isShuffleEquivalent(V1, V2, Mask, {// Low half.
+                                         8, 24, 9, 25, 10, 26, 11, 27,
+                                         // High half.
+                                         12, 28, 13, 29, 14, 30, 15, 31}))
     return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v16i8, V1, V2);
 
   // Check for SSSE3 which lets us lower all v16i8 shuffles much more directly
@@ -8560,7 +8821,7 @@ static SDValue lowerV16I8VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
       // shuffles will both be pshufb, in which case we shouldn't bother with
       // this.
       if (SDValue Unpack =
-              lowerVectorShuffleAsUnpack(MVT::v16i8, DL, V1, V2, Mask, DAG))
+              lowerVectorShuffleAsUnpack(DL, MVT::v16i8, V1, V2, Mask, DAG))
         return Unpack;
     }
 
@@ -8569,7 +8830,7 @@ static SDValue lowerV16I8VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
 
   // There are special ways we can lower some single-element blends.
   if (NumV2Elements == 1)
-    if (SDValue V = lowerVectorShuffleAsElementInsertion(MVT::v16i8, DL, V1, V2,
+    if (SDValue V = lowerVectorShuffleAsElementInsertion(DL, MVT::v16i8, V1, V2,
                                                          Mask, Subtarget, DAG))
       return V;
 
@@ -8596,19 +8857,18 @@ static SDValue lowerV16I8VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
     // We use the mask type to pick which bytes are preserved based on how many
     // elements are dropped.
     MVT MaskVTs[] = { MVT::v8i16, MVT::v4i32, MVT::v2i64 };
-    SDValue ByteClearMask =
-        DAG.getNode(ISD::BITCAST, DL, MVT::v16i8,
-                    DAG.getConstant(0xFF, MaskVTs[NumEvenDrops - 1]));
+    SDValue ByteClearMask = DAG.getBitcast(
+        MVT::v16i8, DAG.getConstant(0xFF, DL, MaskVTs[NumEvenDrops - 1]));
     V1 = DAG.getNode(ISD::AND, DL, MVT::v16i8, V1, ByteClearMask);
     if (!IsSingleInput)
       V2 = DAG.getNode(ISD::AND, DL, MVT::v16i8, V2, ByteClearMask);
 
     // Now pack things back together.
-    V1 = DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, V1);
-    V2 = IsSingleInput ? V1 : DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, V2);
+    V1 = DAG.getBitcast(MVT::v8i16, V1);
+    V2 = IsSingleInput ? V1 : DAG.getBitcast(MVT::v8i16, V2);
     SDValue Result = DAG.getNode(X86ISD::PACKUS, DL, MVT::v16i8, V1, V2);
     for (int i = 1; i < NumEvenDrops; ++i) {
-      Result = DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, Result);
+      Result = DAG.getBitcast(MVT::v8i16, Result);
       Result = DAG.getNode(X86ISD::PACKUS, DL, MVT::v16i8, Result, Result);
     }
 
@@ -8642,9 +8902,9 @@ static SDValue lowerV16I8VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
       std::none_of(std::begin(HiBlendMask), std::end(HiBlendMask),
                    [](int M) { return M >= 0 && M % 2 == 1; })) {
     // Use a mask to drop the high bytes.
-    VLoHalf = DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, V);
+    VLoHalf = DAG.getBitcast(MVT::v8i16, V);
     VLoHalf = DAG.getNode(ISD::AND, DL, MVT::v8i16, VLoHalf,
-                     DAG.getConstant(0x00FF, MVT::v8i16));
+                     DAG.getConstant(0x00FF, DL, MVT::v8i16));
 
     // This will be a single vector shuffle instead of a blend so nuke VHiHalf.
     VHiHalf = DAG.getUNDEF(MVT::v8i16);
@@ -8659,10 +8919,10 @@ static SDValue lowerV16I8VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
   } else {
     // Otherwise just unpack the low half of V into VLoHalf and the high half into
     // VHiHalf so that we can blend them as i16s.
-    VLoHalf = DAG.getNode(ISD::BITCAST, DL, MVT::v8i16,
-                     DAG.getNode(X86ISD::UNPCKL, DL, MVT::v16i8, V, Zero));
-    VHiHalf = DAG.getNode(ISD::BITCAST, DL, MVT::v8i16,
-                     DAG.getNode(X86ISD::UNPCKH, DL, MVT::v16i8, V, Zero));
+    VLoHalf = DAG.getBitcast(
+        MVT::v8i16, DAG.getNode(X86ISD::UNPCKL, DL, MVT::v16i8, V, Zero));
+    VHiHalf = DAG.getBitcast(
+        MVT::v8i16, DAG.getNode(X86ISD::UNPCKH, DL, MVT::v16i8, V, Zero));
   }
 
   SDValue LoV = DAG.getVectorShuffle(MVT::v8i16, DL, VLoHalf, VHiHalf, LoBlendMask);
@@ -8790,9 +9050,9 @@ static SDValue splitAndLowerVectorShuffle(SDLoc DL, MVT VT, SDValue V1,
     auto *BV = dyn_cast<BuildVectorSDNode>(V);
     if (!BV) {
       LoV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OrigSplitVT, V,
-                        DAG.getIntPtrConstant(0));
+                        DAG.getIntPtrConstant(0, DL));
       HiV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OrigSplitVT, V,
-                        DAG.getIntPtrConstant(OrigSplitNumElements));
+                        DAG.getIntPtrConstant(OrigSplitNumElements, DL));
     } else {
 
       SmallVector<SDValue, 16> LoOps, HiOps;
@@ -8803,8 +9063,8 @@ static SDValue splitAndLowerVectorShuffle(SDLoc DL, MVT VT, SDValue V1,
       LoV = DAG.getNode(ISD::BUILD_VECTOR, DL, OrigSplitVT, LoOps);
       HiV = DAG.getNode(ISD::BUILD_VECTOR, DL, OrigSplitVT, HiOps);
     }
-    return std::make_pair(DAG.getNode(ISD::BITCAST, DL, SplitVT, LoV),
-                          DAG.getNode(ISD::BITCAST, DL, SplitVT, HiV));
+    return std::make_pair(DAG.getBitcast(SplitVT, LoV),
+                          DAG.getBitcast(SplitVT, HiV));
   };
 
   SDValue LoV1, HiV1, LoV2, HiV2;
@@ -8956,7 +9216,7 @@ static SDValue lowerVectorShuffleAsLanePermuteAndBlend(SDLoc DL, MVT VT,
   int LaneSize = Mask.size() / 2;
 
   // If there are only inputs from one 128-bit lane, splitting will in fact be
-  // less expensive. The flags track wether the given lane contains an element
+  // less expensive. The flags track whether the given lane contains an element
   // that crosses to another lane.
   bool LaneCrossing[2] = {false, false};
   for (int i = 0, Size = Mask.size(); i < Size; ++i)
@@ -8981,7 +9241,7 @@ static SDValue lowerVectorShuffleAsLanePermuteAndBlend(SDLoc DL, MVT VT,
     // allow folding it into a memory operand.
     unsigned PERMMask = 3 | 2 << 4;
     SDValue Flipped = DAG.getNode(X86ISD::VPERM2X128, DL, VT, DAG.getUNDEF(VT),
-                                  V1, DAG.getConstant(PERMMask, MVT::i8));
+                                  V1, DAG.getConstant(PERMMask, DL, MVT::i8));
     return DAG.getVectorShuffle(VT, DL, V1, Flipped, FlippedBlendMask);
   }
 
@@ -8996,36 +9256,81 @@ static SDValue lowerV2X128VectorShuffle(SDLoc DL, MVT VT, SDValue V1,
                                         SDValue V2, ArrayRef<int> Mask,
                                         const X86Subtarget *Subtarget,
                                         SelectionDAG &DAG) {
+  // TODO: If minimizing size and one of the inputs is a zero vector and the
+  // the zero vector has only one use, we could use a VPERM2X128 to save the
+  // instruction bytes needed to explicitly generate the zero vector.
+
   // Blends are faster and handle all the non-lane-crossing cases.
   if (SDValue Blend = lowerVectorShuffleAsBlend(DL, VT, V1, V2, Mask,
                                                 Subtarget, DAG))
     return Blend;
 
-  MVT SubVT = MVT::getVectorVT(VT.getVectorElementType(),
-                               VT.getVectorNumElements() / 2);
-  // Check for patterns which can be matched with a single insert of a 128-bit
-  // subvector.
-  if (isShuffleEquivalent(V1, V2, Mask, 0, 1, 0, 1) ||
-      isShuffleEquivalent(V1, V2, Mask, 0, 1, 4, 5)) {
-    SDValue LoV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVT, V1,
-                              DAG.getIntPtrConstant(0));
-    SDValue HiV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVT,
-                              Mask[2] < 4 ? V1 : V2, DAG.getIntPtrConstant(0));
-    return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, LoV, HiV);
-  }
-  if (isShuffleEquivalent(V1, V2, Mask, 0, 1, 6, 7)) {
-    SDValue LoV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVT, V1,
-                              DAG.getIntPtrConstant(0));
-    SDValue HiV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVT, V2,
-                              DAG.getIntPtrConstant(2));
-    return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, LoV, HiV);
-  }
-
-  // Otherwise form a 128-bit permutation.
-  // FIXME: Detect zero-vector inputs and use the VPERM2X128 to zero that half.
-  unsigned PermMask = Mask[0] / 2 | (Mask[2] / 2) << 4;
+  bool IsV1Zero = ISD::isBuildVectorAllZeros(V1.getNode());
+  bool IsV2Zero = ISD::isBuildVectorAllZeros(V2.getNode());
+
+  // If either input operand is a zero vector, use VPERM2X128 because its mask
+  // allows us to replace the zero input with an implicit zero.
+  if (!IsV1Zero && !IsV2Zero) {
+    // Check for patterns which can be matched with a single insert of a 128-bit
+    // subvector.
+    bool OnlyUsesV1 = isShuffleEquivalent(V1, V2, Mask, {0, 1, 0, 1});
+    if (OnlyUsesV1 || isShuffleEquivalent(V1, V2, Mask, {0, 1, 4, 5})) {
+      MVT SubVT = MVT::getVectorVT(VT.getVectorElementType(),
+                                   VT.getVectorNumElements() / 2);
+      SDValue LoV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVT, V1,
+                                DAG.getIntPtrConstant(0, DL));
+      SDValue HiV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVT,
+                                OnlyUsesV1 ? V1 : V2,
+                                DAG.getIntPtrConstant(0, DL));
+      return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, LoV, HiV);
+    }
+  }
+
+  // Otherwise form a 128-bit permutation. After accounting for undefs,
+  // convert the 64-bit shuffle mask selection values into 128-bit
+  // selection bits by dividing the indexes by 2 and shifting into positions
+  // defined by a vperm2*128 instruction's immediate control byte.
+
+  // The immediate permute control byte looks like this:
+  //    [1:0] - select 128 bits from sources for low half of destination
+  //    [2]   - ignore
+  //    [3]   - zero low half of destination
+  //    [5:4] - select 128 bits from sources for high half of destination
+  //    [6]   - ignore
+  //    [7]   - zero high half of destination
+
+  int MaskLO = Mask[0];
+  if (MaskLO == SM_SentinelUndef)
+    MaskLO = Mask[1] == SM_SentinelUndef ? 0 : Mask[1];
+
+  int MaskHI = Mask[2];
+  if (MaskHI == SM_SentinelUndef)
+    MaskHI = Mask[3] == SM_SentinelUndef ? 0 : Mask[3];
+
+  unsigned PermMask = MaskLO / 2 | (MaskHI / 2) << 4;
+
+  // If either input is a zero vector, replace it with an undef input.
+  // Shuffle mask values <  4 are selecting elements of V1.
+  // Shuffle mask values >= 4 are selecting elements of V2.
+  // Adjust each half of the permute mask by clearing the half that was
+  // selecting the zero vector and setting the zero mask bit.
+  if (IsV1Zero) {
+    V1 = DAG.getUNDEF(VT);
+    if (MaskLO < 4)
+      PermMask = (PermMask & 0xf0) | 0x08;
+    if (MaskHI < 4)
+      PermMask = (PermMask & 0x0f) | 0x80;
+  }
+  if (IsV2Zero) {
+    V2 = DAG.getUNDEF(VT);
+    if (MaskLO >= 4)
+      PermMask = (PermMask & 0xf0) | 0x08;
+    if (MaskHI >= 4)
+      PermMask = (PermMask & 0x0f) | 0x80;
+  }
+
   return DAG.getNode(X86ISD::VPERM2X128, DL, VT, V1, V2,
-                     DAG.getConstant(PermMask, MVT::i8));
+                     DAG.getConstant(PermMask, DL, MVT::i8));
 }
 
 /// \brief Lower a vector shuffle by first fixing the 128-bit lanes and then
@@ -9092,12 +9397,12 @@ static SDValue lowerVectorShuffleByMerging128BitLanes(
       LaneMask[2 * i + 1] = 2*Lanes[i] + 1;
     }
 
-  V1 = DAG.getNode(ISD::BITCAST, DL, LaneVT, V1);
-  V2 = DAG.getNode(ISD::BITCAST, DL, LaneVT, V2);
+  V1 = DAG.getBitcast(LaneVT, V1);
+  V2 = DAG.getBitcast(LaneVT, V2);
   SDValue LaneShuffle = DAG.getVectorShuffle(LaneVT, DL, V1, V2, LaneMask);
 
   // Cast it back to the type we actually want.
-  LaneShuffle = DAG.getNode(ISD::BITCAST, DL, VT, LaneShuffle);
+  LaneShuffle = DAG.getBitcast(VT, LaneShuffle);
 
   // Now do a simple shuffle that isn't lane crossing.
   SmallVector<int, 8> NewMask;
@@ -9126,6 +9431,37 @@ static bool isShuffleMaskInputInPlace(int Input, ArrayRef<int> Mask) {
   return true;
 }
 
+static SDValue lowerVectorShuffleWithSHUFPD(SDLoc DL, MVT VT,
+                                            ArrayRef<int> Mask, SDValue V1,
+                                            SDValue V2, SelectionDAG &DAG) {
+
+  // Mask for V8F64: 0/1,  8/9,  2/3,  10/11, 4/5, ..
+  // Mask for V4F64; 0/1,  4/5,  2/3,  6/7..
+  assert(VT.getScalarSizeInBits() == 64 && "Unexpected data type for VSHUFPD");
+  int NumElts = VT.getVectorNumElements();
+  bool ShufpdMask = true;
+  bool CommutableMask = true;
+  unsigned Immediate = 0;
+  for (int i = 0; i < NumElts; ++i) {
+    if (Mask[i] < 0)
+      continue;
+    int Val = (i & 6) + NumElts * (i & 1);
+    int CommutVal = (i & 0xe) + NumElts * ((i & 1)^1);
+    if (Mask[i] < Val ||  Mask[i] > Val + 1)
+      ShufpdMask = false;
+    if (Mask[i] < CommutVal ||  Mask[i] > CommutVal + 1)
+      CommutableMask = false;
+    Immediate |= (Mask[i] % 2) << i;
+  }
+  if (ShufpdMask)
+    return DAG.getNode(X86ISD::SHUFP, DL, VT, V1, V2,
+                       DAG.getConstant(Immediate, DL, MVT::i8));
+  if (CommutableMask)
+    return DAG.getNode(X86ISD::SHUFP, DL, VT, V2, V1,
+                       DAG.getConstant(Immediate, DL, MVT::i8));
+  return SDValue();
+}
+
 /// \brief Handle lowering of 4-lane 64-bit floating point shuffles.
 ///
 /// Also ends up handling lowering of 4-lane 64-bit integer shuffles when AVX2
@@ -9147,12 +9483,12 @@ static SDValue lowerV4F64VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
 
   if (isSingleInputShuffleMask(Mask)) {
     // Check for being able to broadcast a single element.
-    if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(MVT::v4f64, DL, V1,
+    if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v4f64, V1,
                                                           Mask, Subtarget, DAG))
       return Broadcast;
 
     // Use low duplicate instructions for masks that match their pattern.
-    if (isShuffleEquivalent(V1, V2, Mask, 0, 0, 2, 2))
+    if (isShuffleEquivalent(V1, V2, Mask, {0, 0, 2, 2}))
       return DAG.getNode(X86ISD::MOVDDUP, DL, MVT::v4f64, V1);
 
     if (!is128BitLaneCrossingShuffleMask(MVT::v4f64, Mask)) {
@@ -9161,13 +9497,13 @@ static SDValue lowerV4F64VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
       unsigned VPERMILPMask = (Mask[0] == 1) | ((Mask[1] == 1) << 1) |
                               ((Mask[2] == 3) << 2) | ((Mask[3] == 3) << 3);
       return DAG.getNode(X86ISD::VPERMILPI, DL, MVT::v4f64, V1,
-                         DAG.getConstant(VPERMILPMask, MVT::i8));
+                         DAG.getConstant(VPERMILPMask, DL, MVT::i8));
     }
 
     // With AVX2 we have direct support for this permutation.
     if (Subtarget->hasAVX2())
       return DAG.getNode(X86ISD::VPERMI, DL, MVT::v4f64, V1,
-                         getV4X86ShuffleImm8ForMask(Mask, DAG));
+                         getV4X86ShuffleImm8ForMask(Mask, DL, DAG));
 
     // Otherwise, fall back.
     return lowerVectorShuffleAsLanePermuteAndBlend(DL, MVT::v4f64, V1, V2, Mask,
@@ -9176,47 +9512,23 @@ static SDValue lowerV4F64VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
 
   // X86 has dedicated unpack instructions that can handle specific blend
   // operations: UNPCKH and UNPCKL.
-  if (isShuffleEquivalent(V1, V2, Mask, 0, 4, 2, 6))
+  if (isShuffleEquivalent(V1, V2, Mask, {0, 4, 2, 6}))
     return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v4f64, V1, V2);
-  if (isShuffleEquivalent(V1, V2, Mask, 1, 5, 3, 7))
+  if (isShuffleEquivalent(V1, V2, Mask, {1, 5, 3, 7}))
     return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v4f64, V1, V2);
-  if (isShuffleEquivalent(V1, V2, Mask, 4, 0, 6, 2))
+  if (isShuffleEquivalent(V1, V2, Mask, {4, 0, 6, 2}))
     return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v4f64, V2, V1);
-  if (isShuffleEquivalent(V1, V2, Mask, 5, 1, 7, 3))
+  if (isShuffleEquivalent(V1, V2, Mask, {5, 1, 7, 3}))
     return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v4f64, V2, V1);
 
-  // If we have a single input to the zero element, insert that into V1 if we
-  // can do so cheaply.
-  int NumV2Elements =
-      std::count_if(Mask.begin(), Mask.end(), [](int M) { return M >= 4; });
-  if (NumV2Elements == 1 && Mask[0] >= 4)
-    if (SDValue Insertion = lowerVectorShuffleAsElementInsertion(
-            MVT::v4f64, DL, V1, V2, Mask, Subtarget, DAG))
-      return Insertion;
-
   if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v4f64, V1, V2, Mask,
                                                 Subtarget, DAG))
     return Blend;
 
   // Check if the blend happens to exactly fit that of SHUFPD.
-  if ((Mask[0] == -1 || Mask[0] < 2) &&
-      (Mask[1] == -1 || (Mask[1] >= 4 && Mask[1] < 6)) &&
-      (Mask[2] == -1 || (Mask[2] >= 2 && Mask[2] < 4)) &&
-      (Mask[3] == -1 || Mask[3] >= 6)) {
-    unsigned SHUFPDMask = (Mask[0] == 1) | ((Mask[1] == 5) << 1) |
-                          ((Mask[2] == 3) << 2) | ((Mask[3] == 7) << 3);
-    return DAG.getNode(X86ISD::SHUFP, DL, MVT::v4f64, V1, V2,
-                       DAG.getConstant(SHUFPDMask, MVT::i8));
-  }
-  if ((Mask[0] == -1 || (Mask[0] >= 4 && Mask[0] < 6)) &&
-      (Mask[1] == -1 || Mask[1] < 2) &&
-      (Mask[2] == -1 || Mask[2] >= 6) &&
-      (Mask[3] == -1 || (Mask[3] >= 2 && Mask[3] < 4))) {
-    unsigned SHUFPDMask = (Mask[0] == 5) | ((Mask[1] == 1) << 1) |
-                          ((Mask[2] == 7) << 2) | ((Mask[3] == 3) << 3);
-    return DAG.getNode(X86ISD::SHUFP, DL, MVT::v4f64, V2, V1,
-                       DAG.getConstant(SHUFPDMask, MVT::i8));
-  }
+  if (SDValue Op =
+      lowerVectorShuffleWithSHUFPD(DL, MVT::v4f64, Mask, V1, V2, DAG))
+    return Op;
 
   // Try to simplify this by merging 128-bit lanes to enable a lane-based
   // shuffle. However, if we have AVX2 and either inputs are already in place,
@@ -9263,7 +9575,7 @@ static SDValue lowerV4I64VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
     return Blend;
 
   // Check for being able to broadcast a single element.
-  if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(MVT::v4i64, DL, V1,
+  if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v4i64, V1,
                                                         Mask, Subtarget, DAG))
     return Broadcast;
 
@@ -9278,11 +9590,11 @@ static SDValue lowerV4I64VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
           PSHUFDMask[2 * i] = 2 * RepeatedMask[i];
           PSHUFDMask[2 * i + 1] = 2 * RepeatedMask[i] + 1;
         }
-      return DAG.getNode(
-          ISD::BITCAST, DL, MVT::v4i64,
+      return DAG.getBitcast(
+          MVT::v4i64,
           DAG.getNode(X86ISD::PSHUFD, DL, MVT::v8i32,
-                      DAG.getNode(ISD::BITCAST, DL, MVT::v8i32, V1),
-                      getV4X86ShuffleImm8ForMask(PSHUFDMask, DAG)));
+                      DAG.getBitcast(MVT::v8i32, V1),
+                      getV4X86ShuffleImm8ForMask(PSHUFDMask, DL, DAG)));
     }
   }
 
@@ -9290,7 +9602,7 @@ static SDValue lowerV4I64VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
   // lanes.
   if (isSingleInputShuffleMask(Mask))
     return DAG.getNode(X86ISD::VPERMI, DL, MVT::v4i64, V1,
-                       getV4X86ShuffleImm8ForMask(Mask, DAG));
+                       getV4X86ShuffleImm8ForMask(Mask, DL, DAG));
 
   // Try to use shift instructions.
   if (SDValue Shift =
@@ -9298,13 +9610,13 @@ static SDValue lowerV4I64VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
     return Shift;
 
   // Use dedicated unpack instructions for masks that match their pattern.
-  if (isShuffleEquivalent(V1, V2, Mask, 0, 4, 2, 6))
+  if (isShuffleEquivalent(V1, V2, Mask, {0, 4, 2, 6}))
     return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v4i64, V1, V2);
-  if (isShuffleEquivalent(V1, V2, Mask, 1, 5, 3, 7))
+  if (isShuffleEquivalent(V1, V2, Mask, {1, 5, 3, 7}))
     return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v4i64, V1, V2);
-  if (isShuffleEquivalent(V1, V2, Mask, 4, 0, 6, 2))
+  if (isShuffleEquivalent(V1, V2, Mask, {4, 0, 6, 2}))
     return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v4i64, V2, V1);
-  if (isShuffleEquivalent(V1, V2, Mask, 5, 1, 7, 3))
+  if (isShuffleEquivalent(V1, V2, Mask, {5, 1, 7, 3}))
     return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v4i64, V2, V1);
 
   // Try to simplify this by merging 128-bit lanes to enable a lane-based
@@ -9341,7 +9653,7 @@ static SDValue lowerV8F32VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
     return Blend;
 
   // Check for being able to broadcast a single element.
-  if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(MVT::v8f32, DL, V1,
+  if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v8f32, V1,
                                                         Mask, Subtarget, DAG))
     return Broadcast;
 
@@ -9353,23 +9665,23 @@ static SDValue lowerV8F32VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
            "Repeated masks must be half the mask width!");
 
     // Use even/odd duplicate instructions for masks that match their pattern.
-    if (isShuffleEquivalent(V1, V2, Mask, 0, 0, 2, 2, 4, 4, 6, 6))
+    if (isShuffleEquivalent(V1, V2, Mask, {0, 0, 2, 2, 4, 4, 6, 6}))
       return DAG.getNode(X86ISD::MOVSLDUP, DL, MVT::v8f32, V1);
-    if (isShuffleEquivalent(V1, V2, Mask, 1, 1, 3, 3, 5, 5, 7, 7))
+    if (isShuffleEquivalent(V1, V2, Mask, {1, 1, 3, 3, 5, 5, 7, 7}))
       return DAG.getNode(X86ISD::MOVSHDUP, DL, MVT::v8f32, V1);
 
     if (isSingleInputShuffleMask(Mask))
       return DAG.getNode(X86ISD::VPERMILPI, DL, MVT::v8f32, V1,
-                         getV4X86ShuffleImm8ForMask(RepeatedMask, DAG));
+                         getV4X86ShuffleImm8ForMask(RepeatedMask, DL, DAG));
 
     // Use dedicated unpack instructions for masks that match their pattern.
-    if (isShuffleEquivalent(V1, V2, Mask, 0, 8, 1, 9, 4, 12, 5, 13))
+    if (isShuffleEquivalent(V1, V2, Mask, {0, 8, 1, 9, 4, 12, 5, 13}))
       return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v8f32, V1, V2);
-    if (isShuffleEquivalent(V1, V2, Mask, 2, 10, 3, 11, 6, 14, 7, 15))
+    if (isShuffleEquivalent(V1, V2, Mask, {2, 10, 3, 11, 6, 14, 7, 15}))
       return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v8f32, V1, V2);
-    if (isShuffleEquivalent(V1, V2, Mask, 8, 0, 9, 1, 12, 4, 13, 5))
+    if (isShuffleEquivalent(V1, V2, Mask, {8, 0, 9, 1, 12, 4, 13, 5}))
       return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v8f32, V2, V1);
-    if (isShuffleEquivalent(V1, V2, Mask, 10, 2, 11, 3, 14, 6, 15, 7))
+    if (isShuffleEquivalent(V1, V2, Mask, {10, 2, 11, 3, 14, 6, 15, 7}))
       return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v8f32, V2, V1);
 
     // Otherwise, fall back to a SHUFPS sequence. Here it is important that we
@@ -9387,18 +9699,18 @@ static SDValue lowerV8F32VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
     SDValue VPermMask[8];
     for (int i = 0; i < 8; ++i)
       VPermMask[i] = Mask[i] < 0 ? DAG.getUNDEF(MVT::i32)
-                                 : DAG.getConstant(Mask[i], MVT::i32);
+                                 : DAG.getConstant(Mask[i], DL, MVT::i32);
     if (!is128BitLaneCrossingShuffleMask(MVT::v8f32, Mask))
       return DAG.getNode(
           X86ISD::VPERMILPV, DL, MVT::v8f32, V1,
           DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i32, VPermMask));
 
     if (Subtarget->hasAVX2())
-      return DAG.getNode(X86ISD::VPERMV, DL, MVT::v8f32,
-                         DAG.getNode(ISD::BITCAST, DL, MVT::v8f32,
-                                     DAG.getNode(ISD::BUILD_VECTOR, DL,
+      return DAG.getNode(
+          X86ISD::VPERMV, DL, MVT::v8f32,
+          DAG.getBitcast(MVT::v8f32, DAG.getNode(ISD::BUILD_VECTOR, DL,
                                                  MVT::v8i32, VPermMask)),
-                         V1);
+          V1);
 
     // Otherwise, fall back.
     return lowerVectorShuffleAsLanePermuteAndBlend(DL, MVT::v8f32, V1, V2, Mask,
@@ -9448,7 +9760,7 @@ static SDValue lowerV8I32VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
     return Blend;
 
   // Check for being able to broadcast a single element.
-  if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(MVT::v8i32, DL, V1,
+  if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v8i32, V1,
                                                         Mask, Subtarget, DAG))
     return Broadcast;
 
@@ -9460,16 +9772,16 @@ static SDValue lowerV8I32VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
     assert(RepeatedMask.size() == 4 && "Unexpected repeated mask size!");
     if (isSingleInputShuffleMask(Mask))
       return DAG.getNode(X86ISD::PSHUFD, DL, MVT::v8i32, V1,
-                         getV4X86ShuffleImm8ForMask(RepeatedMask, DAG));
+                         getV4X86ShuffleImm8ForMask(RepeatedMask, DL, DAG));
 
     // Use dedicated unpack instructions for masks that match their pattern.
-    if (isShuffleEquivalent(V1, V2, Mask, 0, 8, 1, 9, 4, 12, 5, 13))
+    if (isShuffleEquivalent(V1, V2, Mask, {0, 8, 1, 9, 4, 12, 5, 13}))
       return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v8i32, V1, V2);
-    if (isShuffleEquivalent(V1, V2, Mask, 2, 10, 3, 11, 6, 14, 7, 15))
+    if (isShuffleEquivalent(V1, V2, Mask, {2, 10, 3, 11, 6, 14, 7, 15}))
       return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v8i32, V1, V2);
-    if (isShuffleEquivalent(V1, V2, Mask, 8, 0, 9, 1, 12, 4, 13, 5))
+    if (isShuffleEquivalent(V1, V2, Mask, {8, 0, 9, 1, 12, 4, 13, 5}))
       return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v8i32, V2, V1);
-    if (isShuffleEquivalent(V1, V2, Mask, 10, 2, 11, 3, 14, 6, 15, 7))
+    if (isShuffleEquivalent(V1, V2, Mask, {10, 2, 11, 3, 14, 6, 15, 7}))
       return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v8i32, V2, V1);
   }
 
@@ -9488,7 +9800,7 @@ static SDValue lowerV8I32VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
     SDValue VPermMask[8];
     for (int i = 0; i < 8; ++i)
       VPermMask[i] = Mask[i] < 0 ? DAG.getUNDEF(MVT::i32)
-                                 : DAG.getConstant(Mask[i], MVT::i32);
+                                 : DAG.getConstant(Mask[i], DL, MVT::i32);
     return DAG.getNode(
         X86ISD::VPERMV, DL, MVT::v8i32,
         DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i32, VPermMask), V1);
@@ -9528,7 +9840,7 @@ static SDValue lowerV16I16VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
     return ZExt;
 
   // Check for being able to broadcast a single element.
-  if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(MVT::v16i16, DL, V1,
+  if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v16i16, V1,
                                                         Mask, Subtarget, DAG))
     return Broadcast;
 
@@ -9538,16 +9850,16 @@ static SDValue lowerV16I16VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
 
   // Use dedicated unpack instructions for masks that match their pattern.
   if (isShuffleEquivalent(V1, V2, Mask,
-                          // First 128-bit lane:
-                          0, 16, 1, 17, 2, 18, 3, 19,
-                          // Second 128-bit lane:
-                          8, 24, 9, 25, 10, 26, 11, 27))
+                          {// First 128-bit lane:
+                           0, 16, 1, 17, 2, 18, 3, 19,
+                           // Second 128-bit lane:
+                           8, 24, 9, 25, 10, 26, 11, 27}))
     return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v16i16, V1, V2);
   if (isShuffleEquivalent(V1, V2, Mask,
-                          // First 128-bit lane:
-                          4, 20, 5, 21, 6, 22, 7, 23,
-                          // Second 128-bit lane:
-                          12, 28, 13, 29, 14, 30, 15, 31))
+                          {// First 128-bit lane:
+                           4, 20, 5, 21, 6, 22, 7, 23,
+                           // Second 128-bit lane:
+                           12, 28, 13, 29, 14, 30, 15, 31}))
     return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v16i16, V1, V2);
 
   // Try to use shift instructions.
@@ -9567,6 +9879,15 @@ static SDValue lowerV16I16VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
       return lowerVectorShuffleAsLanePermuteAndBlend(DL, MVT::v16i16, V1, V2,
                                                      Mask, DAG);
 
+    SmallVector<int, 8> RepeatedMask;
+    if (is128BitLaneRepeatedShuffleMask(MVT::v16i16, Mask, RepeatedMask)) {
+      // As this is a single-input shuffle, the repeated mask should be
+      // a strictly valid v8i16 mask that we can pass through to the v8i16
+      // lowering to handle even the v16 case.
+      return lowerV8I16GeneralSingleInputVectorShuffle(
+          DL, MVT::v16i16, V1, RepeatedMask, Subtarget, DAG);
+    }
+
     SDValue PSHUFBMask[32];
     for (int i = 0; i < 16; ++i) {
       if (Mask[i] == -1) {
@@ -9576,15 +9897,14 @@ static SDValue lowerV16I16VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
 
       int M = i < 8 ? Mask[i] : Mask[i] - 8;
       assert(M >= 0 && M < 8 && "Invalid single-input mask!");
-      PSHUFBMask[2 * i] = DAG.getConstant(2 * M, MVT::i8);
-      PSHUFBMask[2 * i + 1] = DAG.getConstant(2 * M + 1, MVT::i8);
+      PSHUFBMask[2 * i] = DAG.getConstant(2 * M, DL, MVT::i8);
+      PSHUFBMask[2 * i + 1] = DAG.getConstant(2 * M + 1, DL, MVT::i8);
     }
-    return DAG.getNode(
-        ISD::BITCAST, DL, MVT::v16i16,
-        DAG.getNode(
-            X86ISD::PSHUFB, DL, MVT::v32i8,
-            DAG.getNode(ISD::BITCAST, DL, MVT::v32i8, V1),
-            DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v32i8, PSHUFBMask)));
+    return DAG.getBitcast(MVT::v16i16,
+                          DAG.getNode(X86ISD::PSHUFB, DL, MVT::v32i8,
+                                      DAG.getBitcast(MVT::v32i8, V1),
+                                      DAG.getNode(ISD::BUILD_VECTOR, DL,
+                                                  MVT::v32i8, PSHUFBMask)));
   }
 
   // Try to simplify this by merging 128-bit lanes to enable a lane-based
@@ -9620,7 +9940,7 @@ static SDValue lowerV32I8VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
     return ZExt;
 
   // Check for being able to broadcast a single element.
-  if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(MVT::v32i8, DL, V1,
+  if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v32i8, V1,
                                                         Mask, Subtarget, DAG))
     return Broadcast;
 
@@ -9633,17 +9953,17 @@ static SDValue lowerV32I8VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
   // 256-bit lanes.
   if (isShuffleEquivalent(
           V1, V2, Mask,
-          // First 128-bit lane:
-          0, 32, 1, 33, 2, 34, 3, 35, 4, 36, 5, 37, 6, 38, 7, 39,
-          // Second 128-bit lane:
-          16, 48, 17, 49, 18, 50, 19, 51, 20, 52, 21, 53, 22, 54, 23, 55))
+          {// First 128-bit lane:
+           0, 32, 1, 33, 2, 34, 3, 35, 4, 36, 5, 37, 6, 38, 7, 39,
+           // Second 128-bit lane:
+           16, 48, 17, 49, 18, 50, 19, 51, 20, 52, 21, 53, 22, 54, 23, 55}))
     return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v32i8, V1, V2);
   if (isShuffleEquivalent(
           V1, V2, Mask,
-          // First 128-bit lane:
-          8, 40, 9, 41, 10, 42, 11, 43, 12, 44, 13, 45, 14, 46, 15, 47,
-          // Second 128-bit lane:
-          24, 56, 25, 57, 26, 58, 27, 59, 28, 60, 29, 61, 30, 62, 31, 63))
+          {// First 128-bit lane:
+           8, 40, 9, 41, 10, 42, 11, 43, 12, 44, 13, 45, 14, 46, 15, 47,
+           // Second 128-bit lane:
+           24, 56, 25, 57, 26, 58, 27, 59, 28, 60, 29, 61, 30, 62, 31, 63}))
     return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v32i8, V1, V2);
 
   // Try to use shift instructions.
@@ -9668,7 +9988,8 @@ static SDValue lowerV32I8VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
       PSHUFBMask[i] =
           Mask[i] < 0
               ? DAG.getUNDEF(MVT::i8)
-              : DAG.getConstant(Mask[i] < 16 ? Mask[i] : Mask[i] - 16, MVT::i8);
+              : DAG.getConstant(Mask[i] < 16 ? Mask[i] : Mask[i] - 16, DL,
+                                MVT::i8);
 
     return DAG.getNode(
         X86ISD::PSHUFB, DL, MVT::v32i8, V1,
@@ -9697,6 +10018,18 @@ static SDValue lower256BitVectorShuffle(SDValue Op, SDValue V1, SDValue V2,
   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
   ArrayRef<int> Mask = SVOp->getMask();
 
+  // If we have a single input to the zero element, insert that into V1 if we
+  // can do so cheaply.
+  int NumElts = VT.getVectorNumElements();
+  int NumV2Elements = std::count_if(Mask.begin(), Mask.end(), [NumElts](int M) {
+    return M >= NumElts;
+  });
+
+  if (NumV2Elements == 1 && Mask[0] >= NumElts)
+    if (SDValue Insertion = lowerVectorShuffleAsElementInsertion(
+                              DL, VT, V1, V2, Mask, Subtarget, DAG))
+      return Insertion;
+
   // There is a really nice hard cut-over between AVX1 and AVX2 that means we can
   // check for those subtargets here and avoid much of the subtarget querying in
   // the per-vector-type lowering routines. With AVX1 we have essentially *zero*
@@ -9711,10 +10044,9 @@ static SDValue lower256BitVectorShuffle(SDValue Op, SDValue V1, SDValue V2,
 
     MVT FpVT = MVT::getVectorVT(MVT::getFloatingPointVT(ElementBits),
                                 VT.getVectorNumElements());
-    V1 = DAG.getNode(ISD::BITCAST, DL, FpVT, V1);
-    V2 = DAG.getNode(ISD::BITCAST, DL, FpVT, V2);
-    return DAG.getNode(ISD::BITCAST, DL, VT,
-                       DAG.getVectorShuffle(FpVT, DL, V1, V2, Mask));
+    V1 = DAG.getBitcast(FpVT, V1);
+    V2 = DAG.getBitcast(FpVT, V2);
+    return DAG.getBitcast(VT, DAG.getVectorShuffle(FpVT, DL, V1, V2, Mask));
   }
 
   switch (VT.SimpleTy) {
@@ -9749,9 +10081,9 @@ static SDValue lowerV8F64VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
 
   // X86 has dedicated unpack instructions that can handle specific blend
   // operations: UNPCKH and UNPCKL.
-  if (isShuffleEquivalent(V1, V2, Mask, 0, 8, 2, 10, 4, 12, 6, 14))
+  if (isShuffleEquivalent(V1, V2, Mask, {0, 8, 2, 10, 4, 12, 6, 14}))
     return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v8f64, V1, V2);
-  if (isShuffleEquivalent(V1, V2, Mask, 1, 9, 3, 11, 5, 13, 7, 15))
+  if (isShuffleEquivalent(V1, V2, Mask, {1, 9, 3, 11, 5, 13, 7, 15}))
     return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v8f64, V1, V2);
 
   // FIXME: Implement direct support for this type!
@@ -9771,12 +10103,16 @@ static SDValue lowerV16F32VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
 
   // Use dedicated unpack instructions for masks that match their pattern.
   if (isShuffleEquivalent(V1, V2, Mask,
-                          0, 16, 1, 17, 4, 20, 5, 21,
-                          8, 24, 9, 25, 12, 28, 13, 29))
+                          {// First 128-bit lane.
+                           0, 16, 1, 17, 4, 20, 5, 21,
+                           // Second 128-bit lane.
+                           8, 24, 9, 25, 12, 28, 13, 29}))
     return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v16f32, V1, V2);
   if (isShuffleEquivalent(V1, V2, Mask,
-                          2, 18, 3, 19, 6, 22, 7, 23,
-                          10, 26, 11, 27, 14, 30, 15, 31))
+                          {// First 128-bit lane.
+                           2, 18, 3, 19, 6, 22, 7, 23,
+                           // Second 128-bit lane.
+                           10, 26, 11, 27, 14, 30, 15, 31}))
     return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v16f32, V1, V2);
 
   // FIXME: Implement direct support for this type!
@@ -9796,9 +10132,9 @@ static SDValue lowerV8I64VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
 
   // X86 has dedicated unpack instructions that can handle specific blend
   // operations: UNPCKH and UNPCKL.
-  if (isShuffleEquivalent(V1, V2, Mask, 0, 8, 2, 10, 4, 12, 6, 14))
+  if (isShuffleEquivalent(V1, V2, Mask, {0, 8, 2, 10, 4, 12, 6, 14}))
     return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v8i64, V1, V2);
-  if (isShuffleEquivalent(V1, V2, Mask, 1, 9, 3, 11, 5, 13, 7, 15))
+  if (isShuffleEquivalent(V1, V2, Mask, {1, 9, 3, 11, 5, 13, 7, 15}))
     return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v8i64, V1, V2);
 
   // FIXME: Implement direct support for this type!
@@ -9818,12 +10154,16 @@ static SDValue lowerV16I32VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
 
   // Use dedicated unpack instructions for masks that match their pattern.
   if (isShuffleEquivalent(V1, V2, Mask,
-                          0, 16, 1, 17, 4, 20, 5, 21,
-                          8, 24, 9, 25, 12, 28, 13, 29))
+                          {// First 128-bit lane.
+                           0, 16, 1, 17, 4, 20, 5, 21,
+                           // Second 128-bit lane.
+                           8, 24, 9, 25, 12, 28, 13, 29}))
     return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v16i32, V1, V2);
   if (isShuffleEquivalent(V1, V2, Mask,
-                          2, 18, 3, 19, 6, 22, 7, 23,
-                          10, 26, 11, 27, 14, 30, 15, 31))
+                          {// First 128-bit lane.
+                           2, 18, 3, 19, 6, 22, 7, 23,
+                           // Second 128-bit lane.
+                           10, 26, 11, 27, 14, 30, 15, 31}))
     return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v16i32, V1, V2);
 
   // FIXME: Implement direct support for this type!
@@ -9877,8 +10217,8 @@ static SDValue lower512BitVectorShuffle(SDValue Op, SDValue V1, SDValue V2,
          "Cannot lower 512-bit vectors w/ basic ISA!");
 
   // Check for being able to broadcast a single element.
-  if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(VT.SimpleTy, DL, V1,
-                                                        Mask, Subtarget, DAG))
+  if (SDValue Broadcast =
+          lowerVectorShuffleAsBroadcast(DL, VT, V1, Mask, Subtarget, DAG))
     return Broadcast;
 
   // Dispatch to each element type for lowering. If we don't have supprot for
@@ -9975,10 +10315,10 @@ static SDValue lowerVectorShuffle(SDValue Op, const X86Subtarget *Subtarget,
     // Make sure that the new vector type is legal. For example, v2f64 isn't
     // legal on SSE1.
     if (DAG.getTargetLoweringInfo().isTypeLegal(NewVT)) {
-      V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, V1);
-      V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, V2);
-      return DAG.getNode(ISD::BITCAST, dl, VT,
-                         DAG.getVectorShuffle(NewVT, dl, V1, V2, WidenedMask));
+      V1 = DAG.getBitcast(NewVT, V1);
+      V2 = DAG.getBitcast(NewVT, V2);
+      return DAG.getBitcast(
+          VT, DAG.getVectorShuffle(NewVT, dl, V1, V2, WidenedMask));
     }
   }
 
@@ -10120,32 +10460,38 @@ SDValue X86TargetLowering::LowerVSELECT(SDValue Op, SelectionDAG &DAG) const {
 
   // Try to lower this to a blend-style vector shuffle. This can handle all
   // constant condition cases.
-  SDValue BlendOp = lowerVSELECTtoVectorShuffle(Op, Subtarget, DAG);
-  if (BlendOp.getNode())
+  if (SDValue BlendOp = lowerVSELECTtoVectorShuffle(Op, Subtarget, DAG))
     return BlendOp;
 
   // Variable blends are only legal from SSE4.1 onward.
   if (!Subtarget->hasSSE41())
     return SDValue();
 
-  // Some types for vselect were previously set to Expand, not Legal or
-  // Custom. Return an empty SDValue so we fall-through to Expand, after
-  // the Custom lowering phase.
-  MVT VT = Op.getSimpleValueType();
-  switch (VT.SimpleTy) {
+  // Only some types will be legal on some subtargets. If we can emit a legal
+  // VSELECT-matching blend, return Op, and but if we need to expand, return
+  // a null value.
+  switch (Op.getSimpleValueType().SimpleTy) {
   default:
-    break;
+    // Most of the vector types have blends past SSE4.1.
+    return Op;
+
+  case MVT::v32i8:
+    // The byte blends for AVX vectors were introduced only in AVX2.
+    if (Subtarget->hasAVX2())
+      return Op;
+
+    return SDValue();
+
   case MVT::v8i16:
   case MVT::v16i16:
+    // AVX-512 BWI and VLX features support VSELECT with i16 elements.
     if (Subtarget->hasBWI() && Subtarget->hasVLX())
-      break;
+      return Op;
+
+    // FIXME: We should custom lower this by fixing the condition and using i8
+    // blends.
     return SDValue();
   }
-
-  // We couldn't create a "Blend with immediate" node.
-  // This node should still be legal, but we'll have to emit a blendv*
-  // instruction.
-  return Op;
 }
 
 static SDValue LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG) {
@@ -10167,12 +10513,11 @@ static SDValue LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG) {
     unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
     // If Idx is 0, it's cheaper to do a move instead of a pextrw.
     if (Idx == 0)
-      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
-                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
-                                     DAG.getNode(ISD::BITCAST, dl,
-                                                 MVT::v4i32,
-                                                 Op.getOperand(0)),
-                                     Op.getOperand(1)));
+      return DAG.getNode(
+          ISD::TRUNCATE, dl, MVT::i16,
+          DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
+                      DAG.getBitcast(MVT::v4i32, Op.getOperand(0)),
+                      Op.getOperand(1)));
     SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
                                   Op.getOperand(0), Op.getOperand(1));
     SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
@@ -10196,10 +10541,9 @@ static SDValue LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG) {
          User->getValueType(0) != MVT::i32))
       return SDValue();
     SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
-                                  DAG.getNode(ISD::BITCAST, dl, MVT::v4i32,
-                                              Op.getOperand(0)),
-                                              Op.getOperand(1));
-    return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract);
+                                  DAG.getBitcast(MVT::v4i32, Op.getOperand(0)),
+                                  Op.getOperand(1));
+    return DAG.getBitcast(MVT::f32, Extract);
   }
 
   if (VT == MVT::i32 || VT == MVT::i64) {
@@ -10240,11 +10584,11 @@ X86TargetLowering::ExtractBitFromMaskVector(SDValue Op, SelectionDAG &DAG) const
     rc = getRegClassFor(MVT::v16i1);
   unsigned MaxSift = rc->getSize()*8 - 1;
   Vec = DAG.getNode(X86ISD::VSHLI, dl, VecVT, Vec,
-                    DAG.getConstant(MaxSift - IdxVal, MVT::i8));
+                    DAG.getConstant(MaxSift - IdxVal, dl, MVT::i8));
   Vec = DAG.getNode(X86ISD::VSRLI, dl, VecVT, Vec,
-                    DAG.getConstant(MaxSift, MVT::i8));
+                    DAG.getConstant(MaxSift, dl, MVT::i8));
   return DAG.getNode(X86ISD::VEXTRACT, dl, MVT::i1, Vec,
-                       DAG.getIntPtrConstant(0));
+                       DAG.getIntPtrConstant(0, dl));
 }
 
 SDValue
@@ -10271,10 +10615,10 @@ X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
       Idx = DAG.getZExtOrTrunc(Idx, dl, MaskEltVT);
       SDValue Mask = DAG.getNode(X86ISD::VINSERT, dl, MaskVT,
                                 getZeroVector(MaskVT, Subtarget, DAG, dl),
-                                Idx, DAG.getConstant(0, getPointerTy()));
+                                Idx, DAG.getConstant(0, dl, getPointerTy()));
       SDValue Perm = DAG.getNode(X86ISD::VPERMV, dl, VecVT, Mask, Vec);
       return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(),
-                        Perm, DAG.getConstant(0, getPointerTy()));
+                        Perm, DAG.getConstant(0, dl, getPointerTy()));
     }
     return SDValue();
   }
@@ -10294,16 +10638,14 @@ X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
     //  IdxVal -= NumElems/2;
     IdxVal -= (IdxVal/ElemsPerChunk)*ElemsPerChunk;
     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
-                       DAG.getConstant(IdxVal, MVT::i32));
+                       DAG.getConstant(IdxVal, dl, MVT::i32));
   }
 
   assert(VecVT.is128BitVector() && "Unexpected vector length");
 
-  if (Subtarget->hasSSE41()) {
-    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
-    if (Res.getNode())
+  if (Subtarget->hasSSE41())
+    if (SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG))
       return Res;
-  }
 
