x32. Fixes jmp %reg in x32
[oota-llvm.git] / lib / Target / X86 / X86ISelDAGToDAG.cpp
index 153625b06b48443c5853e52b352487ecb734c06b..df8de82c14b99511d1d72cb3faf0d922a9f9d17d 100644 (file)
 //
 //===----------------------------------------------------------------------===//
 
-#define DEBUG_TYPE "x86-isel"
 #include "X86.h"
 #include "X86InstrBuilder.h"
 #include "X86MachineFunctionInfo.h"
 #include "X86RegisterInfo.h"
 #include "X86Subtarget.h"
 #include "X86TargetMachine.h"
-#include "llvm/Instructions.h"
-#include "llvm/Intrinsics.h"
-#include "llvm/Support/CFG.h"
-#include "llvm/Type.h"
-#include "llvm/CodeGen/MachineConstantPool.h"
-#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/ADT/Statistic.h"
 #include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
 #include "llvm/CodeGen/MachineInstrBuilder.h"
 #include "llvm/CodeGen/MachineRegisterInfo.h"
 #include "llvm/CodeGen/SelectionDAGISel.h"
-#include "llvm/Target/TargetMachine.h"
-#include "llvm/Target/TargetOptions.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/Type.h"
 #include "llvm/Support/Debug.h"
 #include "llvm/Support/ErrorHandling.h"
 #include "llvm/Support/MathExtras.h"
 #include "llvm/Support/raw_ostream.h"
-#include "llvm/ADT/SmallPtrSet.h"
-#include "llvm/ADT/Statistic.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetOptions.h"
+#include <stdint.h>
 using namespace llvm;
 
+#define DEBUG_TYPE "x86-isel"
+
 STATISTIC(NumLoadMoved, "Number of loads moved below TokenFactor");
 
 //===----------------------------------------------------------------------===//
@@ -60,31 +60,33 @@ namespace {
     int Base_FrameIndex;
 
     unsigned Scale;
-    SDValue IndexReg; 
+    SDValue IndexReg;
     int32_t Disp;
     SDValue Segment;
     const GlobalValue *GV;
     const Constant *CP;
     const BlockAddress *BlockAddr;
     const char *ES;
+    MCSymbol *MCSym;
     int JT;
     unsigned Align;    // CP alignment.
     unsigned char SymbolFlags;  // X86II::MO_*
 
     X86ISelAddressMode()
-      : BaseType(RegBase), Base_FrameIndex(0), Scale(1), IndexReg(), Disp(0),
-        Segment(), GV(0), CP(0), BlockAddr(0), ES(0), JT(-1), Align(0),
-        SymbolFlags(X86II::MO_NO_FLAG) {
-    }
+        : BaseType(RegBase), Base_FrameIndex(0), Scale(1), IndexReg(), Disp(0),
+          Segment(), GV(nullptr), CP(nullptr), BlockAddr(nullptr), ES(nullptr),
+          MCSym(nullptr), JT(-1), Align(0), SymbolFlags(X86II::MO_NO_FLAG) {}
 
     bool hasSymbolicDisplacement() const {
-      return GV != 0 || CP != 0 || ES != 0 || JT != -1 || BlockAddr != 0;
+      return GV != nullptr || CP != nullptr || ES != nullptr ||
+             MCSym != nullptr || JT != -1 || BlockAddr != nullptr;
     }
-    
+
     bool hasBaseOrIndexReg() const {
-      return IndexReg.getNode() != 0 || Base_Reg.getNode() != 0;
+      return BaseType == FrameIndexBase ||
+             IndexReg.getNode() != nullptr || Base_Reg.getNode() != nullptr;
     }
-    
+
     /// isRIPRelative - Return true if this addressing mode is already RIP
     /// relative.
     bool isRIPRelative() const {
@@ -94,26 +96,27 @@ namespace {
         return RegNode->getReg() == X86::RIP;
       return false;
     }
-    
+
     void setBaseReg(SDValue Reg) {
       BaseType = RegBase;
       Base_Reg = Reg;
     }
 
+#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
     void dump() {
       dbgs() << "X86ISelAddressMode " << this << '\n';
       dbgs() << "Base_Reg ";
-      if (Base_Reg.getNode() != 0)
-        Base_Reg.getNode()->dump(); 
+      if (Base_Reg.getNode())
+        Base_Reg.getNode()->dump();
       else
         dbgs() << "nul";
       dbgs() << " Base.FrameIndex " << Base_FrameIndex << '\n'
              << " Scale" << Scale << '\n'
              << "IndexReg ";
-      if (IndexReg.getNode() != 0)
+      if (IndexReg.getNode())
         IndexReg.getNode()->dump();
       else
-        dbgs() << "nul"; 
+        dbgs() << "nul";
       dbgs() << " Disp " << Disp << '\n'
              << "GV ";
       if (GV)
@@ -131,8 +134,14 @@ namespace {
         dbgs() << ES;
       else
         dbgs() << "nul";
+      dbgs() << " MCSym ";
+      if (MCSym)
+        dbgs() << MCSym;
+      else
+        dbgs() << "nul";
       dbgs() << " JT" << JT << " Align" << Align << '\n';
     }
+#endif
   };
 }
 
@@ -141,11 +150,7 @@ namespace {
   /// ISel - X86 specific code to select X86 machine instructions for
   /// SelectionDAG operations.
   ///
-  class X86DAGToDAGISel : public SelectionDAGISel {
-    /// X86Lowering - This object fully describes how to lower LLVM code to an
-    /// X86-specific SelectionDAG.
-    const X86TargetLowering &X86Lowering;
-
+  class X86DAGToDAGISel final : public SelectionDAGISel {
     /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
     /// make the right decision when generating code for different targets.
     const