   MVT VT = Op.getSimpleValueType();
   // TODO: handle v16i8.
@@ -10313,8 +10655,7 @@ X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
     if (Idx == 0)
       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
                          DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
-                                     DAG.getNode(ISD::BITCAST, dl,
-                                                 MVT::v4i32, Vec),
+                                     DAG.getBitcast(MVT::v4i32, Vec),
                                      Op.getOperand(1)));
     // Transform it so it match pextrw which produces a 32-bit result.
     MVT EltVT = MVT::i32;
@@ -10336,7 +10677,7 @@ X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
     SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
                                        DAG.getUNDEF(VVT), Mask);
     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
-                       DAG.getIntPtrConstant(0));
+                       DAG.getIntPtrConstant(0, dl));
   }
 
   if (VT.getSizeInBits() == 64) {
@@ -10355,7 +10696,7 @@ X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
     SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
                                        DAG.getUNDEF(VVT), Mask);
     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
-                       DAG.getIntPtrConstant(0));
+                       DAG.getIntPtrConstant(0, dl));
   }
 
   return SDValue();
@@ -10384,15 +10725,11 @@ X86TargetLowering::InsertBitToMaskVector(SDValue Op, SelectionDAG &DAG) const {
 
   unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
   SDValue EltInVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Elt);
+  if (IdxVal)
+    EltInVec = DAG.getNode(X86ISD::VSHLI, dl, VecVT, EltInVec,
+                           DAG.getConstant(IdxVal, dl, MVT::i8));
   if (Vec.getOpcode() == ISD::UNDEF)
-    return DAG.getNode(X86ISD::VSHLI, dl, VecVT, EltInVec,
-                       DAG.getConstant(IdxVal, MVT::i8));
-  const TargetRegisterClass* rc = getRegClassFor(VecVT);
-  unsigned MaxSift = rc->getSize()*8 - 1;
-  EltInVec = DAG.getNode(X86ISD::VSHLI, dl, VecVT, EltInVec,
-                    DAG.getConstant(MaxSift, MVT::i8));
-  EltInVec = DAG.getNode(X86ISD::VSRLI, dl, VecVT, EltInVec,
-                    DAG.getConstant(MaxSift - IdxVal, MVT::i8));
+    return EltInVec;
   return DAG.getNode(ISD::OR, dl, VecVT, Vec, EltInVec);
 }
 
@@ -10416,17 +10753,31 @@ SDValue X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
   // If the vector is wider than 128 bits, extract the 128-bit subvector, insert
   // into that, and then insert the subvector back into the result.
   if (VT.is256BitVector() || VT.is512BitVector()) {
-    // Get the desired 128-bit vector half.
+    // With a 256-bit vector, we can insert into the zero element efficiently
+    // using a blend if we have AVX or AVX2 and the right data type.
+    if (VT.is256BitVector() && IdxVal == 0) {
+      // TODO: It is worthwhile to cast integer to floating point and back
+      // and incur a domain crossing penalty if that's what we'll end up
+      // doing anyway after extracting to a 128-bit vector.
+      if ((Subtarget->hasAVX() && (EltVT == MVT::f64 || EltVT == MVT::f32)) ||
+          (Subtarget->hasAVX2() && EltVT == MVT::i32)) {
+        SDValue N1Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, N1);
+        N2 = DAG.getIntPtrConstant(1, dl);
+        return DAG.getNode(X86ISD::BLENDI, dl, VT, N0, N1Vec, N2);
+      }
+    }
+
+    // Get the desired 128-bit vector chunk.
     SDValue V = Extract128BitVector(N0, IdxVal, DAG, dl);
 
-    // Insert the element into the desired half.
+    // Insert the element into the desired chunk.
     unsigned NumEltsIn128 = 128 / EltVT.getSizeInBits();
     unsigned IdxIn128 = IdxVal - (IdxVal / NumEltsIn128) * NumEltsIn128;
 
     V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, V.getValueType(), V, N1,
-                    DAG.getConstant(IdxIn128, MVT::i32));
+                    DAG.getConstant(IdxIn128, dl, MVT::i32));
 
-    // Insert the changed part back to the 256-bit vector
+    // Insert the changed part back into the bigger vector
     return Insert128BitVector(N0, V, IdxVal, DAG, dl);
   }
   assert(VT.is128BitVector() && "Only 128-bit vector types should be left!");
@@ -10446,22 +10797,35 @@ SDValue X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
       if (N1.getValueType() != MVT::i32)
         N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
       if (N2.getValueType() != MVT::i32)
-        N2 = DAG.getIntPtrConstant(IdxVal);
+        N2 = DAG.getIntPtrConstant(IdxVal, dl);
       return DAG.getNode(Opc, dl, VT, N0, N1, N2);
     }
 
     if (EltVT == MVT::f32) {
-      // Bits [7:6] of the constant are the source select.  This will always be
-      //  zero here.  The DAG Combiner may combine an extract_elt index into
-      //  these
-      //  bits.  For example (insert (extract, 3), 2) could be matched by
-      //  putting
-      //  the '3' into bits [7:6] of X86ISD::INSERTPS.
-      // Bits [5:4] of the constant are the destination select.  This is the
-      //  value of the incoming immediate.
-      // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
+      // Bits [7:6] of the constant are the source select. This will always be
+      //   zero here. The DAG Combiner may combine an extract_elt index into
+      //   these bits. For example (insert (extract, 3), 2) could be matched by
+      //   putting the '3' into bits [7:6] of X86ISD::INSERTPS.
+      // Bits [5:4] of the constant are the destination select. This is the
+      //   value of the incoming immediate.
+      // Bits [3:0] of the constant are the zero mask. The DAG Combiner may
       //   combine either bitwise AND or insert of float 0.0 to set these bits.
-      N2 = DAG.getIntPtrConstant(IdxVal << 4);
+
+      const Function *F = DAG.getMachineFunction().getFunction();
+      bool MinSize = F->hasFnAttribute(Attribute::MinSize);
+      if (IdxVal == 0 && (!MinSize || !MayFoldLoad(N1))) {
+        // If this is an insertion of 32-bits into the low 32-bits of
+        // a vector, we prefer to generate a blend with immediate rather
+        // than an insertps. Blends are simpler operations in hardware and so
+        // will always have equal or better performance than insertps.
+        // But if optimizing for size and there's a load folding opportunity,
+        // generate insertps because blendps does not have a 32-bit memory
+        // operand form.
+        N2 = DAG.getIntPtrConstant(1, dl);
+        N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
+        return DAG.getNode(X86ISD::BLENDI, dl, VT, N0, N1, N2);
+      }
+      N2 = DAG.getIntPtrConstant(IdxVal << 4, dl);
       // Create this as a scalar to vector..
       N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
       return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
@@ -10482,7 +10846,7 @@ SDValue X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
     if (N1.getValueType() != MVT::i32)
       N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
     if (N2.getValueType() != MVT::i32)
-      N2 = DAG.getIntPtrConstant(IdxVal);
+      N2 = DAG.getIntPtrConstant(IdxVal, dl);
     return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
   }
   return SDValue();
@@ -10512,8 +10876,8 @@ static SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) {
 
   SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
   assert(OpVT.is128BitVector() && "Expected an SSE type!");
-  return DAG.getNode(ISD::BITCAST, dl, OpVT,
-                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
+  return DAG.getBitcast(
+      OpVT, DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, AnyExt));
 }
 
 // Lower a node with an EXTRACT_SUBVECTOR opcode.  This may result in
@@ -10574,9 +10938,8 @@ static SDValue LowerINSERT_SUBVECTOR(SDValue Op, const X86Subtarget *Subtarget,
     if (auto *Idx2 = dyn_cast<ConstantSDNode>(Vec.getOperand(2))) {
       if (Idx2->getZExtValue() == 0) {
         SDValue Ops[] = { SubVec2, SubVec };
-        SDValue LD = EltsFromConsecutiveLoads(OpVT, Ops, dl, DAG, false);
-        if (LD.getNode())
-          return LD;
+        if (SDValue Ld = EltsFromConsecutiveLoads(OpVT, Ops, dl, DAG, false))
+          return Ld;
       }
     }
   }
@@ -10588,6 +10951,37 @@ static SDValue LowerINSERT_SUBVECTOR(SDValue Op, const X86Subtarget *Subtarget,
   if (OpVT.is512BitVector() && SubVecVT.is256BitVector())
     return Insert256BitVector(Vec, SubVec, IdxVal, DAG, dl);
 
+  if (OpVT.getVectorElementType() == MVT::i1) {
+    if (IdxVal == 0  && Vec.getOpcode() == ISD::UNDEF) // the operation is legal
+      return Op;
+    SDValue ZeroIdx = DAG.getIntPtrConstant(0, dl);
+    SDValue Undef = DAG.getUNDEF(OpVT);
+    unsigned NumElems = OpVT.getVectorNumElements();
+    SDValue ShiftBits = DAG.getConstant(NumElems/2, dl, MVT::i8);
+
+    if (IdxVal == OpVT.getVectorNumElements() / 2) {
+      // Zero upper bits of the Vec
+      Vec = DAG.getNode(X86ISD::VSHLI, dl, OpVT, Vec, ShiftBits);
+      Vec = DAG.getNode(X86ISD::VSRLI, dl, OpVT, Vec, ShiftBits);
+
+      SDValue Vec2 = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, OpVT, Undef,
+                                 SubVec, ZeroIdx);
+      Vec2 = DAG.getNode(X86ISD::VSHLI, dl, OpVT, Vec2, ShiftBits);
+      return DAG.getNode(ISD::OR, dl, OpVT, Vec, Vec2);
+    }
+    if (IdxVal == 0) {
+      SDValue Vec2 = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, OpVT, Undef,
+                                 SubVec, ZeroIdx);
+      // Zero upper bits of the Vec2
+      Vec2 = DAG.getNode(X86ISD::VSHLI, dl, OpVT, Vec2, ShiftBits);
+      Vec2 = DAG.getNode(X86ISD::VSRLI, dl, OpVT, Vec2, ShiftBits);
+      // Zero lower bits of the Vec
+      Vec = DAG.getNode(X86ISD::VSRLI, dl, OpVT, Vec, ShiftBits);
+      Vec = DAG.getNode(X86ISD::VSHLI, dl, OpVT, Vec, ShiftBits);
+      // Merge them together
+      return DAG.getNode(ISD::OR, dl, OpVT, Vec, Vec2);
+    }
+  }
   return SDValue();
 }
 
@@ -10778,7 +11172,7 @@ X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, SDLoc dl,
   // addition for it.
   if (Offset != 0)
     Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
-                         DAG.getConstant(Offset, getPointerTy()));
+                         DAG.getConstant(Offset, dl, getPointerTy()));
 
   return Result;
 }
@@ -10893,7 +11287,7 @@ static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
                                                          is64Bit ? 257 : 256));
 
   SDValue ThreadPointer =
-      DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), DAG.getIntPtrConstant(0),
+      DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), DAG.getIntPtrConstant(0, dl),
                   MachinePointerInfo(Ptr), false, false, false, 0);
 
   unsigned char OperandFlags = 0;
@@ -10945,7 +11339,6 @@ X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
 
   if (Subtarget->isTargetELF()) {
     TLSModel::Model model = DAG.getTarget().getTLSModel(GV);
-
     switch (model) {
       case TLSModel::GeneralDynamic:
         if (Subtarget->is64Bit())
@@ -11035,30 +11428,36 @@ X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
 
     SDValue TlsArray =
         Subtarget->is64Bit()
-            ? DAG.getIntPtrConstant(0x58)
+            ? DAG.getIntPtrConstant(0x58, dl)
             : (Subtarget->isTargetWindowsGNU()
-                   ? DAG.getIntPtrConstant(0x2C)
+                   ? DAG.getIntPtrConstant(0x2C, dl)
                    : DAG.getExternalSymbol("_tls_array", getPointerTy()));
 
     SDValue ThreadPointer =
         DAG.getLoad(getPointerTy(), dl, Chain, TlsArray,
                     MachinePointerInfo(Ptr), false, false, false, 0);
 
-    // Load the _tls_index variable
-    SDValue IDX = DAG.getExternalSymbol("_tls_index", getPointerTy());
-    if (Subtarget->is64Bit())
-      IDX = DAG.getExtLoad(ISD::ZEXTLOAD, dl, getPointerTy(), Chain,
-                           IDX, MachinePointerInfo(), MVT::i32,
-                           false, false, false, 0);
-    else
-      IDX = DAG.getLoad(getPointerTy(), dl, Chain, IDX, MachinePointerInfo(),
-                        false, false, false, 0);
+    SDValue res;
+    if (GV->getThreadLocalMode() == GlobalVariable::LocalExecTLSModel) {
+      res = ThreadPointer;
+    } else {
+      // Load the _tls_index variable
+      SDValue IDX = DAG.getExternalSymbol("_tls_index", getPointerTy());
+      if (Subtarget->is64Bit())
+        IDX = DAG.getExtLoad(ISD::ZEXTLOAD, dl, getPointerTy(), Chain, IDX,
+                             MachinePointerInfo(), MVT::i32, false, false,
+                             false, 0);
+      else
+        IDX = DAG.getLoad(getPointerTy(), dl, Chain, IDX, MachinePointerInfo(),
+                          false, false, false, 0);
 
-    SDValue Scale = DAG.getConstant(Log2_64_Ceil(TD->getPointerSize()),
-                                    getPointerTy());
-    IDX = DAG.getNode(ISD::SHL, dl, getPointerTy(), IDX, Scale);
+      SDValue Scale = DAG.getConstant(Log2_64_Ceil(TD->getPointerSize()), dl,
+                                      getPointerTy());
+      IDX = DAG.getNode(ISD::SHL, dl, getPointerTy(), IDX, Scale);
+
+      res = DAG.getNode(ISD::ADD, dl, getPointerTy(), ThreadPointer, IDX);
+    }
 
-    SDValue res = DAG.getNode(ISD::ADD, dl, getPointerTy(), ThreadPointer, IDX);
     res = DAG.getLoad(getPointerTy(), dl, Chain, res, MachinePointerInfo(),
                       false, false, false, 0);
 
@@ -11091,10 +11490,10 @@ static SDValue LowerShiftParts(SDValue Op, SelectionDAG &DAG) {
   // generic ISD nodes haven't. Insert an AND to be safe, it's optimized away
   // during isel.
   SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
-                                  DAG.getConstant(VTBits - 1, MVT::i8));
+                                  DAG.getConstant(VTBits - 1, dl, MVT::i8));
   SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
-                                     DAG.getConstant(VTBits - 1, MVT::i8))
-                       : DAG.getConstant(0, VT);
+                                     DAG.getConstant(VTBits - 1, dl, MVT::i8))
+                       : DAG.getConstant(0, dl, VT);
 
   SDValue Tmp2, Tmp3;
   if (Op.getOpcode() == ISD::SHL_PARTS) {
@@ -11109,12 +11508,12 @@ static SDValue LowerShiftParts(SDValue Op, SelectionDAG &DAG) {
   // rely on the results of shld/shrd. Insert a test and select the appropriate
   // values for large shift amounts.
   SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
-                                DAG.getConstant(VTBits, MVT::i8));
+                                DAG.getConstant(VTBits, dl, MVT::i8));
   SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
-                             AndNode, DAG.getConstant(0, MVT::i8));
+                             AndNode, DAG.getConstant(0, dl, MVT::i8));
 
   SDValue Hi, Lo;
-  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
+  SDValue CC = DAG.getConstant(X86::COND_NE, dl, MVT::i8);
   SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
   SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
 
@@ -11132,15 +11531,21 @@ static SDValue LowerShiftParts(SDValue Op, SelectionDAG &DAG) {
 
 SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
                                            SelectionDAG &DAG) const {
-  MVT SrcVT = Op.getOperand(0).getSimpleValueType();
+  SDValue Src = Op.getOperand(0);
+  MVT SrcVT = Src.getSimpleValueType();
+  MVT VT = Op.getSimpleValueType();
   SDLoc dl(Op);
 
   if (SrcVT.isVector()) {
+    if (SrcVT == MVT::v2i32 && VT == MVT::v2f64) {
+      return DAG.getNode(X86ISD::CVTDQ2PD, dl, VT,
+                         DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v4i32, Src,
+                         DAG.getUNDEF(SrcVT)));
+    }
     if (SrcVT.getVectorElementType() == MVT::i1) {
       MVT IntegerVT = MVT::getVectorVT(MVT::i32, SrcVT.getVectorNumElements());
       return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(),
-                         DAG.getNode(ISD::SIGN_EXTEND, dl, IntegerVT,
-                                     Op.getOperand(0)));
+                         DAG.getNode(ISD::SIGN_EXTEND, dl, IntegerVT, Src));
     }
     return SDValue();
   }
@@ -11269,14 +11674,13 @@ SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
   SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
                               MachinePointerInfo::getConstantPool(),
                               false, false, false, 16);
-  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32,
-                              DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, XR1),
-                              CLod0);
+  SDValue Unpck1 =
+      getUnpackl(DAG, dl, MVT::v4i32, DAG.getBitcast(MVT::v4i32, XR1), CLod0);
 
   SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
                               MachinePointerInfo::getConstantPool(),
                               false, false, false, 16);
-  SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck1);
+  SDValue XR2F = DAG.getBitcast(MVT::v2f64, Unpck1);
   SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
   SDValue Result;
 
@@ -11284,16 +11688,15 @@ SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
     // FIXME: The 'haddpd' instruction may be slower than 'movhlps + addsd'.
     Result = DAG.getNode(X86ISD::FHADD, dl, MVT::v2f64, Sub, Sub);
   } else {
-    SDValue S2F = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Sub);
+    SDValue S2F = DAG.getBitcast(MVT::v4i32, Sub);
     SDValue Shuffle = getTargetShuffleNode(X86ISD::PSHUFD, dl, MVT::v4i32,
                                            S2F, 0x4E, DAG);
     Result = DAG.getNode(ISD::FADD, dl, MVT::v2f64,
-                         DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Shuffle),
-                         Sub);
+                         DAG.getBitcast(MVT::v2f64, Shuffle), Sub);
   }
 
   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Result,
-                     DAG.getIntPtrConstant(0));
+                     DAG.getIntPtrConstant(0, dl));
 }
 
 // LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
@@ -11301,7 +11704,7 @@ SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
                                                SelectionDAG &DAG) const {
   SDLoc dl(Op);
   // FP constant to bias correct the final result.
-  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
+  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL), dl,
                                    MVT::f64);
 
   // Load the 32-bit value into an XMM register.
@@ -11312,20 +11715,19 @@ SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
   Load = getShuffleVectorZeroOrUndef(Load, 0, true, Subtarget, DAG);
 
   Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
-                     DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load),
-                     DAG.getIntPtrConstant(0));
+                     DAG.getBitcast(MVT::v2f64, Load),
+                     DAG.getIntPtrConstant(0, dl));
 
   // Or the load with the bias.
-  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
-                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
-                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
-                                                   MVT::v2f64, Load)),
-                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
-                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
-                                                   MVT::v2f64, Bias)));
-  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
-                   DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or),
-                   DAG.getIntPtrConstant(0));
+  SDValue Or = DAG.getNode(
+      ISD::OR, dl, MVT::v2i64,
+      DAG.getBitcast(MVT::v2i64,
+                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, Load)),
+      DAG.getBitcast(MVT::v2i64,
+                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, Bias)));
+  Or =
+      DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
+                  DAG.getBitcast(MVT::v2f64, Or), DAG.getIntPtrConstant(0, dl));
 
   // Subtract the bias.
   SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
@@ -11335,7 +11737,7 @@ SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
 
   if (DestVT.bitsLT(MVT::f64))
     return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
-                       DAG.getIntPtrConstant(0));
+                       DAG.getIntPtrConstant(0, dl));
   if (DestVT.bitsGT(MVT::f64))
     return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
 
@@ -11380,20 +11782,20 @@ static SDValue lowerUINT_TO_FP_vXi32(SDValue Op, SelectionDAG &DAG,
   // -- v >> 16
 
   // Create the splat vector for 0x4b000000.
-  SDValue CstLow = DAG.getConstant(0x4b000000, MVT::i32);
+  SDValue CstLow = DAG.getConstant(0x4b000000, DL, MVT::i32);
   SDValue CstLowArray[] = {CstLow, CstLow, CstLow, CstLow,
                            CstLow, CstLow, CstLow, CstLow};
   SDValue VecCstLow = DAG.getNode(ISD::BUILD_VECTOR, DL, VecIntVT,
                                   makeArrayRef(&CstLowArray[0], NumElts));
   // Create the splat vector for 0x53000000.
-  SDValue CstHigh = DAG.getConstant(0x53000000, MVT::i32);
+  SDValue CstHigh = DAG.getConstant(0x53000000, DL, MVT::i32);
   SDValue CstHighArray[] = {CstHigh, CstHigh, CstHigh, CstHigh,
                             CstHigh, CstHigh, CstHigh, CstHigh};
   SDValue VecCstHigh = DAG.getNode(ISD::BUILD_VECTOR, DL, VecIntVT,
                                    makeArrayRef(&CstHighArray[0], NumElts));
 
   // Create the right shift.
-  SDValue CstShift = DAG.getConstant(16, MVT::i32);
+  SDValue CstShift = DAG.getConstant(16, DL, MVT::i32);
   SDValue CstShiftArray[] = {CstShift, CstShift, CstShift, CstShift,
                              CstShift, CstShift, CstShift, CstShift};
   SDValue VecCstShift = DAG.getNode(ISD::BUILD_VECTOR, DL, VecIntVT,
@@ -11404,25 +11806,22 @@ static SDValue lowerUINT_TO_FP_vXi32(SDValue Op, SelectionDAG &DAG,
   if (Subtarget.hasSSE41()) {
     EVT VecI16VT = Is128 ? MVT::v8i16 : MVT::v16i16;
     //     uint4 lo = _mm_blend_epi16( v, (uint4) 0x4b000000, 0xaa);
-    SDValue VecCstLowBitcast =
-        DAG.getNode(ISD::BITCAST, DL, VecI16VT, VecCstLow);
-    SDValue VecBitcast = DAG.getNode(ISD::BITCAST, DL, VecI16VT, V);
+    SDValue VecCstLowBitcast = DAG.getBitcast(VecI16VT, VecCstLow);
+    SDValue VecBitcast = DAG.getBitcast(VecI16VT, V);
     // Low will be bitcasted right away, so do not bother bitcasting back to its
     // original type.
     Low = DAG.getNode(X86ISD::BLENDI, DL, VecI16VT, VecBitcast,
-                      VecCstLowBitcast, DAG.getConstant(0xaa, MVT::i32));
+                      VecCstLowBitcast, DAG.getConstant(0xaa, DL, MVT::i32));
     //     uint4 hi = _mm_blend_epi16( _mm_srli_epi32(v,16),
     //                                 (uint4) 0x53000000, 0xaa);
-    SDValue VecCstHighBitcast =
-        DAG.getNode(ISD::BITCAST, DL, VecI16VT, VecCstHigh);
-    SDValue VecShiftBitcast =
-        DAG.getNode(ISD::BITCAST, DL, VecI16VT, HighShift);
+    SDValue VecCstHighBitcast = DAG.getBitcast(VecI16VT, VecCstHigh);
+    SDValue VecShiftBitcast = DAG.getBitcast(VecI16VT, HighShift);
     // High will be bitcasted right away, so do not bother bitcasting back to
     // its original type.
     High = DAG.getNode(X86ISD::BLENDI, DL, VecI16VT, VecShiftBitcast,
-                       VecCstHighBitcast, DAG.getConstant(0xaa, MVT::i32));
+                       VecCstHighBitcast, DAG.getConstant(0xaa, DL, MVT::i32));
   } else {
-    SDValue CstMask = DAG.getConstant(0xffff, MVT::i32);
+    SDValue CstMask = DAG.getConstant(0xffff, DL, MVT::i32);
     SDValue VecCstMask = DAG.getNode(ISD::BUILD_VECTOR, DL, VecIntVT, CstMask,
                                      CstMask, CstMask, CstMask);
     //     uint4 lo = (v & (uint4) 0xffff) | (uint4) 0x4b000000;
@@ -11435,18 +11834,18 @@ static SDValue lowerUINT_TO_FP_vXi32(SDValue Op, SelectionDAG &DAG,
 
   // Create the vector constant for -(0x1.0p39f + 0x1.0p23f).
   SDValue CstFAdd = DAG.getConstantFP(
-      APFloat(APFloat::IEEEsingle, APInt(32, 0xD3000080)), MVT::f32);
+      APFloat(APFloat::IEEEsingle, APInt(32, 0xD3000080)), DL, MVT::f32);
   SDValue CstFAddArray[] = {CstFAdd, CstFAdd, CstFAdd, CstFAdd,
                             CstFAdd, CstFAdd, CstFAdd, CstFAdd};
   SDValue VecCstFAdd = DAG.getNode(ISD::BUILD_VECTOR, DL, VecFloatVT,
                                    makeArrayRef(&CstFAddArray[0], NumElts));
 
   //     float4 fhi = (float4) hi - (0x1.0p39f + 0x1.0p23f);
-  SDValue HighBitcast = DAG.getNode(ISD::BITCAST, DL, VecFloatVT, High);
+  SDValue HighBitcast = DAG.getBitcast(VecFloatVT, High);
   SDValue FHigh =
       DAG.getNode(ISD::FADD, DL, VecFloatVT, HighBitcast, VecCstFAdd);
   //     return (float4) lo + fhi;
-  SDValue LowBitcast = DAG.getNode(ISD::BITCAST, DL, VecFloatVT, Low);
+  SDValue LowBitcast = DAG.getBitcast(VecFloatVT, Low);
   return DAG.getNode(ISD::FADD, DL, VecFloatVT, LowBitcast, FHigh);
 }
 
@@ -11470,6 +11869,11 @@ SDValue X86TargetLowering::lowerUINT_TO_FP_vec(SDValue Op,
   case MVT::v4i32:
   case MVT::v8i32:
     return lowerUINT_TO_FP_vXi32(Op, DAG, *Subtarget);
+  case MVT::v16i8:
+  case MVT::v16i16:
+    if (Subtarget->hasAVX512())
+      return DAG.getNode(ISD::UINT_TO_FP, dl, Op.getValueType(),
+                         DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v16i32, N0));
   }
   llvm_unreachable(nullptr);
 }
@@ -11500,13 +11904,13 @@ SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
   // Make a 64-bit buffer, and use it to build an FILD.
   SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
   if (SrcVT == MVT::i32) {
-    SDValue WordOff = DAG.getConstant(4, getPointerTy());
+    SDValue WordOff = DAG.getConstant(4, dl, getPointerTy());
     SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
                                      getPointerTy(), StackSlot, WordOff);
     SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
                                   StackSlot, MachinePointerInfo(),
                                   false, false, 0);
-    SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
+    SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, dl, MVT::i32),
                                   OffsetSlot, MachinePointerInfo(),
                                   false, false, 0);
     SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
@@ -11538,8 +11942,8 @@ SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
   // Check whether the sign bit is set.
   SDValue SignSet = DAG.getSetCC(dl,
                                  getSetCCResultType(*DAG.getContext(), MVT::i64),
-                                 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
-                                 ISD::SETLT);
+                                 Op.getOperand(0),
+                                 DAG.getConstant(0, dl, MVT::i64), ISD::SETLT);
 
   // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
   SDValue FudgePtr = DAG.getConstantPool(
@@ -11547,8 +11951,8 @@ SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
                                          getPointerTy());
 
   // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
-  SDValue Zero = DAG.getIntPtrConstant(0);
-  SDValue Four = DAG.getIntPtrConstant(4);
+  SDValue Zero = DAG.getIntPtrConstant(0, dl);
+  SDValue Four = DAG.getIntPtrConstant(4, dl);
   SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
                                Zero, Four);
   FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
@@ -11560,7 +11964,8 @@ SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
                                  MVT::f32, false, false, false, 4);
   // Extend everything to 80 bits to force it to be done on x87.
   SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
-  return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
+  return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add,
+                     DAG.getIntPtrConstant(0, dl));
 }
 
 std::pair<SDValue,SDValue>
@@ -11663,6 +12068,9 @@ static SDValue LowerAVXExtend(SDValue Op, SelectionDAG &DAG,
   MVT InVT = In.getSimpleValueType();
   SDLoc dl(Op);
 
+  if (VT.is512BitVector() || InVT.getScalarType() == MVT::i1)
+    return DAG.getNode(ISD::ZERO_EXTEND, dl, VT, In);
+
   // Optimize vectors in AVX mode:
   //
   //   v8i16 -> v8i32
@@ -11693,50 +12101,43 @@ static SDValue LowerAVXExtend(SDValue Op, SelectionDAG &DAG,
   MVT HVT = MVT::getVectorVT(VT.getVectorElementType(),
                              VT.getVectorNumElements()/2);
 
-  OpLo = DAG.getNode(ISD::BITCAST, dl, HVT, OpLo);
-  OpHi = DAG.getNode(ISD::BITCAST, dl, HVT, OpHi);
+  OpLo = DAG.getBitcast(HVT, OpLo);
+  OpHi = DAG.getBitcast(HVT, OpHi);
 
   return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
 }
 
 static  SDValue LowerZERO_EXTEND_AVX512(SDValue Op,
-                                        SelectionDAG &DAG) {
+                  const X86Subtarget *Subtarget, SelectionDAG &DAG) {
   MVT VT = Op->getSimpleValueType(0);
   SDValue In = Op->getOperand(0);
   MVT InVT = In.getSimpleValueType();
   SDLoc DL(Op);
   unsigned int NumElts = VT.getVectorNumElements();
-  if (NumElts != 8 && NumElts != 16)
+  if (NumElts != 8 && NumElts != 16 && !Subtarget->hasBWI())
     return SDValue();
 
   if (VT.is512BitVector() && InVT.getVectorElementType() != MVT::i1)
     return DAG.getNode(X86ISD::VZEXT, DL, VT, In);
 
-  EVT ExtVT = (NumElts == 8)? MVT::v8i64 : MVT::v16i32;
-  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
-  // Now we have only mask extension
   assert(InVT.getVectorElementType() == MVT::i1);
-  SDValue Cst = DAG.getTargetConstant(1, ExtVT.getScalarType());
-  const Constant *C = (dyn_cast<ConstantSDNode>(Cst))->getConstantIntValue();
-  SDValue CP = DAG.getConstantPool(C, TLI.getPointerTy());
-  unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment();
-  SDValue Ld = DAG.getLoad(Cst.getValueType(), DL, DAG.getEntryNode(), CP,
-                           MachinePointerInfo::getConstantPool(),
-                           false, false, false, Alignment);
-
-  SDValue Brcst = DAG.getNode(X86ISD::VBROADCASTM, DL, ExtVT, In, Ld);
+  MVT ExtVT = NumElts == 8 ? MVT::v8i64 : MVT::v16i32;
+  SDValue One =
+   DAG.getConstant(APInt(ExtVT.getScalarSizeInBits(), 1), DL, ExtVT);
+  SDValue Zero =
+   DAG.getConstant(APInt::getNullValue(ExtVT.getScalarSizeInBits()), DL, ExtVT);
+
+  SDValue V = DAG.getNode(ISD::VSELECT, DL, ExtVT, In, One, Zero);
   if (VT.is512BitVector())
-    return Brcst;
-  return DAG.getNode(X86ISD::VTRUNC, DL, VT, Brcst);
+    return V;
+  return DAG.getNode(X86ISD::VTRUNC, DL, VT, V);
 }
 
 static SDValue LowerANY_EXTEND(SDValue Op, const X86Subtarget *Subtarget,
                                SelectionDAG &DAG) {
-  if (Subtarget->hasFp256()) {
-    SDValue Res = LowerAVXExtend(Op, DAG, Subtarget);
-    if (Res.getNode())
+  if (Subtarget->hasFp256())
+    if (SDValue Res = LowerAVXExtend(Op, DAG, Subtarget))
       return Res;
-  }
 
   return SDValue();
 }
@@ -11749,13 +12150,11 @@ static SDValue LowerZERO_EXTEND(SDValue Op, const X86Subtarget *Subtarget,
   MVT SVT = In.getSimpleValueType();
 
   if (VT.is512BitVector() || SVT.getVectorElementType() == MVT::i1)
-    return LowerZERO_EXTEND_AVX512(Op, DAG);
+    return LowerZERO_EXTEND_AVX512(Op, Subtarget, DAG);
 
-  if (Subtarget->hasFp256()) {
-    SDValue Res = LowerAVXExtend(Op, DAG, Subtarget);
-    if (Res.getNode())
+  if (Subtarget->hasFp256())
+    if (SDValue Res = LowerAVXExtend(Op, DAG, Subtarget))
       return Res;
-  }
 
   assert(!VT.is256BitVector() || !SVT.is128BitVector() ||
          VT.getVectorNumElements() != SVT.getVectorNumElements());
@@ -11779,6 +12178,23 @@ SDValue X86TargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
   assert(VT.getVectorNumElements() == InVT.getVectorNumElements() &&
          "Invalid TRUNCATE operation");
 
+  // move vector to mask - truncate solution for SKX
+  if (VT.getVectorElementType() == MVT::i1) {
+    if (InVT.is512BitVector() && InVT.getScalarSizeInBits() <= 16 &&
+        Subtarget->hasBWI())
+      return Op; // legal, will go to VPMOVB2M, VPMOVW2M
+    if ((InVT.is256BitVector() || InVT.is128BitVector())
+        && InVT.getScalarSizeInBits() <= 16 &&
+        Subtarget->hasBWI() && Subtarget->hasVLX())
+      return Op; // legal, will go to VPMOVB2M, VPMOVW2M
+    if (InVT.is512BitVector() && InVT.getScalarSizeInBits() >= 32 &&
+        Subtarget->hasDQI())
+      return Op; // legal, will go to VPMOVD2M, VPMOVQ2M
+    if ((InVT.is256BitVector() || InVT.is128BitVector())
+        && InVT.getScalarSizeInBits() >= 32 &&
+        Subtarget->hasDQI() && Subtarget->hasVLX())
+      return Op; // legal, will go to VPMOVB2M, VPMOVQ2M
+  }
   if (InVT.is512BitVector() || VT.getVectorElementType() == MVT::i1) {
     if (VT.getVectorElementType().getSizeInBits() >=8)
       return DAG.getNode(X86ISD::VTRUNC, DL, VT, In);
@@ -11792,14 +12208,8 @@ SDValue X86TargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
       InVT = ExtVT;
     }
 
-    SDValue Cst = DAG.getTargetConstant(1, InVT.getVectorElementType());
-    const Constant *C = (dyn_cast<ConstantSDNode>(Cst))->getConstantIntValue();
-    SDValue CP = DAG.getConstantPool(C, getPointerTy());
-    unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment();
-    SDValue Ld = DAG.getLoad(Cst.getValueType(), DL, DAG.getEntryNode(), CP,
-                           MachinePointerInfo::getConstantPool(),
-                           false, false, false, Alignment);
-    SDValue OneV = DAG.getNode(X86ISD::VBROADCAST, DL, InVT, Ld);
+    SDValue OneV =
+     DAG.getConstant(APInt::getSignBit(InVT.getScalarSizeInBits()), DL, InVT);
     SDValue And = DAG.getNode(ISD::AND, DL, InVT, OneV, In);
     return DAG.getNode(X86ISD::TESTM, DL, VT, And, And);
   }
@@ -11808,19 +12218,19 @@ SDValue X86TargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
     // On AVX2, v4i64 -> v4i32 becomes VPERMD.
     if (Subtarget->hasInt256()) {
       static const int ShufMask[] = {0, 2, 4, 6, -1, -1, -1, -1};
-      In = DAG.getNode(ISD::BITCAST, DL, MVT::v8i32, In);
+      In = DAG.getBitcast(MVT::v8i32, In);
       In = DAG.getVectorShuffle(MVT::v8i32, DL, In, DAG.getUNDEF(MVT::v8i32),
                                 ShufMask);
       return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, In,
-                         DAG.getIntPtrConstant(0));
+                         DAG.getIntPtrConstant(0, DL));
     }
 
     SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In,
-                               DAG.getIntPtrConstant(0));
+                               DAG.getIntPtrConstant(0, DL));
     SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In,
-                               DAG.getIntPtrConstant(2));
-    OpLo = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpLo);
-    OpHi = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpHi);
+                               DAG.getIntPtrConstant(2, DL));
+    OpLo = DAG.getBitcast(MVT::v4i32, OpLo);
+    OpHi = DAG.getBitcast(MVT::v4i32, OpHi);
     static const int ShufMask[] = {0, 2, 4, 6};
     return DAG.getVectorShuffle(VT, DL, OpLo, OpHi, ShufMask);
   }
@@ -11828,41 +12238,41 @@ SDValue X86TargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
   if ((VT == MVT::v8i16) && (InVT == MVT::v8i32)) {
     // On AVX2, v8i32 -> v8i16 becomed PSHUFB.
     if (Subtarget->hasInt256()) {
-      In = DAG.getNode(ISD::BITCAST, DL, MVT::v32i8, In);
+      In = DAG.getBitcast(MVT::v32i8, In);
 
       SmallVector<SDValue,32> pshufbMask;
       for (unsigned i = 0; i < 2; ++i) {
-        pshufbMask.push_back(DAG.getConstant(0x0, MVT::i8));
-        pshufbMask.push_back(DAG.getConstant(0x1, MVT::i8));
-        pshufbMask.push_back(DAG.getConstant(0x4, MVT::i8));
-        pshufbMask.push_back(DAG.getConstant(0x5, MVT::i8));
-        pshufbMask.push_back(DAG.getConstant(0x8, MVT::i8));
-        pshufbMask.push_back(DAG.getConstant(0x9, MVT::i8));
-        pshufbMask.push_back(DAG.getConstant(0xc, MVT::i8));
-        pshufbMask.push_back(DAG.getConstant(0xd, MVT::i8));
+        pshufbMask.push_back(DAG.getConstant(0x0, DL, MVT::i8));
+        pshufbMask.push_back(DAG.getConstant(0x1, DL, MVT::i8));
+        pshufbMask.push_back(DAG.getConstant(0x4, DL, MVT::i8));
+        pshufbMask.push_back(DAG.getConstant(0x5, DL, MVT::i8));
+        pshufbMask.push_back(DAG.getConstant(0x8, DL, MVT::i8));
+        pshufbMask.push_back(DAG.getConstant(0x9, DL, MVT::i8));
+        pshufbMask.push_back(DAG.getConstant(0xc, DL, MVT::i8));
+        pshufbMask.push_back(DAG.getConstant(0xd, DL, MVT::i8));
         for (unsigned j = 0; j < 8; ++j)
-          pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
+          pshufbMask.push_back(DAG.getConstant(0x80, DL, MVT::i8));
       }
       SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v32i8, pshufbMask);
       In = DAG.getNode(X86ISD::PSHUFB, DL, MVT::v32i8, In, BV);
-      In = DAG.getNode(ISD::BITCAST, DL, MVT::v4i64, In);
+      In = DAG.getBitcast(MVT::v4i64, In);
 
       static const int ShufMask[] = {0,  2,  -1,  -1};
       In = DAG.getVectorShuffle(MVT::v4i64, DL,  In, DAG.getUNDEF(MVT::v4i64),
                                 &ShufMask[0]);
       In = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In,
-                       DAG.getIntPtrConstant(0));
-      return DAG.getNode(ISD::BITCAST, DL, VT, In);
+                       DAG.getIntPtrConstant(0, DL));
+      return DAG.getBitcast(VT, In);
     }
 
     SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i32, In,
-                               DAG.getIntPtrConstant(0));
+                               DAG.getIntPtrConstant(0, DL));
 
     SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i32, In,
-                               DAG.getIntPtrConstant(4));
+                               DAG.getIntPtrConstant(4, DL));
 
-    OpLo = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, OpLo);
-    OpHi = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, OpHi);
+    OpLo = DAG.getBitcast(MVT::v16i8, OpLo);
+    OpHi = DAG.getBitcast(MVT::v16i8, OpHi);
 
     // The PSHUFB mask:
     static const int ShufMask1[] = {0,  1,  4,  5,  8,  9, 12, 13,
@@ -11872,13 +12282,13 @@ SDValue X86TargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
     OpLo = DAG.getVectorShuffle(MVT::v16i8, DL, OpLo, Undef, ShufMask1);
     OpHi = DAG.getVectorShuffle(MVT::v16i8, DL, OpHi, Undef, ShufMask1);
 
-    OpLo = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpLo);
-    OpHi = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpHi);
+    OpLo = DAG.getBitcast(MVT::v4i32, OpLo);
+    OpHi = DAG.getBitcast(MVT::v4i32, OpHi);
 
     // The MOVLHPS Mask:
     static const int ShufMask2[] = {0, 1, 4, 5};
     SDValue res = DAG.getVectorShuffle(MVT::v4i32, DL, OpLo, OpHi, ShufMask2);
-    return DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, res);
+    return DAG.getBitcast(MVT::v8i16, res);
   }
 
   // Handle truncation of V256 to V128 using shuffles.
@@ -11894,11 +12304,10 @@ SDValue X86TargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
   // Prepare truncation shuffle mask
   for (unsigned i = 0; i != NumElems; ++i)
     MaskVec[i] = i * 2;
-  SDValue V = DAG.getVectorShuffle(NVT, DL,
-                                   DAG.getNode(ISD::BITCAST, DL, NVT, In),
+  SDValue V = DAG.getVectorShuffle(NVT, DL, DAG.getBitcast(NVT, In),
                                    DAG.getUNDEF(NVT), &MaskVec[0]);
   return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V,
-                     DAG.getIntPtrConstant(0));
+                     DAG.getIntPtrConstant(0, DL));
 }
 
 SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
@@ -12004,13 +12413,12 @@ static SDValue LowerFABSorFNEG(SDValue Op, SelectionDAG &DAG) {
     // For a vector, cast operands to a vector type, perform the logic op,
     // and cast the result back to the original value type.
     MVT VecVT = MVT::getVectorVT(MVT::i64, VT.getSizeInBits() / 64);
-    SDValue MaskCasted = DAG.getNode(ISD::BITCAST, dl, VecVT, Mask);
-    SDValue Operand = IsFNABS ?
-      DAG.getNode(ISD::BITCAST, dl, VecVT, Op0.getOperand(0)) :
-      DAG.getNode(ISD::BITCAST, dl, VecVT, Op0);
+    SDValue MaskCasted = DAG.getBitcast(VecVT, Mask);
+    SDValue Operand = IsFNABS ? DAG.getBitcast(VecVT, Op0.getOperand(0))
+                              : DAG.getBitcast(VecVT, Op0);
     unsigned BitOp = IsFABS ? ISD::AND : IsFNABS ? ISD::OR : ISD::XOR;
-    return DAG.getNode(ISD::BITCAST, dl, VT,
-                       DAG.getNode(BitOp, dl, VecVT, Operand, MaskCasted));
+    return DAG.getBitcast(VT,
+                          DAG.getNode(BitOp, dl, VecVT, Operand, MaskCasted));
   }
 
   // If not vector, then scalar.
@@ -12035,7 +12443,7 @@ static SDValue LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) {
   }
   // And if it is bigger, shrink it first.
   if (SrcVT.bitsGT(VT)) {
-    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
+    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1, dl));
     SrcVT = VT;
   }
 
@@ -12094,8 +12502,8 @@ static SDValue LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) {
 
   // Lower ISD::FGETSIGN to (AND (X86ISD::FGETSIGNx86 ...) 1).
   SDValue xFGETSIGN = DAG.getNode(X86ISD::FGETSIGNx86, dl, VT, N0,
-                                  DAG.getConstant(1, VT));
-  return DAG.getNode(ISD::AND, dl, VT, xFGETSIGN, DAG.getConstant(1, VT));
+                                  DAG.getConstant(1, dl, VT));
+  return DAG.getNode(ISD::AND, dl, VT, xFGETSIGN, DAG.getConstant(1, dl, VT));
 }
 
 // Check whether an OR'd tree is PTEST-able.
@@ -12175,7 +12583,7 @@ static SDValue LowerVectorAllZeroTest(SDValue Op, const X86Subtarget *Subtarget,
 
   // Cast all vectors into TestVT for PTEST.
   for (unsigned i = 0, e = VecIns.size(); i < e; ++i)
-    VecIns[i] = DAG.getNode(ISD::BITCAST, DL, TestVT, VecIns[i]);
+    VecIns[i] = DAG.getBitcast(TestVT, VecIns[i]);
 
   // If more than one full vectors are evaluated, OR them first before PTEST.
   for (unsigned Slot = 0, e = VecIns.size(); e - Slot > 1; Slot += 2, e += 1) {
@@ -12216,7 +12624,7 @@ SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC, SDLoc dl,
   if (Op.getValueType() == MVT::i1) {
     SDValue ExtOp = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i8, Op);
     return DAG.getNode(X86ISD::CMP, dl, MVT::i32, ExtOp,
-                       DAG.getConstant(0, MVT::i8));
+                       DAG.getConstant(0, dl, MVT::i8));
   }
   // CF and OF aren't always set the way we want. Determine which
   // of these we need.
@@ -12239,9 +12647,8 @@ SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC, SDLoc dl,
     case ISD::SUB:
     case ISD::MUL:
     case ISD::SHL: {
-      const BinaryWithFlagsSDNode *BinNode =
-          cast<BinaryWithFlagsSDNode>(Op.getNode());
-      if (BinNode->hasNoSignedWrap())
+      const auto *BinNode = cast<BinaryWithFlagsSDNode>(Op.getNode());
+      if (BinNode->Flags.hasNoSignedWrap())
         break;
     }
     default:
@@ -12260,7 +12667,7 @@ SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC, SDLoc dl,
     //  return DAG.getNode(X86ISD::CMP, dl, MVT::i1, Op,
     //                     DAG.getConstant(0, MVT::i1));
     return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
-                       DAG.getConstant(0, Op.getValueType()));
+                       DAG.getConstant(0, dl, Op.getValueType()));
   }
   unsigned Opcode = 0;
   unsigned NumOperands = 0;
@@ -12348,7 +12755,7 @@ SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC, SDLoc dl,
       if (!Mask.isSignedIntN(32)) // Avoid large immediates.
         break;
       SDValue New = DAG.getNode(ISD::AND, dl, VT, Op->getOperand(0),
-                                DAG.getConstant(Mask, VT));
+                                DAG.getConstant(Mask, dl, VT));
       DAG.ReplaceAllUsesWith(Op, New);
       Op = New;
     }
@@ -12434,7 +12841,7 @@ SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC, SDLoc dl,
   if (Opcode == 0)
     // Emit a CMP with 0, which is the TEST pattern.
     return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
-                       DAG.getConstant(0, Op.getValueType()));
+                       DAG.getConstant(0, dl, Op.getValueType()));
 
   SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
   SmallVector<SDValue, 4> Ops(Op->op_begin(), Op->op_begin() + NumOperands);
@@ -12499,7 +12906,7 @@ SDValue X86TargetLowering::ConvertCmpIfNecessary(SDValue Cmp,
   SDValue TruncFPSW = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, Cmp);
   SDValue FNStSW = DAG.getNode(X86ISD::FNSTSW16r, dl, MVT::i16, TruncFPSW);
   SDValue Srl = DAG.getNode(ISD::SRL, dl, MVT::i16, FNStSW,
-                            DAG.getConstant(8, MVT::i8));
+                            DAG.getConstant(8, dl, MVT::i8));
   SDValue TruncSrl = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Srl);
   return DAG.getNode(X86ISD::SAHF, dl, MVT::i32, TruncSrl);
 }
@@ -12510,29 +12917,31 @@ SDValue X86TargetLowering::getRsqrtEstimate(SDValue Op,
                                             DAGCombinerInfo &DCI,
                                             unsigned &RefinementSteps,
                                             bool &UseOneConstNR) const {
-  // FIXME: We should use instruction latency models to calculate the cost of
-  // each potential sequence, but this is very hard to do reliably because
-  // at least Intel's Core* chips have variable timing based on the number of
-  // significant digits in the divisor and/or sqrt operand.
-  if (!Subtarget->useSqrtEst())
-    return SDValue();
-
   EVT VT = Op.getValueType();
+  const char *RecipOp;
 
-  // SSE1 has rsqrtss and rsqrtps.
+  // SSE1 has rsqrtss and rsqrtps. AVX adds a 256-bit variant for rsqrtps.
   // TODO: Add support for AVX512 (v16f32).
   // It is likely not profitable to do this for f64 because a double-precision
   // rsqrt estimate with refinement on x86 prior to FMA requires at least 16
   // instructions: convert to single, rsqrtss, convert back to double, refine
   // (3 steps = at least 13 insts). If an 'rsqrtsd' variant was added to the ISA
   // along with FMA, this could be a throughput win.
-  if ((Subtarget->hasSSE1() && (VT == MVT::f32 || VT == MVT::v4f32)) ||
-      (Subtarget->hasAVX() && VT == MVT::v8f32)) {
-    RefinementSteps = 1;
-    UseOneConstNR = false;
-    return DCI.DAG.getNode(X86ISD::FRSQRT, SDLoc(Op), VT, Op);
-  }
-  return SDValue();
+  if (VT == MVT::f32 && Subtarget->hasSSE1())
+    RecipOp = "sqrtf";
+  else if ((VT == MVT::v4f32 && Subtarget->hasSSE1()) ||
+           (VT == MVT::v8f32 && Subtarget->hasAVX()))
+    RecipOp = "vec-sqrtf";
+  else
+    return SDValue();
+
+  TargetRecip Recips = DCI.DAG.getTarget().Options.Reciprocals;
+  if (!Recips.isEnabled(RecipOp))
+    return SDValue();
+
+  RefinementSteps = Recips.getRefinementSteps(RecipOp);
+  UseOneConstNR = false;
+  return DCI.DAG.getNode(X86ISD::FRSQRT, SDLoc(Op), VT, Op);
 }
 
 /// The minimum architected relative accuracy is 2^-12. We need one
@@ -12540,14 +12949,8 @@ SDValue X86TargetLowering::getRsqrtEstimate(SDValue Op,
 SDValue X86TargetLowering::getRecipEstimate(SDValue Op,
                                             DAGCombinerInfo &DCI,
                                             unsigned &RefinementSteps) const {
-  // FIXME: We should use instruction latency models to calculate the cost of
-  // each potential sequence, but this is very hard to do reliably because
-  // at least Intel's Core* chips have variable timing based on the number of
-  // significant digits in the divisor.
-  if (!Subtarget->useReciprocalEst())
-    return SDValue();
-
   EVT VT = Op.getValueType();
+  const char *RecipOp;
 
   // SSE1 has rcpss and rcpps. AVX adds a 256-bit variant for rcpps.
   // TODO: Add support for AVX512 (v16f32).
@@ -12556,12 +12959,30 @@ SDValue X86TargetLowering::getRecipEstimate(SDValue Op,
   // 15 instructions: convert to single, rcpss, convert back to double, refine
   // (3 steps = 12 insts). If an 'rcpsd' variant was added to the ISA
   // along with FMA, this could be a throughput win.
-  if ((Subtarget->hasSSE1() && (VT == MVT::f32 || VT == MVT::v4f32)) ||
-      (Subtarget->hasAVX() && VT == MVT::v8f32)) {
-    RefinementSteps = ReciprocalEstimateRefinementSteps;
-    return DCI.DAG.getNode(X86ISD::FRCP, SDLoc(Op), VT, Op);
-  }
-  return SDValue();
+  if (VT == MVT::f32 && Subtarget->hasSSE1())
+    RecipOp = "divf";
+  else if ((VT == MVT::v4f32 && Subtarget->hasSSE1()) ||
+           (VT == MVT::v8f32 && Subtarget->hasAVX()))
+    RecipOp = "vec-divf";
+  else
+    return SDValue();
+
+  TargetRecip Recips = DCI.DAG.getTarget().Options.Reciprocals;
+  if (!Recips.isEnabled(RecipOp))
+    return SDValue();
+
+  RefinementSteps = Recips.getRefinementSteps(RecipOp);
+  return DCI.DAG.getNode(X86ISD::FRCP, SDLoc(Op), VT, Op);
+}
+
+/// If we have at least two divisions that use the same divisor, convert to
+/// multplication by a reciprocal. This may need to be adjusted for a given
+/// CPU if a division's cost is not at least twice the cost of a multiplication.
+/// This is because we still need one division to calculate the reciprocal and
+/// then we need two multiplies by that reciprocal as replacements for the
+/// original divisions.
+bool X86TargetLowering::combineRepeatedFPDivisors(unsigned NumUsers) const {
+  return NumUsers > 1;
 }
 
 static bool isAllOnes(SDValue V) {
@@ -12612,7 +13033,7 @@ SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
     // Use BT if the immediate can't be encoded in a TEST instruction.
     if (!isUInt<32>(AndRHSVal) && isPowerOf2_64(AndRHSVal)) {
       LHS = AndLHS;
-      RHS = DAG.getConstant(Log2_64_Ceil(AndRHSVal), LHS.getValueType());
+      RHS = DAG.getConstant(Log2_64_Ceil(AndRHSVal), dl, LHS.getValueType());
     }
   }
 
@@ -12634,7 +13055,7 @@ SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
     SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
     X86::CondCode Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
     return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
-                       DAG.getConstant(Cond, MVT::i8), BT);
+                       DAG.getConstant(Cond, dl, MVT::i8), BT);
   }
 
   return SDValue();
@@ -12715,6 +13136,49 @@ static SDValue Lower256IntVSETCC(SDValue Op, SelectionDAG &DAG) {
                      DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2, CC));
 }
 
+static SDValue LowerBoolVSETCC_AVX512(SDValue Op, SelectionDAG &DAG) {
+  SDValue Op0 = Op.getOperand(0);
+  SDValue Op1 = Op.getOperand(1);
+  SDValue CC = Op.getOperand(2);
+  MVT VT = Op.getSimpleValueType();
+  SDLoc dl(Op);
+
+  assert(Op0.getValueType().getVectorElementType() == MVT::i1 &&
+         "Unexpected type for boolean compare operation");
+  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
+  SDValue NotOp0 = DAG.getNode(ISD::XOR, dl, VT, Op0,
+                               DAG.getConstant(-1, dl, VT));
+  SDValue NotOp1 = DAG.getNode(ISD::XOR, dl, VT, Op1,
+                               DAG.getConstant(-1, dl, VT));
+  switch (SetCCOpcode) {
+  default: llvm_unreachable("Unexpected SETCC condition");
+  case ISD::SETEQ:
+    // (x == y) -> ~(x ^ y)
+    return DAG.getNode(ISD::XOR, dl, VT,
+                       DAG.getNode(ISD::XOR, dl, VT, Op0, Op1),
+                       DAG.getConstant(-1, dl, VT));
+  case ISD::SETNE:
+    // (x != y) -> (x ^ y)
+    return DAG.getNode(ISD::XOR, dl, VT, Op0, Op1);
+  case ISD::SETUGT:
+  case ISD::SETGT:
+    // (x > y) -> (x & ~y)
+    return DAG.getNode(ISD::AND, dl, VT, Op0, NotOp1);
+  case ISD::SETULT:
+  case ISD::SETLT:
+    // (x < y) -> (~x & y)
+    return DAG.getNode(ISD::AND, dl, VT, NotOp0, Op1);
+  case ISD::SETULE:
+  case ISD::SETLE:
+    // (x <= y) -> (~x | y)
+    return DAG.getNode(ISD::OR, dl, VT, NotOp0, Op1);
+  case ISD::SETUGE:
+  case ISD::SETGE:
+    // (x >=y) -> (x | ~y)
+    return DAG.getNode(ISD::OR, dl, VT, Op0, NotOp1);
+  }
+}
+
 static SDValue LowerIntVSETCC_AVX512(SDValue Op, SelectionDAG &DAG,
                                      const X86Subtarget *Subtarget) {
   SDValue Op0 = Op.getOperand(0);
@@ -12752,7 +13216,7 @@ static SDValue LowerIntVSETCC_AVX512(SDValue Op, SelectionDAG &DAG,
     return DAG.getNode(Opc, dl, VT, Op0, Op1);
   Opc = Unsigned ? X86ISD::CMPMU: X86ISD::CMPM;
   return DAG.getNode(Opc, dl, VT, Op0, Op1,
-                     DAG.getConstant(SSECC, MVT::i8));
+                     DAG.getConstant(SSECC, dl, MVT::i8));
 }
 
 /// \brief Try to turn a VSETULT into a VSETULE by modifying its second
@@ -12779,7 +13243,7 @@ static SDValue ChangeVSETULTtoVSETULE(SDLoc dl, SDValue Op1, SelectionDAG &DAG)
     if (Val == 0)
       return SDValue();
 
-    ULTOp1.push_back(DAG.getConstant(Val - 1, EVT));
+    ULTOp1.push_back(DAG.getConstant(Val - 1, dl, EVT));
   }
 
   return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, ULTOp1);
@@ -12819,22 +13283,25 @@ static SDValue LowerVSETCC(SDValue Op, const X86Subtarget *Subtarget,
       }
 
       SDValue Cmp0 = DAG.getNode(Opc, dl, VT, Op0, Op1,
-                                 DAG.getConstant(CC0, MVT::i8));
+                                 DAG.getConstant(CC0, dl, MVT::i8));
       SDValue Cmp1 = DAG.getNode(Opc, dl, VT, Op0, Op1,
-                                 DAG.getConstant(CC1, MVT::i8));
+                                 DAG.getConstant(CC1, dl, MVT::i8));
       return DAG.getNode(CombineOpc, dl, VT, Cmp0, Cmp1);
     }
     // Handle all other FP comparisons here.
     return DAG.getNode(Opc, dl, VT, Op0, Op1,
-                       DAG.getConstant(SSECC, MVT::i8));
+                       DAG.getConstant(SSECC, dl, MVT::i8));
   }
 
   // Break 256-bit integer vector compare into smaller ones.
   if (VT.is256BitVector() && !Subtarget->hasInt256())
     return Lower256IntVSETCC(Op, DAG);
 
-  bool MaskResult = (VT.getVectorElementType() == MVT::i1);
   EVT OpVT = Op1.getValueType();
+  if (OpVT.getVectorElementType() == MVT::i1)
+    return LowerBoolVSETCC_AVX512(Op, DAG);
+
+  bool MaskResult = (VT.getVectorElementType() == MVT::i1);
   if (Subtarget->hasAVX512()) {
     if (Op1.getValueType().is512BitVector() ||
         (Subtarget->hasBWI() && Subtarget->hasVLX()) ||
@@ -12936,18 +13403,18 @@ static SDValue LowerVSETCC(SDValue Op, const X86Subtarget *Subtarget,
       assert(Subtarget->hasSSE2() && "Don't know how to lower!");
 
       // First cast everything to the right type.
-      Op0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op0);
-      Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op1);
+      Op0 = DAG.getBitcast(MVT::v4i32, Op0);
+      Op1 = DAG.getBitcast(MVT::v4i32, Op1);
 
       // Since SSE has no unsigned integer comparisons, we need to flip the sign
       // bits of the inputs before performing those operations. The lower
       // compare is always unsigned.
       SDValue SB;
       if (FlipSigns) {
-        SB = DAG.getConstant(0x80000000U, MVT::v4i32);
+        SB = DAG.getConstant(0x80000000U, dl, MVT::v4i32);
       } else {
-        SDValue Sign = DAG.getConstant(0x80000000U, MVT::i32);
-        SDValue Zero = DAG.getConstant(0x00000000U, MVT::i32);
+        SDValue Sign = DAG.getConstant(0x80000000U, dl, MVT::i32);
+        SDValue Zero = DAG.getConstant(0x00000000U, dl, MVT::i32);
         SB = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32,
                          Sign, Zero, Sign, Zero);
       }
@@ -12971,7 +13438,7 @@ static SDValue LowerVSETCC(SDValue Op, const X86Subtarget *Subtarget,
       if (Invert)
         Result = DAG.getNOT(dl, Result, MVT::v4i32);
 
-      return DAG.getNode(ISD::BITCAST, dl, VT, Result);
+      return DAG.getBitcast(VT, Result);
     }
 
     if (Opc == X86ISD::PCMPEQ && !Subtarget->hasSSE41()) {
@@ -12980,8 +13447,8 @@ static SDValue LowerVSETCC(SDValue Op, const X86Subtarget *Subtarget,
       assert(Subtarget->hasSSE2() && !FlipSigns && "Don't know how to lower!");
 
       // First cast everything to the right type.
-      Op0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op0);
-      Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op1);
+      Op0 = DAG.getBitcast(MVT::v4i32, Op0);
+      Op1 = DAG.getBitcast(MVT::v4i32, Op1);
 
       // Do the compare.
       SDValue Result = DAG.getNode(Opc, dl, MVT::v4i32, Op0, Op1);
@@ -12994,7 +13461,7 @@ static SDValue LowerVSETCC(SDValue Op, const X86Subtarget *Subtarget,
       if (Invert)
         Result = DAG.getNOT(dl, Result, MVT::v4i32);
 
-      return DAG.getNode(ISD::BITCAST, dl, VT, Result);
+      return DAG.getBitcast(VT, Result);
     }
   }
 
@@ -13002,7 +13469,8 @@ static SDValue LowerVSETCC(SDValue Op, const X86Subtarget *Subtarget,
   // bits of the inputs before performing those operations.
   if (FlipSigns) {
     EVT EltVT = VT.getVectorElementType();
-    SDValue SB = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()), VT);
+    SDValue SB = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()), dl,
+                                 VT);
     Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SB);
     Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SB);
   }
@@ -13070,7 +13538,7 @@ SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
 
       CCode = X86::GetOppositeBranchCondition(CCode);
       SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
-                                  DAG.getConstant(CCode, MVT::i8),
+                                  DAG.getConstant(CCode, dl, MVT::i8),
                                   Op0.getOperand(1));
       if (VT == MVT::i1)
         return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, SetCC);
@@ -13082,18 +13550,18 @@ SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
       (CC == ISD::SETEQ || CC == ISD::SETNE)) {
 
     ISD::CondCode NewCC = ISD::getSetCCInverse(CC, true);
-    return DAG.getSetCC(dl, VT, Op0, DAG.getConstant(0, MVT::i1), NewCC);
+    return DAG.getSetCC(dl, VT, Op0, DAG.getConstant(0, dl, MVT::i1), NewCC);
   }
 
   bool isFP = Op1.getSimpleValueType().isFloatingPoint();
-  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
+  unsigned X86CC = TranslateX86CC(CC, dl, isFP, Op0, Op1, DAG);
   if (X86CC == X86::COND_INVALID)
     return SDValue();
 
   SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, dl, DAG);
   EFLAGS = ConvertCmpIfNecessary(EFLAGS, DAG);
   SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
-                              DAG.getConstant(X86CC, MVT::i8), EFLAGS);
+                              DAG.getConstant(X86CC, dl, MVT::i8), EFLAGS);
   if (VT == MVT::i1)
     return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, SetCC);
   return SetCC;
@@ -13144,9 +13612,9 @@ SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
   EVT VT = Op1.getValueType();
   SDValue CC;
 
-  // Lower fp selects into a CMP/AND/ANDN/OR sequence when the necessary SSE ops
-  // are available. Otherwise fp cmovs get lowered into a less efficient branch
-  // sequence later on.
+  // Lower FP selects into a CMP/AND/ANDN/OR sequence when the necessary SSE ops
+  // are available or VBLENDV if AVX is available.
+  // Otherwise FP cmovs get lowered into a less efficient branch sequence later.
   if (Cond.getOpcode() == ISD::SETCC &&
       ((Subtarget->hasSSE2() && (VT == MVT::f32 || VT == MVT::f64)) ||
        (Subtarget->hasSSE1() && VT == MVT::f32)) &&
@@ -13158,17 +13626,85 @@ SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
     if (SSECC != 8) {
       if (Subtarget->hasAVX512()) {
         SDValue Cmp = DAG.getNode(X86ISD::FSETCC, DL, MVT::i1, CondOp0, CondOp1,
-                                  DAG.getConstant(SSECC, MVT::i8));
+                                  DAG.getConstant(SSECC, DL, MVT::i8));
         return DAG.getNode(X86ISD::SELECT, DL, VT, Cmp, Op1, Op2);
       }
+
       SDValue Cmp = DAG.getNode(X86ISD::FSETCC, DL, VT, CondOp0, CondOp1,
-                                DAG.getConstant(SSECC, MVT::i8));
+                                DAG.getConstant(SSECC, DL, MVT::i8));
+
+      // If we have AVX, we can use a variable vector select (VBLENDV) instead
+      // of 3 logic instructions for size savings and potentially speed.
+      // Unfortunately, there is no scalar form of VBLENDV.
+
+      // If either operand is a constant, don't try this. We can expect to
+      // optimize away at least one of the logic instructions later in that
+      // case, so that sequence would be faster than a variable blend.
+
+      // BLENDV was introduced with SSE 4.1, but the 2 register form implicitly
+      // uses XMM0 as the selection register. That may need just as many
+      // instructions as the AND/ANDN/OR sequence due to register moves, so
+      // don't bother.
+
+      if (Subtarget->hasAVX() &&
+          !isa<ConstantFPSDNode>(Op1) && !isa<ConstantFPSDNode>(Op2)) {
+
+        // Convert to vectors, do a VSELECT, and convert back to scalar.
+        // All of the conversions should be optimized away.
+
+        EVT VecVT = VT == MVT::f32 ? MVT::v4f32 : MVT::v2f64;
+        SDValue VOp1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VecVT, Op1);
+        SDValue VOp2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VecVT, Op2);
+        SDValue VCmp = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VecVT, Cmp);
+
+        EVT VCmpVT = VT == MVT::f32 ? MVT::v4i32 : MVT::v2i64;
+        VCmp = DAG.getBitcast(VCmpVT, VCmp);
+
+        SDValue VSel = DAG.getNode(ISD::VSELECT, DL, VecVT, VCmp, VOp1, VOp2);
+
+        return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
+                           VSel, DAG.getIntPtrConstant(0, DL));
+      }
       SDValue AndN = DAG.getNode(X86ISD::FANDN, DL, VT, Cmp, Op2);
       SDValue And = DAG.getNode(X86ISD::FAND, DL, VT, Cmp, Op1);
       return DAG.getNode(X86ISD::FOR, DL, VT, AndN, And);
     }
   }
 
+    if (VT.isVector() && VT.getScalarType() == MVT::i1) {
+      SDValue Op1Scalar;
+      if (ISD::isBuildVectorOfConstantSDNodes(Op1.getNode()))
+        Op1Scalar = ConvertI1VectorToInterger(Op1, DAG);
+      else if (Op1.getOpcode() == ISD::BITCAST && Op1.getOperand(0))
+        Op1Scalar = Op1.getOperand(0);
+      SDValue Op2Scalar;
+      if (ISD::isBuildVectorOfConstantSDNodes(Op2.getNode()))
+        Op2Scalar = ConvertI1VectorToInterger(Op2, DAG);
+      else if (Op2.getOpcode() == ISD::BITCAST && Op2.getOperand(0))
+        Op2Scalar = Op2.getOperand(0);
+      if (Op1Scalar.getNode() && Op2Scalar.getNode()) {
+        SDValue newSelect = DAG.getNode(ISD::SELECT, DL,
+                                        Op1Scalar.getValueType(),
+                                        Cond, Op1Scalar, Op2Scalar);
+        if (newSelect.getValueSizeInBits() == VT.getSizeInBits())
+          return DAG.getBitcast(VT, newSelect);
+        SDValue ExtVec = DAG.getBitcast(MVT::v8i1, newSelect);
+        return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, ExtVec,
+                           DAG.getIntPtrConstant(0, DL));
+    }
+  }
+
+  if (VT == MVT::v4i1 || VT == MVT::v2i1) {
+    SDValue zeroConst = DAG.getIntPtrConstant(0, DL);
+    Op1 = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, MVT::v8i1,
+                      DAG.getUNDEF(MVT::v8i1), Op1, zeroConst);
+    Op2 = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, MVT::v8i1,
+                      DAG.getUNDEF(MVT::v8i1), Op2, zeroConst);
+    SDValue newSelect = DAG.getNode(ISD::SELECT, DL, MVT::v8i1,
+                                    Cond, Op1, Op2);
+    return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, newSelect, zeroConst);
+  }
+
   if (Cond.getOpcode() == ISD::SETCC) {
     SDValue NewCond = LowerSETCC(Cond, DAG);
     if (NewCond.getNode())
@@ -13199,21 +13735,22 @@ SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
             (isAllOnes(Op1) == (CondCode == X86::COND_NE))) {
           SDVTList VTs = DAG.getVTList(CmpOp0.getValueType(), MVT::i32);
           SDValue Neg = DAG.getNode(X86ISD::SUB, DL, VTs,
-                                    DAG.getConstant(0, CmpOp0.getValueType()),
+                                    DAG.getConstant(0, DL,
+                                                    CmpOp0.getValueType()),
                                     CmpOp0);
           SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
-                                    DAG.getConstant(X86::COND_B, MVT::i8),
+                                    DAG.getConstant(X86::COND_B, DL, MVT::i8),
                                     SDValue(Neg.getNode(), 1));
           return Res;
         }
 
       Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
-                        CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
+                        CmpOp0, DAG.getConstant(1, DL, CmpOp0.getValueType()));
       Cmp = ConvertCmpIfNecessary(Cmp, DAG);
 
       SDValue Res =   // Res = 0 or -1.
         DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
-                    DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
+                    DAG.getConstant(X86::COND_B, DL, MVT::i8), Cmp);
 
       if (isAllOnes(Op1) != (CondCode == X86::COND_E))
         Res = DAG.getNOT(DL, Res, Res.getValueType());
@@ -13285,7 +13822,7 @@ SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
     else
       Cond = X86Op.getValue(1);
 
-    CC = DAG.getConstant(X86Cond, MVT::i8);
+    CC = DAG.getConstant(X86Cond, DL, MVT::i8);
     addTest = false;
   }
 
@@ -13307,7 +13844,7 @@ SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
   }
 
   if (addTest) {
-    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
+    CC = DAG.getConstant(X86::COND_NE, DL, MVT::i8);
     Cond = EmitTest(Cond, X86::COND_NE, DL, DAG);
   }
 
@@ -13322,7 +13859,8 @@ SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
     if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) &&
         (isAllOnes(Op1) || isAllOnes(Op2)) && (isZero(Op1) || isZero(Op2))) {
       SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
-                                DAG.getConstant(X86::COND_B, MVT::i8), Cond);
+                                DAG.getConstant(X86::COND_B, DL, MVT::i8),
+                                Cond);
       if (isAllOnes(Op1) != (CondCode == X86::COND_B))
         return DAG.getNOT(DL, Res, Res.getValueType());
       return Res;
@@ -13351,7 +13889,8 @@ SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
   return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops);
 }
 
-static SDValue LowerSIGN_EXTEND_AVX512(SDValue Op, const X86Subtarget *Subtarget,
+static SDValue LowerSIGN_EXTEND_AVX512(SDValue Op,
+                                       const X86Subtarget *Subtarget,
                                        SelectionDAG &DAG) {
   MVT VT = Op->getSimpleValueType(0);
   SDValue In = Op->getOperand(0);
@@ -13377,7 +13916,7 @@ static SDValue LowerSIGN_EXTEND_AVX512(SDValue Op, const X86Subtarget *Subtarget
 
   unsigned int NumElts = VT.getVectorNumElements();
 
-  if (NumElts != 8 && NumElts != 16)
+  if (NumElts != 8 && NumElts != 16 && !Subtarget->hasBWI())
     return SDValue();
 
   if (VT.is512BitVector() && InVT.getVectorElementType() != MVT::i1) {
@@ -13386,22 +13925,74 @@ static SDValue LowerSIGN_EXTEND_AVX512(SDValue Op, const X86Subtarget *Subtarget
     return DAG.getNode(X86ISD::VSEXT, dl, VT, In);
   }
 
-  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   assert (InVT.getVectorElementType() == MVT::i1 && "Unexpected vector type");
+  MVT ExtVT = NumElts == 8 ? MVT::v8i64 : MVT::v16i32;
+  SDValue NegOne =
+   DAG.getConstant(APInt::getAllOnesValue(ExtVT.getScalarSizeInBits()), dl,
+                   ExtVT);
+  SDValue Zero =
+   DAG.getConstant(APInt::getNullValue(ExtVT.getScalarSizeInBits()), dl, ExtVT);
+
+  SDValue V = DAG.getNode(ISD::VSELECT, dl, ExtVT, In, NegOne, Zero);
+  if (VT.is512BitVector())
+    return V;
+  return DAG.getNode(X86ISD::VTRUNC, dl, VT, V);
+}
 
-  MVT ExtVT = (NumElts == 8) ? MVT::v8i64 : MVT::v16i32;
-  Constant *C = ConstantInt::get(*DAG.getContext(),
-    APInt::getAllOnesValue(ExtVT.getScalarType().getSizeInBits()));
+static SDValue LowerSIGN_EXTEND_VECTOR_INREG(SDValue Op,
+                                             const X86Subtarget *Subtarget,
+                                             SelectionDAG &DAG) {
+  SDValue In = Op->getOperand(0);
+  MVT VT = Op->getSimpleValueType(0);
+  MVT InVT = In.getSimpleValueType();
+  assert(VT.getSizeInBits() == InVT.getSizeInBits());
 
-  SDValue CP = DAG.getConstantPool(C, TLI.getPointerTy());
-  unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment();
-  SDValue Ld = DAG.getLoad(ExtVT.getScalarType(), dl, DAG.getEntryNode(), CP,
-                          MachinePointerInfo::getConstantPool(),
-                          false, false, false, Alignment);
-  SDValue Brcst = DAG.getNode(X86ISD::VBROADCASTM, dl, ExtVT, In, Ld);
-  if (VT.is512BitVector())
-    return Brcst;
-  return DAG.getNode(X86ISD::VTRUNC, dl, VT, Brcst);
+  MVT InSVT = InVT.getScalarType();
+  assert(VT.getScalarType().getScalarSizeInBits() > InSVT.getScalarSizeInBits());
+
+  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16)
+    return SDValue();
+  if (InSVT != MVT::i32 && InSVT != MVT::i16 && InSVT != MVT::i8)
+    return SDValue();
+
+  SDLoc dl(Op);
+
+  // SSE41 targets can use the pmovsx* instructions directly.
+  if (Subtarget->hasSSE41())
+    return DAG.getNode(X86ISD::VSEXT, dl, VT, In);
+
+  // pre-SSE41 targets unpack lower lanes and then sign-extend using SRAI.
+  SDValue Curr = In;
+  MVT CurrVT = InVT;
+
+  // As SRAI is only available on i16/i32 types, we expand only up to i32
+  // and handle i64 separately.
+  while (CurrVT != VT && CurrVT.getScalarType() != MVT::i32) {
+    Curr = DAG.getNode(X86ISD::UNPCKL, dl, CurrVT, DAG.getUNDEF(CurrVT), Curr);
+    MVT CurrSVT = MVT::getIntegerVT(CurrVT.getScalarSizeInBits() * 2);
+    CurrVT = MVT::getVectorVT(CurrSVT, CurrVT.getVectorNumElements() / 2);
+    Curr = DAG.getBitcast(CurrVT, Curr);
+  }
+
+  SDValue SignExt = Curr;
+  if (CurrVT != InVT) {
+    unsigned SignExtShift =
+        CurrVT.getScalarSizeInBits() - InSVT.getScalarSizeInBits();
+    SignExt = DAG.getNode(X86ISD::VSRAI, dl, CurrVT, Curr,
+                          DAG.getConstant(SignExtShift, dl, MVT::i8));
+  }
+
+  if (CurrVT == VT)
+    return SignExt;
+
+  if (VT == MVT::v2i64 && CurrVT == MVT::v4i32) {
+    SDValue Sign = DAG.getNode(X86ISD::VSRAI, dl, CurrVT, Curr,
+                               DAG.getConstant(31, dl, MVT::i8));
+    SDValue Ext = DAG.getVectorShuffle(CurrVT, dl, SignExt, Sign, {0, 4, 1, 5});
+    return DAG.getBitcast(VT, Ext);
+  }
+
+  return SDValue();
 }
 
 static SDValue LowerSIGN_EXTEND(SDValue Op, const X86Subtarget *Subtarget,
@@ -13558,8 +14149,8 @@ static SDValue LowerExtendedLoad(SDValue Op, const X86Subtarget *Subtarget,
          "Can only lower sext loads with a single scalar load!");
 
   unsigned loadRegZize = RegSz;
-  if (Ext == ISD::SEXTLOAD && RegSz == 256)
-    loadRegZize /= 2;
+  if (Ext == ISD::SEXTLOAD && RegSz >= 256)
+    loadRegZize = 128;
 
   // Represent our vector as a sequence of elements which are the
   // largest scalar that we can load.
@@ -13582,7 +14173,7 @@ static SDValue LowerExtendedLoad(SDValue Op, const X86Subtarget *Subtarget,
   SmallVector<SDValue, 8> Chains;
   SDValue Ptr = Ld->getBasePtr();
   SDValue Increment =
-      DAG.getConstant(SclrLoadTy.getSizeInBits() / 8, TLI.getPointerTy());
+      DAG.getConstant(SclrLoadTy.getSizeInBits() / 8, dl, TLI.getPointerTy());
   SDValue Res = DAG.getUNDEF(LoadUnitVecVT);
 
   for (unsigned i = 0; i < NumLoads; ++i) {
@@ -13598,7 +14189,7 @@ static SDValue LowerExtendedLoad(SDValue Op, const X86Subtarget *Subtarget,
       Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LoadUnitVecVT, ScalarLoad);
     else
       Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, LoadUnitVecVT, Res,
-                        ScalarLoad, DAG.getIntPtrConstant(i));
+                        ScalarLoad, DAG.getIntPtrConstant(i, dl));
 
     Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
   }
@@ -13607,7 +14198,7 @@ static SDValue LowerExtendedLoad(SDValue Op, const X86Subtarget *Subtarget,
 
   // Bitcast the loaded value to a vector of the original element type, in
   // the size of the target vector type.
-  SDValue SlicedVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, Res);
+  SDValue SlicedVec = DAG.getBitcast(WideVecVT, Res);
   unsigned SizeRatio = RegSz / MemSz;
 
   if (Ext == ISD::SEXTLOAD) {
@@ -13632,13 +14223,14 @@ static SDValue LowerExtendedLoad(SDValue Op, const X86Subtarget *Subtarget,
     SDValue Shuff = DAG.getVectorShuffle(
         WideVecVT, dl, SlicedVec, DAG.getUNDEF(WideVecVT), &ShuffleVec[0]);
 
-    Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff);
+    Shuff = DAG.getBitcast(RegVT, Shuff);
 
     // Build the arithmetic shift.
     unsigned Amt = RegVT.getVectorElementType().getSizeInBits() -
                    MemVT.getVectorElementType().getSizeInBits();
     Shuff =
-        DAG.getNode(ISD::SRA, dl, RegVT, Shuff, DAG.getConstant(Amt, RegVT));
+        DAG.getNode(ISD::SRA, dl, RegVT, Shuff,
+                    DAG.getConstant(Amt, dl, RegVT));
 
     DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), TF);
     return Shuff;
@@ -13653,7 +14245,7 @@ static SDValue LowerExtendedLoad(SDValue Op, const X86Subtarget *Subtarget,
                                        DAG.getUNDEF(WideVecVT), &ShuffleVec[0]);
 
   // Bitcast to the requested type.
-  Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff);
+  Shuff = DAG.getBitcast(RegVT, Shuff);
   DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), TF);
   return Shuff;
 }
@@ -13805,7 +14397,7 @@ SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
     else
       Cond = X86Op.getValue(1);
 
-    CC = DAG.getConstant(X86Cond, MVT::i8);
+    CC = DAG.getConstant(X86Cond, dl, MVT::i8);
     addTest = false;
   } else {
     unsigned CondOpc;
@@ -13836,7 +14428,7 @@ SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
           X86::CondCode CCode =
             (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
           CCode = X86::GetOppositeBranchCondition(CCode);
-          CC = DAG.getConstant(CCode, MVT::i8);
+          CC = DAG.getConstant(CCode, dl, MVT::i8);
           SDNode *User = *Op.getNode()->use_begin();
           // Look for an unconditional branch following this conditional branch.
           // We need this because we need to reverse the successors in order
@@ -13854,7 +14446,7 @@ SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
             X86::CondCode CCode =
               (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
             CCode = X86::GetOppositeBranchCondition(CCode);
-            CC = DAG.getConstant(CCode, MVT::i8);
+            CC = DAG.getConstant(CCode, dl, MVT::i8);
             Cond = Cmp;
             addTest = false;
           }
@@ -13867,7 +14459,7 @@ SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
       X86::CondCode CCode =
         (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
       CCode = X86::GetOppositeBranchCondition(CCode);
-      CC = DAG.getConstant(CCode, MVT::i8);
+      CC = DAG.getConstant(CCode, dl, MVT::i8);
       Cond = Cond.getOperand(0).getOperand(1);
       addTest = false;
     } else if (Cond.getOpcode() == ISD::SETCC &&
@@ -13893,10 +14485,10 @@ SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
           SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
                                     Cond.getOperand(0), Cond.getOperand(1));
           Cmp = ConvertCmpIfNecessary(Cmp, DAG);
-          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
+          CC = DAG.getConstant(X86::COND_NE, dl, MVT::i8);
           Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
                               Chain, Dest, CC, Cmp);
-          CC = DAG.getConstant(X86::COND_P, MVT::i8);
+          CC = DAG.getConstant(X86::COND_P, dl, MVT::i8);
           Cond = Cmp;
           addTest = false;
         }
@@ -13923,10 +14515,10 @@ SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
           SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
                                     Cond.getOperand(0), Cond.getOperand(1));
           Cmp = ConvertCmpIfNecessary(Cmp, DAG);
-          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
+          CC = DAG.getConstant(X86::COND_NE, dl, MVT::i8);
           Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
                               Chain, Dest, CC, Cmp);
-          CC = DAG.getConstant(X86::COND_NP, MVT::i8);
+          CC = DAG.getConstant(X86::COND_NP, dl, MVT::i8);
           Cond = Cmp;
           addTest = false;
           Dest = FalseBB;
@@ -13954,7 +14546,7 @@ SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
 
   if (addTest) {
     X86::CondCode X86Cond = Inverted ? X86::COND_E : X86::COND_NE;
-    CC = DAG.getConstant(X86Cond, MVT::i8);
+    CC = DAG.getConstant(X86Cond, dl, MVT::i8);
     Cond = EmitTest(Cond, X86Cond, dl, DAG);
   }
   Cond = ConvertCmpIfNecessary(Cond, DAG);
@@ -13991,7 +14583,7 @@ X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
 
     // Chain the dynamic stack allocation so that it doesn't modify the stack
     // pointer when other instructions are using the stack.
-    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true),
+    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, dl, true),
         SDLoc(Node));
 
     SDValue Size = Tmp2.getOperand(1);
@@ -14003,11 +14595,11 @@ X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
     Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size); // Value
     if (Align > StackAlign)
       Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1,
-          DAG.getConstant(-(uint64_t)Align, VT));
+          DAG.getConstant(-(uint64_t)Align, dl, VT));
     Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain
 
-    Tmp2 = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, true),
-        DAG.getIntPtrConstant(0, true), SDValue(),
+    Tmp2 = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, dl, true),
+        DAG.getIntPtrConstant(0, dl, true), SDValue(),
         SDLoc(Node));
 
     SDValue Ops[2] = { Tmp1, Tmp2 };
@@ -14063,7 +14655,7 @@ X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
 
     if (Align) {
       SP = DAG.getNode(ISD::AND, dl, VT, SP.getValue(0),
-                       DAG.getConstant(-(uint64_t)Align, VT));
+                       DAG.getConstant(-(uint64_t)Align, dl, VT));
       Chain = DAG.getCopyToReg(Chain, dl, SPReg, SP);
     }
 
@@ -14098,22 +14690,22 @@ SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
   // Store gp_offset
   SDValue Store = DAG.getStore(Op.getOperand(0), DL,
                                DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
-                                               MVT::i32),
+                                               DL, MVT::i32),
                                FIN, MachinePointerInfo(SV), false, false, 0);
   MemOps.push_back(Store);
 
   // Store fp_offset
   FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
-                    FIN, DAG.getIntPtrConstant(4));
+                    FIN, DAG.getIntPtrConstant(4, DL));
   Store = DAG.getStore(Op.getOperand(0), DL,
-                       DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
+                       DAG.getConstant(FuncInfo->getVarArgsFPOffset(), DL,
                                        MVT::i32),
                        FIN, MachinePointerInfo(SV, 4), false, false, 0);
   MemOps.push_back(Store);
 
   // Store ptr to overflow_arg_area
   FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
-                    FIN, DAG.getIntPtrConstant(4));
+                    FIN, DAG.getIntPtrConstant(4, DL));
   SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
                                     getPointerTy());
   Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
@@ -14123,7 +14715,7 @@ SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
 
   // Store ptr to reg_save_area.
   FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
-                    FIN, DAG.getIntPtrConstant(8));
+                    FIN, DAG.getIntPtrConstant(8, DL));
   SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
                                     getPointerTy());
   Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
@@ -14165,7 +14757,7 @@ SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
 
   if (ArgMode == 2) {
     // Sanity Check: Make sure using fp_offset makes sense.
-    assert(!DAG.getTarget().Options.UseSoftFloat &&
+    assert(!Subtarget->useSoftFloat() &&
            !(DAG.getMachineFunction().getFunction()->hasFnAttribute(
                Attribute::NoImplicitFloat)) &&
            Subtarget->hasSSE1());
@@ -14173,9 +14765,9 @@ SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
 
   // Insert VAARG_64 node into the DAG
   // VAARG_64 returns two values: Variable Argument Address, Chain
-  SDValue InstOps[] = {Chain, SrcPtr, DAG.getConstant(ArgSize, MVT::i32),
-                       DAG.getConstant(ArgMode, MVT::i8),
-                       DAG.getConstant(Align, MVT::i32)};
+  SDValue InstOps[] = {Chain, SrcPtr, DAG.getConstant(ArgSize, dl, MVT::i32),
+                       DAG.getConstant(ArgMode, dl, MVT::i8),
+                       DAG.getConstant(Align, dl, MVT::i32)};
   SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other);
   SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
                                           VTs, InstOps, MVT::i64,
@@ -14206,8 +14798,8 @@ static SDValue LowerVACOPY(SDValue Op, const X86Subtarget *Subtarget,
   SDLoc DL(Op);
 
   return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
-                       DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
-                       false,
+                       DAG.getIntPtrConstant(24, DL), 8, /*isVolatile*/false,
+                       false, false,
                        MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
 }
 
@@ -14227,7 +14819,7 @@ static SDValue getTargetVShiftByConstNode(unsigned Opc, SDLoc dl, MVT VT,
     if (Opc == X86ISD::VSRAI)
       ShiftAmt = ElementType.getSizeInBits() - 1;
     else
-      return DAG.getConstant(0, VT);
+      return DAG.getConstant(0, dl, VT);
   }
 
   assert((Opc == X86ISD::VSHLI || Opc == X86ISD::VSRLI || Opc == X86ISD::VSRAI)
@@ -14252,7 +14844,7 @@ static SDValue getTargetVShiftByConstNode(unsigned Opc, SDLoc dl, MVT VT,
         }
         ND = cast<ConstantSDNode>(CurrentOp);
         const APInt &C = ND->getAPIntValue();
-        Elts.push_back(DAG.getConstant(C.shl(ShiftAmt), ElementType));
+        Elts.push_back(DAG.getConstant(C.shl(ShiftAmt), dl, ElementType));
       }
       break;
     case X86ISD::VSRLI:
@@ -14264,7 +14856,7 @@ static SDValue getTargetVShiftByConstNode(unsigned Opc, SDLoc dl, MVT VT,
         }
         ND = cast<ConstantSDNode>(CurrentOp);
         const APInt &C = ND->getAPIntValue();
-        Elts.push_back(DAG.getConstant(C.lshr(ShiftAmt), ElementType));
+        Elts.push_back(DAG.getConstant(C.lshr(ShiftAmt), dl, ElementType));
       }
       break;
     case X86ISD::VSRAI:
@@ -14276,7 +14868,7 @@ static SDValue getTargetVShiftByConstNode(unsigned Opc, SDLoc dl, MVT VT,
         }
         ND = cast<ConstantSDNode>(CurrentOp);
         const APInt &C = ND->getAPIntValue();
-        Elts.push_back(DAG.getConstant(C.ashr(ShiftAmt), ElementType));
+        Elts.push_back(DAG.getConstant(C.ashr(ShiftAmt), dl, ElementType));
       }
       break;
     }
@@ -14284,7 +14876,8 @@ static SDValue getTargetVShiftByConstNode(unsigned Opc, SDLoc dl, MVT VT,
     return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Elts);
   }
 
-  return DAG.getNode(Opc, dl, VT, SrcOp, DAG.getConstant(ShiftAmt, MVT::i8));
+  return DAG.getNode(Opc, dl, VT, SrcOp,
+                     DAG.getConstant(ShiftAmt, dl, MVT::i8));
 }
 
 // getTargetVShiftNode - Handle vector element shifts where the shift amount
@@ -14322,7 +14915,7 @@ static SDValue getTargetVShiftNode(unsigned Opc, SDLoc dl, MVT VT,
     SmallVector<SDValue, 4> ShOps;
     ShOps.push_back(ShAmt);
     if (SVT == MVT::i32) {
-      ShOps.push_back(DAG.getConstant(0, SVT));
+      ShOps.push_back(DAG.getConstant(0, dl, SVT));
       ShOps.push_back(DAG.getUNDEF(SVT));
     }
     ShOps.push_back(DAG.getUNDEF(SVT));
@@ -14336,7 +14929,7 @@ static SDValue getTargetVShiftNode(unsigned Opc, SDLoc dl, MVT VT,
   MVT EltVT = VT.getVectorElementType();
   EVT ShVT = MVT::getVectorVT(EltVT, 128/EltVT.getSizeInBits());
 
-  ShAmt = DAG.getNode(ISD::BITCAST, dl, ShVT, ShAmt);
+  ShAmt = DAG.getBitcast(ShVT, ShAmt);
   return DAG.getNode(Opc, dl, VT, SrcOp, ShAmt);
 }
 
@@ -14362,8 +14955,8 @@ static SDValue getVectorMaskingNode(SDValue Op, SDValue Mask,
     // In case when MaskVT equals v2i1 or v4i1, low 2 or 4 elements
     // are extracted by EXTRACT_SUBVECTOR.
     SDValue VMask = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MaskVT,
-                              DAG.getNode(ISD::BITCAST, dl, BitcastVT, Mask),
-                              DAG.getIntPtrConstant(0));
+                                DAG.getBitcast(BitcastVT, Mask),
+                                DAG.getIntPtrConstant(0, dl));
 
     switch (Op.getOpcode()) {
       default: break;
@@ -14402,6 +14995,48 @@ static SDValue getScalarMaskingNode(SDValue Op, SDValue Mask,
     return DAG.getNode(X86ISD::SELECT, dl, VT, IMask, Op, PreservedSrc);
 }
 
+/// When the 32-bit MSVC runtime transfers control to us, either to an outlined
+/// function or when returning to a parent frame after catching an exception, we
+/// recover the parent frame pointer by doing arithmetic on the incoming EBP.
+/// Here's the math:
+///   RegNodeBase = EntryEBP - RegNodeSize
+///   ParentFP = RegNodeBase - RegNodeFrameOffset
+/// Subtracting RegNodeSize takes us to the offset of the registration node, and
+/// subtracting the offset (negative on x86) takes us back to the parent FP.
+static SDValue recoverFramePointer(SelectionDAG &DAG, const Function *Fn,
+                                   SDValue EntryEBP) {
+  MachineFunction &MF = DAG.getMachineFunction();
+  SDLoc dl;
+
+  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+  MVT PtrVT = TLI.getPointerTy();
+
+  // The RegNodeSize is 6 32-bit words for SEH and 4 for C++ EH. See
+  // WinEHStatePass for the full struct definition.
+  int RegNodeSize;
+  switch (classifyEHPersonality(Fn->getPersonalityFn())) {
+  default:
+    report_fatal_error("can only recover FP for MSVC EH personality functions");
+  case EHPersonality::MSVC_X86SEH: RegNodeSize = 24; break;
+  case EHPersonality::MSVC_CXX: RegNodeSize = 16; break;
+  }
+
+  // Get an MCSymbol that will ultimately resolve to the frame offset of the EH
+  // registration.
+  MCSymbol *OffsetSym =
+      MF.getMMI().getContext().getOrCreateParentFrameOffsetSymbol(
+          GlobalValue::getRealLinkageName(Fn->getName()));
+  SDValue OffsetSymVal = DAG.getMCSymbol(OffsetSym, PtrVT);
+  SDValue RegNodeFrameOffset =
+      DAG.getNode(ISD::FRAME_ALLOC_RECOVER, dl, PtrVT, OffsetSymVal);
+
+  // RegNodeBase = EntryEBP - RegNodeSize
+  // ParentFP = RegNodeBase - RegNodeFrameOffset
+  SDValue RegNodeBase = DAG.getNode(ISD::SUB, dl, PtrVT, EntryEBP,
+                                    DAG.getConstant(RegNodeSize, dl, PtrVT));
+  return DAG.getNode(ISD::SUB, dl, PtrVT, RegNodeBase, RegNodeFrameOffset);
+}
+
 static SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, const X86Subtarget *Subtarget,
                                        SelectionDAG &DAG) {
   SDLoc dl(Op);
@@ -14420,21 +15055,52 @@ static SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, const X86Subtarget *Subtarget
         Op.getOperand(2), Op.getOperand(3));
     case INTR_TYPE_1OP_MASK_RM: {
       SDValue Src = Op.getOperand(1);
-      SDValue Src0 = Op.getOperand(2);
+      SDValue PassThru = Op.getOperand(2);
       SDValue Mask = Op.getOperand(3);
-      SDValue RoundingMode = Op.getOperand(4);
+      SDValue RoundingMode;
+      if (Op.getNumOperands() == 4)
+        RoundingMode = DAG.getConstant(X86::STATIC_ROUNDING::CUR_DIRECTION, dl, MVT::i32);
+      else
+        RoundingMode = Op.getOperand(4);
+      unsigned IntrWithRoundingModeOpcode = IntrData->Opc1;
+      if (IntrWithRoundingModeOpcode != 0) {
+        unsigned Round = cast<ConstantSDNode>(RoundingMode)->getZExtValue();
+        if (Round != X86::STATIC_ROUNDING::CUR_DIRECTION)
+          return getVectorMaskingNode(DAG.getNode(IntrWithRoundingModeOpcode,
+                                      dl, Op.getValueType(), Src, RoundingMode),
+                                      Mask, PassThru, Subtarget, DAG);
+      }
       return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, Src,
                                               RoundingMode),
-                                  Mask, Src0, Subtarget, DAG);
+                                  Mask, PassThru, Subtarget, DAG);
+    }
+    case INTR_TYPE_1OP_MASK: {
+      SDValue Src = Op.getOperand(1);
+      SDValue Passthru = Op.getOperand(2);
+      SDValue Mask = Op.getOperand(3);
+      return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, Src),
+                                  Mask, Passthru, Subtarget, DAG);
     }
     case INTR_TYPE_SCALAR_MASK_RM: {
       SDValue Src1 = Op.getOperand(1);
       SDValue Src2 = Op.getOperand(2);
       SDValue Src0 = Op.getOperand(3);
       SDValue Mask = Op.getOperand(4);
-      SDValue RoundingMode = Op.getOperand(5);
+      // There are 2 kinds of intrinsics in this group:
+      // (1) With supress-all-exceptions (sae) or rounding mode- 6 operands
+      // (2) With rounding mode and sae - 7 operands.
+      if (Op.getNumOperands() == 6) {
+        SDValue Sae  = Op.getOperand(5);
+        unsigned Opc = IntrData->Opc1 ? IntrData->Opc1 : IntrData->Opc0;
+        return getScalarMaskingNode(DAG.getNode(Opc, dl, VT, Src1, Src2,
+                                                Sae),
+                                    Mask, Src0, Subtarget, DAG);
+      }
+      assert(Op.getNumOperands() == 7 && "Unexpected intrinsic form");
+      SDValue RoundingMode  = Op.getOperand(5);
+      SDValue Sae  = Op.getOperand(6);
       return getScalarMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, Src1, Src2,
-                                              RoundingMode),
+                                              RoundingMode, Sae),
                                   Mask, Src0, Subtarget, DAG);
     }
     case INTR_TYPE_2OP_MASK: {
@@ -14460,11 +15126,67 @@ static SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, const X86Subtarget *Subtarget
                                               Src1,Src2),
                                   Mask, PassThru, Subtarget, DAG);
     }
+    case INTR_TYPE_2OP_MASK_RM: {
+      SDValue Src1 = Op.getOperand(1);
+      SDValue Src2 = Op.getOperand(2);
+      SDValue PassThru = Op.getOperand(3);
+      SDValue Mask = Op.getOperand(4);
+      // We specify 2 possible modes for intrinsics, with/without rounding modes.
+      // First, we check if the intrinsic have rounding mode (6 operands),
+      // if not, we set rounding mode to "current".
+      SDValue Rnd;
+      if (Op.getNumOperands() == 6)
+        Rnd = Op.getOperand(5);
+      else 
+        Rnd = DAG.getConstant(X86::STATIC_ROUNDING::CUR_DIRECTION, dl, MVT::i32);
+      return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT,
+                                              Src1, Src2, Rnd),
+                                  Mask, PassThru, Subtarget, DAG);
+    }
+    case INTR_TYPE_3OP_MASK: {
+      SDValue Src1 = Op.getOperand(1);
+      SDValue Src2 = Op.getOperand(2);
+      SDValue Src3 = Op.getOperand(3);
+      SDValue PassThru = Op.getOperand(4);
+      SDValue Mask = Op.getOperand(5);
+      // We specify 2 possible opcodes for intrinsics with rounding modes.
+      // First, we check if the intrinsic may have non-default rounding mode,
+      // (IntrData->Opc1 != 0), then we check the rounding mode operand.
+      unsigned IntrWithRoundingModeOpcode = IntrData->Opc1;
+      if (IntrWithRoundingModeOpcode != 0) {
+        SDValue Rnd = Op.getOperand(6);
+        unsigned Round = cast<ConstantSDNode>(Rnd)->getZExtValue();
+        if (Round != X86::STATIC_ROUNDING::CUR_DIRECTION) {
+          return getVectorMaskingNode(DAG.getNode(IntrWithRoundingModeOpcode,
+                                      dl, Op.getValueType(),
+                                      Src1, Src2, Src3, Rnd),
+                                      Mask, PassThru, Subtarget, DAG);
+        }
+      }
+      return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT,
+                                              Src1, Src2, Src3),
+                                  Mask, PassThru, Subtarget, DAG);
+    }
+    case VPERM_3OP_MASKZ: 
+    case VPERM_3OP_MASK:
+    case FMA_OP_MASK3:
+    case FMA_OP_MASKZ:
     case FMA_OP_MASK: {
       SDValue Src1 = Op.getOperand(1);
       SDValue Src2 = Op.getOperand(2);
       SDValue Src3 = Op.getOperand(3);
       SDValue Mask = Op.getOperand(4);
+      EVT VT = Op.getValueType();
+      SDValue PassThru = SDValue();
+
+      // set PassThru element
+      if (IntrData->Type == VPERM_3OP_MASKZ || IntrData->Type == FMA_OP_MASKZ)
+        PassThru = getZeroVector(VT, Subtarget, DAG, dl);
+      else if (IntrData->Type == FMA_OP_MASK3)
+        PassThru = Src3;
+      else
+        PassThru = Src1;
+
       // We specify 2 possible opcodes for intrinsics with rounding modes.
       // First, we check if the intrinsic may have non-default rounding mode,
       // (IntrData->Opc1 != 0), then we check the rounding mode operand.
@@ -14476,12 +15198,12 @@ static SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, const X86Subtarget *Subtarget
           return getVectorMaskingNode(DAG.getNode(IntrWithRoundingModeOpcode,
                                                   dl, Op.getValueType(),
                                                   Src1, Src2, Src3, Rnd),
-                                      Mask, Src1, Subtarget, DAG);
+                                      Mask, PassThru, Subtarget, DAG);
       }
       return getVectorMaskingNode(DAG.getNode(IntrData->Opc0,
                                               dl, Op.getValueType(),
                                               Src1, Src2, Src3),
-                                  Mask, Src1, Subtarget, DAG);
+                                  Mask, PassThru, Subtarget, DAG);
     }
     case CMP_MASK:
     case CMP_MASK_CC: {
@@ -14502,30 +15224,46 @@ static SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, const X86Subtarget *Subtarget
                                        Mask.getValueType().getSizeInBits());
       SDValue Cmp;
       if (IntrData->Type == CMP_MASK_CC) {
-        Cmp = DAG.getNode(IntrData->Opc0, dl, MaskVT, Op.getOperand(1),
-                    Op.getOperand(2), Op.getOperand(3));
+        SDValue CC = Op.getOperand(3);
+        CC = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, CC);
+        // We specify 2 possible opcodes for intrinsics with rounding modes.
+        // First, we check if the intrinsic may have non-default rounding mode,
+        // (IntrData->Opc1 != 0), then we check the rounding mode operand.
+        if (IntrData->Opc1 != 0) {
+          SDValue Rnd = Op.getOperand(5);
+          if (cast<ConstantSDNode>(Rnd)->getZExtValue() !=
+              X86::STATIC_ROUNDING::CUR_DIRECTION)
+            Cmp = DAG.getNode(IntrData->Opc1, dl, MaskVT, Op.getOperand(1),
+                              Op.getOperand(2), CC, Rnd);
+        }
+        //default rounding mode
+        if(!Cmp.getNode())
+            Cmp = DAG.getNode(IntrData->Opc0, dl, MaskVT, Op.getOperand(1),
+                              Op.getOperand(2), CC);
+
       } else {
         assert(IntrData->Type == CMP_MASK && "Unexpected intrinsic type!");
         Cmp = DAG.getNode(IntrData->Opc0, dl, MaskVT, Op.getOperand(1),
-                    Op.getOperand(2));
+                          Op.getOperand(2));
       }
       SDValue CmpMask = getVectorMaskingNode(Cmp, Mask,
-                                             DAG.getTargetConstant(0, MaskVT),
+                                             DAG.getTargetConstant(0, dl,
+                                                                   MaskVT),
                                              Subtarget, DAG);
       SDValue Res = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, BitcastVT,
                                 DAG.getUNDEF(BitcastVT), CmpMask,
-                                DAG.getIntPtrConstant(0));
-      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
+                                DAG.getIntPtrConstant(0, dl));
+      return DAG.getBitcast(Op.getValueType(), Res);
     }
     case COMI: { // Comparison intrinsics
       ISD::CondCode CC = (ISD::CondCode)IntrData->Opc1;
       SDValue LHS = Op.getOperand(1);
       SDValue RHS = Op.getOperand(2);
-      unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
+      unsigned X86CC = TranslateX86CC(CC, dl, true, LHS, RHS, DAG);
       assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
       SDValue Cond = DAG.getNode(IntrData->Opc0, dl, MVT::i32, LHS, RHS);
       SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
-                                  DAG.getConstant(X86CC, MVT::i8), Cond);
+                                  DAG.getConstant(X86CC, dl, MVT::i8), Cond);
       return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
     }
     case VSHIFT:
@@ -14544,18 +15282,10 @@ static SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, const X86Subtarget *Subtarget
       SDValue PassThru = Op.getOperand(2);
       if (isAllOnes(Mask)) // return data as is
         return Op.getOperand(1);
-      EVT VT = Op.getValueType();
-      EVT MaskVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1,
-                                    VT.getVectorNumElements());
-      EVT BitcastVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1,
-                                       Mask.getValueType().getSizeInBits());
-      SDLoc dl(Op);
-      SDValue VMask = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MaskVT,
-                                  DAG.getNode(ISD::BITCAST, dl, BitcastVT, Mask),
-                                  DAG.getIntPtrConstant(0));
 
-      return DAG.getNode(IntrData->Opc0, dl, VT, VMask, DataToCompress,
-                         PassThru);
+      return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT,
+                                              DataToCompress),
+                                  Mask, PassThru, Subtarget, DAG);
     }
     case BLEND: {
       SDValue Mask = Op.getOperand(3);
@@ -14566,8 +15296,8 @@ static SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, const X86Subtarget *Subtarget
                                        Mask.getValueType().getSizeInBits());
       SDLoc dl(Op);
       SDValue VMask = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MaskVT,
-                                  DAG.getNode(ISD::BITCAST, dl, BitcastVT, Mask),
-                                  DAG.getIntPtrConstant(0));
+                                  DAG.getBitcast(BitcastVT, Mask),
+                                  DAG.getIntPtrConstant(0, dl));
       return DAG.getNode(IntrData->Opc0, dl, VT, VMask, Op.getOperand(1),
                          Op.getOperand(2));
     }
@@ -14579,15 +15309,12 @@ static SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, const X86Subtarget *Subtarget
   switch (IntNo) {
   default: return SDValue();    // Don't custom lower most intrinsics.
 
-  case Intrinsic::x86_avx512_mask_valign_q_512:
-  case Intrinsic::x86_avx512_mask_valign_d_512:
-    // Vector source operands are swapped.
-    return getVectorMaskingNode(DAG.getNode(X86ISD::VALIGN, dl,
-                                            Op.getValueType(), Op.getOperand(2),
-                                            Op.getOperand(1),
-                                            Op.getOperand(3)),
-                                Op.getOperand(5), Op.getOperand(4),
-                                Subtarget, DAG);
+  case Intrinsic::x86_avx2_permd:
+  case Intrinsic::x86_avx2_permps:
+    // Operands intentionally swapped. Mask is last operand to intrinsic,
+    // but second operand for node/instruction.
+    return DAG.getNode(X86ISD::VPERMV, dl, Op.getValueType(),
+                       Op.getOperand(2), Op.getOperand(1));
 
   // ptest and testp intrinsics. The intrinsic these come from are designed to
   // return an integer value, not just an instruction so lower it to the ptest
@@ -14650,16 +15377,16 @@ static SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, const X86Subtarget *Subtarget
     SDValue RHS = Op.getOperand(2);
     unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
     SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
-    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
+    SDValue CC = DAG.getConstant(X86CC, dl, MVT::i8);
     SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
     return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
   }
   case Intrinsic::x86_avx512_kortestz_w:
   case Intrinsic::x86_avx512_kortestc_w: {
     unsigned X86CC = (IntNo == Intrinsic::x86_avx512_kortestz_w)? X86::COND_E: X86::COND_B;
-    SDValue LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i1, Op.getOperand(1));
-    SDValue RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i1, Op.getOperand(2));
-    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
+    SDValue LHS = DAG.getBitcast(MVT::v16i1, Op.getOperand(1));
+    SDValue RHS = DAG.getBitcast(MVT::v16i1, Op.getOperand(2));
+    SDValue CC = DAG.getConstant(X86CC, dl, MVT::i8);
     SDValue Test = DAG.getNode(X86ISD::KORTEST, dl, MVT::i32, LHS, RHS);
     SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i1, CC, Test);
     return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
@@ -14724,7 +15451,7 @@ static SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, const X86Subtarget *Subtarget
     SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
     SDValue PCMP = DAG.getNode(Opcode, dl, VTs, NewOps);
     SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
-                                DAG.getConstant(X86CC, MVT::i8),
+                                DAG.getConstant(X86CC, dl, MVT::i8),
                                 SDValue(PCMP.getNode(), 1));
     return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
   }
@@ -14741,6 +15468,31 @@ static SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, const X86Subtarget *Subtarget
     SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
     return DAG.getNode(Opcode, dl, VTs, NewOps);
   }
+
+  case Intrinsic::x86_seh_lsda: {
+    // Compute the symbol for the LSDA. We know it'll get emitted later.
+    MachineFunction &MF = DAG.getMachineFunction();
+    SDValue Op1 = Op.getOperand(1);
+    auto *Fn = cast<Function>(cast<GlobalAddressSDNode>(Op1)->getGlobal());
+    MCSymbol *LSDASym = MF.getMMI().getContext().getOrCreateLSDASymbol(
+        GlobalValue::getRealLinkageName(Fn->getName()));
+
+    // Generate a simple absolute symbol reference. This intrinsic is only
+    // supported on 32-bit Windows, which isn't PIC.
+    SDValue Result = DAG.getMCSymbol(LSDASym, VT);
+    return DAG.getNode(X86ISD::Wrapper, dl, VT, Result);
+  }
+
+  case Intrinsic::x86_seh_recoverfp: {
+    SDValue FnOp = Op.getOperand(1);
+    SDValue IncomingFPOp = Op.getOperand(2);
+    GlobalAddressSDNode *GSD = dyn_cast<GlobalAddressSDNode>(FnOp);
+    auto *Fn = dyn_cast_or_null<Function>(GSD ? GSD->getGlobal() : nullptr);
+    if (!Fn)
+      report_fatal_error(
+          "llvm.x86.seh.recoverfp must take a function as the first argument");
+    return recoverFramePointer(DAG, Fn, IncomingFPOp);
+  }
   }
 }
 
@@ -14750,18 +15502,31 @@ static SDValue getGatherNode(unsigned Opc, SDValue Op, SelectionDAG &DAG,
                               const X86Subtarget * Subtarget) {
   SDLoc dl(Op);
   ConstantSDNode *C = dyn_cast<ConstantSDNode>(ScaleOp);
-  assert(C && "Invalid scale type");
-  SDValue Scale = DAG.getTargetConstant(C->getZExtValue(), MVT::i8);
+  if (!C)
+    llvm_unreachable("Invalid scale type");
+  unsigned ScaleVal = C->getZExtValue();
+  if (ScaleVal > 2 && ScaleVal != 4 && ScaleVal != 8)
+    llvm_unreachable("Valid scale values are 1, 2, 4, 8");
+
+  SDValue Scale = DAG.getTargetConstant(C->getZExtValue(), dl, MVT::i8);
   EVT MaskVT = MVT::getVectorVT(MVT::i1,
                              Index.getSimpleValueType().getVectorNumElements());
   SDValue MaskInReg;
   ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(Mask);
   if (MaskC)
-    MaskInReg = DAG.getTargetConstant(MaskC->getSExtValue(), MaskVT);
-  else
-    MaskInReg = DAG.getNode(ISD::BITCAST, dl, MaskVT, Mask);
+    MaskInReg = DAG.getTargetConstant(MaskC->getSExtValue(), dl, MaskVT);
+  else {
+    EVT BitcastVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1,
+                                     Mask.getValueType().getSizeInBits());
+
+    // In case when MaskVT equals v2i1 or v4i1, low 2 or 4 elements
+    // are extracted by EXTRACT_SUBVECTOR.
+    MaskInReg = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MaskVT,
+                            DAG.getBitcast(BitcastVT, Mask),
+                            DAG.getIntPtrConstant(0, dl));
+  }
   SDVTList VTs = DAG.getVTList(Op.getValueType(), MaskVT, MVT::Other);
-  SDValue Disp = DAG.getTargetConstant(0, MVT::i32);
+  SDValue Disp = DAG.getTargetConstant(0, dl, MVT::i32);
   SDValue Segment = DAG.getRegister(0, MVT::i32);
   if (Src.getOpcode() == ISD::UNDEF)
     Src = getZeroVector(Op.getValueType(), Subtarget, DAG, dl);
@@ -14776,18 +15541,31 @@ static SDValue getScatterNode(unsigned Opc, SDValue Op, SelectionDAG &DAG,
                                SDValue Index, SDValue ScaleOp, SDValue Chain) {
   SDLoc dl(Op);
   ConstantSDNode *C = dyn_cast<ConstantSDNode>(ScaleOp);
-  assert(C && "Invalid scale type");
-  SDValue Scale = DAG.getTargetConstant(C->getZExtValue(), MVT::i8);
-  SDValue Disp = DAG.getTargetConstant(0, MVT::i32);
+  if (!C)
+    llvm_unreachable("Invalid scale type");
+  unsigned ScaleVal = C->getZExtValue();
+  if (ScaleVal > 2 && ScaleVal != 4 && ScaleVal != 8)
+    llvm_unreachable("Valid scale values are 1, 2, 4, 8");
+
+  SDValue Scale = DAG.getTargetConstant(C->getZExtValue(), dl, MVT::i8);
+  SDValue Disp = DAG.getTargetConstant(0, dl, MVT::i32);
   SDValue Segment = DAG.getRegister(0, MVT::i32);
   EVT MaskVT = MVT::getVectorVT(MVT::i1,
                              Index.getSimpleValueType().getVectorNumElements());
   SDValue MaskInReg;
   ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(Mask);
   if (MaskC)
-    MaskInReg = DAG.getTargetConstant(MaskC->getSExtValue(), MaskVT);
-  else
-    MaskInReg = DAG.getNode(ISD::BITCAST, dl, MaskVT, Mask);
+    MaskInReg = DAG.getTargetConstant(MaskC->getSExtValue(), dl, MaskVT);
+  else {
+    EVT BitcastVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1,
+                                     Mask.getValueType().getSizeInBits());
+
+    // In case when MaskVT equals v2i1 or v4i1, low 2 or 4 elements
+    // are extracted by EXTRACT_SUBVECTOR.
+    MaskInReg = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MaskVT,
+                            DAG.getBitcast(BitcastVT, Mask),
+                            DAG.getIntPtrConstant(0, dl));
+  }
   SDVTList VTs = DAG.getVTList(MaskVT, MVT::Other);
   SDValue Ops[] = {Base, Scale, Index, Disp, Segment, MaskInReg, Src, Chain};
   SDNode *Res = DAG.getMachineNode(Opc, dl, VTs, Ops);
@@ -14800,17 +15578,17 @@ static SDValue getPrefetchNode(unsigned Opc, SDValue Op, SelectionDAG &DAG,
   SDLoc dl(Op);
   ConstantSDNode *C = dyn_cast<ConstantSDNode>(ScaleOp);
   assert(C && "Invalid scale type");
-  SDValue Scale = DAG.getTargetConstant(C->getZExtValue(), MVT::i8);
-  SDValue Disp = DAG.getTargetConstant(0, MVT::i32);
+  SDValue Scale = DAG.getTargetConstant(C->getZExtValue(), dl, MVT::i8);
+  SDValue Disp = DAG.getTargetConstant(0, dl, MVT::i32);
   SDValue Segment = DAG.getRegister(0, MVT::i32);
   EVT MaskVT =
     MVT::getVectorVT(MVT::i1, Index.getSimpleValueType().getVectorNumElements());
   SDValue MaskInReg;
   ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(Mask);
   if (MaskC)
-    MaskInReg = DAG.getTargetConstant(MaskC->getSExtValue(), MaskVT);
+    MaskInReg = DAG.getTargetConstant(MaskC->getSExtValue(), dl, MaskVT);
   else
-    MaskInReg = DAG.getNode(ISD::BITCAST, dl, MaskVT, Mask);
+    MaskInReg = DAG.getBitcast(MaskVT, Mask);
   //SDVTList VTs = DAG.getVTList(MVT::Other);
   SDValue Ops[] = {MaskInReg, Base, Scale, Index, Disp, Segment, Chain};
   SDNode *Res = DAG.getMachineNode(Opc, dl, MVT::Other, Ops);
@@ -14849,7 +15627,7 @@ static void getReadPerformanceCounter(SDNode *N, SDLoc DL,
     // The EAX register is loaded with the low-order 32 bits. The EDX register
     // is loaded with the supported high-order bits of the counter.
     SDValue Tmp = DAG.getNode(ISD::SHL, DL, MVT::i64, HI,
-                              DAG.getConstant(32, MVT::i8));
+                              DAG.getConstant(32, DL, MVT::i8));
     Results.push_back(DAG.getNode(ISD::OR, DL, MVT::i64, LO, Tmp));
     Results.push_back(Chain);
     return;
@@ -14903,7 +15681,7 @@ static void getReadTimeStampCounter(SDNode *N, SDLoc DL, unsigned Opcode,
     // The EDX register is loaded with the high-order 32 bits of the MSR, and
     // the EAX register is loaded with the low-order 32 bits.
     SDValue Tmp = DAG.getNode(ISD::SHL, DL, MVT::i64, HI,
-                              DAG.getConstant(32, MVT::i8));
+                              DAG.getConstant(32, DL, MVT::i8));
     Results.push_back(DAG.getNode(ISD::OR, DL, MVT::i64, LO, Tmp));
     Results.push_back(Chain);
     return;
@@ -14925,14 +15703,50 @@ static SDValue LowerREADCYCLECOUNTER(SDValue Op, const X86Subtarget *Subtarget,
   return DAG.getMergeValues(Results, DL);
 }
 
+static SDValue LowerSEHRESTOREFRAME(SDValue Op, const X86Subtarget *Subtarget,
+                                    SelectionDAG &DAG) {
+  MachineFunction &MF = DAG.getMachineFunction();
+  SDLoc dl(Op);
+  SDValue Chain = Op.getOperand(0);
+
+  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+  MVT VT = TLI.getPointerTy();
+
+  const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
+  unsigned FrameReg =
+      RegInfo->getPtrSizedFrameRegister(DAG.getMachineFunction());
+  unsigned SPReg = RegInfo->getStackRegister();
+
+  // Get incoming EBP.
+  SDValue IncomingEBP =
+      DAG.getCopyFromReg(Chain, dl, FrameReg, VT);
+
+  // Load [EBP-24] into SP.
+  SDValue SPAddr =
+      DAG.getNode(ISD::ADD, dl, VT, IncomingEBP, DAG.getConstant(-24, dl, VT));
+  SDValue NewSP =
+      DAG.getLoad(VT, dl, Chain, SPAddr, MachinePointerInfo(), false, false,
+                  false, VT.getScalarSizeInBits() / 8);
+  Chain = DAG.getCopyToReg(Chain, dl, SPReg, NewSP);
+
+  // FIXME: Restore the base pointer in case of stack realignment!
+
+  // Adjust EBP to point back to the original frame position.
+  SDValue NewFP = recoverFramePointer(DAG, MF.getFunction(), IncomingEBP);
+  Chain = DAG.getCopyToReg(Chain, dl, FrameReg, NewFP);
+  return Chain;
+}
 
 static SDValue LowerINTRINSIC_W_CHAIN(SDValue Op, const X86Subtarget *Subtarget,
                                       SelectionDAG &DAG) {
   unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
 
   const IntrinsicData* IntrData = getIntrinsicWithChain(IntNo);
-  if (!IntrData)
+  if (!IntrData) {
+    if (IntNo == llvm::Intrinsic::x86_seh_restoreframe)
+      return LowerSEHRESTOREFRAME(Op, Subtarget, DAG);
     return SDValue();
+  }
 
   SDLoc dl(Op);
   switch(IntrData->Type) {
@@ -14948,8 +15762,8 @@ static SDValue LowerINTRINSIC_W_CHAIN(SDValue Op, const X86Subtarget *Subtarget,
     // If the value returned by RDRAND/RDSEED was valid (CF=1), return 1.
     // Otherwise return the value from Rand, which is always 0, casted to i32.
     SDValue Ops[] = { DAG.getZExtOrTrunc(Result, dl, Op->getValueType(1)),
-                      DAG.getConstant(1, Op->getValueType(1)),
-                      DAG.getConstant(X86::COND_B, MVT::i32),
+                      DAG.getConstant(1, dl, Op->getValueType(1)),
+                      DAG.getConstant(X86::COND_B, dl, MVT::i32),
                       SDValue(Result.getNode(), 1) };
     SDValue isValid = DAG.getNode(X86ISD::CMOV, dl,
                                   DAG.getVTList(Op->getValueType(1), MVT::Glue),
@@ -14967,8 +15781,8 @@ static SDValue LowerINTRINSIC_W_CHAIN(SDValue Op, const X86Subtarget *Subtarget,
     SDValue Index = Op.getOperand(4);
     SDValue Mask  = Op.getOperand(5);
     SDValue Scale = Op.getOperand(6);
-    return getGatherNode(IntrData->Opc0, Op, DAG, Src, Mask, Base, Index, Scale, Chain,
-                          Subtarget);
+    return getGatherNode(IntrData->Opc0, Op, DAG, Src, Mask, Base, Index, Scale,
+                         Chain, Subtarget);
   }
   case SCATTER: {
   //scatter(base, mask, index, v1, scale);
@@ -14978,14 +15792,13 @@ static SDValue LowerINTRINSIC_W_CHAIN(SDValue Op, const X86Subtarget *Subtarget,
     SDValue Index = Op.getOperand(4);
     SDValue Src   = Op.getOperand(5);
     SDValue Scale = Op.getOperand(6);
-    return getScatterNode(IntrData->Opc0, Op, DAG, Src, Mask, Base, Index, Scale, Chain);
+    return getScatterNode(IntrData->Opc0, Op, DAG, Src, Mask, Base, Index,
+                          Scale, Chain);
   }
   case PREFETCH: {
     SDValue Hint = Op.getOperand(6);
-    unsigned HintVal;
-    if (dyn_cast<ConstantSDNode> (Hint) == nullptr ||
-        (HintVal = dyn_cast<ConstantSDNode> (Hint)->getZExtValue()) > 1)
-      llvm_unreachable("Wrong prefetch hint in intrinsic: should be 0 or 1");
+    unsigned HintVal = cast<ConstantSDNode>(Hint)->getZExtValue();
+    assert(HintVal < 2 && "Wrong prefetch hint in intrinsic: should be 0 or 1");
     unsigned Opcode = (HintVal ? IntrData->Opc1 : IntrData->Opc0);
     SDValue Chain = Op.getOperand(0);
     SDValue Mask  = Op.getOperand(2);
@@ -14997,7 +15810,8 @@ static SDValue LowerINTRINSIC_W_CHAIN(SDValue Op, const X86Subtarget *Subtarget,
   // Read Time Stamp Counter (RDTSC) and Processor ID (RDTSCP).
   case RDTSC: {
     SmallVector<SDValue, 2> Results;
-    getReadTimeStampCounter(Op.getNode(), dl, IntrData->Opc0, DAG, Subtarget, Results);
+    getReadTimeStampCounter(Op.getNode(), dl, IntrData->Opc0, DAG, Subtarget,
+                            Results);
     return DAG.getMergeValues(Results, dl);
   }
   // Read Performance Monitoring Counters.
@@ -15011,7 +15825,7 @@ static SDValue LowerINTRINSIC_W_CHAIN(SDValue Op, const X86Subtarget *Subtarget,
     SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::Other);
     SDValue InTrans = DAG.getNode(IntrData->Opc0, dl, VTs, Op.getOperand(0));
     SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
-                                DAG.getConstant(X86::COND_NE, MVT::i8),
+                                DAG.getConstant(X86::COND_NE, dl, MVT::i8),
                                 InTrans);
     SDValue Ret = DAG.getNode(ISD::ZERO_EXTEND, dl, Op->getValueType(0), SetCC);
     return DAG.getNode(ISD::MERGE_VALUES, dl, Op->getVTList(),
@@ -15023,14 +15837,14 @@ static SDValue LowerINTRINSIC_W_CHAIN(SDValue Op, const X86Subtarget *Subtarget,
     SDVTList CFVTs = DAG.getVTList(Op->getValueType(0), MVT::Other);
     SDVTList VTs = DAG.getVTList(Op.getOperand(3)->getValueType(0), MVT::Other);
     SDValue GenCF = DAG.getNode(X86ISD::ADD, dl, CFVTs, Op.getOperand(2),
-                                DAG.getConstant(-1, MVT::i8));
+                                DAG.getConstant(-1, dl, MVT::i8));
     SDValue Res = DAG.getNode(IntrData->Opc0, dl, VTs, Op.getOperand(3),
                               Op.getOperand(4), GenCF.getValue(1));
     SDValue Store = DAG.getStore(Op.getOperand(0), dl, Res.getValue(0),
                                  Op.getOperand(5), MachinePointerInfo(),
                                  false, false, 0);
     SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
-                                DAG.getConstant(X86::COND_B, MVT::i8),
+                                DAG.getConstant(X86::COND_B, dl, MVT::i8),
                                 Res.getValue(1));
     Results.push_back(SetCC);
     Results.push_back(Store);
@@ -15043,49 +15857,38 @@ static SDValue LowerINTRINSIC_W_CHAIN(SDValue Op, const X86Subtarget *Subtarget,
     SDValue Addr = Op.getOperand(2);
     SDValue Chain = Op.getOperand(0);
 
+    EVT VT = DataToCompress.getValueType();
     if (isAllOnes(Mask)) // return just a store
       return DAG.getStore(Chain, dl, DataToCompress, Addr,
-                          MachinePointerInfo(), false, false, 0);
-
-    EVT VT = DataToCompress.getValueType();
-    EVT MaskVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1,
-                                  VT.getVectorNumElements());
-    EVT BitcastVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1,
-                                     Mask.getValueType().getSizeInBits());
-    SDValue VMask = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MaskVT,
-                                DAG.getNode(ISD::BITCAST, dl, BitcastVT, Mask),
-                                DAG.getIntPtrConstant(0));
+                          MachinePointerInfo(), false, false,
+                          VT.getScalarSizeInBits()/8);
 
-    SDValue Compressed =  DAG.getNode(IntrData->Opc0, dl, VT, VMask,
-                                      DataToCompress, DAG.getUNDEF(VT));
+    SDValue Compressed =
+      getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, DataToCompress),
+                           Mask, DAG.getUNDEF(VT), Subtarget, DAG);
     return DAG.getStore(Chain, dl, Compressed, Addr,
-                        MachinePointerInfo(), false, false, 0);
+                        MachinePointerInfo(), false, false,
+                        VT.getScalarSizeInBits()/8);
   }
   case EXPAND_FROM_MEM: {
     SDLoc dl(Op);
     SDValue Mask = Op.getOperand(4);
-    SDValue PathThru = Op.getOperand(3);
+    SDValue PassThru = Op.getOperand(3);
     SDValue Addr = Op.getOperand(2);
     SDValue Chain = Op.getOperand(0);
     EVT VT = Op.getValueType();
 
     if (isAllOnes(Mask)) // return just a load
       return DAG.getLoad(VT, dl, Chain, Addr, MachinePointerInfo(), false, false,
-                         false, 0);
-    EVT MaskVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1,
-                                  VT.getVectorNumElements());
-    EVT BitcastVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1,
-                                     Mask.getValueType().getSizeInBits());
-    SDValue VMask = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MaskVT,
-                                DAG.getNode(ISD::BITCAST, dl, BitcastVT, Mask),
-                                DAG.getIntPtrConstant(0));
+                         false, VT.getScalarSizeInBits()/8);
 
     SDValue DataToExpand = DAG.getLoad(VT, dl, Chain, Addr, MachinePointerInfo(),
-                                   false, false, false, 0);
+                                       false, false, false,
+                                       VT.getScalarSizeInBits()/8);
 
     SDValue Results[] = {
-        DAG.getNode(IntrData->Opc0, dl, VT, VMask, DataToExpand, PathThru),
-        Chain};
+      getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, DataToExpand),
+                           Mask, PassThru, Subtarget, DAG), Chain};
     return DAG.getMergeValues(Results, dl);
   }
   }
@@ -15106,7 +15909,7 @@ SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
   if (Depth > 0) {
     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
     const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
-    SDValue Offset = DAG.getConstant(RegInfo->getSlotSize(), PtrVT);
+    SDValue Offset = DAG.getConstant(RegInfo->getSlotSize(), dl, PtrVT);
     return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
                        DAG.getNode(ISD::ADD, dl, PtrVT,
                                    FrameAddr, Offset),
@@ -15137,7 +15940,7 @@ SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
       // Set up a frame object for the return address.
       unsigned SlotSize = RegInfo->getSlotSize();
       FrameAddrIndex = MF.getFrameInfo()->CreateFixedObject(
-          SlotSize, /*Offset=*/INT64_MIN, /*IsImmutable=*/false);
+          SlotSize, /*Offset=*/0, /*IsImmutable=*/false);
       FuncInfo->setFAIndex(FrameAddrIndex);
     }
     return DAG.getFrameIndex(FrameAddrIndex, VT);
@@ -15174,7 +15977,7 @@ unsigned X86TargetLowering::getRegisterByName(const char* RegName,
 SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
                                                      SelectionDAG &DAG) const {
   const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
-  return DAG.getIntPtrConstant(2 * RegInfo->getSlotSize());
+  return DAG.getIntPtrConstant(2 * RegInfo->getSlotSize(), SDLoc(Op));
 }
 
 SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
@@ -15193,7 +15996,8 @@ SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
   unsigned StoreAddrReg = (PtrVT == MVT::i64) ? X86::RCX : X86::ECX;
 
   SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, PtrVT, Frame,
-                                 DAG.getIntPtrConstant(RegInfo->getSlotSize()));
+                                 DAG.getIntPtrConstant(RegInfo->getSlotSize(),
+                                                       dl));
   StoreAddr = DAG.getNode(ISD::ADD, dl, PtrVT, StoreAddr, Offset);
   Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
                        false, false, 0);
@@ -15248,12 +16052,12 @@ SDValue X86TargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
     // Load the pointer to the nested function into R11.
     unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
     SDValue Addr = Trmp;
-    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
+    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, dl, MVT::i16),
                                 Addr, MachinePointerInfo(TrmpAddr),
                                 false, false, 0);
 
     Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
-                       DAG.getConstant(2, MVT::i64));
+                       DAG.getConstant(2, dl, MVT::i64));
     OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
                                 MachinePointerInfo(TrmpAddr, 2),
                                 false, false, 2);
@@ -15262,13 +16066,13 @@ SDValue X86TargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
     // R10 is specified in X86CallingConv.td
     OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
     Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
-                       DAG.getConstant(10, MVT::i64));
-    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
+                       DAG.getConstant(10, dl, MVT::i64));
+    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, dl, MVT::i16),
                                 Addr, MachinePointerInfo(TrmpAddr, 10),
                                 false, false, 0);
 
     Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
-                       DAG.getConstant(12, MVT::i64));
+                       DAG.getConstant(12, dl, MVT::i64));
     OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
                                 MachinePointerInfo(TrmpAddr, 12),
                                 false, false, 2);
@@ -15276,16 +16080,16 @@ SDValue X86TargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
     // Jump to the nested function.
     OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
     Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
-                       DAG.getConstant(20, MVT::i64));
-    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
+                       DAG.getConstant(20, dl, MVT::i64));
+    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, dl, MVT::i16),
                                 Addr, MachinePointerInfo(TrmpAddr, 20),
                                 false, false, 0);
 
     unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
     Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
-                       DAG.getConstant(22, MVT::i64));
-    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
-                                MachinePointerInfo(TrmpAddr, 22),
+                       DAG.getConstant(22, dl, MVT::i64));
+    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, dl, MVT::i8),
+                                Addr, MachinePointerInfo(TrmpAddr, 22),
                                 false, false, 0);
 
     return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
@@ -15338,32 +16142,32 @@ SDValue X86TargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
     SDValue Addr, Disp;
 
     Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
-                       DAG.getConstant(10, MVT::i32));
+                       DAG.getConstant(10, dl, MVT::i32));
     Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
 
     // This is storing the opcode for MOV32ri.
     const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
     const unsigned char N86Reg = TRI->getEncodingValue(NestReg) & 0x7;
     OutChains[0] = DAG.getStore(Root, dl,
-                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
+                                DAG.getConstant(MOV32ri|N86Reg, dl, MVT::i8),
                                 Trmp, MachinePointerInfo(TrmpAddr),
                                 false, false, 0);
 
     Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
-                       DAG.getConstant(1, MVT::i32));
+                       DAG.getConstant(1, dl, MVT::i32));
     OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
                                 MachinePointerInfo(TrmpAddr, 1),
                                 false, false, 1);
 
     const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
     Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
-                       DAG.getConstant(5, MVT::i32));
-    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
-                                MachinePointerInfo(TrmpAddr, 5),
+                       DAG.getConstant(5, dl, MVT::i32));
+    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, dl, MVT::i8),
+                                Addr, MachinePointerInfo(TrmpAddr, 5),
                                 false, false, 1);
 
     Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
-                       DAG.getConstant(6, MVT::i32));
+                       DAG.getConstant(6, dl, MVT::i32));
     OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
                                 MachinePointerInfo(TrmpAddr, 6),
                                 false, false, 1);
@@ -15420,20 +16224,20 @@ SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
   SDValue CWD1 =
     DAG.getNode(ISD::SRL, DL, MVT::i16,
                 DAG.getNode(ISD::AND, DL, MVT::i16,
-                            CWD, DAG.getConstant(0x800, MVT::i16)),
-                DAG.getConstant(11, MVT::i8));
+                            CWD, DAG.getConstant(0x800, DL, MVT::i16)),
+                DAG.getConstant(11, DL, MVT::i8));
   SDValue CWD2 =
     DAG.getNode(ISD::SRL, DL, MVT::i16,
                 DAG.getNode(ISD::AND, DL, MVT::i16,
-                            CWD, DAG.getConstant(0x400, MVT::i16)),
-                DAG.getConstant(9, MVT::i8));
+                            CWD, DAG.getConstant(0x400, DL, MVT::i16)),
+                DAG.getConstant(9, DL, MVT::i8));
 
   SDValue RetVal =
     DAG.getNode(ISD::AND, DL, MVT::i16,
                 DAG.getNode(ISD::ADD, DL, MVT::i16,
                             DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
-                            DAG.getConstant(1, MVT::i16)),
-                DAG.getConstant(3, MVT::i16));
+                            DAG.getConstant(1, DL, MVT::i16)),
+                DAG.getConstant(3, DL, MVT::i16));
 
   return DAG.getNode((VT.getSizeInBits() < 16 ?
                       ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
@@ -15459,14 +16263,15 @@ static SDValue LowerCTLZ(SDValue Op, SelectionDAG &DAG) {
   // If src is zero (i.e. bsr sets ZF), returns NumBits.
   SDValue Ops[] = {
     Op,
-    DAG.getConstant(NumBits+NumBits-1, OpVT),
-    DAG.getConstant(X86::COND_E, MVT::i8),
+    DAG.getConstant(NumBits + NumBits - 1, dl, OpVT),
+    DAG.getConstant(X86::COND_E, dl, MVT::i8),
     Op.getValue(1)
   };
   Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops);
 
   // Finally xor with NumBits-1.
-  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
+  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op,
+                   DAG.getConstant(NumBits - 1, dl, OpVT));
 
   if (VT == MVT::i8)
     Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
@@ -15491,7 +16296,8 @@ static SDValue LowerCTLZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) {
   Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
 
   // And xor with NumBits-1.
-  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
+  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op,
+                   DAG.getConstant(NumBits - 1, dl, OpVT));
 
   if (VT == MVT::i8)
     Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
@@ -15511,8 +16317,8 @@ static SDValue LowerCTTZ(SDValue Op, SelectionDAG &DAG) {
   // If src is zero (i.e. bsf sets ZF), returns NumBits.
   SDValue Ops[] = {
     Op,
-    DAG.getConstant(NumBits, VT),
-    DAG.getConstant(X86::COND_E, MVT::i8),
+    DAG.getConstant(NumBits, dl, VT),
+    DAG.getConstant(X86::COND_E, dl, MVT::i8),
     Op.getValue(1)
   };
   return DAG.getNode(X86ISD::CMOV, dl, VT, Ops);
@@ -15548,6 +16354,9 @@ static SDValue Lower256IntArith(SDValue Op, SelectionDAG &DAG) {
 }
 
 static SDValue LowerADD(SDValue Op, SelectionDAG &DAG) {
+  if (Op.getValueType() == MVT::i1)
+    return DAG.getNode(ISD::XOR, SDLoc(Op), Op.getValueType(),
+                       Op.getOperand(0), Op.getOperand(1));
   assert(Op.getSimpleValueType().is256BitVector() &&
          Op.getSimpleValueType().isInteger() &&
          "Only handle AVX 256-bit vector integer operation");
@@ -15555,6 +16364,9 @@ static SDValue LowerADD(SDValue Op, SelectionDAG &DAG) {
 }
 
 static SDValue LowerSUB(SDValue Op, SelectionDAG &DAG) {
+  if (Op.getValueType() == MVT::i1)
+    return DAG.getNode(ISD::XOR, SDLoc(Op), Op.getValueType(),
+                       Op.getOperand(0), Op.getOperand(1));
   assert(Op.getSimpleValueType().is256BitVector() &&
          Op.getSimpleValueType().isInteger() &&
          "Only handle AVX 256-bit vector integer operation");
@@ -15566,6 +16378,9 @@ static SDValue LowerMUL(SDValue Op, const X86Subtarget *Subtarget,
   SDLoc dl(Op);
   MVT VT = Op.getSimpleValueType();
 
+  if (VT == MVT::i1)
+    return DAG.getNode(ISD::AND, dl, VT, Op.getOperand(0), Op.getOperand(1));
+
   // Decompose 256-bit ops into smaller 128-bit ops.
   if (VT.is256BitVector() && !Subtarget->hasInt256())
     return Lower256IntArith(Op, DAG);
@@ -15573,6 +16388,79 @@ static SDValue LowerMUL(SDValue Op, const X86Subtarget *Subtarget,
   SDValue A = Op.getOperand(0);
   SDValue B = Op.getOperand(1);
 
+  // Lower v16i8/v32i8 mul as promotion to v8i16/v16i16 vector
+  // pairs, multiply and truncate.
+  if (VT == MVT::v16i8 || VT == MVT::v32i8) {
+    if (Subtarget->hasInt256()) {
+      if (VT == MVT::v32i8) {
+        MVT SubVT = MVT::getVectorVT(MVT::i8, VT.getVectorNumElements() / 2);
+        SDValue Lo = DAG.getIntPtrConstant(0, dl);
+        SDValue Hi = DAG.getIntPtrConstant(VT.getVectorNumElements() / 2, dl);
+        SDValue ALo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, SubVT, A, Lo);
+        SDValue BLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, SubVT, B, Lo);
+        SDValue AHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, SubVT, A, Hi);
+        SDValue BHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, SubVT, B, Hi);
+        return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
+                           DAG.getNode(ISD::MUL, dl, SubVT, ALo, BLo),
+                           DAG.getNode(ISD::MUL, dl, SubVT, AHi, BHi));
+      }
+
+      MVT ExVT = MVT::getVectorVT(MVT::i16, VT.getVectorNumElements());
+      return DAG.getNode(
+          ISD::TRUNCATE, dl, VT,
+          DAG.getNode(ISD::MUL, dl, ExVT,
+                      DAG.getNode(ISD::SIGN_EXTEND, dl, ExVT, A),
+                      DAG.getNode(ISD::SIGN_EXTEND, dl, ExVT, B)));
+    }
+
+    assert(VT == MVT::v16i8 &&
+           "Pre-AVX2 support only supports v16i8 multiplication");
+    MVT ExVT = MVT::v8i16;
+
+    // Extract the lo parts and sign extend to i16
+    SDValue ALo, BLo;
+    if (Subtarget->hasSSE41()) {
+      ALo = DAG.getNode(X86ISD::VSEXT, dl, ExVT, A);
+      BLo = DAG.getNode(X86ISD::VSEXT, dl, ExVT, B);
+    } else {
+      const int ShufMask[] = {-1, 0, -1, 1, -1, 2, -1, 3,
+                              -1, 4, -1, 5, -1, 6, -1, 7};
+      ALo = DAG.getVectorShuffle(VT, dl, A, A, ShufMask);
+      BLo = DAG.getVectorShuffle(VT, dl, B, B, ShufMask);
+      ALo = DAG.getBitcast(ExVT, ALo);
+      BLo = DAG.getBitcast(ExVT, BLo);
+      ALo = DAG.getNode(ISD::SRA, dl, ExVT, ALo, DAG.getConstant(8, dl, ExVT));
+      BLo = DAG.getNode(ISD::SRA, dl, ExVT, BLo, DAG.getConstant(8, dl, ExVT));
+    }
+
+    // Extract the hi parts and sign extend to i16
+    SDValue AHi, BHi;
+    if (Subtarget->hasSSE41()) {
+      const int ShufMask[] = {8,  9,  10, 11, 12, 13, 14, 15,
+                              -1, -1, -1, -1, -1, -1, -1, -1};
+      AHi = DAG.getVectorShuffle(VT, dl, A, A, ShufMask);
+      BHi = DAG.getVectorShuffle(VT, dl, B, B, ShufMask);
+      AHi = DAG.getNode(X86ISD::VSEXT, dl, ExVT, AHi);
+      BHi = DAG.getNode(X86ISD::VSEXT, dl, ExVT, BHi);
+    } else {
+      const int ShufMask[] = {-1, 8,  -1, 9,  -1, 10, -1, 11,
+                              -1, 12, -1, 13, -1, 14, -1, 15};
+      AHi = DAG.getVectorShuffle(VT, dl, A, A, ShufMask);
+      BHi = DAG.getVectorShuffle(VT, dl, B, B, ShufMask);
+      AHi = DAG.getBitcast(ExVT, AHi);
+      BHi = DAG.getBitcast(ExVT, BHi);
+      AHi = DAG.getNode(ISD::SRA, dl, ExVT, AHi, DAG.getConstant(8, dl, ExVT));
+      BHi = DAG.getNode(ISD::SRA, dl, ExVT, BHi, DAG.getConstant(8, dl, ExVT));
+    }
+
+    // Multiply, mask the lower 8bits of the lo/hi results and pack
+    SDValue RLo = DAG.getNode(ISD::MUL, dl, ExVT, ALo, BLo);
+    SDValue RHi = DAG.getNode(ISD::MUL, dl, ExVT, AHi, BHi);
+    RLo = DAG.getNode(ISD::AND, dl, ExVT, RLo, DAG.getConstant(255, dl, ExVT));
+    RHi = DAG.getNode(ISD::AND, dl, ExVT, RHi, DAG.getConstant(255, dl, ExVT));
+    return DAG.getNode(X86ISD::PACKUS, dl, VT, RLo, RHi);
+  }
+
   // Lower v4i32 mul as 2x shuffle, 2x pmuludq, 2x shuffle.
   if (VT == MVT::v4i32) {
     assert(Subtarget->hasSSE2() && !Subtarget->hasSSE41() &&
@@ -15588,8 +16476,8 @@ static SDValue LowerMUL(SDValue Op, const X86Subtarget *Subtarget,
     // Now multiply odd parts.
     SDValue Odds = DAG.getNode(X86ISD::PMULUDQ, dl, MVT::v2i64, Aodds, Bodds);
 
-    Evens = DAG.getNode(ISD::BITCAST, dl, VT, Evens);
-    Odds = DAG.getNode(ISD::BITCAST, dl, VT, Odds);
+    Evens = DAG.getBitcast(VT, Evens);
+    Odds = DAG.getBitcast(VT, Odds);
 
     // Merge the two vectors back together with a shuffle. This expands into 2
     // shuffles.
@@ -15614,20 +16502,26 @@ static SDValue LowerMUL(SDValue Op, const X86Subtarget *Subtarget,
   SDValue Ahi = getTargetVShiftByConstNode(X86ISD::VSRLI, dl, VT, A, 32, DAG);
   SDValue Bhi = getTargetVShiftByConstNode(X86ISD::VSRLI, dl, VT, B, 32, DAG);
 
+  SDValue AhiBlo = Ahi;
+  SDValue AloBhi = Bhi;
   // Bit cast to 32-bit vectors for MULUDQ
   EVT MulVT = (VT == MVT::v2i64) ? MVT::v4i32 :
                                   (VT == MVT::v4i64) ? MVT::v8i32 : MVT::v16i32;
-  A = DAG.getNode(ISD::BITCAST, dl, MulVT, A);
-  B = DAG.getNode(ISD::BITCAST, dl, MulVT, B);
-  Ahi = DAG.getNode(ISD::BITCAST, dl, MulVT, Ahi);
-  Bhi = DAG.getNode(ISD::BITCAST, dl, MulVT, Bhi);
+  A = DAG.getBitcast(MulVT, A);
+  B = DAG.getBitcast(MulVT, B);
+  Ahi = DAG.getBitcast(MulVT, Ahi);
+  Bhi = DAG.getBitcast(MulVT, Bhi);
 
   SDValue AloBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, B);
-  SDValue AloBhi = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, Bhi);
-  SDValue AhiBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, Ahi, B);
-
-  AloBhi = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, VT, AloBhi, 32, DAG);
-  AhiBlo = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, VT, AhiBlo, 32, DAG);
+  // After shifting right const values the result may be all-zero.
+  if (!ISD::isBuildVectorAllZeros(Ahi.getNode())) {
+    AhiBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, Ahi, B);
+    AhiBlo = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, VT, AhiBlo, 32, DAG);
+  }
+  if (!ISD::isBuildVectorAllZeros(Bhi.getNode())) {
+    AloBhi = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, Bhi);
+    AloBhi = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, VT, AloBhi, 32, DAG);
+  }
 
   SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
   return DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
@@ -15682,7 +16576,7 @@ SDValue X86TargetLowering::LowerWin64_i128OP(SDValue Op, SelectionDAG &DAG) cons
     .setInRegister().setSExtResult(isSigned).setZExtResult(!isSigned);
 
   std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
-  return DAG.getNode(ISD::BITCAST, dl, VT, CallInfo.first);
+  return DAG.getBitcast(VT, CallInfo.first);
 }
 
 static SDValue LowerMUL_LOHI(SDValue Op, const X86Subtarget *Subtarget,
@@ -15720,12 +16614,10 @@ static SDValue LowerMUL_LOHI(SDValue Op, const X86Subtarget *Subtarget,
       (!IsSigned || !Subtarget->hasSSE41()) ? X86ISD::PMULUDQ : X86ISD::PMULDQ;
   // PMULUDQ <4 x i32> <a|b|c|d>, <4 x i32> <e|f|g|h>
   // => <2 x i64> <ae|cg>
-  SDValue Mul1 = DAG.getNode(ISD::BITCAST, dl, VT,
-                             DAG.getNode(Opcode, dl, MulVT, Op0, Op1));
+  SDValue Mul1 = DAG.getBitcast(VT, DAG.getNode(Opcode, dl, MulVT, Op0, Op1));
   // PMULUDQ <4 x i32> <b|undef|d|undef>, <4 x i32> <f|undef|h|undef>
   // => <2 x i64> <bf|dh>
-  SDValue Mul2 = DAG.getNode(ISD::BITCAST, dl, VT,
-                             DAG.getNode(Opcode, dl, MulVT, Odd0, Odd1));
+  SDValue Mul2 = DAG.getBitcast(VT, DAG.getNode(Opcode, dl, MulVT, Odd0, Odd1));
 
   // Shuffle it back into the right order.
   SDValue Highs, Lows;
@@ -15745,7 +16637,8 @@ static SDValue LowerMUL_LOHI(SDValue Op, const X86Subtarget *Subtarget,
   // unsigned multiply.
   if (IsSigned && !Subtarget->hasSSE41()) {
     SDValue ShAmt =
-        DAG.getConstant(31, DAG.getTargetLoweringInfo().getShiftAmountTy(VT));
+        DAG.getConstant(31, dl,
+                        DAG.getTargetLoweringInfo().getShiftAmountTy(VT));
     SDValue T1 = DAG.getNode(ISD::AND, dl, VT,
                              DAG.getNode(ISD::SRA, dl, VT, Op0, ShAmt), Op1);
     SDValue T2 = DAG.getNode(ISD::AND, dl, VT,
@@ -15761,6 +16654,53 @@ static SDValue LowerMUL_LOHI(SDValue Op, const X86Subtarget *Subtarget,
   return DAG.getMergeValues(Ops, dl);
 }
 
+// Return true if the requred (according to Opcode) shift-imm form is natively
+// supported by the Subtarget
+static bool SupportedVectorShiftWithImm(MVT VT, const X86Subtarget *Subtarget,
+                                        unsigned Opcode) {
+  if (VT.getScalarSizeInBits() < 16)
+    return false;
+
+  if (VT.is512BitVector() &&
+      (VT.getScalarSizeInBits() > 16 || Subtarget->hasBWI()))
+    return true;
+
+  bool LShift = VT.is128BitVector() ||
+    (VT.is256BitVector() && Subtarget->hasInt256());
+
+  bool AShift = LShift && (Subtarget->hasVLX() ||
+    (VT != MVT::v2i64 && VT != MVT::v4i64));
+  return (Opcode == ISD::SRA) ? AShift : LShift;
+}
+
+// The shift amount is a variable, but it is the same for all vector lanes.
+// These instrcutions are defined together with shift-immediate.
+static
+bool SupportedVectorShiftWithBaseAmnt(MVT VT, const X86Subtarget *Subtarget,
+                                      unsigned Opcode) {
+  return SupportedVectorShiftWithImm(VT, Subtarget, Opcode);
+}
+
+// Return true if the requred (according to Opcode) variable-shift form is
+// natively supported by the Subtarget
+static bool SupportedVectorVarShift(MVT VT, const X86Subtarget *Subtarget,
+                                    unsigned Opcode) {
+
+  if (!Subtarget->hasInt256() || VT.getScalarSizeInBits() < 16)
+    return false;
+
+  // vXi16 supported only on AVX-512, BWI
+  if (VT.getScalarSizeInBits() == 16 && !Subtarget->hasBWI())
+    return false;
+
+  if (VT.is512BitVector() || Subtarget->hasVLX())
+    return true;
+
+  bool LShift = VT.is128BitVector() || VT.is256BitVector();
+  bool AShift = LShift &&  VT != MVT::v2i64 && VT != MVT::v4i64;
+  return (Opcode == ISD::SRA) ? AShift : LShift;
+}
+
 static SDValue LowerScalarImmediateShift(SDValue Op, SelectionDAG &DAG,
                                          const X86Subtarget *Subtarget) {
   MVT VT = Op.getSimpleValueType();
@@ -15768,97 +16708,44 @@ static SDValue LowerScalarImmediateShift(SDValue Op, SelectionDAG &DAG,
   SDValue R = Op.getOperand(0);
   SDValue Amt = Op.getOperand(1);
 
+  unsigned X86Opc = (Op.getOpcode() == ISD::SHL) ? X86ISD::VSHLI :
+    (Op.getOpcode() == ISD::SRL) ? X86ISD::VSRLI : X86ISD::VSRAI;
+
   // Optimize shl/srl/sra with constant shift amount.
   if (auto *BVAmt = dyn_cast<BuildVectorSDNode>(Amt)) {
     if (auto *ShiftConst = BVAmt->getConstantSplatNode()) {
       uint64_t ShiftAmt = ShiftConst->getZExtValue();
 
-      if (VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 ||
-          (Subtarget->hasInt256() &&
-           (VT == MVT::v4i64 || VT == MVT::v8i32 || VT == MVT::v16i16)) ||
-          (Subtarget->hasAVX512() &&
-           (VT == MVT::v8i64 || VT == MVT::v16i32))) {
-        if (Op.getOpcode() == ISD::SHL)
-          return getTargetVShiftByConstNode(X86ISD::VSHLI, dl, VT, R, ShiftAmt,
-                                            DAG);
-        if (Op.getOpcode() == ISD::SRL)
-          return getTargetVShiftByConstNode(X86ISD::VSRLI, dl, VT, R, ShiftAmt,
-                                            DAG);
-        if (Op.getOpcode() == ISD::SRA && VT != MVT::v2i64 && VT != MVT::v4i64)
-          return getTargetVShiftByConstNode(X86ISD::VSRAI, dl, VT, R, ShiftAmt,
-                                            DAG);
-      }
+      if (SupportedVectorShiftWithImm(VT, Subtarget, Op.getOpcode()))
+        return getTargetVShiftByConstNode(X86Opc, dl, VT, R, ShiftAmt, DAG);
 
-      if (VT == MVT::v16i8) {
-        if (Op.getOpcode() == ISD::SHL) {
-          // Make a large shift.
-          SDValue SHL = getTargetVShiftByConstNode(X86ISD::VSHLI, dl,
-                                                   MVT::v8i16, R, ShiftAmt,
-                                                   DAG);
-          SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
-          // Zero out the rightmost bits.
-          SmallVector<SDValue, 16> V(16,
-                                     DAG.getConstant(uint8_t(-1U << ShiftAmt),
-                                                     MVT::i8));
-          return DAG.getNode(ISD::AND, dl, VT, SHL,
-                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, V));
-        }
-        if (Op.getOpcode() == ISD::SRL) {
-          // Make a large shift.
-          SDValue SRL = getTargetVShiftByConstNode(X86ISD::VSRLI, dl,
-                                                   MVT::v8i16, R, ShiftAmt,
-                                                   DAG);
-          SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
-          // Zero out the leftmost bits.
-          SmallVector<SDValue, 16> V(16,
-                                     DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
-                                                     MVT::i8));
-          return DAG.getNode(ISD::AND, dl, VT, SRL,
-                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, V));
-        }
-        if (Op.getOpcode() == ISD::SRA) {
-          if (ShiftAmt == 7) {
-            // R s>> 7  ===  R s< 0
-            SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
-            return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
-          }
-
-          // R s>> a === ((R u>> a) ^ m) - m
-          SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
-          SmallVector<SDValue, 16> V(16, DAG.getConstant(128 >> ShiftAmt,
-                                                         MVT::i8));
-          SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, V);
-          Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
-          Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
-          return Res;
-        }
-        llvm_unreachable("Unknown shift opcode.");
-      }
+      if (VT == MVT::v16i8 || (Subtarget->hasInt256() && VT == MVT::v32i8)) {
+        unsigned NumElts = VT.getVectorNumElements();
+        MVT ShiftVT = MVT::getVectorVT(MVT::i16, NumElts / 2);
 
-      if (Subtarget->hasInt256() && VT == MVT::v32i8) {
         if (Op.getOpcode() == ISD::SHL) {
+          // Simple i8 add case
+          if (ShiftAmt == 1)
+            return DAG.getNode(ISD::ADD, dl, VT, R, R);
+
           // Make a large shift.
-          SDValue SHL = getTargetVShiftByConstNode(X86ISD::VSHLI, dl,
-                                                   MVT::v16i16, R, ShiftAmt,
-                                                   DAG);
-          SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
+          SDValue SHL = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, ShiftVT,
+                                                   R, ShiftAmt, DAG);
+          SHL = DAG.getBitcast(VT, SHL);
           // Zero out the rightmost bits.
-          SmallVector<SDValue, 32> V(32,
-                                     DAG.getConstant(uint8_t(-1U << ShiftAmt),
-                                                     MVT::i8));
+          SmallVector<SDValue, 32> V(
+              NumElts, DAG.getConstant(uint8_t(-1U << ShiftAmt), dl, MVT::i8));
           return DAG.getNode(ISD::AND, dl, VT, SHL,
                              DAG.getNode(ISD::BUILD_VECTOR, dl, VT, V));
         }
         if (Op.getOpcode() == ISD::SRL) {
           // Make a large shift.
-          SDValue SRL = getTargetVShiftByConstNode(X86ISD::VSRLI, dl,
-                                                   MVT::v16i16, R, ShiftAmt,
-                                                   DAG);
-          SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
+          SDValue SRL = getTargetVShiftByConstNode(X86ISD::VSRLI, dl, ShiftVT,
+                                                   R, ShiftAmt, DAG);
+          SRL = DAG.getBitcast(VT, SRL);
           // Zero out the leftmost bits.
-          SmallVector<SDValue, 32> V(32,
-                                     DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
-                                                     MVT::i8));
+          SmallVector<SDValue, 32> V(
+              NumElts, DAG.getConstant(uint8_t(-1U) >> ShiftAmt, dl, MVT::i8));
           return DAG.getNode(ISD::AND, dl, VT, SRL,
                              DAG.getNode(ISD::BUILD_VECTOR, dl, VT, V));
         }
@@ -15871,8 +16758,9 @@ static SDValue LowerScalarImmediateShift(SDValue Op, SelectionDAG &DAG,
 
           // R s>> a === ((R u>> a) ^ m) - m
           SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
-          SmallVector<SDValue, 32> V(32, DAG.getConstant(128 >> ShiftAmt,
-                                                         MVT::i8));
+          SmallVector<SDValue, 32> V(NumElts,
+                                     DAG.getConstant(128 >> ShiftAmt, dl,
+                                                     MVT::i8));
           SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, V);
           Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
           Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
@@ -15914,19 +16802,7 @@ static SDValue LowerScalarImmediateShift(SDValue Op, SelectionDAG &DAG,
       if (ShAmt != ShiftAmt)
         return SDValue();
     }
-    switch (Op.getOpcode()) {
-    default:
-      llvm_unreachable("Unknown shift opcode!");
-    case ISD::SHL:
-      return getTargetVShiftByConstNode(X86ISD::VSHLI, dl, VT, R, ShiftAmt,
-                                        DAG);
-    case ISD::SRL:
-      return getTargetVShiftByConstNode(X86ISD::VSRLI, dl, VT, R, ShiftAmt,
-                                        DAG);
-    case ISD::SRA:
-      return getTargetVShiftByConstNode(X86ISD::VSRAI, dl, VT, R, ShiftAmt,
-                                        DAG);
-    }
+    return getTargetVShiftByConstNode(X86Opc, dl, VT, R, ShiftAmt, DAG);
   }
 
   return SDValue();
@@ -15939,12 +16815,13 @@ static SDValue LowerScalarVariableShift(SDValue Op, SelectionDAG &DAG,
   SDValue R = Op.getOperand(0);
   SDValue Amt = Op.getOperand(1);
 
-  if ((VT == MVT::v2i64 && Op.getOpcode() != ISD::SRA) ||
-      VT == MVT::v4i32 || VT == MVT::v8i16 ||
-      (Subtarget->hasInt256() &&
-       ((VT == MVT::v4i64 && Op.getOpcode() != ISD::SRA) ||
-        VT == MVT::v8i32 || VT == MVT::v16i16)) ||
-       (Subtarget->hasAVX512() && (VT == MVT::v8i64 || VT == MVT::v16i32))) {
+  unsigned X86OpcI = (Op.getOpcode() == ISD::SHL) ? X86ISD::VSHLI :
+    (Op.getOpcode() == ISD::SRL) ? X86ISD::VSRLI : X86ISD::VSRAI;
+
+  unsigned X86OpcV = (Op.getOpcode() == ISD::SHL) ? X86ISD::VSHL :
+    (Op.getOpcode() == ISD::SRL) ? X86ISD::VSRL : X86ISD::VSRA;
+
+  if (SupportedVectorShiftWithBaseAmnt(VT, Subtarget, Op.getOpcode())) {
     SDValue BaseShAmt;
     EVT EltVT = VT.getVectorElementType();
 
@@ -15977,7 +16854,7 @@ static SDValue LowerScalarVariableShift(SDValue Op, SelectionDAG &DAG,
         if (!BaseShAmt)
           // Avoid introducing an extract element from a shuffle.
           BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, InVec,
-                                    DAG.getIntPtrConstant(SplatIdx));
+                                  DAG.getIntPtrConstant(SplatIdx, dl));
       }
     }
 
@@ -15988,54 +16865,12 @@ static SDValue LowerScalarVariableShift(SDValue Op, SelectionDAG &DAG,
       else if (EltVT.bitsLT(MVT::i32))
         BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, BaseShAmt);
 
-      switch (Op.getOpcode()) {
-      default:
-        llvm_unreachable("Unknown shift opcode!");
-      case ISD::SHL:
-        switch (VT.SimpleTy) {
-        default: return SDValue();
-        case MVT::v2i64:
-        case MVT::v4i32:
-        case MVT::v8i16:
-        case MVT::v4i64:
-        case MVT::v8i32:
-        case MVT::v16i16:
-        case MVT::v16i32:
-        case MVT::v8i64:
-          return getTargetVShiftNode(X86ISD::VSHLI, dl, VT, R, BaseShAmt, DAG);
-        }
-      case ISD::SRA:
-        switch (VT.SimpleTy) {
-        default: return SDValue();
-        case MVT::v4i32:
-        case MVT::v8i16:
-        case MVT::v8i32:
-        case MVT::v16i16:
-        case MVT::v16i32:
-        case MVT::v8i64:
-          return getTargetVShiftNode(X86ISD::VSRAI, dl, VT, R, BaseShAmt, DAG);
-        }
-      case ISD::SRL:
-        switch (VT.SimpleTy) {
-        default: return SDValue();
-        case MVT::v2i64:
-        case MVT::v4i32:
-        case MVT::v8i16:
-        case MVT::v4i64:
-        case MVT::v8i32:
-        case MVT::v16i16:
-        case MVT::v16i32:
-        case MVT::v8i64:
-          return getTargetVShiftNode(X86ISD::VSRLI, dl, VT, R, BaseShAmt, DAG);
-        }
-      }
+      return getTargetVShiftNode(X86OpcI, dl, VT, R, BaseShAmt, DAG);
     }
   }
 
   // Special case in 32-bit mode, where i64 is expanded into high and low parts.
-  if (!Subtarget->is64Bit() &&
-      (VT == MVT::v2i64 || (Subtarget->hasInt256() && VT == MVT::v4i64) ||
-      (Subtarget->hasAVX512() && VT == MVT::v8i64)) &&
+  if (!Subtarget->is64Bit() && VT == MVT::v2i64  &&
       Amt.getOpcode() == ISD::BITCAST &&
       Amt.getOperand(0).getOpcode() == ISD::BUILD_VECTOR) {
     Amt = Amt.getOperand(0);
@@ -16049,18 +16884,8 @@ static SDValue LowerScalarVariableShift(SDValue Op, SelectionDAG &DAG,
         if (Vals[j] != Amt.getOperand(i + j))
           return SDValue();
     }
-    switch (Op.getOpcode()) {
-    default:
-      llvm_unreachable("Unknown shift opcode!");
-    case ISD::SHL:
-      return DAG.getNode(X86ISD::VSHL, dl, VT, R, Op.getOperand(1));
-    case ISD::SRL:
-      return DAG.getNode(X86ISD::VSRL, dl, VT, R, Op.getOperand(1));
-    case ISD::SRA:
-      return DAG.getNode(X86ISD::VSRA, dl, VT, R, Op.getOperand(1));
-    }
+    return DAG.getNode(X86OpcV, dl, VT, R, Op.getOperand(1));
   }
-
   return SDValue();
 }
 
@@ -16070,33 +16895,28 @@ static SDValue LowerShift(SDValue Op, const X86Subtarget* Subtarget,
   SDLoc dl(Op);
   SDValue R = Op.getOperand(0);
   SDValue Amt = Op.getOperand(1);
-  SDValue V;
 
   assert(VT.isVector() && "Custom lowering only for vector shifts!");
   assert(Subtarget->hasSSE2() && "Only custom lower when we have SSE2!");
 
-  V = LowerScalarImmediateShift(Op, DAG, Subtarget);
-  if (V.getNode())
+  if (SDValue V = LowerScalarImmediateShift(Op, DAG, Subtarget))
     return V;
 
-  V = LowerScalarVariableShift(Op, DAG, Subtarget);
-  if (V.getNode())
+  if (SDValue V = LowerScalarVariableShift(Op, DAG, Subtarget))
       return V;
 
-  if (Subtarget->hasAVX512() && (VT == MVT::v16i32 || VT == MVT::v8i64))
+  if (SupportedVectorVarShift(VT, Subtarget, Op.getOpcode()))
     return Op;
-  // AVX2 has VPSLLV/VPSRAV/VPSRLV.
-  if (Subtarget->hasInt256()) {
-    if (Op.getOpcode() == ISD::SRL &&
-        (VT == MVT::v2i64 || VT == MVT::v4i32 ||
-         VT == MVT::v4i64 || VT == MVT::v8i32))
-      return Op;
-    if (Op.getOpcode() == ISD::SHL &&
-        (VT == MVT::v2i64 || VT == MVT::v4i32 ||
-         VT == MVT::v4i64 || VT == MVT::v8i32))
-      return Op;
-    if (Op.getOpcode() == ISD::SRA && (VT == MVT::v4i32 || VT == MVT::v8i32))
-      return Op;
+
+  // 2i64 vector logical shifts can efficiently avoid scalarization - do the
+  // shifts per-lane and then shuffle the partial results back together.
+  if (VT == MVT::v2i64 && Op.getOpcode() != ISD::SRA) {
+    // Splat the shift amounts so the scalar shifts above will catch it.
+    SDValue Amt0 = DAG.getVectorShuffle(VT, dl, Amt, Amt, {0, 0});
+    SDValue Amt1 = DAG.getVectorShuffle(VT, dl, Amt, Amt, {1, 1});
+    SDValue R0 = DAG.getNode(Op->getOpcode(), dl, VT, R, Amt0);
+    SDValue R1 = DAG.getNode(Op->getOpcode(), dl, VT, R, Amt1);
+    return DAG.getVectorShuffle(VT, dl, R0, R1, {0, 3});
   }
 
   // If possible, lower this packed shift into a vector multiply instead of
@@ -16126,7 +16946,7 @@ static SDValue LowerShift(SDValue Op, const X86Subtarget* Subtarget,
         Elts.push_back(DAG.getUNDEF(SVT));
         continue;
       }
-      Elts.push_back(DAG.getConstant(One.shl(ShAmt), SVT));
+      Elts.push_back(DAG.getConstant(One.shl(ShAmt), dl, SVT));
     }
     SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Elts);
     return DAG.getNode(ISD::MUL, dl, VT, R, BV);
@@ -16134,10 +16954,11 @@ static SDValue LowerShift(SDValue Op, const X86Subtarget* Subtarget,
 
   // Lower SHL with variable shift amount.
   if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) {
-    Op = DAG.getNode(ISD::SHL, dl, VT, Amt, DAG.getConstant(23, VT));
+    Op = DAG.getNode(ISD::SHL, dl, VT, Amt, DAG.getConstant(23, dl, VT));
 
-    Op = DAG.getNode(ISD::ADD, dl, VT, Op, DAG.getConstant(0x3f800000U, VT));
-    Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op);
+    Op = DAG.getNode(ISD::ADD, dl, VT, Op,
+                     DAG.getConstant(0x3f800000U, dl, VT));
+    Op = DAG.getBitcast(MVT::v4f32, Op);
     Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
     return DAG.getNode(ISD::MUL, dl, VT, Op, R);
   }
@@ -16200,77 +17021,220 @@ static SDValue LowerShift(SDValue Op, const X86Subtarget* Subtarget,
       // Replace this node with two shifts followed by a MOVSS/MOVSD.
       EVT CastVT = MVT::v4i32;
       SDValue Splat1 =
-        DAG.getConstant(cast<ConstantSDNode>(Amt1)->getAPIntValue(), VT);
+        DAG.getConstant(cast<ConstantSDNode>(Amt1)->getAPIntValue(), dl, VT);
       SDValue Shift1 = DAG.getNode(Op->getOpcode(), dl, VT, R, Splat1);
       SDValue Splat2 =
-        DAG.getConstant(cast<ConstantSDNode>(Amt2)->getAPIntValue(), VT);
+        DAG.getConstant(cast<ConstantSDNode>(Amt2)->getAPIntValue(), dl, VT);
       SDValue Shift2 = DAG.getNode(Op->getOpcode(), dl, VT, R, Splat2);
       if (TargetOpcode == X86ISD::MOVSD)
         CastVT = MVT::v2i64;
-      SDValue BitCast1 = DAG.getNode(ISD::BITCAST, dl, CastVT, Shift1);
-      SDValue BitCast2 = DAG.getNode(ISD::BITCAST, dl, CastVT, Shift2);
+      SDValue BitCast1 = DAG.getBitcast(CastVT, Shift1);
+      SDValue BitCast2 = DAG.getBitcast(CastVT, Shift2);
       SDValue Result = getTargetShuffleNode(TargetOpcode, dl, CastVT, BitCast2,
                                             BitCast1, DAG);
-      return DAG.getNode(ISD::BITCAST, dl, VT, Result);
+      return DAG.getBitcast(VT, Result);
     }
   }
 
-  if (VT == MVT::v16i8 && Op->getOpcode() == ISD::SHL) {
-    assert(Subtarget->hasSSE2() && "Need SSE2 for pslli/pcmpeq.");
+  if (VT == MVT::v16i8 || (VT == MVT::v32i8 && Subtarget->hasInt256())) {
+    MVT ExtVT = MVT::getVectorVT(MVT::i16, VT.getVectorNumElements() / 2);
+    unsigned ShiftOpcode = Op->getOpcode();
 
-    // a = a << 5;
-    Op = DAG.getNode(ISD::SHL, dl, VT, Amt, DAG.getConstant(5, VT));
-    Op = DAG.getNode(ISD::BITCAST, dl, VT, Op);
+    auto SignBitSelect = [&](MVT SelVT, SDValue Sel, SDValue V0, SDValue V1) {
+      // On SSE41 targets we make use of the fact that VSELECT lowers
+      // to PBLENDVB which selects bytes based just on the sign bit.
+      if (Subtarget->hasSSE41()) {
+        V0 = DAG.getBitcast(VT, V0);
+        V1 = DAG.getBitcast(VT, V1);
+        Sel = DAG.getBitcast(VT, Sel);
+        return DAG.getBitcast(SelVT,
+                              DAG.getNode(ISD::VSELECT, dl, VT, Sel, V0, V1));
+      }
+      // On pre-SSE41 targets we test for the sign bit by comparing to
+      // zero - a negative value will set all bits of the lanes to true
+      // and VSELECT uses that in its OR(AND(V0,C),AND(V1,~C)) lowering.
+      SDValue Z = getZeroVector(SelVT, Subtarget, DAG, dl);
+      SDValue C = DAG.getNode(X86ISD::PCMPGT, dl, SelVT, Z, Sel);
+      return DAG.getNode(ISD::VSELECT, dl, SelVT, C, V0, V1);
+    };
 
-    // Turn 'a' into a mask suitable for VSELECT
-    SDValue VSelM = DAG.getConstant(0x80, VT);
-    SDValue OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
-    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
+    // Turn 'a' into a mask suitable for VSELECT: a = a << 5;
+    // We can safely do this using i16 shifts as we're only interested in
+    // the 3 lower bits of each byte.
+    Amt = DAG.getBitcast(ExtVT, Amt);
+    Amt = DAG.getNode(ISD::SHL, dl, ExtVT, Amt, DAG.getConstant(5, dl, ExtVT));
+    Amt = DAG.getBitcast(VT, Amt);
 
-    SDValue CM1 = DAG.getConstant(0x0f, VT);
-    SDValue CM2 = DAG.getConstant(0x3f, VT);
+    if (Op->getOpcode() == ISD::SHL || Op->getOpcode() == ISD::SRL) {
+      // r = VSELECT(r, shift(r, 4), a);
+      SDValue M =
+          DAG.getNode(ShiftOpcode, dl, VT, R, DAG.getConstant(4, dl, VT));
+      R = SignBitSelect(VT, Amt, M, R);
 
-    // r = VSELECT(r, psllw(r & (char16)15, 4), a);
-    SDValue M = DAG.getNode(ISD::AND, dl, VT, R, CM1);
-    M = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, MVT::v8i16, M, 4, DAG);
-    M = DAG.getNode(ISD::BITCAST, dl, VT, M);
-    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
+      // a += a
+      Amt = DAG.getNode(ISD::ADD, dl, VT, Amt, Amt);
 
-    // a += a
-    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
-    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
-    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
+      // r = VSELECT(r, shift(r, 2), a);
+      M = DAG.getNode(ShiftOpcode, dl, VT, R, DAG.getConstant(2, dl, VT));
+      R = SignBitSelect(VT, Amt, M, R);
 
-    // r = VSELECT(r, psllw(r & (char16)63, 2), a);
-    M = DAG.getNode(ISD::AND, dl, VT, R, CM2);
-    M = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, MVT::v8i16, M, 2, DAG);
-    M = DAG.getNode(ISD::BITCAST, dl, VT, M);
-    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
+      // a += a
+      Amt = DAG.getNode(ISD::ADD, dl, VT, Amt, Amt);
 
-    // a += a
-    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
-    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
-    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
+      // return VSELECT(r, shift(r, 1), a);
+      M = DAG.getNode(ShiftOpcode, dl, VT, R, DAG.getConstant(1, dl, VT));
+      R = SignBitSelect(VT, Amt, M, R);
+      return R;
+    }
 
-    // return VSELECT(r, r+r, a);
-    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel,
-                    DAG.getNode(ISD::ADD, dl, VT, R, R), R);
-    return R;
+    if (Op->getOpcode() == ISD::SRA) {
+      // For SRA we need to unpack each byte to the higher byte of a i16 vector
+      // so we can correctly sign extend. We don't care what happens to the
+      // lower byte.
+      SDValue ALo = DAG.getNode(X86ISD::UNPCKL, dl, VT, DAG.getUNDEF(VT), Amt);
+      SDValue AHi = DAG.getNode(X86ISD::UNPCKH, dl, VT, DAG.getUNDEF(VT), Amt);
+      SDValue RLo = DAG.getNode(X86ISD::UNPCKL, dl, VT, DAG.getUNDEF(VT), R);
+      SDValue RHi = DAG.getNode(X86ISD::UNPCKH, dl, VT, DAG.getUNDEF(VT), R);
+      ALo = DAG.getBitcast(ExtVT, ALo);
+      AHi = DAG.getBitcast(ExtVT, AHi);
+      RLo = DAG.getBitcast(ExtVT, RLo);
+      RHi = DAG.getBitcast(ExtVT, RHi);
+
+      // r = VSELECT(r, shift(r, 4), a);
+      SDValue MLo = DAG.getNode(ShiftOpcode, dl, ExtVT, RLo,
+                                DAG.getConstant(4, dl, ExtVT));
+      SDValue MHi = DAG.getNode(ShiftOpcode, dl, ExtVT, RHi,
+                                DAG.getConstant(4, dl, ExtVT));
+      RLo = SignBitSelect(ExtVT, ALo, MLo, RLo);
+      RHi = SignBitSelect(ExtVT, AHi, MHi, RHi);
+
+      // a += a
+      ALo = DAG.getNode(ISD::ADD, dl, ExtVT, ALo, ALo);
+      AHi = DAG.getNode(ISD::ADD, dl, ExtVT, AHi, AHi);
+
+      // r = VSELECT(r, shift(r, 2), a);
+      MLo = DAG.getNode(ShiftOpcode, dl, ExtVT, RLo,
+                        DAG.getConstant(2, dl, ExtVT));
+      MHi = DAG.getNode(ShiftOpcode, dl, ExtVT, RHi,
+                        DAG.getConstant(2, dl, ExtVT));
+      RLo = SignBitSelect(ExtVT, ALo, MLo, RLo);
+      RHi = SignBitSelect(ExtVT, AHi, MHi, RHi);
+
+      // a += a
+      ALo = DAG.getNode(ISD::ADD, dl, ExtVT, ALo, ALo);
+      AHi = DAG.getNode(ISD::ADD, dl, ExtVT, AHi, AHi);
+
+      // r = VSELECT(r, shift(r, 1), a);
+      MLo = DAG.getNode(ShiftOpcode, dl, ExtVT, RLo,
+                        DAG.getConstant(1, dl, ExtVT));
+      MHi = DAG.getNode(ShiftOpcode, dl, ExtVT, RHi,
+                        DAG.getConstant(1, dl, ExtVT));
+      RLo = SignBitSelect(ExtVT, ALo, MLo, RLo);
+      RHi = SignBitSelect(ExtVT, AHi, MHi, RHi);
+
+      // Logical shift the result back to the lower byte, leaving a zero upper
+      // byte
+      // meaning that we can safely pack with PACKUSWB.
+      RLo =
+          DAG.getNode(ISD::SRL, dl, ExtVT, RLo, DAG.getConstant(8, dl, ExtVT));
+      RHi =
+          DAG.getNode(ISD::SRL, dl, ExtVT, RHi, DAG.getConstant(8, dl, ExtVT));
+      return DAG.getNode(X86ISD::PACKUS, dl, VT, RLo, RHi);
+    }
   }
 
   // It's worth extending once and using the v8i32 shifts for 16-bit types, but
   // the extra overheads to get from v16i8 to v8i32 make the existing SSE
   // solution better.
   if (Subtarget->hasInt256() && VT == MVT::v8i16) {
-    MVT NewVT = VT == MVT::v8i16 ? MVT::v8i32 : MVT::v16i16;
+    MVT ExtVT = MVT::v8i32;
     unsigned ExtOpc =
         Op.getOpcode() == ISD::SRA ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
-    R = DAG.getNode(ExtOpc, dl, NewVT, R);
-    Amt = DAG.getNode(ISD::ANY_EXTEND, dl, NewVT, Amt);
+    R = DAG.getNode(ExtOpc, dl, ExtVT, R);
+    Amt = DAG.getNode(ISD::ANY_EXTEND, dl, ExtVT, Amt);
     return DAG.getNode(ISD::TRUNCATE, dl, VT,
-                       DAG.getNode(Op.getOpcode(), dl, NewVT, R, Amt));
+                       DAG.getNode(Op.getOpcode(), dl, ExtVT, R, Amt));
+  }
+
+  if (Subtarget->hasInt256() && VT == MVT::v16i16) {
+    MVT ExtVT = MVT::v8i32;
+    SDValue Z = getZeroVector(VT, Subtarget, DAG, dl);
+    SDValue ALo = DAG.getNode(X86ISD::UNPCKL, dl, VT, Amt, Z);
+    SDValue AHi = DAG.getNode(X86ISD::UNPCKH, dl, VT, Amt, Z);
+    SDValue RLo = DAG.getNode(X86ISD::UNPCKL, dl, VT, R, R);
+    SDValue RHi = DAG.getNode(X86ISD::UNPCKH, dl, VT, R, R);
+    ALo = DAG.getBitcast(ExtVT, ALo);
+    AHi = DAG.getBitcast(ExtVT, AHi);
+    RLo = DAG.getBitcast(ExtVT, RLo);
+    RHi = DAG.getBitcast(ExtVT, RHi);
+    SDValue Lo = DAG.getNode(Op.getOpcode(), dl, ExtVT, RLo, ALo);
+    SDValue Hi = DAG.getNode(Op.getOpcode(), dl, ExtVT, RHi, AHi);
+    Lo = DAG.getNode(ISD::SRL, dl, ExtVT, Lo, DAG.getConstant(16, dl, ExtVT));
+    Hi = DAG.getNode(ISD::SRL, dl, ExtVT, Hi, DAG.getConstant(16, dl, ExtVT));
+    return DAG.getNode(X86ISD::PACKUS, dl, VT, Lo, Hi);
+  }
+
+  if (VT == MVT::v8i16) {
+    unsigned ShiftOpcode = Op->getOpcode();
+
+    auto SignBitSelect = [&](SDValue Sel, SDValue V0, SDValue V1) {
+      // On SSE41 targets we make use of the fact that VSELECT lowers
+      // to PBLENDVB which selects bytes based just on the sign bit.
+      if (Subtarget->hasSSE41()) {
+        MVT ExtVT = MVT::getVectorVT(MVT::i8, VT.getVectorNumElements() * 2);
+        V0 = DAG.getBitcast(ExtVT, V0);
+        V1 = DAG.getBitcast(ExtVT, V1);
+        Sel = DAG.getBitcast(ExtVT, Sel);
+        return DAG.getBitcast(
+            VT, DAG.getNode(ISD::VSELECT, dl, ExtVT, Sel, V0, V1));
+      }
+      // On pre-SSE41 targets we splat the sign bit - a negative value will
+      // set all bits of the lanes to true and VSELECT uses that in
+      // its OR(AND(V0,C),AND(V1,~C)) lowering.
+      SDValue C =
+          DAG.getNode(ISD::SRA, dl, VT, Sel, DAG.getConstant(15, dl, VT));
+      return DAG.getNode(ISD::VSELECT, dl, VT, C, V0, V1);
+    };
+
+    // Turn 'a' into a mask suitable for VSELECT: a = a << 12;
+    if (Subtarget->hasSSE41()) {
+      // On SSE41 targets we need to replicate the shift mask in both
+      // bytes for PBLENDVB.
+      Amt = DAG.getNode(
+          ISD::OR, dl, VT,
+          DAG.getNode(ISD::SHL, dl, VT, Amt, DAG.getConstant(4, dl, VT)),
+          DAG.getNode(ISD::SHL, dl, VT, Amt, DAG.getConstant(12, dl, VT)));
+    } else {
+      Amt = DAG.getNode(ISD::SHL, dl, VT, Amt, DAG.getConstant(12, dl, VT));
     }
 
+    // r = VSELECT(r, shift(r, 8), a);
+    SDValue M = DAG.getNode(ShiftOpcode, dl, VT, R, DAG.getConstant(8, dl, VT));
+    R = SignBitSelect(Amt, M, R);
+
+    // a += a
+    Amt = DAG.getNode(ISD::ADD, dl, VT, Amt, Amt);
+
+    // r = VSELECT(r, shift(r, 4), a);
+    M = DAG.getNode(ShiftOpcode, dl, VT, R, DAG.getConstant(4, dl, VT));
+    R = SignBitSelect(Amt, M, R);
+
+    // a += a
+    Amt = DAG.getNode(ISD::ADD, dl, VT, Amt, Amt);
+
+    // r = VSELECT(r, shift(r, 2), a);
+    M = DAG.getNode(ShiftOpcode, dl, VT, R, DAG.getConstant(2, dl, VT));
+    R = SignBitSelect(Amt, M, R);
+
+    // a += a
+    Amt = DAG.getNode(ISD::ADD, dl, VT, Amt, Amt);
+
+    // return VSELECT(r, shift(r, 1), a);
+    M = DAG.getNode(ShiftOpcode, dl, VT, R, DAG.getConstant(1, dl, VT));
+    R = SignBitSelect(Amt, M, R);
+    return R;
+  }
+
   // Decompose 256-bit shifts into smaller 128-bit shifts.
   if (VT.is256BitVector()) {
     unsigned NumElems = VT.getVectorNumElements();
@@ -16285,12 +17249,9 @@ static SDValue LowerShift(SDValue Op, const X86Subtarget* Subtarget,
     SDValue Amt1, Amt2;
     if (Amt.getOpcode() == ISD::BUILD_VECTOR) {
       // Constant shift amount
-      SmallVector<SDValue, 4> Amt1Csts;
-      SmallVector<SDValue, 4> Amt2Csts;
-      for (unsigned i = 0; i != NumElems/2; ++i)
-        Amt1Csts.push_back(Amt->getOperand(i));
-      for (unsigned i = NumElems/2; i != NumElems; ++i)
-        Amt2Csts.push_back(Amt->getOperand(i));
+      SmallVector<SDValue, 8> Ops(Amt->op_begin(), Amt->op_begin() + NumElems);
+      ArrayRef<SDValue> Amt1Csts = makeArrayRef(Ops).slice(0, NumElems / 2);
+      ArrayRef<SDValue> Amt2Csts = makeArrayRef(Ops).slice(NumElems / 2);
 
       Amt1 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT, Amt1Csts);
       Amt2 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT, Amt2Csts);
@@ -16372,7 +17333,7 @@ static SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) {
 
     SDValue SetCC =
       DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
-                  DAG.getConstant(X86::COND_O, MVT::i32),
+                  DAG.getConstant(X86::COND_O, DL, MVT::i32),
                   SDValue(Sum.getNode(), 2));
 
     return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
@@ -16385,74 +17346,12 @@ static SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) {
 
   SDValue SetCC =
     DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1),
-                DAG.getConstant(Cond, MVT::i32),
+                DAG.getConstant(Cond, DL, MVT::i32),
                 SDValue(Sum.getNode(), 1));
 
   return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
 }
 
-// Sign extension of the low part of vector elements. This may be used either
-// when sign extend instructions are not available or if the vector element
-// sizes already match the sign-extended size. If the vector elements are in
-// their pre-extended size and sign extend instructions are available, that will
-// be handled by LowerSIGN_EXTEND.
-SDValue X86TargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
-                                                  SelectionDAG &DAG) const {
-  SDLoc dl(Op);
-  EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
-  MVT VT = Op.getSimpleValueType();
-
-  if (!Subtarget->hasSSE2() || !VT.isVector())
-    return SDValue();
-
-  unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
-                      ExtraVT.getScalarType().getSizeInBits();
-
-  switch (VT.SimpleTy) {
-    default: return SDValue();
-    case MVT::v8i32:
-    case MVT::v16i16:
-      if (!Subtarget->hasFp256())
-        return SDValue();
-      if (!Subtarget->hasInt256()) {
-        // needs to be split
-        unsigned NumElems = VT.getVectorNumElements();
-
-        // Extract the LHS vectors
-        SDValue LHS = Op.getOperand(0);
-        SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
-        SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
-
-        MVT EltVT = VT.getVectorElementType();
-        EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
-
-        EVT ExtraEltVT = ExtraVT.getVectorElementType();
-        unsigned ExtraNumElems = ExtraVT.getVectorNumElements();
-        ExtraVT = EVT::getVectorVT(*DAG.getContext(), ExtraEltVT,
-                                   ExtraNumElems/2);
-        SDValue Extra = DAG.getValueType(ExtraVT);
-
-        LHS1 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, Extra);
-        LHS2 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, Extra);
-
-        return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, LHS1, LHS2);
-      }
-      // fall through
-    case MVT::v4i32:
-    case MVT::v8i16: {
-      SDValue Op0 = Op.getOperand(0);
-
-      // This is a sign extension of some low part of vector elements without
-      // changing the size of the vector elements themselves:
-      // Shift-Left + Shift-Right-Algebraic.
-      SDValue Shl = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, VT, Op0,
-                                               BitsDiff, DAG);
-      return getTargetVShiftByConstNode(X86ISD::VSRAI, dl, VT, Shl, BitsDiff,
-                                        DAG);
-    }
-  }
-}
-
 /// Returns true if the operand type is exactly twice the native width, and
 /// the corresponding cmpxchg8b or cmpxchg16b instruction is available.
 /// Used to know whether to use cmpxchg8/16b when expanding atomic operations
@@ -16479,14 +17378,17 @@ bool X86TargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
   return needsCmpXchgNb(PTy->getElementType());
 }
 
-bool X86TargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
+TargetLoweringBase::AtomicRMWExpansionKind
+X86TargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
   unsigned NativeWidth = Subtarget->is64Bit() ? 64 : 32;
   const Type *MemType = AI->getType();
 
   // If the operand is too big, we must see if cmpxchg8/16b is available
   // and default to library calls otherwise.
-  if (MemType->getPrimitiveSizeInBits() > NativeWidth)
-    return needsCmpXchgNb(MemType);
+  if (MemType->getPrimitiveSizeInBits() > NativeWidth) {
+    return needsCmpXchgNb(MemType) ? AtomicRMWExpansionKind::CmpXChg
+                                   : AtomicRMWExpansionKind::None;
+  }
 
   AtomicRMWInst::BinOp Op = AI->getOperation();
   switch (Op) {
@@ -16496,13 +17398,14 @@ bool X86TargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
   case AtomicRMWInst::Add:
   case AtomicRMWInst::Sub:
     // It's better to use xadd, xsub or xchg for these in all cases.
-    return false;
+    return AtomicRMWExpansionKind::None;
   case AtomicRMWInst::Or:
   case AtomicRMWInst::And:
   case AtomicRMWInst::Xor:
     // If the atomicrmw's result isn't actually used, we can just add a "lock"
     // prefix to a normal instruction for these operations.
-    return !AI->use_empty();
+    return !AI->use_empty() ? AtomicRMWExpansionKind::CmpXChg
+                            : AtomicRMWExpansionKind::None;
   case AtomicRMWInst::Nand:
   case AtomicRMWInst::Max:
   case AtomicRMWInst::Min:
@@ -16510,7 +17413,7 @@ bool X86TargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
   case AtomicRMWInst::UMin:
     // These always require a non-trivial set of data operations on x86. We must
     // use a cmpxchg loop.
-    return true;
+    return AtomicRMWExpansionKind::CmpXChg;
   }
 }
 
@@ -16555,21 +17458,21 @@ X86TargetLowering::lowerIdempotentRMWIntoFencedLoad(AtomicRMWInst *AI) const {
   // otherwise, we might be able to be more agressive on relaxed idempotent
   // rmw. In practice, they do not look useful, so we don't try to be
   // especially clever.
-  if (SynchScope == SingleThread) {
+  if (SynchScope == SingleThread)
     // FIXME: we could just insert an X86ISD::MEMBARRIER here, except we are at
     // the IR level, so we must wrap it in an intrinsic.
     return nullptr;
-  } else if (hasMFENCE(*Subtarget)) {
-    Function *MFence = llvm::Intrinsic::getDeclaration(M,
-            Intrinsic::x86_sse2_mfence);
-    Builder.CreateCall(MFence);
-  } else {
+
+  if (!hasMFENCE(*Subtarget))
     // FIXME: it might make sense to use a locked operation here but on a
     // different cache-line to prevent cache-line bouncing. In practice it
     // is probably a small win, and x86 processors without mfence are rare
     // enough that we do not bother.
     return nullptr;
-  }
+
+  Function *MFence =
+      llvm::Intrinsic::getDeclaration(M, Intrinsic::x86_sse2_mfence);
+  Builder.CreateCall(MFence, {});
 
   // Finally we can emit the atomic load.
   LoadInst *Loaded = Builder.CreateAlignedLoad(Ptr,
@@ -16595,13 +17498,13 @@ static SDValue LowerATOMIC_FENCE(SDValue Op, const X86Subtarget *Subtarget,
       return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
 
     SDValue Chain = Op.getOperand(0);
-    SDValue Zero = DAG.getConstant(0, MVT::i32);
+    SDValue Zero = DAG.getConstant(0, dl, MVT::i32);
     SDValue Ops[] = {
-      DAG.getRegister(X86::ESP, MVT::i32), // Base
-      DAG.getTargetConstant(1, MVT::i8),   // Scale
-      DAG.getRegister(0, MVT::i32),        // Index
-      DAG.getTargetConstant(0, MVT::i32),  // Disp
-      DAG.getRegister(0, MVT::i32),        // Segment.
+      DAG.getRegister(X86::ESP, MVT::i32),     // Base
+      DAG.getTargetConstant(1, dl, MVT::i8),   // Scale
+      DAG.getRegister(0, MVT::i32),            // Index
+      DAG.getTargetConstant(0, dl, MVT::i32),  // Disp
+      DAG.getRegister(0, MVT::i32),            // Segment.
       Zero,
       Chain
     };
@@ -16634,7 +17537,7 @@ static SDValue LowerCMP_SWAP(SDValue Op, const X86Subtarget *Subtarget,
   SDValue Ops[] = { cpIn.getValue(0),
                     Op.getOperand(1),
                     Op.getOperand(3),
-                    DAG.getTargetConstant(size, MVT::i8),
+                    DAG.getTargetConstant(size, DL, MVT::i8),
                     cpIn.getValue(1) };
   SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
   MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
@@ -16646,7 +17549,8 @@ static SDValue LowerCMP_SWAP(SDValue Op, const X86Subtarget *Subtarget,
   SDValue EFLAGS = DAG.getCopyFromReg(cpOut.getValue(1), DL, X86::EFLAGS,
                                       MVT::i32, cpOut.getValue(2));
   SDValue Success = DAG.getNode(X86ISD::SETCC, DL, Op->getValueType(1),
-                                DAG.getConstant(X86::COND_E, MVT::i8), EFLAGS);
+                                DAG.getConstant(X86::COND_E, DL, MVT::i8),
+                                EFLAGS);
 
   DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), cpOut);
   DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
@@ -16675,16 +17579,16 @@ static SDValue LowerBITCAST(SDValue Op, const X86Subtarget *Subtarget,
     SmallVector<SDValue, 16> Elts;
     for (unsigned i = 0, e = NumElts; i != e; ++i)
       Elts.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, SVT, InVec,
-                                 DAG.getIntPtrConstant(i)));
+                                 DAG.getIntPtrConstant(i, dl)));
 
     // Explicitly mark the extra elements as Undef.
     Elts.append(NumElts, DAG.getUNDEF(SVT));
 
     EVT NewVT = EVT::getVectorVT(*DAG.getContext(), SVT, NumElts * 2);
     SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT, Elts);
-    SDValue ToV2F64 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, BV);
+    SDValue ToV2F64 = DAG.getBitcast(MVT::v2f64, BV);
     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, ToV2F64,
-                       DAG.getIntPtrConstant(0));
+                       DAG.getIntPtrConstant(0, dl));
   }
 
   assert(Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
@@ -16704,137 +17608,241 @@ static SDValue LowerBITCAST(SDValue Op, const X86Subtarget *Subtarget,
   return SDValue();
 }
 
-static SDValue LowerCTPOP(SDValue Op, const X86Subtarget *Subtarget,
-                          SelectionDAG &DAG) {
-  SDNode *Node = Op.getNode();
-  SDLoc dl(Node);
+/// Compute the horizontal sum of bytes in V for the elements of VT.
+///
+/// Requires V to be a byte vector and VT to be an integer vector type with
+/// wider elements than V's type. The width of the elements of VT determines
+/// how many bytes of V are summed horizontally to produce each element of the
+/// result.
+static SDValue LowerHorizontalByteSum(SDValue V, MVT VT,
+                                      const X86Subtarget *Subtarget,
+                                      SelectionDAG &DAG) {
+  SDLoc DL(V);
+  MVT ByteVecVT = V.getSimpleValueType();
+  MVT EltVT = VT.getVectorElementType();
+  int NumElts = VT.getVectorNumElements();
+  assert(ByteVecVT.getVectorElementType() == MVT::i8 &&
+         "Expected value to have byte element type.");
+  assert(EltVT != MVT::i8 &&
+         "Horizontal byte sum only makes sense for wider elements!");
+  unsigned VecSize = VT.getSizeInBits();
+  assert(ByteVecVT.getSizeInBits() == VecSize && "Cannot change vector size!");
+
+  // PSADBW instruction horizontally add all bytes and leave the result in i64
+  // chunks, thus directly computes the pop count for v2i64 and v4i64.
+  if (EltVT == MVT::i64) {
+    SDValue Zeros = getZeroVector(ByteVecVT, Subtarget, DAG, DL);
+    V = DAG.getNode(X86ISD::PSADBW, DL, ByteVecVT, V, Zeros);
+    return DAG.getBitcast(VT, V);
+  }
+
+  if (EltVT == MVT::i32) {
+    // We unpack the low half and high half into i32s interleaved with zeros so
+    // that we can use PSADBW to horizontally sum them. The most useful part of
+    // this is that it lines up the results of two PSADBW instructions to be
+    // two v2i64 vectors which concatenated are the 4 population counts. We can
+    // then use PACKUSWB to shrink and concatenate them into a v4i32 again.
+    SDValue Zeros = getZeroVector(VT, Subtarget, DAG, DL);
+    SDValue Low = DAG.getNode(X86ISD::UNPCKL, DL, VT, V, Zeros);
+    SDValue High = DAG.getNode(X86ISD::UNPCKH, DL, VT, V, Zeros);
+
+    // Do the horizontal sums into two v2i64s.
+    Zeros = getZeroVector(ByteVecVT, Subtarget, DAG, DL);
+    Low = DAG.getNode(X86ISD::PSADBW, DL, ByteVecVT,
+                      DAG.getBitcast(ByteVecVT, Low), Zeros);
+    High = DAG.getNode(X86ISD::PSADBW, DL, ByteVecVT,
+                       DAG.getBitcast(ByteVecVT, High), Zeros);
+
+    // Merge them together.
+    MVT ShortVecVT = MVT::getVectorVT(MVT::i16, VecSize / 16);
+    V = DAG.getNode(X86ISD::PACKUS, DL, ByteVecVT,
+                    DAG.getBitcast(ShortVecVT, Low),
+                    DAG.getBitcast(ShortVecVT, High));
+
+    return DAG.getBitcast(VT, V);
+  }
+
+  // The only element type left is i16.
+  assert(EltVT == MVT::i16 && "Unknown how to handle type");
+
+  // To obtain pop count for each i16 element starting from the pop count for
+  // i8 elements, shift the i16s left by 8, sum as i8s, and then shift as i16s
+  // right by 8. It is important to shift as i16s as i8 vector shift isn't
+  // directly supported.
+  SmallVector<SDValue, 16> Shifters(NumElts, DAG.getConstant(8, DL, EltVT));
+  SDValue Shifter = DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Shifters);
+  SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, DAG.getBitcast(VT, V), Shifter);
+  V = DAG.getNode(ISD::ADD, DL, ByteVecVT, DAG.getBitcast(ByteVecVT, Shl),
+                  DAG.getBitcast(ByteVecVT, V));
+  return DAG.getNode(ISD::SRL, DL, VT, DAG.getBitcast(VT, V), Shifter);
+}
+
+static SDValue LowerVectorCTPOPInRegLUT(SDValue Op, SDLoc DL,
+                                        const X86Subtarget *Subtarget,
+                                        SelectionDAG &DAG) {
+  MVT VT = Op.getSimpleValueType();
+  MVT EltVT = VT.getVectorElementType();
+  unsigned VecSize = VT.getSizeInBits();
 
-  Op = Op.getOperand(0);
-  EVT VT = Op.getValueType();
-  assert((VT.is128BitVector() || VT.is256BitVector()) &&
-         "CTPOP lowering only implemented for 128/256-bit wide vector types");
+  // Implement a lookup table in register by using an algorithm based on:
+  // http://wm.ite.pl/articles/sse-popcount.html
+  //
+  // The general idea is that every lower byte nibble in the input vector is an
+  // index into a in-register pre-computed pop count table. We then split up the
+  // input vector in two new ones: (1) a vector with only the shifted-right
+  // higher nibbles for each byte and (2) a vector with the lower nibbles (and
+  // masked out higher ones) for each byte. PSHUB is used separately with both
+  // to index the in-register table. Next, both are added and the result is a
+  // i8 vector where each element contains the pop count for input byte.
+  //
+  // To obtain the pop count for elements != i8, we follow up with the same
+  // approach and use additional tricks as described below.
+  //
+  const int LUT[16] = {/* 0 */ 0, /* 1 */ 1, /* 2 */ 1, /* 3 */ 2,
+                       /* 4 */ 1, /* 5 */ 2, /* 6 */ 2, /* 7 */ 3,
+                       /* 8 */ 1, /* 9 */ 2, /* a */ 2, /* b */ 3,
+                       /* c */ 2, /* d */ 3, /* e */ 3, /* f */ 4};
+
+  int NumByteElts = VecSize / 8;
+  MVT ByteVecVT = MVT::getVectorVT(MVT::i8, NumByteElts);
+  SDValue In = DAG.getBitcast(ByteVecVT, Op);
+  SmallVector<SDValue, 16> LUTVec;
+  for (int i = 0; i < NumByteElts; ++i)
+    LUTVec.push_back(DAG.getConstant(LUT[i % 16], DL, MVT::i8));
+  SDValue InRegLUT = DAG.getNode(ISD::BUILD_VECTOR, DL, ByteVecVT, LUTVec);
+  SmallVector<SDValue, 16> Mask0F(NumByteElts,
+                                  DAG.getConstant(0x0F, DL, MVT::i8));
+  SDValue M0F = DAG.getNode(ISD::BUILD_VECTOR, DL, ByteVecVT, Mask0F);
+
+  // High nibbles
+  SmallVector<SDValue, 16> Four(NumByteElts, DAG.getConstant(4, DL, MVT::i8));
+  SDValue FourV = DAG.getNode(ISD::BUILD_VECTOR, DL, ByteVecVT, Four);
+  SDValue HighNibbles = DAG.getNode(ISD::SRL, DL, ByteVecVT, In, FourV);
+
+  // Low nibbles
+  SDValue LowNibbles = DAG.getNode(ISD::AND, DL, ByteVecVT, In, M0F);
+
+  // The input vector is used as the shuffle mask that index elements into the
+  // LUT. After counting low and high nibbles, add the vector to obtain the
+  // final pop count per i8 element.
+  SDValue HighPopCnt =
+      DAG.getNode(X86ISD::PSHUFB, DL, ByteVecVT, InRegLUT, HighNibbles);
+  SDValue LowPopCnt =
+      DAG.getNode(X86ISD::PSHUFB, DL, ByteVecVT, InRegLUT, LowNibbles);
+  SDValue PopCnt = DAG.getNode(ISD::ADD, DL, ByteVecVT, HighPopCnt, LowPopCnt);
+
+  if (EltVT == MVT::i8)
+    return PopCnt;
+
+  return LowerHorizontalByteSum(PopCnt, VT, Subtarget, DAG);
+}
+
+static SDValue LowerVectorCTPOPBitmath(SDValue Op, SDLoc DL,
+                                       const X86Subtarget *Subtarget,
+                                       SelectionDAG &DAG) {
+  MVT VT = Op.getSimpleValueType();
+  assert(VT.is128BitVector() &&
+         "Only 128-bit vector bitmath lowering supported.");
 
-  unsigned NumElts = VT.getVectorNumElements();
-  EVT EltVT = VT.getVectorElementType();
-  unsigned Len = EltVT.getSizeInBits();
+  int VecSize = VT.getSizeInBits();
+  MVT EltVT = VT.getVectorElementType();
+  int Len = EltVT.getSizeInBits();
 
   // This is the vectorized version of the "best" algorithm from
   // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
   // with a minor tweak to use a series of adds + shifts instead of vector
-  // multiplications. Implemented for the v2i64, v4i64, v4i32, v8i32 types:
-  //
-  //  v2i64, v4i64, v4i32 => Only profitable w/ popcnt disabled
-  //  v8i32 => Always profitable
-  //
-  // FIXME: There a couple of possible improvements:
-  //
-  // 1) Support for i8 and i16 vectors (needs measurements if popcnt enabled).
-  // 2) Use strategies from http://wm.ite.pl/articles/sse-popcount.html
-  //
-  assert(EltVT.isInteger() && (Len == 32 || Len == 64) && Len % 8 == 0 &&
-         "CTPOP not implemented for this vector element type.");
+  // multiplications. Implemented for all integer vector types. We only use
+  // this when we don't have SSSE3 which allows a LUT-based lowering that is
+  // much faster, even faster than using native popcnt instructions.
+
+  auto GetShift = [&](unsigned OpCode, SDValue V, int Shifter) {
+    MVT VT = V.getSimpleValueType();
+    SmallVector<SDValue, 32> Shifters(
+        VT.getVectorNumElements(),
+        DAG.getConstant(Shifter, DL, VT.getVectorElementType()));
+    return DAG.getNode(OpCode, DL, VT, V,
+                       DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Shifters));
+  };
+  auto GetMask = [&](SDValue V, APInt Mask) {
+    MVT VT = V.getSimpleValueType();
+    SmallVector<SDValue, 32> Masks(
+        VT.getVectorNumElements(),
+        DAG.getConstant(Mask, DL, VT.getVectorElementType()));
+    return DAG.getNode(ISD::AND, DL, VT, V,
+                       DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Masks));
+  };
 
-  // X86 canonicalize ANDs to vXi64, generate the appropriate bitcasts to avoid
-  // extra legalization.
-  bool NeedsBitcast = EltVT == MVT::i32;
-  MVT BitcastVT = VT.is256BitVector() ? MVT::v4i64 : MVT::v2i64;
+  // We don't want to incur the implicit masks required to SRL vNi8 vectors on
+  // x86, so set the SRL type to have elements at least i16 wide. This is
+  // correct because all of our SRLs are followed immediately by a mask anyways
+  // that handles any bits that sneak into the high bits of the byte elements.
+  MVT SrlVT = Len > 8 ? VT : MVT::getVectorVT(MVT::i16, VecSize / 16);
 
-  SDValue Cst55 = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), EltVT);
-  SDValue Cst33 = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), EltVT);
-  SDValue Cst0F = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), EltVT);
+  SDValue V = Op;
 
   // v = v - ((v >> 1) & 0x55555555...)
-  SmallVector<SDValue, 8> Ones(NumElts, DAG.getConstant(1, EltVT));
-  SDValue OnesV = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ones);
-  SDValue Srl = DAG.getNode(ISD::SRL, dl, VT, Op, OnesV);
-  if (NeedsBitcast)
-    Srl = DAG.getNode(ISD::BITCAST, dl, BitcastVT, Srl);
-
-  SmallVector<SDValue, 8> Mask55(NumElts, Cst55);
-  SDValue M55 = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Mask55);
-  if (NeedsBitcast)
-    M55 = DAG.getNode(ISD::BITCAST, dl, BitcastVT, M55);
-
-  SDValue And = DAG.getNode(ISD::AND, dl, Srl.getValueType(), Srl, M55);
-  if (VT != And.getValueType())
-    And = DAG.getNode(ISD::BITCAST, dl, VT, And);
-  SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Op, And);
+  SDValue Srl =
+      DAG.getBitcast(VT, GetShift(ISD::SRL, DAG.getBitcast(SrlVT, V), 1));
+  SDValue And = GetMask(Srl, APInt::getSplat(Len, APInt(8, 0x55)));
+  V = DAG.getNode(ISD::SUB, DL, VT, V, And);
 
   // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
-  SmallVector<SDValue, 8> Mask33(NumElts, Cst33);
-  SDValue M33 = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Mask33);
-  SmallVector<SDValue, 8> Twos(NumElts, DAG.getConstant(2, EltVT));
-  SDValue TwosV = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Twos);
+  SDValue AndLHS = GetMask(V, APInt::getSplat(Len, APInt(8, 0x33)));
+  Srl = DAG.getBitcast(VT, GetShift(ISD::SRL, DAG.getBitcast(SrlVT, V), 2));
+  SDValue AndRHS = GetMask(Srl, APInt::getSplat(Len, APInt(8, 0x33)));
+  V = DAG.getNode(ISD::ADD, DL, VT, AndLHS, AndRHS);
 
-  Srl = DAG.getNode(ISD::SRL, dl, VT, Sub, TwosV);
-  if (NeedsBitcast) {
-    Srl = DAG.getNode(ISD::BITCAST, dl, BitcastVT, Srl);
-    M33 = DAG.getNode(ISD::BITCAST, dl, BitcastVT, M33);
-    Sub = DAG.getNode(ISD::BITCAST, dl, BitcastVT, Sub);
-  }
+  // v = (v + (v >> 4)) & 0x0F0F0F0F...
+  Srl = DAG.getBitcast(VT, GetShift(ISD::SRL, DAG.getBitcast(SrlVT, V), 4));
+  SDValue Add = DAG.getNode(ISD::ADD, DL, VT, V, Srl);
+  V = GetMask(Add, APInt::getSplat(Len, APInt(8, 0x0F)));
 
-  SDValue AndRHS = DAG.getNode(ISD::AND, dl, M33.getValueType(), Srl, M33);
-  SDValue AndLHS = DAG.getNode(ISD::AND, dl, M33.getValueType(), Sub, M33);
-  if (VT != AndRHS.getValueType()) {
-    AndRHS = DAG.getNode(ISD::BITCAST, dl, VT, AndRHS);
-    AndLHS = DAG.getNode(ISD::BITCAST, dl, VT, AndLHS);
-  }
-  SDValue Add = DAG.getNode(ISD::ADD, dl, VT, AndLHS, AndRHS);
+  // At this point, V contains the byte-wise population count, and we are
+  // merely doing a horizontal sum if necessary to get the wider element
+  // counts.
+  if (EltVT == MVT::i8)
+    return V;
 
-  // v = (v + (v >> 4)) & 0x0F0F0F0F...
-  SmallVector<SDValue, 8> Fours(NumElts, DAG.getConstant(4, EltVT));
-  SDValue FoursV = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Fours);
-  Srl = DAG.getNode(ISD::SRL, dl, VT, Add, FoursV);
-  Add = DAG.getNode(ISD::ADD, dl, VT, Add, Srl);
-
-  SmallVector<SDValue, 8> Mask0F(NumElts, Cst0F);
-  SDValue M0F = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Mask0F);
-  if (NeedsBitcast) {
-    Add = DAG.getNode(ISD::BITCAST, dl, BitcastVT, Add);
-    M0F = DAG.getNode(ISD::BITCAST, dl, BitcastVT, M0F);
-  }
-  And = DAG.getNode(ISD::AND, dl, M0F.getValueType(), Add, M0F);
-  if (VT != And.getValueType())
-    And = DAG.getNode(ISD::BITCAST, dl, VT, And);
-
-  // The algorithm mentioned above uses:
-  //    v = (v * 0x01010101...) >> (Len - 8)
-  //
-  // Change it to use vector adds + vector shifts which yield faster results on
-  // Haswell than using vector integer multiplication.
-  //
-  // For i32 elements:
-  //    v = v + (v >> 8)
-  //    v = v + (v >> 16)
-  //
-  // For i64 elements:
-  //    v = v + (v >> 8)
-  //    v = v + (v >> 16)
-  //    v = v + (v >> 32)
-  //
-  Add = And;
-  SmallVector<SDValue, 8> Csts;
-  for (unsigned i = 8; i <= Len/2; i *= 2) {
-    Csts.assign(NumElts, DAG.getConstant(i, EltVT));
-    SDValue CstsV = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Csts);
-    Srl = DAG.getNode(ISD::SRL, dl, VT, Add, CstsV);
-    Add = DAG.getNode(ISD::ADD, dl, VT, Add, Srl);
-    Csts.clear();
+  return LowerHorizontalByteSum(
+      DAG.getBitcast(MVT::getVectorVT(MVT::i8, VecSize / 8), V), VT, Subtarget,
+      DAG);
+}
+
+static SDValue LowerVectorCTPOP(SDValue Op, const X86Subtarget *Subtarget,
+                                SelectionDAG &DAG) {
+  MVT VT = Op.getSimpleValueType();
+  // FIXME: Need to add AVX-512 support here!
+  assert((VT.is256BitVector() || VT.is128BitVector()) &&
+         "Unknown CTPOP type to handle");
+  SDLoc DL(Op.getNode());
+  SDValue Op0 = Op.getOperand(0);
+
+  if (!Subtarget->hasSSSE3()) {
+    // We can't use the fast LUT approach, so fall back on vectorized bitmath.
+    assert(VT.is128BitVector() && "Only 128-bit vectors supported in SSE!");
+    return LowerVectorCTPOPBitmath(Op0, DL, Subtarget, DAG);
   }
 
-  // The result is on the least significant 6-bits on i32 and 7-bits on i64.
-  SDValue Cst3F = DAG.getConstant(APInt(Len, Len == 32 ? 0x3F : 0x7F), EltVT);
-  SmallVector<SDValue, 8> Cst3FV(NumElts, Cst3F);
-  SDValue M3F = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Cst3FV);
-  if (NeedsBitcast) {
-    Add = DAG.getNode(ISD::BITCAST, dl, BitcastVT, Add);
-    M3F = DAG.getNode(ISD::BITCAST, dl, BitcastVT, M3F);
+  if (VT.is256BitVector() && !Subtarget->hasInt256()) {
+    unsigned NumElems = VT.getVectorNumElements();
+
+    // Extract each 128-bit vector, compute pop count and concat the result.
+    SDValue LHS = Extract128BitVector(Op0, 0, DAG, DL);
+    SDValue RHS = Extract128BitVector(Op0, NumElems/2, DAG, DL);
+
+    return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT,
+                       LowerVectorCTPOPInRegLUT(LHS, DL, Subtarget, DAG),
+                       LowerVectorCTPOPInRegLUT(RHS, DL, Subtarget, DAG));
   }
-  And = DAG.getNode(ISD::AND, dl, M3F.getValueType(), Add, M3F);
-  if (VT != And.getValueType())
-    And = DAG.getNode(ISD::BITCAST, dl, VT, And);
 
-  return And;
+  return LowerVectorCTPOPInRegLUT(Op0, DL, Subtarget, DAG);
+}
+
+static SDValue LowerCTPOP(SDValue Op, const X86Subtarget *Subtarget,
+                          SelectionDAG &DAG) {
+  assert(Op.getValueType().isVector() &&
+         "We only do custom lowering for vector population count.");
+  return LowerVectorCTPOP(Op, Subtarget, DAG);
 }
 
 static SDValue LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) {
@@ -16842,7 +17850,7 @@ static SDValue LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) {
   SDLoc dl(Node);
   EVT T = Node->getValueType(0);
   SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
-                              DAG.getConstant(0, T), Node->getOperand(2));
+                              DAG.getConstant(0, dl, T), Node->getOperand(2));
   return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
                        cast<AtomicSDNode>(Node)->getMemoryVT(),
                        Node->getOperand(0),
@@ -16948,19 +17956,110 @@ static SDValue LowerFSINCOS(SDValue Op, const X86Subtarget *Subtarget,
 
   // Returned in bits 0:31 and 32:64 xmm0.
   SDValue SinVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ArgVT,
-                               CallResult.first, DAG.getIntPtrConstant(0));
+                               CallResult.first, DAG.getIntPtrConstant(0, dl));
   SDValue CosVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ArgVT,
-                               CallResult.first, DAG.getIntPtrConstant(1));
+                               CallResult.first, DAG.getIntPtrConstant(1, dl));
   SDVTList Tys = DAG.getVTList(ArgVT, ArgVT);
   return DAG.getNode(ISD::MERGE_VALUES, dl, Tys, SinVal, CosVal);
 }
 
+static SDValue LowerMSCATTER(SDValue Op, const X86Subtarget *Subtarget,
+                             SelectionDAG &DAG) {
+  assert(Subtarget->hasAVX512() &&
+         "MGATHER/MSCATTER are supported on AVX-512 arch only");
+
+  MaskedScatterSDNode *N = cast<MaskedScatterSDNode>(Op.getNode());
+  EVT VT = N->getValue().getValueType();
+  assert(VT.getScalarSizeInBits() >= 32 && "Unsupported scatter op");
+  SDLoc dl(Op);
+
+  // X86 scatter kills mask register, so its type should be added to
+  // the list of return values
+  if (N->getNumValues() == 1) {
+    SDValue Index = N->getIndex();
+    if (!Subtarget->hasVLX() && !VT.is512BitVector() &&
+        !Index.getValueType().is512BitVector())
+      Index = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i64, Index);
+
+    SDVTList VTs = DAG.getVTList(N->getMask().getValueType(), MVT::Other);
+    SDValue Ops[] = { N->getOperand(0), N->getOperand(1),  N->getOperand(2),
+                      N->getOperand(3), Index };
+
+    SDValue NewScatter = DAG.getMaskedScatter(VTs, VT, dl, Ops, N->getMemOperand());
+    DAG.ReplaceAllUsesWith(Op, SDValue(NewScatter.getNode(), 1));
+    return SDValue(NewScatter.getNode(), 0);
+  }
+  return Op;
+}
+
+static SDValue LowerMGATHER(SDValue Op, const X86Subtarget *Subtarget,
+                            SelectionDAG &DAG) {
+  assert(Subtarget->hasAVX512() &&
+         "MGATHER/MSCATTER are supported on AVX-512 arch only");
+
+  MaskedGatherSDNode *N = cast<MaskedGatherSDNode>(Op.getNode());
+  EVT VT = Op.getValueType();
+  assert(VT.getScalarSizeInBits() >= 32 && "Unsupported gather op");
+  SDLoc dl(Op);
+
+  SDValue Index = N->getIndex();
+  if (!Subtarget->hasVLX() && !VT.is512BitVector() &&
+      !Index.getValueType().is512BitVector()) {
+    Index = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i64, Index);
+    SDValue Ops[] = { N->getOperand(0), N->getOperand(1),  N->getOperand(2),
+                      N->getOperand(3), Index };
+    DAG.UpdateNodeOperands(N, Ops);
+  }
+  return Op;
+}
+
+SDValue X86TargetLowering::LowerGC_TRANSITION_START(SDValue Op,
+                                                    SelectionDAG &DAG) const {
+  // TODO: Eventually, the lowering of these nodes should be informed by or
+  // deferred to the GC strategy for the function in which they appear. For
+  // now, however, they must be lowered to something. Since they are logically
+  // no-ops in the case of a null GC strategy (or a GC strategy which does not
+  // require special handling for these nodes), lower them as literal NOOPs for
+  // the time being.
+  SmallVector<SDValue, 2> Ops;
+
+  Ops.push_back(Op.getOperand(0));
+  if (Op->getGluedNode())
+    Ops.push_back(Op->getOperand(Op->getNumOperands() - 1));
+
+  SDLoc OpDL(Op);
+  SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
+  SDValue NOOP(DAG.getMachineNode(X86::NOOP, SDLoc(Op), VTs, Ops), 0);
+
+  return NOOP;
+}
+
+SDValue X86TargetLowering::LowerGC_TRANSITION_END(SDValue Op,
+                                                  SelectionDAG &DAG) const {
+  // TODO: Eventually, the lowering of these nodes should be informed by or
+  // deferred to the GC strategy for the function in which they appear. For
+  // now, however, they must be lowered to something. Since they are logically
+  // no-ops in the case of a null GC strategy (or a GC strategy which does not
+  // require special handling for these nodes), lower them as literal NOOPs for
+  // the time being.
+  SmallVector<SDValue, 2> Ops;
+
+  Ops.push_back(Op.getOperand(0));
+  if (Op->getGluedNode())
+    Ops.push_back(Op->getOperand(Op->getNumOperands() - 1));
+
+  SDLoc OpDL(Op);
+  SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
+  SDValue NOOP(DAG.getMachineNode(X86::NOOP, SDLoc(Op), VTs, Ops), 0);
+
+  return NOOP;
+}
+
 /// LowerOperation - Provide custom lowering hooks for some operations.
 ///
 SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
   switch (Op.getOpcode()) {
   default: llvm_unreachable("Should not custom lower this!");
-  case ISD::SIGN_EXTEND_INREG:  return LowerSIGN_EXTEND_INREG(Op,DAG);
   case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op, Subtarget, DAG);
   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
     return LowerCMP_SWAP(Op, Subtarget, DAG);
@@ -16968,7 +18067,7 @@ SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
   case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
   case ISD::ATOMIC_STORE:       return LowerATOMIC_STORE(Op,DAG);
   case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
-  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
+  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, Subtarget, DAG);
   case ISD::VECTOR_SHUFFLE:     return lowerVectorShuffle(Op, Subtarget, DAG);
   case ISD::VSELECT:            return LowerVSELECT(Op, DAG);
   case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
@@ -16990,6 +18089,8 @@ SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
   case ISD::ZERO_EXTEND:        return LowerZERO_EXTEND(Op, Subtarget, DAG);
   case ISD::SIGN_EXTEND:        return LowerSIGN_EXTEND(Op, Subtarget, DAG);
   case ISD::ANY_EXTEND:         return LowerANY_EXTEND(Op, Subtarget, DAG);
+  case ISD::SIGN_EXTEND_VECTOR_INREG:
+    return LowerSIGN_EXTEND_VECTOR_INREG(Op, Subtarget, DAG);
   case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
   case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
   case ISD::FP_EXTEND:          return LowerFP_EXTEND(Op, DAG);
@@ -17043,6 +18144,11 @@ SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
   case ISD::ADD:                return LowerADD(Op, DAG);
   case ISD::SUB:                return LowerSUB(Op, DAG);
   case ISD::FSINCOS:            return LowerFSINCOS(Op, Subtarget, DAG);
+  case ISD::MGATHER:            return LowerMGATHER(Op, Subtarget, DAG);
+  case ISD::MSCATTER:           return LowerMSCATTER(Op, Subtarget, DAG);
+  case ISD::GC_TRANSITION_START:
+                                return LowerGC_TRANSITION_START(Op, DAG);
+  case ISD::GC_TRANSITION_END:  return LowerGC_TRANSITION_END(Op, DAG);
   }
 }
 
@@ -17090,6 +18196,11 @@ void X86TargetLowering::ReplaceNodeResults(SDNode *N,
     return;
   }
   case ISD::FP_TO_SINT:
+    // FP_TO_INT*_IN_MEM is not legal for f16 inputs.  Do not convert
+    // (FP_TO_SINT (load f16)) to FP_TO_INT*.
+    if (N->getOperand(0).getValueType() == MVT::f16)
+      break;
+    // fallthrough
   case ISD::FP_TO_UINT: {
     bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
 
@@ -17118,12 +18229,12 @@ void X86TargetLowering::ReplaceNodeResults(SDNode *N,
       return;
     SDValue ZExtIn = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v2i64,
                                  N->getOperand(0));
-    SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
+    SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL), dl,
                                      MVT::f64);
     SDValue VBias = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2f64, Bias, Bias);
     SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64, ZExtIn,
-                             DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, VBias));
-    Or = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or);
+                             DAG.getBitcast(MVT::v2i64, VBias));
+    Or = DAG.getBitcast(MVT::v2f64, Or);
     SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, Or, VBias);
     Results.push_back(DAG.getNode(X86ISD::VFPROUND, dl, MVT::v4f32, Sub));
     return;
@@ -17135,6 +18246,13 @@ void X86TargetLowering::ReplaceNodeResults(SDNode *N,
     Results.push_back(V);
     return;
   }
+  case ISD::FP_EXTEND: {
+    // Right now, only MVT::v2f32 has OperationAction for FP_EXTEND.
+    // No other ValueType for FP_EXTEND should reach this point.
+    assert(N->getValueType(0) == MVT::v2f32 &&
+           "Do not know how to legalize this Node");
+    return;
+  }
   case ISD::INTRINSIC_W_CHAIN: {
     unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
     switch (IntNo) {
@@ -17161,9 +18279,9 @@ void X86TargetLowering::ReplaceNodeResults(SDNode *N,
     EVT HalfT = Regs64bit ? MVT::i64 : MVT::i32;
     SDValue cpInL, cpInH;
     cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
-                        DAG.getConstant(0, HalfT));
+                        DAG.getConstant(0, dl, HalfT));
     cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
-                        DAG.getConstant(1, HalfT));
+                        DAG.getConstant(1, dl, HalfT));
     cpInL = DAG.getCopyToReg(N->getOperand(0), dl,
                              Regs64bit ? X86::RAX : X86::EAX,
                              cpInL, SDValue());
@@ -17172,9 +18290,9 @@ void X86TargetLowering::ReplaceNodeResults(SDNode *N,
                              cpInH, cpInL.getValue(1));
     SDValue swapInL, swapInH;
     swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
-                          DAG.getConstant(0, HalfT));
+                          DAG.getConstant(0, dl, HalfT));
     swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
-                          DAG.getConstant(1, HalfT));
+                          DAG.getConstant(1, dl, HalfT));
     swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl,
                                Regs64bit ? X86::RBX : X86::EBX,
                                swapInL, cpInH.getValue(1));
@@ -17201,7 +18319,7 @@ void X86TargetLowering::ReplaceNodeResults(SDNode *N,
                                         MVT::i32, cpOutH.getValue(2));
     SDValue Success =
         DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
-                    DAG.getConstant(X86::COND_E, MVT::i8), EFLAGS);
+                    DAG.getConstant(X86::COND_E, dl, MVT::i8), EFLAGS);
     Success = DAG.getZExtOrTrunc(Success, dl, N->getValueType(1));
 
     Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, T, OpsF));
@@ -17239,7 +18357,7 @@ void X86TargetLowering::ReplaceNodeResults(SDNode *N,
     EVT WiderVT = EVT::getVectorVT(*DAG.getContext(), SVT, NumElts * 2);
     SDValue Expanded = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
                                    MVT::v2f64, N->getOperand(0));
-    SDValue ToVecInt = DAG.getNode(ISD::BITCAST, dl, WiderVT, Expanded);
+    SDValue ToVecInt = DAG.getBitcast(WiderVT, Expanded);
 
     if (ExperimentalVectorWideningLegalization) {
       // If we are legalizing vectors by widening, we already have the desired
@@ -17251,7 +18369,7 @@ void X86TargetLowering::ReplaceNodeResults(SDNode *N,
     SmallVector<SDValue, 8> Elts;
     for (unsigned i = 0, e = NumElts; i != e; ++i)
       Elts.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, SVT,
-                                   ToVecInt, DAG.getIntPtrConstant(i)));
+                                   ToVecInt, DAG.getIntPtrConstant(i, dl)));
 
     Results.push_back(DAG.getNode(ISD::BUILD_VECTOR, dl, DstVT, Elts));
   }
@@ -17259,8 +18377,8 @@ void X86TargetLowering::ReplaceNodeResults(SDNode *N,
 }
 
 const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
-  switch (Opcode) {
-  default: return nullptr;
+  switch ((X86ISD::NodeType)Opcode) {
+  case X86ISD::FIRST_NUMBER:       break;
   case X86ISD::BSF:                return "X86ISD::BSF";
   case X86ISD::BSR:                return "X86ISD::BSR";
   case X86ISD::SHLD:               return "X86ISD::SHLD";
@@ -17269,7 +18387,6 @@ const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
   case X86ISD::FANDN:              return "X86ISD::FANDN";
   case X86ISD::FOR:                return "X86ISD::FOR";
   case X86ISD::FXOR:               return "X86ISD::FXOR";
-  case X86ISD::FSRL:               return "X86ISD::FSRL";
   case X86ISD::FILD:               return "X86ISD::FILD";
   case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
   case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
@@ -17287,9 +18404,11 @@ const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
   case X86ISD::UCOMI:              return "X86ISD::UCOMI";
   case X86ISD::CMPM:               return "X86ISD::CMPM";
   case X86ISD::CMPMU:              return "X86ISD::CMPMU";
+  case X86ISD::CMPM_RND:           return "X86ISD::CMPM_RND";
   case X86ISD::SETCC:              return "X86ISD::SETCC";
   case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
   case X86ISD::FSETCC:             return "X86ISD::FSETCC";
+  case X86ISD::FGETSIGNx86:        return "X86ISD::FGETSIGNx86";
   case X86ISD::CMOV:               return "X86ISD::CMOV";
   case X86ISD::BRCOND:             return "X86ISD::BRCOND";
   case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
@@ -17298,16 +18417,21 @@ const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
   case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
   case X86ISD::Wrapper:            return "X86ISD::Wrapper";
   case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
+  case X86ISD::MOVDQ2Q:            return "X86ISD::MOVDQ2Q";
+  case X86ISD::MMX_MOVD2W:         return "X86ISD::MMX_MOVD2W";
+  case X86ISD::MMX_MOVW2D:         return "X86ISD::MMX_MOVW2D";
   case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
   case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
   case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
   case X86ISD::PINSRB:             return "X86ISD::PINSRB";
   case X86ISD::PINSRW:             return "X86ISD::PINSRW";
+  case X86ISD::MMX_PINSRW:         return "X86ISD::MMX_PINSRW";
   case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
   case X86ISD::ANDNP:              return "X86ISD::ANDNP";
   case X86ISD::PSIGN:              return "X86ISD::PSIGN";
   case X86ISD::BLENDI:             return "X86ISD::BLENDI";
   case X86ISD::SHRUNKBLEND:        return "X86ISD::SHRUNKBLEND";
+  case X86ISD::ADDUS:              return "X86ISD::ADDUS";
   case X86ISD::SUBUS:              return "X86ISD::SUBUS";
   case X86ISD::HADD:               return "X86ISD::HADD";
   case X86ISD::HSUB:               return "X86ISD::HSUB";
@@ -17317,8 +18441,11 @@ const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
   case X86ISD::UMIN:               return "X86ISD::UMIN";
   case X86ISD::SMAX:               return "X86ISD::SMAX";
   case X86ISD::SMIN:               return "X86ISD::SMIN";
+  case X86ISD::ABS:                return "X86ISD::ABS";
   case X86ISD::FMAX:               return "X86ISD::FMAX";
+  case X86ISD::FMAX_RND:           return "X86ISD::FMAX_RND";
   case X86ISD::FMIN:               return "X86ISD::FMIN";
+  case X86ISD::FMIN_RND:           return "X86ISD::FMIN_RND";
   case X86ISD::FMAXC:              return "X86ISD::FMAXC";
   case X86ISD::FMINC:              return "X86ISD::FMINC";
   case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
@@ -17344,6 +18471,7 @@ const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
   case X86ISD::VINSERT:            return "X86ISD::VINSERT";
   case X86ISD::VFPEXT:             return "X86ISD::VFPEXT";
   case X86ISD::VFPROUND:           return "X86ISD::VFPROUND";
+  case X86ISD::CVTDQ2PD:           return "X86ISD::CVTDQ2PD";
   case X86ISD::VSHLDQ:             return "X86ISD::VSHLDQ";
   case X86ISD::VSRLDQ:             return "X86ISD::VSRLDQ";
   case X86ISD::VSHL:               return "X86ISD::VSHL";
@@ -17387,6 +18515,7 @@ const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
   case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW";
   case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW";
   case X86ISD::SHUFP:              return "X86ISD::SHUFP";
+  case X86ISD::SHUF128:            return "X86ISD::SHUF128";
   case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS";
   case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD";
   case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS";
@@ -17400,20 +18529,27 @@ const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
   case X86ISD::UNPCKL:             return "X86ISD::UNPCKL";
   case X86ISD::UNPCKH:             return "X86ISD::UNPCKH";
   case X86ISD::VBROADCAST:         return "X86ISD::VBROADCAST";
-  case X86ISD::VBROADCASTM:        return "X86ISD::VBROADCASTM";
+  case X86ISD::SUBV_BROADCAST:     return "X86ISD::SUBV_BROADCAST";
   case X86ISD::VEXTRACT:           return "X86ISD::VEXTRACT";
+  case X86ISD::VPERMILPV:          return "X86ISD::VPERMILPV";
   case X86ISD::VPERMILPI:          return "X86ISD::VPERMILPI";
   case X86ISD::VPERM2X128:         return "X86ISD::VPERM2X128";
   case X86ISD::VPERMV:             return "X86ISD::VPERMV";
   case X86ISD::VPERMV3:            return "X86ISD::VPERMV3";
   case X86ISD::VPERMIV3:           return "X86ISD::VPERMIV3";
   case X86ISD::VPERMI:             return "X86ISD::VPERMI";
+  case X86ISD::VFIXUPIMM:          return "X86ISD::VFIXUPIMM";
+  case X86ISD::VRANGE:             return "X86ISD::VRANGE";
   case X86ISD::PMULUDQ:            return "X86ISD::PMULUDQ";
   case X86ISD::PMULDQ:             return "X86ISD::PMULDQ";
+  case X86ISD::PSADBW:             return "X86ISD::PSADBW";
   case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
   case X86ISD::VAARG_64:           return "X86ISD::VAARG_64";
   case X86ISD::WIN_ALLOCA:         return "X86ISD::WIN_ALLOCA";
   case X86ISD::MEMBARRIER:         return "X86ISD::MEMBARRIER";
+  case X86ISD::MFENCE:             return "X86ISD::MFENCE";
+  case X86ISD::SFENCE:             return "X86ISD::SFENCE";
+  case X86ISD::LFENCE:             return "X86ISD::LFENCE";
   case X86ISD::SEG_ALLOCA:         return "X86ISD::SEG_ALLOCA";
   case X86ISD::WIN_FTOL:           return "X86ISD::WIN_FTOL";
   case X86ISD::SAHF:               return "X86ISD::SAHF";
@@ -17425,6 +18561,13 @@ const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
   case X86ISD::FNMSUB:             return "X86ISD::FNMSUB";
   case X86ISD::FMADDSUB:           return "X86ISD::FMADDSUB";
   case X86ISD::FMSUBADD:           return "X86ISD::FMSUBADD";
+  case X86ISD::FMADD_RND:          return "X86ISD::FMADD_RND";
+  case X86ISD::FNMADD_RND:         return "X86ISD::FNMADD_RND";
+  case X86ISD::FMSUB_RND:          return "X86ISD::FMSUB_RND";
+  case X86ISD::FNMSUB_RND:         return "X86ISD::FNMSUB_RND";
+  case X86ISD::FMADDSUB_RND:       return "X86ISD::FMADDSUB_RND";
+  case X86ISD::FMSUBADD_RND:       return "X86ISD::FMSUBADD_RND";
+  case X86ISD::RNDSCALE:           return "X86ISD::RNDSCALE";
   case X86ISD::PCMPESTRI:          return "X86ISD::PCMPESTRI";
   case X86ISD::PCMPISTRI:          return "X86ISD::PCMPISTRI";
   case X86ISD::XTEST:              return "X86ISD::XTEST";
@@ -17433,18 +18576,29 @@ const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
   case X86ISD::SELECT:             return "X86ISD::SELECT";
   case X86ISD::ADDSUB:             return "X86ISD::ADDSUB";
   case X86ISD::RCP28:              return "X86ISD::RCP28";
+  case X86ISD::EXP2:               return "X86ISD::EXP2";
   case X86ISD::RSQRT28:            return "X86ISD::RSQRT28";
   case X86ISD::FADD_RND:           return "X86ISD::FADD_RND";
   case X86ISD::FSUB_RND:           return "X86ISD::FSUB_RND";
   case X86ISD::FMUL_RND:           return "X86ISD::FMUL_RND";
   case X86ISD::FDIV_RND:           return "X86ISD::FDIV_RND";
+  case X86ISD::FSQRT_RND:          return "X86ISD::FSQRT_RND";
+  case X86ISD::FGETEXP_RND:        return "X86ISD::FGETEXP_RND";
+  case X86ISD::SCALEF:             return "X86ISD::SCALEF";
+  case X86ISD::ADDS:               return "X86ISD::ADDS";
+  case X86ISD::SUBS:               return "X86ISD::SUBS";
+  case X86ISD::AVG:                return "X86ISD::AVG";
+  case X86ISD::SINT_TO_FP_RND:     return "X86ISD::SINT_TO_FP_RND";
+  case X86ISD::UINT_TO_FP_RND:     return "X86ISD::UINT_TO_FP_RND";
   }
+  return nullptr;
 }
 
 // isLegalAddressingMode - Return true if the addressing mode represented
 // by AM is legal for this target, for a load/store of the specified type.
 bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
-                                              Type *Ty) const {
+                                              Type *Ty,
+                                              unsigned AS) const {
   // X86 supports extremely general addressing modes.
   CodeModel::Model M = getTargetMachine().getCodeModel();
   Reloc::Model R = getTargetMachine().getRelocationModel();
@@ -17590,7 +18744,7 @@ bool X86TargetLowering::isVectorLoadExtDesirable(SDValue) const { return true; }
 
 bool
 X86TargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
-  if (!(Subtarget->hasFMA() || Subtarget->hasFMA4()))
+  if (!(Subtarget->hasFMA() || Subtarget->hasFMA4() || Subtarget->hasAVX512()))
     return false;
 
   VT = VT.getScalarType();
@@ -17624,6 +18778,10 @@ X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
   if (!VT.isSimple())
     return false;
 
+  // Not for i1 vectors
+  if (VT.getScalarType() == MVT::i1)
+    return false;
+
   // Very little shuffling can be done for 64-bit vectors right now.
   if (VT.getSizeInBits() == 64)
     return false;
@@ -17813,7 +18971,8 @@ X86TargetLowering::EmitVAARG64WithCustomInserter(MachineInstr *MI,
   // 9  ) EFLAGS (implicit-def)
 
   assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
-  assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands");
+  static_assert(X86::AddrNumOperands == 5,
+                "VAARG_64 assumes 5 address operands");
 
   unsigned DestReg = MI->getOperand(0).getReg();
   MachineOperand &Base = MI->getOperand(1);
@@ -18189,6 +19348,92 @@ X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
   //   fallthrough --> copy0MBB
   MachineBasicBlock *thisMBB = BB;
   MachineFunction *F = BB->getParent();
+
+  // We also lower double CMOVs:
+  //   (CMOV (CMOV F, T, cc1), T, cc2)
+  // to two successives branches.  For that, we look for another CMOV as the
+  // following instruction.
+  //
+  // Without this, we would add a PHI between the two jumps, which ends up
+  // creating a few copies all around. For instance, for
+  //
+  //    (sitofp (zext (fcmp une)))
+  //
+  // we would generate:
+  //
+  //         ucomiss %xmm1, %xmm0
+  //         movss  <1.0f>, %xmm0
+  //         movaps  %xmm0, %xmm1
+  //         jne     .LBB5_2
+  //         xorps   %xmm1, %xmm1
+  // .LBB5_2:
+  //         jp      .LBB5_4
+  //         movaps  %xmm1, %xmm0
+  // .LBB5_4:
+  //         retq
+  //
+  // because this custom-inserter would have generated:
+  //
+  //   A
+  //   | \
+  //   |  B
+  //   | /
+  //   C
+  //   | \
+  //   |  D
+  //   | /
+  //   E
+  //
+  // A: X = ...; Y = ...
+  // B: empty
+  // C: Z = PHI [X, A], [Y, B]
+  // D: empty
+  // E: PHI [X, C], [Z, D]
+  //
+  // If we lower both CMOVs in a single step, we can instead generate:
+  //
+  //   A
+  //   | \
+  //   |  C
+  //   | /|
+  //   |/ |
+  //   |  |
+  //   |  D
+  //   | /
+  //   E
+  //
+  // A: X = ...; Y = ...
+  // D: empty
+  // E: PHI [X, A], [X, C], [Y, D]
+  //
+  // Which, in our sitofp/fcmp example, gives us something like:
+  //
+  //         ucomiss %xmm1, %xmm0
+  //         movss  <1.0f>, %xmm0
+  //         jne     .LBB5_4
+  //         jp      .LBB5_4
+  //         xorps   %xmm0, %xmm0
+  // .LBB5_4:
+  //         retq
+  //
+  MachineInstr *NextCMOV = nullptr;
+  MachineBasicBlock::iterator NextMIIt =
+      std::next(MachineBasicBlock::iterator(MI));
+  if (NextMIIt != BB->end() && NextMIIt->getOpcode() == MI->getOpcode() &&
+      NextMIIt->getOperand(2).getReg() == MI->getOperand(2).getReg() &&
+      NextMIIt->getOperand(1).getReg() == MI->getOperand(0).getReg())
+    NextCMOV = &*NextMIIt;
+
+  MachineBasicBlock *jcc1MBB = nullptr;
+
+  // If we have a double CMOV, we lower it to two successive branches to
+  // the same block.  EFLAGS is used by both, so mark it as live in the second.
+  if (NextCMOV) {
+    jcc1MBB = F->CreateMachineBasicBlock(LLVM_BB);
+    F->insert(It, jcc1MBB);
+    jcc1MBB->addLiveIn(X86::EFLAGS);
+  }
+
   MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
   MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
   F->insert(It, copy0MBB);
@@ -18197,8 +19442,10 @@ X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
   // If the EFLAGS register isn't dead in the terminator, then claim that it's
   // live into the sink and copy blocks.
   const TargetRegisterInfo *TRI = Subtarget->getRegisterInfo();
-  if (!MI->killsRegister(X86::EFLAGS) &&
-      !checkAndUpdateEFLAGSKill(MI, BB, TRI)) {
+
+  MachineInstr *LastEFLAGSUser = NextCMOV ? NextCMOV : MI;
+  if (!LastEFLAGSUser->killsRegister(X86::EFLAGS) &&
+      !checkAndUpdateEFLAGSKill(LastEFLAGSUser, BB, TRI)) {
     copy0MBB->addLiveIn(X86::EFLAGS);
     sinkMBB->addLiveIn(X86::EFLAGS);
   }
@@ -18209,7 +19456,19 @@ X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
   sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
 
   // Add the true and fallthrough blocks as its successors.
-  BB->addSuccessor(copy0MBB);
+  if (NextCMOV) {
+    // The fallthrough block may be jcc1MBB, if we have a double CMOV.
+    BB->addSuccessor(jcc1MBB);
+
+    // In that case, jcc1MBB will itself fallthrough the copy0MBB, and
+    // jump to the sinkMBB.
+    jcc1MBB->addSuccessor(copy0MBB);
+    jcc1MBB->addSuccessor(sinkMBB);
+  } else {
+    BB->addSuccessor(copy0MBB);
+  }
+
+  // The true block target of the first (or only) branch is always sinkMBB.
   BB->addSuccessor(sinkMBB);
 
   // Create the conditional branch instruction.
@@ -18217,6 +19476,12 @@ X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
     X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
   BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
 
+  if (NextCMOV) {
+    unsigned Opc2 = X86::GetCondBranchFromCond(
+        (X86::CondCode)NextCMOV->getOperand(3).getImm());
+    BuildMI(jcc1MBB, DL, TII->get(Opc2)).addMBB(sinkMBB);
+  }
+
   //  copy0MBB:
   //   %FalseValue = ...
   //   # fallthrough to sinkMBB
@@ -18225,10 +19490,22 @@ X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
   //  sinkMBB:
   //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
   //  ...
-  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
-          TII->get(X86::PHI), MI->getOperand(0).getReg())
-    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
-    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
+  MachineInstrBuilder MIB =
+      BuildMI(*sinkMBB, sinkMBB->begin(), DL, TII->get(X86::PHI),
+              MI->getOperand(0).getReg())
+          .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
+          .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
+
+  // If we have a double CMOV, the second Jcc provides the same incoming
+  // value as the first Jcc (the True operand of the SELECT_CC/CMOV nodes).
+  if (NextCMOV) {
+    MIB.addReg(MI->getOperand(2).getReg()).addMBB(jcc1MBB);
+    // Copy the PHI result to the register defined by the second CMOV.
+    BuildMI(*sinkMBB, std::next(MachineBasicBlock::iterator(MIB.getInstr())),
+            DL, TII->get(TargetOpcode::COPY), NextCMOV->getOperand(0).getReg())
+        .addReg(MI->getOperand(0).getReg());
+    NextCMOV->eraseFromParent();
+  }
 
   MI->eraseFromParent();   // The pseudo instruction is gone now.
   return sinkMBB;
@@ -18312,7 +19589,7 @@ X86TargetLowering::EmitLoweredSegAlloca(MachineInstr *MI,
 
   // Calls into a routine in libgcc to allocate more space from the heap.
   const uint32_t *RegMask =
-      Subtarget->getRegisterInfo()->getCallPreservedMask(CallingConv::C);
+      Subtarget->getRegisterInfo()->getCallPreservedMask(*MF, CallingConv::C);
   if (IsLP64) {
     BuildMI(mallocMBB, DL, TII->get(X86::MOV64rr), X86::RDI)
       .addReg(sizeVReg);
@@ -18373,7 +19650,8 @@ X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
 
   assert(!Subtarget->isTargetMachO());
 
-  X86FrameLowering::emitStackProbeCall(*BB->getParent(), *BB, MI, DL);
+  Subtarget->getFrameLowering()->emitStackProbeCall(*BB->getParent(), *BB, MI,
+                                                    DL);
 
   MI->eraseFromParent();   // The pseudo instruction is gone now.
   return BB;
@@ -18397,7 +19675,7 @@ X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
   // FIXME: The 32-bit calls have non-standard calling conventions. Use a
   // proper register mask.
   const uint32_t *RegMask =
-      Subtarget->getRegisterInfo()->getCallPreservedMask(CallingConv::C);
+      Subtarget->getRegisterInfo()->getCallPreservedMask(*F, CallingConv::C);
   if (Subtarget->is64Bit()) {
     MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
                                       TII->get(X86::MOV64rm), X86::RDI)
@@ -18651,6 +19929,7 @@ X86TargetLowering::emitEHSjLjLongJmp(MachineInstr *MI,
 // Replace 213-type (isel default) FMA3 instructions with 231-type for
 // accumulator loops. Writing back to the accumulator allows the coalescer
 // to remove extra copies in the loop.
+// FIXME: Do this on AVX512.  We don't support 231 variants yet (PR23937).
 MachineBasicBlock *
 X86TargetLowering::emitFMA3Instr(MachineInstr *MI,
                                  MachineBasicBlock *MBB) const {
@@ -18781,6 +20060,10 @@ X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
   case X86::CMOV_RFP32:
   case X86::CMOV_RFP64:
   case X86::CMOV_RFP80:
+  case X86::CMOV_V8I1:
+  case X86::CMOV_V16I1:
+  case X86::CMOV_V32I1:
+  case X86::CMOV_V64I1:
     return EmitLoweredSelect(MI, BB);
 
   case X86::FP32_TO_INT16_IN_MEM:
@@ -19152,7 +20435,7 @@ static SDValue PerformShuffleCombine256(SDNode *N, SelectionDAG &DAG,
                                  SDValue(ResNode.getNode(), 1));
         }
 
-        return DAG.getNode(ISD::BITCAST, dl, VT, ResNode);
+        return DAG.getBitcast(VT, ResNode);
       }
     }
 
@@ -19211,7 +20494,7 @@ static bool combineX86ShuffleChain(SDValue Op, SDValue Root, ArrayRef<int> Mask,
 
   // Just remove no-op shuffle masks.
   if (Mask.size() == 1) {
-    DCI.CombineTo(Root.getNode(), DAG.getNode(ISD::BITCAST, DL, RootVT, Input),
+    DCI.CombineTo(Root.getNode(), DAG.getBitcast(RootVT, Input),
                   /*AddTo*/ true);
     return true;
   }
@@ -19226,9 +20509,11 @@ static bool combineX86ShuffleChain(SDValue Op, SDValue Root, ArrayRef<int> Mask,
   // Note that even with AVX we prefer the PSHUFD form of shuffle for integer
   // vectors because it can have a load folded into it that UNPCK cannot. This
   // doesn't preclude something switching to the shorter encoding post-RA.
-  if (FloatDomain) {
-    if (Mask.equals(0, 0) || Mask.equals(1, 1)) {
-      bool Lo = Mask.equals(0, 0);
+  //
+  // FIXME: Should teach these routines about AVX vector widths.
+  if (FloatDomain && VT.getSizeInBits() == 128) {
+    if (Mask.equals({0, 0}) || Mask.equals({1, 1})) {
+      bool Lo = Mask.equals({0, 0});
       unsigned Shuffle;
       MVT ShuffleVT;
       // Check if we have SSE3 which will let us use MOVDDUP. That instruction
@@ -19245,43 +20530,43 @@ static bool combineX86ShuffleChain(SDValue Op, SDValue Root, ArrayRef<int> Mask,
       }
       if (Depth == 1 && Root->getOpcode() == Shuffle)
         return false; // Nothing to do!
-      Op = DAG.getNode(ISD::BITCAST, DL, ShuffleVT, Input);
+      Op = DAG.getBitcast(ShuffleVT, Input);
       DCI.AddToWorklist(Op.getNode());
       if (Shuffle == X86ISD::MOVDDUP)
         Op = DAG.getNode(Shuffle, DL, ShuffleVT, Op);
       else
         Op = DAG.getNode(Shuffle, DL, ShuffleVT, Op, Op);
       DCI.AddToWorklist(Op.getNode());
-      DCI.CombineTo(Root.getNode(), DAG.getNode(ISD::BITCAST, DL, RootVT, Op),
+      DCI.CombineTo(Root.getNode(), DAG.getBitcast(RootVT, Op),
                     /*AddTo*/ true);
       return true;
     }
     if (Subtarget->hasSSE3() &&
-        (Mask.equals(0, 0, 2, 2) || Mask.equals(1, 1, 3, 3))) {
-      bool Lo = Mask.equals(0, 0, 2, 2);
+        (Mask.equals({0, 0, 2, 2}) || Mask.equals({1, 1, 3, 3}))) {
+      bool Lo = Mask.equals({0, 0, 2, 2});
       unsigned Shuffle = Lo ? X86ISD::MOVSLDUP : X86ISD::MOVSHDUP;
       MVT ShuffleVT = MVT::v4f32;
       if (Depth == 1 && Root->getOpcode() == Shuffle)
         return false; // Nothing to do!
-      Op = DAG.getNode(ISD::BITCAST, DL, ShuffleVT, Input);
+      Op = DAG.getBitcast(ShuffleVT, Input);
       DCI.AddToWorklist(Op.getNode());
       Op = DAG.getNode(Shuffle, DL, ShuffleVT, Op);
       DCI.AddToWorklist(Op.getNode());
-      DCI.CombineTo(Root.getNode(), DAG.getNode(ISD::BITCAST, DL, RootVT, Op),
+      DCI.CombineTo(Root.getNode(), DAG.getBitcast(RootVT, Op),
                     /*AddTo*/ true);
       return true;
     }
-    if (Mask.equals(0, 0, 1, 1) || Mask.equals(2, 2, 3, 3)) {
-      bool Lo = Mask.equals(0, 0, 1, 1);
+    if (Mask.equals({0, 0, 1, 1}) || Mask.equals({2, 2, 3, 3})) {
+      bool Lo = Mask.equals({0, 0, 1, 1});
       unsigned Shuffle = Lo ? X86ISD::UNPCKL : X86ISD::UNPCKH;
       MVT ShuffleVT = MVT::v4f32;
       if (Depth == 1 && Root->getOpcode() == Shuffle)
         return false; // Nothing to do!
-      Op = DAG.getNode(ISD::BITCAST, DL, ShuffleVT, Input);
+      Op = DAG.getBitcast(ShuffleVT, Input);
       DCI.AddToWorklist(Op.getNode());
       Op = DAG.getNode(Shuffle, DL, ShuffleVT, Op, Op);
       DCI.AddToWorklist(Op.getNode());
-      DCI.CombineTo(Root.getNode(), DAG.getNode(ISD::BITCAST, DL, RootVT, Op),
+      DCI.CombineTo(Root.getNode(), DAG.getBitcast(RootVT, Op),
                     /*AddTo*/ true);
       return true;
     }
@@ -19290,12 +20575,12 @@ static bool combineX86ShuffleChain(SDValue Op, SDValue Root, ArrayRef<int> Mask,
   // We always canonicalize the 8 x i16 and 16 x i8 shuffles into their UNPCK
   // variants as none of these have single-instruction variants that are
   // superior to the UNPCK formulation.
-  if (!FloatDomain &&
-      (Mask.equals(0, 0, 1, 1, 2, 2, 3, 3) ||
-       Mask.equals(4, 4, 5, 5, 6, 6, 7, 7) ||
-       Mask.equals(0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7) ||
-       Mask.equals(8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15,
-                   15))) {
+  if (!FloatDomain && VT.getSizeInBits() == 128 &&
+      (Mask.equals({0, 0, 1, 1, 2, 2, 3, 3}) ||
+       Mask.equals({4, 4, 5, 5, 6, 6, 7, 7}) ||
+       Mask.equals({0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7}) ||
+       Mask.equals(
+           {8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15}))) {
     bool Lo = Mask[0] == 0;
     unsigned Shuffle = Lo ? X86ISD::UNPCKL : X86ISD::UNPCKH;
     if (Depth == 1 && Root->getOpcode() == Shuffle)
@@ -19311,11 +20596,11 @@ static bool combineX86ShuffleChain(SDValue Op, SDValue Root, ArrayRef<int> Mask,
     default:
       llvm_unreachable("Impossible mask size!");
     };
-    Op = DAG.getNode(ISD::BITCAST, DL, ShuffleVT, Input);
+    Op = DAG.getBitcast(ShuffleVT, Input);
     DCI.AddToWorklist(Op.getNode());
     Op = DAG.getNode(Shuffle, DL, ShuffleVT, Op, Op);
     DCI.AddToWorklist(Op.getNode());
-    DCI.CombineTo(Root.getNode(), DAG.getNode(ISD::BITCAST, DL, RootVT, Op),
+    DCI.CombineTo(Root.getNode(), DAG.getBitcast(RootVT, Op),
                   /*AddTo*/ true);
     return true;
   }
@@ -19331,9 +20616,9 @@ static bool combineX86ShuffleChain(SDValue Op, SDValue Root, ArrayRef<int> Mask,
   // in practice PSHUFB tends to be *very* fast so we're more aggressive.
   if ((Depth >= 3 || HasPSHUFB) && Subtarget->hasSSSE3()) {
     SmallVector<SDValue, 16> PSHUFBMask;
-    assert(Mask.size() <= 16 && "Can't shuffle elements smaller than bytes!");
-    int Ratio = 16 / Mask.size();
-    for (unsigned i = 0; i < 16; ++i) {
+    int NumBytes = VT.getSizeInBits() / 8;
+    int Ratio = NumBytes / Mask.size();
+    for (int i = 0; i < NumBytes; ++i) {
       if (Mask[i / Ratio] == SM_SentinelUndef) {
         PSHUFBMask.push_back(DAG.getUNDEF(MVT::i8));
         continue;
@@ -19341,16 +20626,17 @@ static bool combineX86ShuffleChain(SDValue Op, SDValue Root, ArrayRef<int> Mask,
       int M = Mask[i / Ratio] != SM_SentinelZero
                   ? Ratio * Mask[i / Ratio] + i % Ratio
                   : 255;
-      PSHUFBMask.push_back(DAG.getConstant(M, MVT::i8));
+      PSHUFBMask.push_back(DAG.getConstant(M, DL, MVT::i8));
     }
-    Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Input);
+    MVT ByteVT = MVT::getVectorVT(MVT::i8, NumBytes);
+    Op = DAG.getBitcast(ByteVT, Input);
     DCI.AddToWorklist(Op.getNode());
     SDValue PSHUFBMaskOp =
-        DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v16i8, PSHUFBMask);
+        DAG.getNode(ISD::BUILD_VECTOR, DL, ByteVT, PSHUFBMask);
     DCI.AddToWorklist(PSHUFBMaskOp.getNode());
-    Op = DAG.getNode(X86ISD::PSHUFB, DL, MVT::v16i8, Op, PSHUFBMaskOp);
+    Op = DAG.getNode(X86ISD::PSHUFB, DL, ByteVT, Op, PSHUFBMaskOp);
     DCI.AddToWorklist(Op.getNode());
-    DCI.CombineTo(Root.getNode(), DAG.getNode(ISD::BITCAST, DL, RootVT, Op),
+    DCI.CombineTo(Root.getNode(), DAG.getBitcast(RootVT, Op),
                   /*AddTo*/ true);
     return true;
   }
@@ -19406,10 +20692,6 @@ static bool combineX86ShufflesRecursively(SDValue Op, SDValue Root,
   MVT VT = Op.getSimpleValueType();
   if (!VT.isVector())
     return false; // Bail if we hit a non-vector.
-  // FIXME: This routine should be taught about 256-bit shuffles, or a 256-bit
-  // version should be added.
-  if (VT.getSizeInBits() != 128)
-    return false;
 
   assert(Root.getSimpleValueType().isVector() &&
          "Shuffles operate on vector types!");
@@ -19512,12 +20794,26 @@ static bool combineX86ShufflesRecursively(SDValue Op, SDValue Root,
 /// This is a very minor wrapper around getTargetShuffleMask to easy forming v4
 /// PSHUF-style masks that can be reused with such instructions.
 static SmallVector<int, 4> getPSHUFShuffleMask(SDValue N) {
+  MVT VT = N.getSimpleValueType();
   SmallVector<int, 4> Mask;
   bool IsUnary;
-  bool HaveMask = getTargetShuffleMask(N.getNode(), N.getSimpleValueType(), Mask, IsUnary);
+  bool HaveMask = getTargetShuffleMask(N.getNode(), VT, Mask, IsUnary);
   (void)HaveMask;
   assert(HaveMask);
 
+  // If we have more than 128-bits, only the low 128-bits of shuffle mask
+  // matter. Check that the upper masks are repeats and remove them.
+  if (VT.getSizeInBits() > 128) {
+    int LaneElts = 128 / VT.getScalarSizeInBits();
+#ifndef NDEBUG
+    for (int i = 1, NumLanes = VT.getSizeInBits() / 128; i < NumLanes; ++i)
+      for (int j = 0; j < LaneElts; ++j)
+        assert(Mask[j] == Mask[i * LaneElts + j] - (LaneElts * i) &&
+               "Mask doesn't repeat in high 128-bit lanes!");
+#endif
+    Mask.resize(LaneElts);
+  }
+
   switch (N.getOpcode()) {
   case X86ISD::PSHUFD:
     return Mask;
@@ -19590,7 +20886,8 @@ combineRedundantDWordShuffle(SDValue N, MutableArrayRef<int> Mask,
     case X86ISD::UNPCKH:
       // For either i8 -> i16 or i16 -> i32 unpacks, we can combine a dword
       // shuffle into a preceding word shuffle.
-      if (V.getValueType() != MVT::v16i8 && V.getValueType() != MVT::v8i16)
+      if (V.getSimpleValueType().getScalarType() != MVT::i8 &&
+          V.getSimpleValueType().getScalarType() != MVT::i16)
         return SDValue();
 
       // Search for a half-shuffle which we can combine with.
@@ -19635,14 +20932,14 @@ combineRedundantDWordShuffle(SDValue N, MutableArrayRef<int> Mask,
   for (int &M : Mask)
     M = VMask[M];
   V = DAG.getNode(V.getOpcode(), DL, V.getValueType(), V.getOperand(0),
-                  getV4X86ShuffleImm8ForMask(Mask, DAG));
+                  getV4X86ShuffleImm8ForMask(Mask, DL, DAG));
 
   // Rebuild the chain around this new shuffle.
   while (!Chain.empty()) {
     SDValue W = Chain.pop_back_val();
 
     if (V.getValueType() != W.getOperand(0).getValueType())
-      V = DAG.getNode(ISD::BITCAST, DL, W.getOperand(0).getValueType(), V);
+      V = DAG.getBitcast(W.getOperand(0).getValueType(), V);
 
     switch (W.getOpcode()) {
     default:
@@ -19661,7 +20958,7 @@ combineRedundantDWordShuffle(SDValue N, MutableArrayRef<int> Mask,
     }
   }
   if (V.getValueType() != N.getValueType())
-    V = DAG.getNode(ISD::BITCAST, DL, N.getValueType(), V);
+    V = DAG.getBitcast(N.getValueType(), V);
 
   // Return the new chain to replace N.
   return V;
@@ -19722,7 +21019,7 @@ static bool combineRedundantHalfShuffle(SDValue N, MutableArrayRef<int> Mask,
   for (int &M : Mask)
     M = VMask[M];
   V = DAG.getNode(V.getOpcode(), DL, MVT::v8i16, V.getOperand(0),
-                  getV4X86ShuffleImm8ForMask(Mask, DAG));
+                  getV4X86ShuffleImm8ForMask(Mask, DL, DAG));
 
   // Check that the shuffles didn't cancel each other out. If not, we need to
   // combine to the new one.
@@ -19764,8 +21061,7 @@ static SDValue PerformTargetShuffleCombine(SDValue N, SelectionDAG &DAG,
     break;
   case X86ISD::PSHUFLW:
   case X86ISD::PSHUFHW:
-    assert(VT == MVT::v8i16);
-    (void)VT;
+    assert(VT.getScalarType() == MVT::i16 && "Bad word shuffle type!");
 
     if (combineRedundantHalfShuffle(N, Mask, DAG, DCI))
       return SDValue(); // We combined away this shuffle, so we're done.
@@ -19773,17 +21069,18 @@ static SDValue PerformTargetShuffleCombine(SDValue N, SelectionDAG &DAG,
     // See if this reduces to a PSHUFD which is no more expensive and can
     // combine with more operations. Note that it has to at least flip the
     // dwords as otherwise it would have been removed as a no-op.
-    if (Mask[0] == 2 && Mask[1] == 3 && Mask[2] == 0 && Mask[3] == 1) {
+    if (makeArrayRef(Mask).equals({2, 3, 0, 1})) {
       int DMask[] = {0, 1, 2, 3};
       int DOffset = N.getOpcode() == X86ISD::PSHUFLW ? 0 : 2;
       DMask[DOffset + 0] = DOffset + 1;
       DMask[DOffset + 1] = DOffset + 0;
-      V = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, V);
+      MVT DVT = MVT::getVectorVT(MVT::i32, VT.getVectorNumElements() / 2);
+      V = DAG.getBitcast(DVT, V);
       DCI.AddToWorklist(V.getNode());
-      V = DAG.getNode(X86ISD::PSHUFD, DL, MVT::v4i32, V,
-                      getV4X86ShuffleImm8ForMask(DMask, DAG));
+      V = DAG.getNode(X86ISD::PSHUFD, DL, DVT, V,
+                      getV4X86ShuffleImm8ForMask(DMask, DL, DAG));
       DCI.AddToWorklist(V.getNode());
-      return DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, V);
+      return DAG.getBitcast(VT, V);
     }
 
     // Look for shuffle patterns which can be implemented as a single unpack.
@@ -19811,18 +21108,14 @@ static SDValue PerformTargetShuffleCombine(SDValue N, SelectionDAG &DAG,
         int MappedMask[8];
         for (int i = 0; i < 8; ++i)
           MappedMask[i] = 2 * DMask[WordMask[i] / 2] + WordMask[i] % 2;
-        const int UnpackLoMask[] = {0, 0, 1, 1, 2, 2, 3, 3};
-        const int UnpackHiMask[] = {4, 4, 5, 5, 6, 6, 7, 7};
-        if (std::equal(std::begin(MappedMask), std::end(MappedMask),
-                       std::begin(UnpackLoMask)) ||
-            std::equal(std::begin(MappedMask), std::end(MappedMask),
-                       std::begin(UnpackHiMask))) {
+        if (makeArrayRef(MappedMask).equals({0, 0, 1, 1, 2, 2, 3, 3}) ||
+            makeArrayRef(MappedMask).equals({4, 4, 5, 5, 6, 6, 7, 7})) {
           // We can replace all three shuffles with an unpack.
-          V = DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, D.getOperand(0));
+          V = DAG.getBitcast(VT, D.getOperand(0));
           DCI.AddToWorklist(V.getNode());
           return DAG.getNode(MappedMask[0] == 0 ? X86ISD::UNPCKL
                                                 : X86ISD::UNPCKH,
-                             DL, MVT::v8i16, V, V);
+                             DL, VT, V, V);
         }
       }
     }
@@ -19880,9 +21173,9 @@ static SDValue combineShuffleToAddSub(SDNode *N, SelectionDAG &DAG) {
 
   // We're looking for blends between FADD and FSUB nodes. We insist on these
   // nodes being lined up in a specific expected pattern.
-  if (!(isShuffleEquivalent(V1, V2, Mask, 0, 3) ||
-        isShuffleEquivalent(V1, V2, Mask, 0, 5, 2, 7) ||
-        isShuffleEquivalent(V1, V2, Mask, 0, 9, 2, 11, 4, 13, 6, 15)))
+  if (!(isShuffleEquivalent(V1, V2, Mask, {0, 3}) ||
+        isShuffleEquivalent(V1, V2, Mask, {0, 5, 2, 7}) ||
+        isShuffleEquivalent(V1, V2, Mask, {0, 9, 2, 11, 4, 13, 6, 15})))
     return SDValue();
 
   // Only specific types are legal at this point, assert so we notice if and
@@ -19962,18 +21255,14 @@ static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
         CanFold = SVOp->getMaskElt(i) < 0;
 
       if (CanFold) {
-        SDValue BC00 = DAG.getNode(ISD::BITCAST, dl, VT, BC0.getOperand(0));
-        SDValue BC01 = DAG.getNode(ISD::BITCAST, dl, VT, BC0.getOperand(1));
+        SDValue BC00 = DAG.getBitcast(VT, BC0.getOperand(0));
+        SDValue BC01 = DAG.getBitcast(VT, BC0.getOperand(1));
         SDValue NewBinOp = DAG.getNode(BC0.getOpcode(), dl, VT, BC00, BC01);
         return DAG.getVectorShuffle(VT, dl, NewBinOp, N1, &SVOp->getMask()[0]);
       }
     }
   }
 
-  // Only handle 128 wide vector from here on.
-  if (!VT.is128BitVector())
-    return SDValue();
-
   // Combine a vector_shuffle that is equal to build_vector load1, load2, load3,
   // load4, <0, 1, 2, 3> into a 128-bit load if the load addresses are
   // consecutive, non-overlapping, and in the right order.
@@ -19981,8 +21270,7 @@ static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
   for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
     Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
 
-  SDValue LD = EltsFromConsecutiveLoads(VT, Elts, dl, DAG, true);
-  if (LD.getNode())
+  if (SDValue LD = EltsFromConsecutiveLoads(VT, Elts, dl, DAG, true))
     return LD;
 
   if (isTargetShuffle(N->getOpcode())) {
@@ -20007,15 +21295,6 @@ static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
   return SDValue();
 }
 
-/// PerformTruncateCombine - Converts truncate operation to
-/// a sequence of vector shuffle operations.
-/// It is possible when we truncate 256-bit vector to 128-bit vector
-static SDValue PerformTruncateCombine(SDNode *N, SelectionDAG &DAG,
-                                      TargetLowering::DAGCombinerInfo &DCI,
-                                      const X86Subtarget *Subtarget)  {
-  return SDValue();
-}
-
 /// XFormVExtractWithShuffleIntoLoad - Check if a vector extract from a target
 /// specific shuffle of a load can be folded into a single element load.
 /// Similar handling for VECTOR_SHUFFLE is performed by DAGCombiner, but
@@ -20038,7 +21317,8 @@ static SDValue XFormVExtractWithShuffleIntoLoad(SDNode *N, SelectionDAG &DAG,
     if (!InVec.hasOneUse())
       return SDValue();
     EVT BCVT = InVec.getOperand(0).getValueType();
-    if (BCVT.getVectorNumElements() != OriginalVT.getVectorNumElements())
+    if (!BCVT.isVector() ||
+        BCVT.getVectorNumElements() != OriginalVT.getVectorNumElements())
       return SDValue();
     InVec = InVec.getOperand(0);
   }
@@ -20107,7 +21387,7 @@ static SDValue XFormVExtractWithShuffleIntoLoad(SDNode *N, SelectionDAG &DAG,
   Shuffle = DAG.getVectorShuffle(CurrentVT, dl,
                                  InVec.getOperand(0), Shuffle,
                                  &ShuffleMask[0]);
-  Shuffle = DAG.getNode(ISD::BITCAST, dl, OriginalVT, Shuffle);
+  Shuffle = DAG.getBitcast(OriginalVT, Shuffle);
   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, N->getValueType(0), Shuffle,
                      EltNo);
 }
@@ -20138,12 +21418,11 @@ static SDValue PerformBITCASTCombine(SDNode *N, SelectionDAG &DAG) {
 /// use 64-bit extracts and shifts.
 static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
                                          TargetLowering::DAGCombinerInfo &DCI) {
-  SDValue NewOp = XFormVExtractWithShuffleIntoLoad(N, DAG, DCI);
-  if (NewOp.getNode())
+  if (SDValue NewOp = XFormVExtractWithShuffleIntoLoad(N, DAG, DCI))
     return NewOp;
 
   SDValue InputVector = N->getOperand(0);
-
+  SDLoc dl(InputVector);
   // Detect mmx to i32 conversion through a v2i32 elt extract.
   if (InputVector.getOpcode() == ISD::BITCAST && InputVector.hasOneUse() &&
       N->getValueType(0) == MVT::i32 &&
@@ -20168,6 +21447,18 @@ static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
                          MMXSrcOp.getOperand(0));
   }
 
+  EVT VT = N->getValueType(0);
+
+  if (VT == MVT::i1 && dyn_cast<ConstantSDNode>(N->getOperand(1)) &&
+      InputVector.getOpcode() == ISD::BITCAST &&
+      dyn_cast<ConstantSDNode>(InputVector.getOperand(0))) {
+    uint64_t ExtractedElt =
+         cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
+    uint64_t InputValue =
+         cast<ConstantSDNode>(InputVector.getOperand(0))->getZExtValue();
+    uint64_t Res = (InputValue >> ExtractedElt) & 1;
+    return DAG.getConstant(Res, dl, MVT::i1);
+  }
   // Only operate on vectors of 4 elements, where the alternative shuffling
   // gets to be more expensive.
   if (InputVector.getValueType() != MVT::v4i32)
@@ -20213,17 +21504,16 @@ static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
   // otherwise bounce the vector off the cache.
   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   SDValue Vals[4];
-  SDLoc dl(InputVector);
 
   if (TLI.isOperationLegal(ISD::SRA, MVT::i64)) {
-    SDValue Cst = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, InputVector);
+    SDValue Cst = DAG.getBitcast(MVT::v2i64, InputVector);
     EVT VecIdxTy = DAG.getTargetLoweringInfo().getVectorIdxTy();
     SDValue BottomHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Cst,
-      DAG.getConstant(0, VecIdxTy));
+      DAG.getConstant(0, dl, VecIdxTy));
     SDValue TopHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Cst,
-      DAG.getConstant(1, VecIdxTy));
+      DAG.getConstant(1, dl, VecIdxTy));
 
-    SDValue ShAmt = DAG.getConstant(32,
+    SDValue ShAmt = DAG.getConstant(32, dl,
       DAG.getTargetLoweringInfo().getShiftAmountTy(MVT::i64));
     Vals[0] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BottomHalf);
     Vals[1] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32,
@@ -20243,7 +21533,7 @@ static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
     // Replace each use (extract) with a load of the appropriate element.
     for (unsigned i = 0; i < 4; ++i) {
       uint64_t Offset = EltSize * i;
-      SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
+      SDValue OffsetVal = DAG.getConstant(Offset, dl, TLI.getPointerTy());
 
       SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
                                        StackPtr, OffsetVal);
@@ -20326,16 +21616,16 @@ matchIntegerMINMAX(SDValue Cond, EVT VT, SDValue LHS, SDValue RHS,
     default: break;
     case ISD::SETULT:
     case ISD::SETULE:
-      Opc = hasUnsigned ? X86ISD::UMIN : 0; break;
+      Opc = hasUnsigned ? X86ISD::UMIN : 0u; break;
     case ISD::SETUGT:
     case ISD::SETUGE:
-      Opc = hasUnsigned ? X86ISD::UMAX : 0; break;
+      Opc = hasUnsigned ? X86ISD::UMAX : 0u; break;
     case ISD::SETLT:
     case ISD::SETLE:
-      Opc = hasSigned ? X86ISD::SMIN : 0; break;
+      Opc = hasSigned ? X86ISD::SMIN : 0u; break;
     case ISD::SETGT:
     case ISD::SETGE:
-      Opc = hasSigned ? X86ISD::SMAX : 0; break;
+      Opc = hasSigned ? X86ISD::SMAX : 0u; break;
     }
   // Check for x CC y ? y : x -- a min/max with reversed arms.
   } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
@@ -20344,16 +21634,16 @@ matchIntegerMINMAX(SDValue Cond, EVT VT, SDValue LHS, SDValue RHS,
     default: break;
     case ISD::SETULT:
     case ISD::SETULE:
-      Opc = hasUnsigned ? X86ISD::UMAX : 0; break;
+      Opc = hasUnsigned ? X86ISD::UMAX : 0u; break;
     case ISD::SETUGT:
     case ISD::SETUGE:
-      Opc = hasUnsigned ? X86ISD::UMIN : 0; break;
+      Opc = hasUnsigned ? X86ISD::UMIN : 0u; break;
     case ISD::SETLT:
     case ISD::SETLE:
-      Opc = hasSigned ? X86ISD::SMAX : 0; break;
+      Opc = hasSigned ? X86ISD::SMAX : 0u; break;
     case ISD::SETGT:
     case ISD::SETGE:
-      Opc = hasSigned ? X86ISD::SMIN : 0; break;
+      Opc = hasSigned ? X86ISD::SMIN : 0u; break;
     }
   }
 
@@ -20604,21 +21894,21 @@ static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
             TrueC->getAPIntValue().isPowerOf2()) {
           if (NeedsCondInvert) // Invert the condition if needed.
             Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
-                               DAG.getConstant(1, Cond.getValueType()));
+                               DAG.getConstant(1, DL, Cond.getValueType()));
 
           // Zero extend the condition if needed.
           Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
 
           unsigned ShAmt = TrueC->getAPIntValue().logBase2();
           return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
-                             DAG.getConstant(ShAmt, MVT::i8));
+                             DAG.getConstant(ShAmt, DL, MVT::i8));
         }
 
         // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
         if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
           if (NeedsCondInvert) // Invert the condition if needed.
             Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
-                               DAG.getConstant(1, Cond.getValueType()));
+                               DAG.getConstant(1, DL, Cond.getValueType()));
 
           // Zero extend the condition if needed.
           Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
@@ -20653,7 +21943,7 @@ static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
             APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
             if (NeedsCondInvert) // Invert the condition if needed.
               Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
-                                 DAG.getConstant(1, Cond.getValueType()));
+                                 DAG.getConstant(1, DL, Cond.getValueType()));
 
             // Zero extend the condition if needed.
             Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
@@ -20661,7 +21951,8 @@ static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
             // Scale the condition by the difference.
             if (Diff != 1)
               Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
-                                 DAG.getConstant(Diff, Cond.getValueType()));
+                                 DAG.getConstant(Diff, DL,
+                                                 Cond.getValueType()));
 
             // Add the base if non-zero.
             if (FalseC->getAPIntValue() != 0)
@@ -20749,7 +22040,7 @@ static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
                       (-OpRHSConst->getAPIntValue() - 1))
                 return DAG.getNode(
                     X86ISD::SUBUS, DL, VT, OpLHS,
-                    DAG.getConstant(-OpRHSConst->getAPIntValue(), VT));
+                    DAG.getConstant(-OpRHSConst->getAPIntValue(), DL, VT));
 
           // Another special case: If C was a sign bit, the sub has been
           // canonicalized into a xor.
@@ -20763,7 +22054,7 @@ static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
             // don't rely on particular values of undef lanes.
             return DAG.getNode(
                 X86ISD::SUBUS, DL, VT, OpLHS,
-                DAG.getConstant(OpRHSConst->getAPIntValue(), VT));
+                DAG.getConstant(OpRHSConst->getAPIntValue(), DL, VT));
         }
     }
   }
@@ -20831,31 +22122,41 @@ static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
       if (TValIsAllOnes && FValIsAllZeros)
         Ret = Cond;
       else if (TValIsAllOnes)
-        Ret = DAG.getNode(ISD::OR, DL, CondVT, Cond,
-                          DAG.getNode(ISD::BITCAST, DL, CondVT, RHS));
+        Ret =
+            DAG.getNode(ISD::OR, DL, CondVT, Cond, DAG.getBitcast(CondVT, RHS));
       else if (FValIsAllZeros)
         Ret = DAG.getNode(ISD::AND, DL, CondVT, Cond,
-                          DAG.getNode(ISD::BITCAST, DL, CondVT, LHS));
+                          DAG.getBitcast(CondVT, LHS));
 
-      return DAG.getNode(ISD::BITCAST, DL, VT, Ret);
+      return DAG.getBitcast(VT, Ret);
     }
   }
 
-  // If we know that this node is legal then we know that it is going to be
-  // matched by one of the SSE/AVX BLEND instructions. These instructions only
-  // depend on the highest bit in each word. Try to use SimplifyDemandedBits
-  // to simplify previous instructions.
+  // We should generate an X86ISD::BLENDI from a vselect if its argument
+  // is a sign_extend_inreg of an any_extend of a BUILD_VECTOR of
+  // constants. This specific pattern gets generated when we split a
+  // selector for a 512 bit vector in a machine without AVX512 (but with
+  // 256-bit vectors), during legalization:
+  //
+  // (vselect (sign_extend (any_extend (BUILD_VECTOR)) i1) LHS RHS)
+  //
+  // Iff we find this pattern and the build_vectors are built from
+  // constants, we translate the vselect into a shuffle_vector that we
+  // know will be matched by LowerVECTOR_SHUFFLEtoBlend.
+  if ((N->getOpcode() == ISD::VSELECT ||
+       N->getOpcode() == X86ISD::SHRUNKBLEND) &&
+      !DCI.isBeforeLegalize() && !VT.is512BitVector()) {
+    SDValue Shuffle = transformVSELECTtoBlendVECTOR_SHUFFLE(N, DAG, Subtarget);
+    if (Shuffle.getNode())
+      return Shuffle;
+  }
+
+  // If this is a *dynamic* select (non-constant condition) and we can match
+  // this node with one of the variable blend instructions, restructure the
+  // condition so that the blends can use the high bit of each element and use
+  // SimplifyDemandedBits to simplify the condition operand.
   if (N->getOpcode() == ISD::VSELECT && DCI.isBeforeLegalizeOps() &&
       !DCI.isBeforeLegalize() &&
-      // We explicitly check against SSE4.1, v8i16 and v16i16 because, although
-      // vselect nodes may be marked as Custom, they might only be legal when
-      // Cond is a build_vector of constants. This will be taken care in
-      // a later condition.
-      (TLI.isOperationLegalOrCustom(ISD::VSELECT, VT) &&
-       Subtarget->hasSSE41() && VT != MVT::v16i16 && VT != MVT::v8i16) &&
-      // Don't optimize vector of constants. Those are handled by
-      // the generic code and all the bits must be properly set for
-      // the generic optimizer.
       !ISD::isBuildVectorOfConstantSDNodes(Cond.getNode())) {
     unsigned BitWidth = Cond.getValueType().getScalarType().getSizeInBits();
 
@@ -20863,6 +22164,31 @@ static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
     if (BitWidth == 1)
       return SDValue();
 
+    // We can only handle the cases where VSELECT is directly legal on the
+    // subtarget. We custom lower VSELECT nodes with constant conditions and
+    // this makes it hard to see whether a dynamic VSELECT will correctly
+    // lower, so we both check the operation's status and explicitly handle the
+    // cases where a *dynamic* blend will fail even though a constant-condition
+    // blend could be custom lowered.
+    // FIXME: We should find a better way to handle this class of problems.
+    // Potentially, we should combine constant-condition vselect nodes
+    // pre-legalization into shuffles and not mark as many types as custom
+    // lowered.
+    if (!TLI.isOperationLegalOrCustom(ISD::VSELECT, VT))
+      return SDValue();
+    // FIXME: We don't support i16-element blends currently. We could and
+    // should support them by making *all* the bits in the condition be set
+    // rather than just the high bit and using an i8-element blend.
+    if (VT.getScalarType() == MVT::i16)
+      return SDValue();
+    // Dynamic blending was only available from SSE4.1 onward.
+    if (VT.getSizeInBits() == 128 && !Subtarget->hasSSE41())
+      return SDValue();
+    // Byte blends are only available in AVX2
+    if (VT.getSizeInBits() == 256 && VT.getScalarType() == MVT::i8 &&
+        !Subtarget->hasAVX2())
+      return SDValue();
+
     assert(BitWidth >= 8 && BitWidth <= 64 && "Invalid mask size");
     APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 1);
 
@@ -20911,25 +22237,6 @@ static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
     }
   }
 
-  // We should generate an X86ISD::BLENDI from a vselect if its argument
-  // is a sign_extend_inreg of an any_extend of a BUILD_VECTOR of
-  // constants. This specific pattern gets generated when we split a
-  // selector for a 512 bit vector in a machine without AVX512 (but with
-  // 256-bit vectors), during legalization:
-  //
-  // (vselect (sign_extend (any_extend (BUILD_VECTOR)) i1) LHS RHS)
-  //
-  // Iff we find this pattern and the build_vectors are built from
-  // constants, we translate the vselect into a shuffle_vector that we
-  // know will be matched by LowerVECTOR_SHUFFLEtoBlend.
-  if ((N->getOpcode() == ISD::VSELECT ||
-       N->getOpcode() == X86ISD::SHRUNKBLEND) &&
-      !DCI.isBeforeLegalize()) {
-    SDValue Shuffle = transformVSELECTtoBlendVECTOR_SHUFFLE(N, DAG, Subtarget);
-    if (Shuffle.getNode())
-      return Shuffle;
-  }
-
   return SDValue();
 }
 
@@ -21065,6 +22372,49 @@ static SDValue checkBoolTestSetCCCombine(SDValue Cmp, X86::CondCode &CC) {
   return SDValue();
 }
 
+/// Check whether Cond is an AND/OR of SETCCs off of the same EFLAGS.
+/// Match:
+///   (X86or (X86setcc) (X86setcc))
+///   (X86cmp (and (X86setcc) (X86setcc)), 0)
+static bool checkBoolTestAndOrSetCCCombine(SDValue Cond, X86::CondCode &CC0,
+                                           X86::CondCode &CC1, SDValue &Flags,
+                                           bool &isAnd) {
+  if (Cond->getOpcode() == X86ISD::CMP) {
+    ConstantSDNode *CondOp1C = dyn_cast<ConstantSDNode>(Cond->getOperand(1));
+    if (!CondOp1C || !CondOp1C->isNullValue())
+      return false;
+
+    Cond = Cond->getOperand(0);
+  }
+
+  isAnd = false;
+
+  SDValue SetCC0, SetCC1;
+  switch (Cond->getOpcode()) {
+  default: return false;
+  case ISD::AND:
+  case X86ISD::AND:
+    isAnd = true;
+    // fallthru
+  case ISD::OR:
+  case X86ISD::OR:
+    SetCC0 = Cond->getOperand(0);
+    SetCC1 = Cond->getOperand(1);
+    break;
+  };
+
+  // Make sure we have SETCC nodes, using the same flags value.
+  if (SetCC0.getOpcode() != X86ISD::SETCC ||
+      SetCC1.getOpcode() != X86ISD::SETCC ||
+      SetCC0->getOperand(1) != SetCC1->getOperand(1))
+    return false;
+
+  CC0 = (X86::CondCode)SetCC0->getConstantOperandVal(0);
+  CC1 = (X86::CondCode)SetCC1->getConstantOperandVal(0);
+  Flags = SetCC0->getOperand(1);
+  return true;
+}
+
 /// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
 static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
                                   TargetLowering::DAGCombinerInfo &DCI,
@@ -21098,7 +22448,7 @@ static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
       // Extra check as FCMOV only supports a subset of X86 cond.
       (FalseOp.getValueType() != MVT::f80 || hasFPCMov(CC))) {
     SDValue Ops[] = { FalseOp, TrueOp,
-                      DAG.getConstant(CC, MVT::i8), Flags };
+                      DAG.getConstant(CC, DL, MVT::i8), Flags };
     return DAG.getNode(X86ISD::CMOV, DL, N->getVTList(), Ops);
   }
 
@@ -21120,14 +22470,14 @@ static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
       // shift amount.
       if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
         Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
-                           DAG.getConstant(CC, MVT::i8), Cond);
+                           DAG.getConstant(CC, DL, MVT::i8), Cond);
 
         // Zero extend the condition if needed.
         Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
 
         unsigned ShAmt = TrueC->getAPIntValue().logBase2();
         Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
-                           DAG.getConstant(ShAmt, MVT::i8));
+                           DAG.getConstant(ShAmt, DL, MVT::i8));
         if (N->getNumValues() == 2)  // Dead flag value?
           return DCI.CombineTo(N, Cond, SDValue());
         return Cond;
@@ -21137,7 +22487,7 @@ static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
       // for any integer data type, including i8/i16.
       if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
         Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
-                           DAG.getConstant(CC, MVT::i8), Cond);
+                           DAG.getConstant(CC, DL, MVT::i8), Cond);
 
         // Zero extend the condition if needed.
         Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
@@ -21175,14 +22525,14 @@ static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
         if (isFastMultiplier) {
           APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
           Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
-                             DAG.getConstant(CC, MVT::i8), Cond);
+                             DAG.getConstant(CC, DL, MVT::i8), Cond);
           // Zero extend the condition if needed.
           Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
                              Cond);
           // Scale the condition by the difference.
           if (Diff != 1)
             Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
-                               DAG.getConstant(Diff, Cond.getValueType()));
+                               DAG.getConstant(Diff, DL, Cond.getValueType()));
 
           // Add the base if non-zero.
           if (FalseC->getAPIntValue() != 0)
@@ -21228,12 +22578,50 @@ static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
       if (CC == X86::COND_E &&
           CmpAgainst == dyn_cast<ConstantSDNode>(TrueOp)) {
         SDValue Ops[] = { FalseOp, Cond.getOperand(0),
-                          DAG.getConstant(CC, MVT::i8), Cond };
+                          DAG.getConstant(CC, DL, MVT::i8), Cond };
         return DAG.getNode(X86ISD::CMOV, DL, N->getVTList (), Ops);
       }
     }
   }
 
+  // Fold and/or of setcc's to double CMOV:
+  //   (CMOV F, T, ((cc1 | cc2) != 0)) -> (CMOV (CMOV F, T, cc1), T, cc2)
+  //   (CMOV F, T, ((cc1 & cc2) != 0)) -> (CMOV (CMOV T, F, !cc1), F, !cc2)
+  //
+  // This combine lets us generate:
+  //   cmovcc1 (jcc1 if we don't have CMOV)
+  //   cmovcc2 (same)
+  // instead of:
+  //   setcc1
+  //   setcc2
+  //   and/or
+  //   cmovne (jne if we don't have CMOV)
+  // When we can't use the CMOV instruction, it might increase branch
+  // mispredicts.
+  // When we can use CMOV, or when there is no mispredict, this improves
+  // throughput and reduces register pressure.
+  //
+  if (CC == X86::COND_NE) {
+    SDValue Flags;
+    X86::CondCode CC0, CC1;
+    bool isAndSetCC;
+    if (checkBoolTestAndOrSetCCCombine(Cond, CC0, CC1, Flags, isAndSetCC)) {
+      if (isAndSetCC) {
+        std::swap(FalseOp, TrueOp);
+        CC0 = X86::GetOppositeBranchCondition(CC0);
+        CC1 = X86::GetOppositeBranchCondition(CC1);
+      }
+
+      SDValue LOps[] = {FalseOp, TrueOp, DAG.getConstant(CC0, DL, MVT::i8),
+        Flags};
+      SDValue LCMOV = DAG.getNode(X86ISD::CMOV, DL, N->getVTList(), LOps);
+      SDValue Ops[] = {LCMOV, TrueOp, DAG.getConstant(CC1, DL, MVT::i8), Flags};
+      SDValue CMOV = DAG.getNode(X86ISD::CMOV, DL, N->getVTList(), Ops);
+      DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), SDValue(CMOV.getNode(), 1));
+      return CMOV;
+    }
+  }
+
   return SDValue();
 }
 
@@ -21244,24 +22632,16 @@ static SDValue PerformINTRINSIC_WO_CHAINCombine(SDNode *N, SelectionDAG &DAG,
   default: return SDValue();
   // SSE/AVX/AVX2 blend intrinsics.
   case Intrinsic::x86_avx2_pblendvb:
-  case Intrinsic::x86_avx2_pblendw:
-  case Intrinsic::x86_avx2_pblendd_128:
-  case Intrinsic::x86_avx2_pblendd_256:
     // Don't try to simplify this intrinsic if we don't have AVX2.
     if (!Subtarget->hasAVX2())
       return SDValue();
     // FALL-THROUGH
-  case Intrinsic::x86_avx_blend_pd_256:
-  case Intrinsic::x86_avx_blend_ps_256:
   case Intrinsic::x86_avx_blendv_pd_256:
   case Intrinsic::x86_avx_blendv_ps_256:
     // Don't try to simplify this intrinsic if we don't have AVX.
     if (!Subtarget->hasAVX())
       return SDValue();
     // FALL-THROUGH
-  case Intrinsic::x86_sse41_pblendw:
-  case Intrinsic::x86_sse41_blendpd:
-  case Intrinsic::x86_sse41_blendps:
   case Intrinsic::x86_sse41_blendvps:
   case Intrinsic::x86_sse41_blendvpd:
   case Intrinsic::x86_sse41_pblendvb: {
@@ -21333,8 +22713,9 @@ static SDValue PerformINTRINSIC_WO_CHAINCombine(SDNode *N, SelectionDAG &DAG,
 
     // Replace this packed shift intrinsic with a target independent
     // shift dag node.
-    SDValue Splat = DAG.getConstant(C, VT);
-    return DAG.getNode(ISD::SRA, SDLoc(N), VT, Op0, Splat);
+    SDLoc DL(N);
+    SDValue Splat = DAG.getConstant(C, DL, VT);
+    return DAG.getNode(ISD::SRA, DL, VT, Op0, Splat);
   }
   }
 }
@@ -21384,17 +22765,17 @@ static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
     SDValue NewMul;
     if (isPowerOf2_64(MulAmt1))
       NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
-                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
+                           DAG.getConstant(Log2_64(MulAmt1), DL, MVT::i8));
     else
       NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
-                           DAG.getConstant(MulAmt1, VT));
+                           DAG.getConstant(MulAmt1, DL, VT));
 
     if (isPowerOf2_64(MulAmt2))
       NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
-                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
+                           DAG.getConstant(Log2_64(MulAmt2), DL, MVT::i8));
     else
       NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
-                           DAG.getConstant(MulAmt2, VT));
+                           DAG.getConstant(MulAmt2, DL, VT));
 
     // Do not add new nodes to DAG combiner worklist.
     DCI.CombineTo(N, NewMul, false);
@@ -21421,9 +22802,11 @@ static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
       APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
       APInt ShAmt = N1C->getAPIntValue();
       Mask = Mask.shl(ShAmt);
-      if (Mask != 0)
-        return DAG.getNode(ISD::AND, SDLoc(N), VT,
-                           N00, DAG.getConstant(Mask, VT));
+      if (Mask != 0) {
+        SDLoc DL(N);
+        return DAG.getNode(ISD::AND, DL, VT,
+                           N00, DAG.getConstant(Mask, DL, VT));
+      }
     }
   }
 
@@ -21478,16 +22861,14 @@ static SDValue performShiftToAllZeros(SDNode *N, SelectionDAG &DAG,
 static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
                                    TargetLowering::DAGCombinerInfo &DCI,
                                    const X86Subtarget *Subtarget) {
-  if (N->getOpcode() == ISD::SHL) {
-    SDValue V = PerformSHLCombine(N, DAG);
-    if (V.getNode()) return V;
-  }
+  if (N->getOpcode() == ISD::SHL)
+    if (SDValue V = PerformSHLCombine(N, DAG))
+      return V;
 
-  if (N->getOpcode() != ISD::SRA) {
-    // Try to fold this logical shift into a zero vector.
-    SDValue V = performShiftToAllZeros(N, DAG, Subtarget);
-    if (V.getNode()) return V;
-  }
+  // Try to fold this logical shift into a zero vector.
+  if (N->getOpcode() != ISD::SRA)
+    if (SDValue V = performShiftToAllZeros(N, DAG, Subtarget))
+      return V;
 
   return SDValue();
 }
@@ -21553,7 +22934,8 @@ static SDValue CMPEQCombine(SDNode *N, SelectionDAG &DAG,
           unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4;
           if (Subtarget->hasAVX512()) {
             SDValue FSetCC = DAG.getNode(X86ISD::FSETCC, DL, MVT::i1, CMP00,
-                                         CMP01, DAG.getConstant(x86cc, MVT::i8));
+                                         CMP01,
+                                         DAG.getConstant(x86cc, DL, MVT::i8));
             if (N->getValueType(0) != MVT::i1)
               return DAG.getNode(ISD::ZERO_EXTEND, DL, N->getValueType(0),
                                  FSetCC);
@@ -21561,7 +22943,8 @@ static SDValue CMPEQCombine(SDNode *N, SelectionDAG &DAG,
           }
           SDValue OnesOrZeroesF = DAG.getNode(X86ISD::FSETCC, DL,
                                               CMP00.getValueType(), CMP00, CMP01,
-                                              DAG.getConstant(x86cc, MVT::i8));
+                                              DAG.getConstant(x86cc, DL,
+                                                              MVT::i8));
 
           bool is64BitFP = (CMP00.getValueType() == MVT::f64);
           MVT IntVT = is64BitFP ? MVT::i64 : MVT::i32;
@@ -21574,17 +22957,17 @@ static SDValue CMPEQCombine(SDNode *N, SelectionDAG &DAG,
             // and work with those going forward.
             SDValue Vector64 = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, MVT::v2f64,
                                            OnesOrZeroesF);
-            SDValue Vector32 = DAG.getNode(ISD::BITCAST, DL, MVT::v4f32,
-                                           Vector64);
+            SDValue Vector32 = DAG.getBitcast(MVT::v4f32, Vector64);
             OnesOrZeroesF = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32,
-                                        Vector32, DAG.getIntPtrConstant(0));
+                                        Vector32, DAG.getIntPtrConstant(0, DL));
             IntVT = MVT::i32;
           }
 
-          SDValue OnesOrZeroesI = DAG.getNode(ISD::BITCAST, DL, IntVT, OnesOrZeroesF);
+          SDValue OnesOrZeroesI = DAG.getBitcast(IntVT, OnesOrZeroesF);
           SDValue ANDed = DAG.getNode(ISD::AND, DL, IntVT, OnesOrZeroesI,
-                                      DAG.getConstant(1, IntVT));
-          SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ANDed);
+                                      DAG.getConstant(1, DL, IntVT));
+          SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8,
+                                              ANDed);
           return OneBitOfTruth;
         }
       }
@@ -21696,7 +23079,7 @@ static SDValue WidenMaskArithmetic(SDNode *N, SelectionDAG &DAG,
     APInt Mask = APInt::getAllOnesValue(InBits);
     Mask = Mask.zext(VT.getScalarType().getSizeInBits());
     return DAG.getNode(ISD::AND, DL, VT,
-                       Op, DAG.getConstant(Mask, VT));
+                       Op, DAG.getConstant(Mask, DL, VT));
   }
   case ISD::SIGN_EXTEND:
     return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT,
@@ -21718,7 +23101,7 @@ static SDValue VectorZextCombine(SDNode *N, SelectionDAG &DAG,
   // an and with a mask.
   // We'd like to try to combine that into a shuffle with zero
   // plus a bitcast, removing the and.
-  if (N0.getOpcode() != ISD::BITCAST || 
+  if (N0.getOpcode() != ISD::BITCAST ||
       N0.getOperand(0).getOpcode() != ISD::VECTOR_SHUFFLE)
     return SDValue();
 
@@ -21748,7 +23131,7 @@ static SDValue VectorZextCombine(SDNode *N, SelectionDAG &DAG,
 
   unsigned ResSize = N1.getValueType().getScalarSizeInBits();
   // Make sure the splat matches the mask we expect
-  if (SplatBitSize > ResSize || 
+  if (SplatBitSize > ResSize ||
       (SplatValue + 1).exactLogBase2() != (int)SrcSize)
     return SDValue();
 
@@ -21792,8 +23175,8 @@ static SDValue VectorZextCombine(SDNode *N, SelectionDAG &DAG,
       Mask.push_back(i / ZextRatio);
 
   SDValue NewShuffle = DAG.getVectorShuffle(Shuffle->getValueType(0), DL,
-    Shuffle->getOperand(0), DAG.getConstant(0, SrcType), Mask);
-  return DAG.getNode(ISD::BITCAST, DL,  N0.getValueType(), NewShuffle);
+    Shuffle->getOperand(0), DAG.getConstant(0, DL, SrcType), Mask);
+  return DAG.getBitcast(N0.getValueType(), NewShuffle);
 }
 
 static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG,
@@ -21802,12 +23185,10 @@ static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG,
   if (DCI.isBeforeLegalizeOps())
     return SDValue();
 
-  SDValue Zext = VectorZextCombine(N, DAG, DCI, Subtarget);
-  if (Zext.getNode())
+  if (SDValue Zext = VectorZextCombine(N, DAG, DCI, Subtarget))
     return Zext;
 
-  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
-  if (R.getNode())
+  if (SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget))
     return R;
 
   EVT VT = N->getValueType(0);
@@ -21830,7 +23211,8 @@ static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG,
           uint64_t MaskSize = countPopulation(Mask);
           if (Shift + MaskSize <= VT.getSizeInBits())
             return DAG.getNode(X86ISD::BEXTR, DL, VT, N0.getOperand(0),
-                               DAG.getConstant(Shift | (MaskSize << 8), VT));
+                               DAG.getConstant(Shift | (MaskSize << 8), DL,
+                                               VT));
         }
       }
     } // BEXTR
@@ -21866,8 +23248,7 @@ static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
   if (DCI.isBeforeLegalizeOps())
     return SDValue();
 
-  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
-  if (R.getNode())
+  if (SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget))
     return R;
 
   SDValue N0 = N->getOperand(0);
@@ -21935,7 +23316,7 @@ static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
         assert((EltBits == 8 || EltBits == 16 || EltBits == 32) &&
                "Unsupported VT for PSIGN");
         Mask = DAG.getNode(X86ISD::PSIGN, DL, MaskVT, X, Mask.getOperand(0));
-        return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
+        return DAG.getBitcast(VT, Mask);
       }
       // PBLENDVB only available on SSE 4.1
       if (!Subtarget->hasSSE41())
@@ -21943,11 +23324,11 @@ static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
 
       EVT BlendVT = (VT == MVT::v4i64) ? MVT::v32i8 : MVT::v16i8;
 
-      X = DAG.getNode(ISD::BITCAST, DL, BlendVT, X);
-      Y = DAG.getNode(ISD::BITCAST, DL, BlendVT, Y);
-      Mask = DAG.getNode(ISD::BITCAST, DL, BlendVT, Mask);
+      X = DAG.getBitcast(BlendVT, X);
+      Y = DAG.getBitcast(BlendVT, Y);
+      Mask = DAG.getBitcast(BlendVT, Mask);
       Mask = DAG.getNode(ISD::VSELECT, DL, BlendVT, Mask, Y, X);
-      return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
+      return DAG.getBitcast(VT, Mask);
     }
   }
 
@@ -22045,10 +23426,10 @@ static SDValue performIntegerAbsCombine(SDNode *N, SelectionDAG &DAG) {
       if (Y1C->getAPIntValue() == VT.getSizeInBits()-1) {
         // Generate SUB & CMOV.
         SDValue Neg = DAG.getNode(X86ISD::SUB, DL, DAG.getVTList(VT, MVT::i32),
-                                  DAG.getConstant(0, VT), N0.getOperand(0));
+                                  DAG.getConstant(0, DL, VT), N0.getOperand(0));
 
         SDValue Ops[] = { N0.getOperand(0), Neg,
-                          DAG.getConstant(X86::COND_GE, MVT::i8),
+                          DAG.getConstant(X86::COND_GE, DL, MVT::i8),
                           SDValue(Neg.getNode(), 1) };
         return DAG.getNode(X86ISD::CMOV, DL, DAG.getVTList(VT, MVT::Glue), Ops);
       }
@@ -22062,11 +23443,9 @@ static SDValue PerformXorCombine(SDNode *N, SelectionDAG &DAG,
   if (DCI.isBeforeLegalizeOps())
     return SDValue();
 
-  if (Subtarget->hasCMov()) {
-    SDValue RV = performIntegerAbsCombine(N, DAG);
-    if (RV.getNode())
+  if (Subtarget->hasCMov())
+    if (SDValue RV = performIntegerAbsCombine(N, DAG))
       return RV;
-  }
 
   return SDValue();
 }
@@ -22093,7 +23472,7 @@ static SDValue PerformLOADCombine(SDNode *N, SelectionDAG &DAG,
       return SDValue();
 
     SDValue Ptr = Ld->getBasePtr();
-    SDValue Increment = DAG.getConstant(16, TLI.getPointerTy());
+    SDValue Increment = DAG.getConstant(16, dl, TLI.getPointerTy());
 
     EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
                                   NumElems/2);
@@ -22148,7 +23527,7 @@ static SDValue PerformMLOADCombine(SDNode *N, SelectionDAG &DAG,
   assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
 
   // Convert Src0 value
-  SDValue WideSrc0 = DAG.getNode(ISD::BITCAST, dl, WideVecVT, Mld->getSrc0());
+  SDValue WideSrc0 = DAG.getBitcast(WideVecVT, Mld->getSrc0());
   if (Mld->getSrc0().getOpcode() != ISD::UNDEF) {
     SmallVector<int, 16> ShuffleVec(NumElems * SizeRatio, -1);
     for (unsigned i = 0; i != NumElems; ++i)
@@ -22165,14 +23544,14 @@ static SDValue PerformMLOADCombine(SDNode *N, SelectionDAG &DAG,
   SDValue Mask = Mld->getMask();
   if (Mask.getValueType() == VT) {
     // Mask and original value have the same type
-    NewMask = DAG.getNode(ISD::BITCAST, dl, WideVecVT, Mask);
+    NewMask = DAG.getBitcast(WideVecVT, Mask);
     SmallVector<int, 16> ShuffleVec(NumElems * SizeRatio, -1);
     for (unsigned i = 0; i != NumElems; ++i)
       ShuffleVec[i] = i * SizeRatio;
     for (unsigned i = NumElems; i != NumElems*SizeRatio; ++i)
       ShuffleVec[i] = NumElems*SizeRatio;
     NewMask = DAG.getVectorShuffle(WideVecVT, dl, NewMask,
-                                   DAG.getConstant(0, WideVecVT),
+                                   DAG.getConstant(0, dl, WideVecVT),
                                    &ShuffleVec[0]);
   }
   else {
@@ -22184,7 +23563,7 @@ static SDValue PerformMLOADCombine(SDNode *N, SelectionDAG &DAG,
 
     unsigned NumConcat = WidenNumElts / MaskNumElts;
     SmallVector<SDValue, 16> Ops(NumConcat);
-    SDValue ZeroVal = DAG.getConstant(0, Mask.getValueType());
+    SDValue ZeroVal = DAG.getConstant(0, dl, Mask.getValueType());
     Ops[0] = Mask;
     for (unsigned i = 1; i != NumConcat; ++i)
       Ops[i] = ZeroVal;
@@ -22233,7 +23612,7 @@ static SDValue PerformMSTORECombine(SDNode *N, SelectionDAG &DAG,
 
   assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
 
-  SDValue WideVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, Mst->getValue());
+  SDValue WideVec = DAG.getBitcast(WideVecVT, Mst->getValue());
   SmallVector<int, 16> ShuffleVec(NumElems * SizeRatio, -1);
   for (unsigned i = 0; i != NumElems; ++i)
     ShuffleVec[i] = i * SizeRatio;
@@ -22250,13 +23629,13 @@ static SDValue PerformMSTORECombine(SDNode *N, SelectionDAG &DAG,
   SDValue Mask = Mst->getMask();
   if (Mask.getValueType() == VT) {
     // Mask and original value have the same type
-    NewMask = DAG.getNode(ISD::BITCAST, dl, WideVecVT, Mask);
+    NewMask = DAG.getBitcast(WideVecVT, Mask);
     for (unsigned i = 0; i != NumElems; ++i)
       ShuffleVec[i] = i * SizeRatio;
     for (unsigned i = NumElems; i != NumElems*SizeRatio; ++i)
       ShuffleVec[i] = NumElems*SizeRatio;
     NewMask = DAG.getVectorShuffle(WideVecVT, dl, NewMask,
-                                   DAG.getConstant(0, WideVecVT),
+                                   DAG.getConstant(0, dl, WideVecVT),
                                    &ShuffleVec[0]);
   }
   else {
@@ -22268,7 +23647,7 @@ static SDValue PerformMSTORECombine(SDNode *N, SelectionDAG &DAG,
 
     unsigned NumConcat = WidenNumElts / MaskNumElts;
     SmallVector<SDValue, 16> Ops(NumConcat);
-    SDValue ZeroVal = DAG.getConstant(0, Mask.getValueType());
+    SDValue ZeroVal = DAG.getConstant(0, dl, Mask.getValueType());
     Ops[0] = Mask;
     for (unsigned i = 1; i != NumConcat; ++i)
       Ops[i] = ZeroVal;
@@ -22302,7 +23681,7 @@ static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
     SDValue Value0 = Extract128BitVector(StoredVal, 0, DAG, dl);
     SDValue Value1 = Extract128BitVector(StoredVal, NumElems/2, DAG, dl);
 
-    SDValue Stride = DAG.getConstant(16, TLI.getPointerTy());
+    SDValue Stride = DAG.getConstant(16, dl, TLI.getPointerTy());
     SDValue Ptr0 = St->getBasePtr();
     SDValue Ptr1 = DAG.getNode(ISD::ADD, dl, Ptr0.getValueType(), Ptr0, Stride);
 
@@ -22342,7 +23721,7 @@ static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
 
     assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
 
-    SDValue WideVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, St->getValue());
+    SDValue WideVec = DAG.getBitcast(WideVecVT, St->getValue());
     SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
     for (unsigned i = 0; i != NumElems; ++i)
       ShuffleVec[i] = i * SizeRatio;
@@ -22373,9 +23752,9 @@ static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
     EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
             StoreType, VT.getSizeInBits()/StoreType.getSizeInBits());
     assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
-    SDValue ShuffWide = DAG.getNode(ISD::BITCAST, dl, StoreVecVT, Shuff);
+    SDValue ShuffWide = DAG.getBitcast(StoreVecVT, Shuff);
     SmallVector<SDValue, 8> Chains;
-    SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8,
+    SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8, dl,
                                         TLI.getPointerTy());
     SDValue Ptr = St->getBasePtr();
 
@@ -22383,7 +23762,7 @@ static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
     for (unsigned i=0, e=(ToSz*NumElems)/StoreType.getSizeInBits(); i!=e; ++i) {
       SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
                                    StoreType, ShuffWide,
-                                   DAG.getIntPtrConstant(i));
+                                   DAG.getIntPtrConstant(i, dl));
       SDValue Ch = DAG.getStore(St->getChain(), dl, SubVec, Ptr,
                                 St->getPointerInfo(), St->isVolatile(),
                                 St->isNonTemporal(), St->getAlignment());
@@ -22405,8 +23784,8 @@ static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
 
   const Function *F = DAG.getMachineFunction().getFunction();
   bool NoImplicitFloatOps = F->hasFnAttribute(Attribute::NoImplicitFloat);
-  bool F64IsLegal = !DAG.getTarget().Options.UseSoftFloat && !NoImplicitFloatOps
-                     && Subtarget->hasSSE2();
+  bool F64IsLegal =
+      !Subtarget->useSoftFloat() && !NoImplicitFloatOps && Subtarget->hasSSE2();
   if ((VT.isVector() ||
        (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
       isa<LoadSDNode>(St->getValue()) &&
@@ -22467,7 +23846,7 @@ static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
     // Otherwise, lower to two pairs of 32-bit loads / stores.
     SDValue LoAddr = Ld->getBasePtr();
     SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
-                                 DAG.getConstant(4, MVT::i32));
+                                 DAG.getConstant(4, LdDL, MVT::i32));
 
     SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
                                Ld->getPointerInfo(),
@@ -22488,7 +23867,7 @@ static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
 
     LoAddr = St->getBasePtr();
     HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
-                         DAG.getConstant(4, MVT::i32));
+                         DAG.getConstant(4, StDL, MVT::i32));
 
     SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
                                 St->getPointerInfo(),
@@ -22501,6 +23880,27 @@ static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
                                 MinAlign(St->getAlignment(), 4));
     return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
   }
+
+  // This is similar to the above case, but here we handle a scalar 64-bit
+  // integer store that is extracted from a vector on a 32-bit target.
+  // If we have SSE2, then we can treat it like a floating-point double
+  // to get past legalization. The execution dependencies fixup pass will
+  // choose the optimal machine instruction for the store if this really is
+  // an integer or v2f32 rather than an f64.
+  if (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit() &&
+      St->getOperand(1).getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
+    SDValue OldExtract = St->getOperand(1);
+    SDValue ExtOp0 = OldExtract.getOperand(0);
+    unsigned VecSize = ExtOp0.getValueSizeInBits();
+    EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, VecSize / 64);
+    SDValue BitCast = DAG.getBitcast(VecVT, ExtOp0);
+    SDValue NewExtract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
+                                     BitCast, OldExtract.getOperand(1));
+    return DAG.getStore(St->getChain(), dl, NewExtract, St->getBasePtr(),
+                        St->getPointerInfo(), St->isVolatile(),
+                        St->isNonTemporal(), St->getAlignment());
+  }
+
   return SDValue();
 }
 
@@ -22599,7 +23999,7 @@ static bool isHorizontalBinOp(SDValue &LHS, SDValue &RHS, bool IsCommutative) {
   // If A and B occur in reverse order in RHS, then "swap" them (which means
   // rewriting the mask).
   if (A != C)
-    CommuteVectorShuffleMask(RMask, NumElts);
+    ShuffleVectorSDNode::commuteMask(RMask);
 
   // At this point LHS and RHS are equivalent to
   //   LHS = VECTOR_SHUFFLE A, B, LMask
@@ -22708,7 +24108,7 @@ static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
     if (C->getValueAPF().isPosZero())
       return N->getOperand(1);
-  
+
   return SDValue();
 }
 
@@ -22799,32 +24199,83 @@ static SDValue PerformSExtCombine(SDNode *N, SelectionDAG &DAG,
                                   const X86Subtarget *Subtarget) {
   SDValue N0 = N->getOperand(0);
   EVT VT = N->getValueType(0);
+  EVT SVT = VT.getScalarType();
+  EVT InVT = N0.getValueType();
+  EVT InSVT = InVT.getScalarType();
+  SDLoc DL(N);
 
   // (i8,i32 sext (sdivrem (i8 x, i8 y)) ->
   // (i8,i32 (sdivrem_sext_hreg (i8 x, i8 y)
   // This exposes the sext to the sdivrem lowering, so that it directly extends
   // from AH (which we otherwise need to do contortions to access).
   if (N0.getOpcode() == ISD::SDIVREM && N0.getResNo() == 1 &&
-      N0.getValueType() == MVT::i8 && VT == MVT::i32) {
-    SDLoc dl(N);
+      InVT == MVT::i8 && VT == MVT::i32) {
     SDVTList NodeTys = DAG.getVTList(MVT::i8, VT);
-    SDValue R = DAG.getNode(X86ISD::SDIVREM8_SEXT_HREG, dl, NodeTys,
+    SDValue R = DAG.getNode(X86ISD::SDIVREM8_SEXT_HREG, DL, NodeTys,
                             N0.getOperand(0), N0.getOperand(1));
     DAG.ReplaceAllUsesOfValueWith(N0.getValue(0), R.getValue(0));
     return R.getValue(1);
   }
 
-  if (!DCI.isBeforeLegalizeOps())
+  if (!DCI.isBeforeLegalizeOps()) {
+    if (InVT == MVT::i1) {
+      SDValue Zero = DAG.getConstant(0, DL, VT);
+      SDValue AllOnes =
+        DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), DL, VT);
+      return DAG.getNode(ISD::SELECT, DL, VT, N0, AllOnes, Zero);
+    }
     return SDValue();
+  }
+
+  if (VT.isVector()) {
+    auto ExtendToVec128 = [&DAG](SDLoc DL, SDValue N) {
+      EVT InVT = N.getValueType();
+      EVT OutVT = EVT::getVectorVT(*DAG.getContext(), InVT.getScalarType(),
+                                   128 / InVT.getScalarSizeInBits());
+      SmallVector<SDValue, 8> Opnds(128 / InVT.getSizeInBits(),
+                                    DAG.getUNDEF(InVT));
+      Opnds[0] = N;
+      return DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, Opnds);
+    };
+
+    // If target-size is 128-bits, then convert to ISD::SIGN_EXTEND_VECTOR_INREG
+    // which ensures lowering to X86ISD::VSEXT (pmovsx*).
+    if (VT.getSizeInBits() == 128 &&
+        (SVT == MVT::i64 || SVT == MVT::i32 || SVT == MVT::i16) &&
+        (InSVT == MVT::i32 || InSVT == MVT::i16 || InSVT == MVT::i8)) {
+      SDValue ExOp = ExtendToVec128(DL, N0);
+      return DAG.getSignExtendVectorInReg(ExOp, DL, VT);
+    }
+
+    // On pre-AVX2 targets, split into 128-bit nodes of
+    // ISD::SIGN_EXTEND_VECTOR_INREG.
+    if (!Subtarget->hasInt256() && !(VT.getSizeInBits() % 128) &&
+        (SVT == MVT::i64 || SVT == MVT::i32 || SVT == MVT::i16) &&
+        (InSVT == MVT::i32 || InSVT == MVT::i16 || InSVT == MVT::i8)) {
+      unsigned NumVecs = VT.getSizeInBits() / 128;
+      unsigned NumSubElts = 128 / SVT.getSizeInBits();
+      EVT SubVT = EVT::getVectorVT(*DAG.getContext(), SVT, NumSubElts);
+      EVT InSubVT = EVT::getVectorVT(*DAG.getContext(), InSVT, NumSubElts);
+
+      SmallVector<SDValue, 8> Opnds;
+      for (unsigned i = 0, Offset = 0; i != NumVecs;
+           ++i, Offset += NumSubElts) {
+        SDValue SrcVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InSubVT, N0,
+                                     DAG.getIntPtrConstant(Offset, DL));
+        SrcVec = ExtendToVec128(DL, SrcVec);
+        SrcVec = DAG.getSignExtendVectorInReg(SrcVec, DL, SubVT);
+        Opnds.push_back(SrcVec);
+      }
+      return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Opnds);
+    }
+  }
 
   if (!Subtarget->hasFp256())
     return SDValue();
 
-  if (VT.isVector() && VT.getSizeInBits() == 256) {
-    SDValue R = WidenMaskArithmetic(N, DAG, DCI, Subtarget);
-    if (R.getNode())
+  if (VT.isVector() && VT.getSizeInBits() == 256)
+    if (SDValue R = WidenMaskArithmetic(N, DAG, DCI, Subtarget))
       return R;
-  }
 
   return SDValue();
 }
@@ -22840,7 +24291,8 @@ static SDValue PerformFMACombine(SDNode *N, SelectionDAG &DAG,
 
   EVT ScalarVT = VT.getScalarType();
   if ((ScalarVT != MVT::f32 && ScalarVT != MVT::f64) ||
-      (!Subtarget->hasFMA() && !Subtarget->hasFMA4()))
+      (!Subtarget->hasFMA() && !Subtarget->hasFMA4() &&
+       !Subtarget->hasAVX512()))
     return SDValue();
 
   SDValue A = N->getOperand(0);
@@ -22891,7 +24343,7 @@ static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG,
       return DAG.getNode(ISD::AND, dl, VT,
                          DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
                                      N00.getOperand(0), N00.getOperand(1)),
-                         DAG.getConstant(1, VT));
+                         DAG.getConstant(1, dl, VT));
     }
   }
 
@@ -22903,14 +24355,13 @@ static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG,
       return DAG.getNode(ISD::AND, dl, VT,
                          DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
                                      N00.getOperand(0), N00.getOperand(1)),
-                         DAG.getConstant(1, VT));
+                         DAG.getConstant(1, dl, VT));
     }
   }
-  if (VT.is256BitVector()) {
-    SDValue R = WidenMaskArithmetic(N, DAG, DCI, Subtarget);
-    if (R.getNode())
+
+  if (VT.is256BitVector())
+    if (SDValue R = WidenMaskArithmetic(N, DAG, DCI, Subtarget))
       return R;
-  }
 
   // (i8,i32 zext (udivrem (i8 x, i8 y)) ->
   // (i8,i32 (udivrem_zext_hreg (i8 x, i8 y)
@@ -22942,45 +24393,51 @@ static SDValue PerformISDSETCCCombine(SDNode *N, SelectionDAG &DAG,
   if ((CC == ISD::SETNE || CC == ISD::SETEQ) && LHS.getOpcode() == ISD::SUB)
     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(LHS.getOperand(0)))
       if (C->getAPIntValue() == 0 && LHS.hasOneUse()) {
-        SDValue addV = DAG.getNode(ISD::ADD, SDLoc(N),
-                                   LHS.getValueType(), RHS, LHS.getOperand(1));
-        return DAG.getSetCC(SDLoc(N), N->getValueType(0),
-                            addV, DAG.getConstant(0, addV.getValueType()), CC);
+        SDValue addV = DAG.getNode(ISD::ADD, DL, LHS.getValueType(), RHS,
+                                   LHS.getOperand(1));
+        return DAG.getSetCC(DL, N->getValueType(0), addV,
+                            DAG.getConstant(0, DL, addV.getValueType()), CC);
       }
   if ((CC == ISD::SETNE || CC == ISD::SETEQ) && RHS.getOpcode() == ISD::SUB)
     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS.getOperand(0)))
       if (C->getAPIntValue() == 0 && RHS.hasOneUse()) {
-        SDValue addV = DAG.getNode(ISD::ADD, SDLoc(N),
-                                   RHS.getValueType(), LHS, RHS.getOperand(1));
-        return DAG.getSetCC(SDLoc(N), N->getValueType(0),
-                            addV, DAG.getConstant(0, addV.getValueType()), CC);
+        SDValue addV = DAG.getNode(ISD::ADD, DL, RHS.getValueType(), LHS,
+                                   RHS.getOperand(1));
+        return DAG.getSetCC(DL, N->getValueType(0), addV,
+                            DAG.getConstant(0, DL, addV.getValueType()), CC);
       }
 
-  if (VT.getScalarType() == MVT::i1) {
-    bool IsSEXT0 = (LHS.getOpcode() == ISD::SIGN_EXTEND) &&
-      (LHS.getOperand(0).getValueType().getScalarType() ==  MVT::i1);
-    bool IsVZero0 = ISD::isBuildVectorAllZeros(LHS.getNode());
-    if (!IsSEXT0 && !IsVZero0)
-      return SDValue();
-    bool IsSEXT1 = (RHS.getOpcode() == ISD::SIGN_EXTEND) &&
-      (RHS.getOperand(0).getValueType().getScalarType() ==  MVT::i1);
+  if (VT.getScalarType() == MVT::i1 &&
+      (CC == ISD::SETNE || CC == ISD::SETEQ || ISD::isSignedIntSetCC(CC))) {
+    bool IsSEXT0 =
+        (LHS.getOpcode() == ISD::SIGN_EXTEND) &&
+        (LHS.getOperand(0).getValueType().getScalarType() == MVT::i1);
     bool IsVZero1 = ISD::isBuildVectorAllZeros(RHS.getNode());
 
-    if (!IsSEXT1 && !IsVZero1)
-      return SDValue();
+    if (!IsSEXT0 || !IsVZero1) {
+      // Swap the operands and update the condition code.
+      std::swap(LHS, RHS);
+      CC = ISD::getSetCCSwappedOperands(CC);
+
+      IsSEXT0 = (LHS.getOpcode() == ISD::SIGN_EXTEND) &&
+                (LHS.getOperand(0).getValueType().getScalarType() == MVT::i1);
+      IsVZero1 = ISD::isBuildVectorAllZeros(RHS.getNode());
+    }
 
     if (IsSEXT0 && IsVZero1) {
-      assert(VT == LHS.getOperand(0).getValueType() && "Uexpected operand type");
-      if (CC == ISD::SETEQ)
+      assert(VT == LHS.getOperand(0).getValueType() &&
+             "Uexpected operand type");
+      if (CC == ISD::SETGT)
+        return DAG.getConstant(0, DL, VT);
+      if (CC == ISD::SETLE)
+        return DAG.getConstant(1, DL, VT);
+      if (CC == ISD::SETEQ || CC == ISD::SETGE)
         return DAG.getNOT(DL, LHS.getOperand(0), VT);
+
+      assert((CC == ISD::SETNE || CC == ISD::SETLT) &&
+             "Unexpected condition code!");
       return LHS.getOperand(0);
     }
-    if (IsSEXT1 && IsVZero0) {
-      assert(VT == RHS.getOperand(0).getValueType() && "Uexpected operand type");
-      if (CC == ISD::SETEQ)
-        return DAG.getNOT(DL, RHS.getOperand(0), VT);
-      return RHS.getOperand(0);
-    }
   }
 
   return SDValue();
@@ -22994,7 +24451,8 @@ static SDValue NarrowVectorLoadToElement(LoadSDNode *Load, unsigned Index,
   SDValue Addr = Load->getOperand(1);
   SDValue NewAddr = DAG.getNode(
       ISD::ADD, dl, Addr.getSimpleValueType(), Addr,
-      DAG.getConstant(Index * EVT.getStoreSize(), Addr.getSimpleValueType()));
+      DAG.getConstant(Index * EVT.getStoreSize(), dl,
+                      Addr.getSimpleValueType()));
 
   SDValue NewLoad =
       DAG.getLoad(EVT, dl, Load->getChain(), NewAddr,
@@ -23014,20 +24472,47 @@ static SDValue PerformINSERTPSCombine(SDNode *N, SelectionDAG &DAG,
   if (MayFoldLoad(Ld)) {
     // Extract the countS bits from the immediate so we can get the proper
     // address when narrowing the vector load to a specific element.
-    // When the second source op is a memory address, interps doesn't use
+    // When the second source op is a memory address, insertps doesn't use
     // countS and just gets an f32 from that address.
     unsigned DestIndex =
         cast<ConstantSDNode>(N->getOperand(2))->getZExtValue() >> 6;
+
     Ld = NarrowVectorLoadToElement(cast<LoadSDNode>(Ld), DestIndex, DAG);
-  } else
-    return SDValue();
 
-  // Create this as a scalar to vector to match the instruction pattern.
-  SDValue LoadScalarToVector = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Ld);
-  // countS bits are ignored when loading from memory on insertps, which
-  // means we don't need to explicitly set them to 0.
-  return DAG.getNode(X86ISD::INSERTPS, dl, VT, N->getOperand(0),
-                     LoadScalarToVector, N->getOperand(2));
+    // Create this as a scalar to vector to match the instruction pattern.
+    SDValue LoadScalarToVector = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Ld);
+    // countS bits are ignored when loading from memory on insertps, which
+    // means we don't need to explicitly set them to 0.
+    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N->getOperand(0),
+                       LoadScalarToVector, N->getOperand(2));
+  }
+  return SDValue();
+}
+
+static SDValue PerformBLENDICombine(SDNode *N, SelectionDAG &DAG) {
+  SDValue V0 = N->getOperand(0);
+  SDValue V1 = N->getOperand(1);
+  SDLoc DL(N);
+  EVT VT = N->getValueType(0);
+
+  // Canonicalize a v2f64 blend with a mask of 2 by swapping the vector
+  // operands and changing the mask to 1. This saves us a bunch of
+  // pattern-matching possibilities related to scalar math ops in SSE/AVX.
+  // x86InstrInfo knows how to commute this back after instruction selection
+  // if it would help register allocation.
+
+  // TODO: If optimizing for size or a processor that doesn't suffer from
+  // partial register update stalls, this should be transformed into a MOVSD
+  // instruction because a MOVSD is 1-2 bytes smaller than a BLENDPD.
+
+  if (VT == MVT::v2f64)
+    if (auto *Mask = dyn_cast<ConstantSDNode>(N->getOperand(2)))
+      if (Mask->getZExtValue() == 2 && !isShuffleFoldableLoad(V0)) {
+        SDValue NewMask = DAG.getConstant(1, DL, MVT::i8);
+        return DAG.getNode(X86ISD::BLENDI, DL, VT, V1, V0, NewMask);
+      }
+
+  return SDValue();
 }
 
 // Helper function of PerformSETCCCombine. It is to materialize "setb reg"
@@ -23038,12 +24523,14 @@ static SDValue MaterializeSETB(SDLoc DL, SDValue EFLAGS, SelectionDAG &DAG,
   if (VT == MVT::i8)
     return DAG.getNode(ISD::AND, DL, VT,
                        DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
-                                   DAG.getConstant(X86::COND_B, MVT::i8), EFLAGS),
-                       DAG.getConstant(1, VT));
+                                   DAG.getConstant(X86::COND_B, DL, MVT::i8),
+                                   EFLAGS),
+                       DAG.getConstant(1, DL, VT));
   assert (VT == MVT::i1 && "Unexpected type for SECCC node");
   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1,
                      DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
-                                 DAG.getConstant(X86::COND_B, MVT::i8), EFLAGS));
+                                 DAG.getConstant(X86::COND_B, DL, MVT::i8),
+                                 EFLAGS));
 }
 
 // Optimize  RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
@@ -23078,11 +24565,8 @@ static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG,
   if (CC == X86::COND_B)
     return MaterializeSETB(DL, EFLAGS, DAG, N->getSimpleValueType(0));
 
-  SDValue Flags;
-
-  Flags = checkBoolTestSetCCCombine(EFLAGS, CC);
-  if (Flags.getNode()) {
-    SDValue Cond = DAG.getConstant(CC, MVT::i8);
+  if (SDValue Flags = checkBoolTestSetCCCombine(EFLAGS, CC)) {
+    SDValue Cond = DAG.getConstant(CC, DL, MVT::i8);
     return DAG.getNode(X86ISD::SETCC, DL, N->getVTList(), Cond, Flags);
   }
 
@@ -23100,11 +24584,8 @@ static SDValue PerformBrCondCombine(SDNode *N, SelectionDAG &DAG,
   SDValue EFLAGS = N->getOperand(3);
   X86::CondCode CC = X86::CondCode(N->getConstantOperandVal(2));
 
-  SDValue Flags;
-
-  Flags = checkBoolTestSetCCCombine(EFLAGS, CC);
-  if (Flags.getNode()) {
-    SDValue Cond = DAG.getConstant(CC, MVT::i8);
+  if (SDValue Flags = checkBoolTestSetCCCombine(EFLAGS, CC)) {
+    SDValue Cond = DAG.getConstant(CC, DL, MVT::i8);
     return DAG.getNode(X86ISD::BRCOND, DL, N->getVTList(), Chain, Dest, Cond,
                        Flags);
   }
@@ -23148,10 +24629,10 @@ static SDValue performVectorCompareAndMaskUnaryOpCombine(SDNode *N,
     // DAG.
     SDValue SourceConst = DAG.getNode(N->getOpcode(), DL, VT, SDValue(BV, 0));
     // The AND node needs bitcasts to/from an integer vector type around it.
-    SDValue MaskConst = DAG.getNode(ISD::BITCAST, DL, IntVT, SourceConst);
+    SDValue MaskConst = DAG.getBitcast(IntVT, SourceConst);
     SDValue NewAnd = DAG.getNode(ISD::AND, DL, IntVT,
                                  N->getOperand(0)->getOperand(0), MaskConst);
-    SDValue Res = DAG.getNode(ISD::BITCAST, DL, VT, NewAnd);
+    SDValue Res = DAG.getBitcast(VT, NewAnd);
     return Res;
   }
 
@@ -23162,18 +24643,19 @@ static SDValue PerformSINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG,
                                         const X86Subtarget *Subtarget) {
   // First try to optimize away the conversion entirely when it's
   // conditionally from a constant. Vectors only.
-  SDValue Res = performVectorCompareAndMaskUnaryOpCombine(N, DAG);
-  if (Res != SDValue())
+  if (SDValue Res = performVectorCompareAndMaskUnaryOpCombine(N, DAG))
     return Res;
 
   // Now move on to more general possibilities.
   SDValue Op0 = N->getOperand(0);
   EVT InVT = Op0->getValueType(0);
 
-  // SINT_TO_FP(v4i8) -> SINT_TO_FP(SEXT(v4i8 to v4i32))
-  if (InVT == MVT::v8i8 || InVT == MVT::v4i8) {
+  // SINT_TO_FP(vXi8) -> SINT_TO_FP(SEXT(vXi8 to vXi32))
+  // SINT_TO_FP(vXi16) -> SINT_TO_FP(SEXT(vXi16 to vXi32))
+  if (InVT == MVT::v8i8 || InVT == MVT::v4i8 ||
+      InVT == MVT::v8i16 || InVT == MVT::v4i16) {
     SDLoc dl(N);
-    MVT DstVT = InVT == MVT::v4i8 ? MVT::v4i32 : MVT::v8i32;
+    MVT DstVT = MVT::getVectorVT(MVT::i32, InVT.getVectorNumElements());
     SDValue P = DAG.getNode(ISD::SIGN_EXTEND, dl, DstVT, Op0);
     return DAG.getNode(ISD::SINT_TO_FP, dl, N->getValueType(0), P);
   }
@@ -23182,12 +24664,17 @@ static SDValue PerformSINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG,
   // a 32-bit target where SSE doesn't support i64->FP operations.
   if (Op0.getOpcode() == ISD::LOAD) {
     LoadSDNode *Ld = cast<LoadSDNode>(Op0.getNode());
-    EVT VT = Ld->getValueType(0);
+    EVT LdVT = Ld->getValueType(0);
+
+    // This transformation is not supported if the result type is f16
+    if (N->getValueType(0) == MVT::f16)
+      return SDValue();
+
     if (!Ld->isVolatile() && !N->getValueType(0).isVector() &&
         ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() &&
-        !Subtarget->is64Bit() && VT == MVT::i64) {
+        !Subtarget->is64Bit() && LdVT == MVT::i64) {
       SDValue FILDChain = Subtarget->getTargetLowering()->BuildFILD(
-          SDValue(N, 0), Ld->getValueType(0), Ld->getChain(), Op0, DAG);
+          SDValue(N, 0), LdVT, Ld->getChain(), Op0, DAG);
       DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), FILDChain.getValue(1));
       return FILDChain;
     }
@@ -23208,12 +24695,13 @@ static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG,
       SDValue(N, 1).use_empty()) {
     SDLoc DL(N);
     EVT VT = N->getValueType(0);
-    SDValue CarryOut = DAG.getConstant(0, N->getValueType(1));
+    SDValue CarryOut = DAG.getConstant(0, DL, N->getValueType(1));
     SDValue Res1 = DAG.getNode(ISD::AND, DL, VT,
                                DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
-                                           DAG.getConstant(X86::COND_B,MVT::i8),
+                                           DAG.getConstant(X86::COND_B, DL,
+                                                           MVT::i8),
                                            N->getOperand(2)),
-                               DAG.getConstant(1, VT));
+                               DAG.getConstant(1, DL, VT));
     return DCI.CombineTo(N, Res1, CarryOut);
   }
 
@@ -23248,16 +24736,17 @@ static SDValue OptimizeConditionalInDecrement(SDNode *N, SelectionDAG &DAG) {
 
   SDValue CmpOp0 = Cmp.getOperand(0);
   SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0,
-                               DAG.getConstant(1, CmpOp0.getValueType()));
+                               DAG.getConstant(1, DL, CmpOp0.getValueType()));
 
   SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1);
   if (CC == X86::COND_NE)
     return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB,
                        DL, OtherVal.getValueType(), OtherVal,
-                       DAG.getConstant(-1ULL, OtherVal.getValueType()), NewCmp);
+                       DAG.getConstant(-1ULL, DL, OtherVal.getValueType()),
+                       NewCmp);
   return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC,
                      DL, OtherVal.getValueType(), OtherVal,
-                     DAG.getConstant(0, OtherVal.getValueType()), NewCmp);
+                     DAG.getConstant(0, DL, OtherVal.getValueType()), NewCmp);
 }
 
 /// PerformADDCombine - Do target-specific dag combines on integer adds.
@@ -23293,9 +24782,9 @@ static SDValue PerformSubCombine(SDNode *N, SelectionDAG &DAG,
       EVT VT = Op0.getValueType();
       SDValue NewXor = DAG.getNode(ISD::XOR, SDLoc(Op1), VT,
                                    Op1.getOperand(0),
-                                   DAG.getConstant(~XorC, VT));
+                                   DAG.getConstant(~XorC, SDLoc(Op1), VT));
       return DAG.getNode(ISD::ADD, SDLoc(N), VT, NewXor,
-                         DAG.getConstant(C->getAPIntValue()+1, VT));
+                         DAG.getConstant(C->getAPIntValue() + 1, SDLoc(N), VT));
     }
   }
 
@@ -23344,8 +24833,7 @@ static SDValue performVZEXTCombine(SDNode *N, SelectionDAG &DAG,
     // In this case, the inner vzext is completely dead because we're going to
     // only look at bits inside of the low element. Just do the outer vzext on
     // a bitcast of the input to the inner.
-    return DAG.getNode(X86ISD::VZEXT, DL, VT,
-                       DAG.getNode(ISD::BITCAST, DL, OpVT, V));
+    return DAG.getNode(X86ISD::VZEXT, DL, VT, DAG.getBitcast(OpVT, V));
   }
 
   // Check if we can bypass extracting and re-inserting an element of an input
@@ -23365,9 +24853,9 @@ static SDValue performVZEXTCombine(SDNode *N, SelectionDAG &DAG,
           OrigVT = MVT::getVectorVT(OrigVT.getVectorElementType(),
                                     OrigVT.getVectorNumElements() / Ratio);
           OrigV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OrigVT, OrigV,
-                              DAG.getIntPtrConstant(0));
+                              DAG.getIntPtrConstant(0, DL));
         }
-        Op = DAG.getNode(ISD::BITCAST, DL, OpVT, OrigV);
+        Op = DAG.getBitcast(OpVT, OrigV);
         return DAG.getNode(X86ISD::VZEXT, DL, VT, Op);
       }
   }
@@ -23418,7 +24906,6 @@ SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
   case ISD::SIGN_EXTEND:    return PerformSExtCombine(N, DAG, DCI, Subtarget);
   case ISD::SIGN_EXTEND_INREG:
     return PerformSIGN_EXTEND_INREGCombine(N, DAG, Subtarget);
-  case ISD::TRUNCATE:       return PerformTruncateCombine(N, DAG,DCI,Subtarget);
   case ISD::SETCC:          return PerformISDSETCCCombine(N, DAG, Subtarget);
   case X86ISD::SETCC:       return PerformSETCCCombine(N, DAG, DCI, Subtarget);
   case X86ISD::BRCOND:      return PerformBrCondCombine(N, DAG, DCI, Subtarget);
@@ -23446,7 +24933,7 @@ SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
       return PerformINSERTPSCombine(N, DAG, Subtarget);
     break;
   }
-  case ISD::BUILD_VECTOR: return PerformBUILD_VECTORCombine(N, DAG, Subtarget);
+  case X86ISD::BLENDI:    return PerformBLENDICombine(N, DAG);
   }
 
   return SDValue();
@@ -23553,27 +25040,23 @@ bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
 //                           X86 Inline Assembly Support
 //===----------------------------------------------------------------------===//
 
-namespace {
-  // Helper to match a string separated by whitespace.
-  bool matchAsmImpl(StringRef s, ArrayRef<const StringRef *> args) {
-    s = s.substr(s.find_first_not_of(" \t")); // Skip leading whitespace.
+// Helper to match a string separated by whitespace.
+static bool matchAsm(StringRef S, ArrayRef<const char *> Pieces) {
+  S = S.substr(S.find_first_not_of(" \t")); // Skip leading whitespace.
 
-    for (unsigned i = 0, e = args.size(); i != e; ++i) {
-      StringRef piece(*args[i]);
-      if (!s.startswith(piece)) // Check if the piece matches.
-        return false;
-
-      s = s.substr(piece.size());
-      StringRef::size_type pos = s.find_first_not_of(" \t");
-      if (pos == 0) // We matched a prefix.
-        return false;
+  for (StringRef Piece : Pieces) {
+    if (!S.startswith(Piece)) // Check if the piece matches.
+      return false;
 
-      s = s.substr(pos);
-    }
+    S = S.substr(Piece.size());
+    StringRef::size_type Pos = S.find_first_not_of(" \t");
+    if (Pos == 0) // We matched a prefix.
+      return false;
 
-    return s.empty();
+    S = S.substr(Pos);
   }
-  const VariadicFunction1<bool, StringRef, StringRef, matchAsmImpl> matchAsm={};
+
+  return S.empty();
 }
 
 static bool clobbersFlagRegisters(const SmallVector<StringRef, 4> &AsmPieces) {
@@ -23613,12 +25096,12 @@ bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
     // ops instead of emitting the bswap asm.  For now, we don't support 486 or
     // lower so don't worry about this.
     // bswap $0
-    if (matchAsm(AsmPieces[0], "bswap", "$0") ||
-        matchAsm(AsmPieces[0], "bswapl", "$0") ||
-        matchAsm(AsmPieces[0], "bswapq", "$0") ||
-        matchAsm(AsmPieces[0], "bswap", "${0:q}") ||
-        matchAsm(AsmPieces[0], "bswapl", "${0:q}") ||
-        matchAsm(AsmPieces[0], "bswapq", "${0:q}")) {
+    if (matchAsm(AsmPieces[0], {"bswap", "$0"}) ||
+        matchAsm(AsmPieces[0], {"bswapl", "$0"}) ||
+        matchAsm(AsmPieces[0], {"bswapq", "$0"}) ||
+        matchAsm(AsmPieces[0], {"bswap", "${0:q}"}) ||
+        matchAsm(AsmPieces[0], {"bswapl", "${0:q}"}) ||
+        matchAsm(AsmPieces[0], {"bswapq", "${0:q}"})) {
       // No need to check constraints, nothing other than the equivalent of
       // "=r,0" would be valid here.
       return IntrinsicLowering::LowerToByteSwap(CI);
@@ -23627,8 +25110,8 @@ bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
     // rorw $$8, ${0:w}  -->  llvm.bswap.i16
     if (CI->getType()->isIntegerTy(16) &&
         IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
-        (matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") ||
-         matchAsm(AsmPieces[0], "rolw", "$$8,", "${0:w}"))) {
+        (matchAsm(AsmPieces[0], {"rorw", "$$8,", "${0:w}"}) ||
+         matchAsm(AsmPieces[0], {"rolw", "$$8,", "${0:w}"}))) {
       AsmPieces.clear();
       const std::string &ConstraintsStr = IA->getConstraintString();
       SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
@@ -23640,9 +25123,9 @@ bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
   case 3:
     if (CI->getType()->isIntegerTy(32) &&
         IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
-        matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") &&
-        matchAsm(AsmPieces[1], "rorl", "$$16,", "$0") &&
-        matchAsm(AsmPieces[2], "rorw", "$$8,", "${0:w}")) {
+        matchAsm(AsmPieces[0], {"rorw", "$$8,", "${0:w}"}) &&
+        matchAsm(AsmPieces[1], {"rorl", "$$16,", "$0"}) &&
+        matchAsm(AsmPieces[2], {"rorw", "$$8,", "${0:w}"})) {
       AsmPieces.clear();
       const std::string &ConstraintsStr = IA->getConstraintString();
       SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
@@ -23657,9 +25140,9 @@ bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
           Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
           Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
         // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
-        if (matchAsm(AsmPieces[0], "bswap", "%eax") &&
-            matchAsm(AsmPieces[1], "bswap", "%edx") &&
-            matchAsm(AsmPieces[2], "xchgl", "%eax,", "%edx"))
+        if (matchAsm(AsmPieces[0], {"bswap", "%eax"}) &&
+            matchAsm(AsmPieces[1], {"bswap", "%edx"}) &&
+            matchAsm(AsmPieces[2], {"xchgl", "%eax,", "%edx"}))
           return IntrinsicLowering::LowerToByteSwap(CI);
       }
     }
@@ -23795,7 +25278,7 @@ TargetLowering::ConstraintWeight
     break;
   case 'G':
   case 'C':
-    if (dyn_cast<ConstantFP>(CallOperandVal)) {
+    if (isa<ConstantFP>(CallOperandVal)) {
       weight = CW_Constant;
     }
     break;
@@ -23850,7 +25333,8 @@ void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
   case 'I':
     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
       if (C->getZExtValue() <= 31) {
-        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
+        Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
+                                       Op.getValueType());
         break;
       }
     }
@@ -23858,7 +25342,8 @@ void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
   case 'J':
     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
       if (C->getZExtValue() <= 63) {
-        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
+        Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
+                                       Op.getValueType());
         break;
       }
     }
@@ -23866,7 +25351,8 @@ void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
   case 'K':
     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
       if (isInt<8>(C->getSExtValue())) {
-        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
+        Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
+                                       Op.getValueType());
         break;
       }
     }
@@ -23875,7 +25361,8 @@ void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
       if (C->getZExtValue() == 0xff || C->getZExtValue() == 0xffff ||
           (Subtarget->is64Bit() && C->getZExtValue() == 0xffffffff)) {
-        Result = DAG.getTargetConstant(C->getSExtValue(), Op.getValueType());
+        Result = DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
+                                       Op.getValueType());
         break;
       }
     }
@@ -23883,7 +25370,8 @@ void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
   case 'M':
     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
       if (C->getZExtValue() <= 3) {
-        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
+        Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
+                                       Op.getValueType());
         break;
       }
     }
@@ -23891,7 +25379,8 @@ void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
   case 'N':
     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
       if (C->getZExtValue() <= 255) {
-        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
+        Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
+                                       Op.getValueType());
         break;
       }
     }
@@ -23899,7 +25388,8 @@ void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
   case 'O':
     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
       if (C->getZExtValue() <= 127) {
-        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
+        Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
+                                       Op.getValueType());
         break;
       }
     }
@@ -23910,7 +25400,7 @@ void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
       if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
                                            C->getSExtValue())) {
         // Widen to 64 bits here to get it sign extended.
-        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
+        Result = DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), MVT::i64);
         break;
       }
     // FIXME gcc accepts some relocatable values here too, but only in certain
@@ -23923,7 +25413,8 @@ void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
       if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
                                            C->getZExtValue())) {
-        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
+        Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
+                                       Op.getValueType());
         break;
       }
     }
@@ -23935,7 +25426,7 @@ void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
     // Literal immediates are always ok.
     if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
       // Widen to 64 bits here to get it sign extended.
-      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
+      Result = DAG.getTargetConstant(CST->getSExtValue(), SDLoc(Op), MVT::i64);
       break;
     }
 
@@ -23993,8 +25484,9 @@ void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
   return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
 }
 
-std::pair<unsigned, const TargetRegisterClass*>
-X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
+std::pair<unsigned, const TargetRegisterClass *>
+X86TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
+                                                const std::string &Constraint,
                                                 MVT VT) const {
   // First, see if this is a constraint that directly corresponds to an LLVM
   // register class.
@@ -24100,7 +25592,7 @@ X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
   // Use the default implementation in TargetLowering to convert the register
   // constraint into a member of a register class.
   std::pair<unsigned, const TargetRegisterClass*> Res;
-  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
+  Res = TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
 
   // Not found as a standard register?
   if (!Res.second) {
@@ -24144,71 +25636,40 @@ X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
   // Otherwise, check to see if this is a register class of the wrong value
   // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
   // turn into {ax},{dx}.
-  if (Res.second->hasType(VT))
+  // MVT::Other is used to specify clobber names.
+  if (Res.second->hasType(VT) || VT == MVT::Other)
     return Res;   // Correct type already, nothing to do.
 
-  // All of the single-register GCC register classes map their values onto
-  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
-  // really want an 8-bit or 32-bit register, map to the appropriate register
-  // class and return the appropriate register.
-  if (Res.second == &X86::GR16RegClass) {
-    if (VT == MVT::i8 || VT == MVT::i1) {
-      unsigned DestReg = 0;
-      switch (Res.first) {
-      default: break;
-      case X86::AX: DestReg = X86::AL; break;
-      case X86::DX: DestReg = X86::DL; break;
-      case X86::CX: DestReg = X86::CL; break;
-      case X86::BX: DestReg = X86::BL; break;
-      }
-      if (DestReg) {
-        Res.first = DestReg;
-        Res.second = &X86::GR8RegClass;
-      }
-    } else if (VT == MVT::i32 || VT == MVT::f32) {
-      unsigned DestReg = 0;
-      switch (Res.first) {
-      default: break;
-      case X86::AX: DestReg = X86::EAX; break;
-      case X86::DX: DestReg = X86::EDX; break;
-      case X86::CX: DestReg = X86::ECX; break;
-      case X86::BX: DestReg = X86::EBX; break;
-      case X86::SI: DestReg = X86::ESI; break;
-      case X86::DI: DestReg = X86::EDI; break;
-      case X86::BP: DestReg = X86::EBP; break;
-      case X86::SP: DestReg = X86::ESP; break;
-      }
-      if (DestReg) {
-        Res.first = DestReg;
-        Res.second = &X86::GR32RegClass;
-      }
-    } else if (VT == MVT::i64 || VT == MVT::f64) {
-      unsigned DestReg = 0;
-      switch (Res.first) {
-      default: break;
-      case X86::AX: DestReg = X86::RAX; break;
-      case X86::DX: DestReg = X86::RDX; break;
-      case X86::CX: DestReg = X86::RCX; break;
-      case X86::BX: DestReg = X86::RBX; break;
-      case X86::SI: DestReg = X86::RSI; break;
-      case X86::DI: DestReg = X86::RDI; break;
-      case X86::BP: DestReg = X86::RBP; break;
-      case X86::SP: DestReg = X86::RSP; break;
-      }
-      if (DestReg) {
-        Res.first = DestReg;
-        Res.second = &X86::GR64RegClass;
-      }
-    }
-  } else if (Res.second == &X86::FR32RegClass ||
-             Res.second == &X86::FR64RegClass ||
-             Res.second == &X86::VR128RegClass ||
-             Res.second == &X86::VR256RegClass ||
-             Res.second == &X86::FR32XRegClass ||
-             Res.second == &X86::FR64XRegClass ||
-             Res.second == &X86::VR128XRegClass ||
-             Res.second == &X86::VR256XRegClass ||
-             Res.second == &X86::VR512RegClass) {
+  // Get a matching integer of the correct size. i.e. "ax" with MVT::32 should
+  // return "eax". This should even work for things like getting 64bit integer
+  // registers when given an f64 type.
+  const TargetRegisterClass *Class = Res.second;
+  if (Class == &X86::GR8RegClass || Class == &X86::GR16RegClass ||
+      Class == &X86::GR32RegClass || Class == &X86::GR64RegClass) {
+    unsigned Size = VT.getSizeInBits();
+    MVT::SimpleValueType SimpleTy = Size == 1 || Size == 8 ? MVT::i8
+                                  : Size == 16 ? MVT::i16
+                                  : Size == 32 ? MVT::i32
+                                  : Size == 64 ? MVT::i64
+                                  : MVT::Other;
+    unsigned DestReg = getX86SubSuperRegisterOrZero(Res.first, SimpleTy);
+    if (DestReg > 0) {
+      Res.first = DestReg;
+      Res.second = SimpleTy == MVT::i8 ? &X86::GR8RegClass
+                 : SimpleTy == MVT::i16 ? &X86::GR16RegClass
+                 : SimpleTy == MVT::i32 ? &X86::GR32RegClass
+                 : &X86::GR64RegClass;
+      assert(Res.second->contains(Res.first) && "Register in register class");
+    } else {
+      // No register found/type mismatch.
+      Res.first = 0;
+      Res.second = nullptr;
+    }
+  } else if (Class == &X86::FR32RegClass || Class == &X86::FR64RegClass ||
+             Class == &X86::VR128RegClass || Class == &X86::VR256RegClass ||
+             Class == &X86::FR32XRegClass || Class == &X86::FR64XRegClass ||
+             Class == &X86::VR128XRegClass || Class == &X86::VR256XRegClass ||
+             Class == &X86::VR512RegClass) {
     // Handle references to XMM physical registers that got mapped into the
     // wrong class.  This can happen with constraints like {xmm0} where the
     // target independent register mapper will just pick the first match it can
@@ -24224,13 +25685,19 @@ X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
       Res.second = &X86::VR256RegClass;
     else if (X86::VR512RegClass.hasType(VT))
       Res.second = &X86::VR512RegClass;
+    else {
+      // Type mismatch and not a clobber: Return an error;
+      Res.first = 0;
+      Res.second = nullptr;
+    }
   }
 
   return Res;
 }
 
 int X86TargetLowering::getScalingFactorCost(const AddrMode &AM,
-                                            Type *Ty) const {
+                                            Type *Ty,
+                                            unsigned AS) const {
   // Scaling factors are not free at all.
   // An indexed folded instruction, i.e., inst (reg1, reg2, scale),
   // will take 2 allocations in the out of order engine instead of 1
@@ -24249,7 +25716,7 @@ int X86TargetLowering::getScalingFactorCost(const AddrMode &AM,
   // E.g., on Haswell:
   // vmovaps %ymm1, (%r8, %rdi) can use port 2 or 3.
   // vmovaps %ymm1, (%r8) can use port 2, 3, or 7.
-  if (isLegalAddressingMode(AM, Ty))
+  if (isLegalAddressingMode(AM, Ty, AS))
     // Scale represents reg2 * scale, thus account for 1
     // as soon as we use a second register.
     return AM.Scale != 0;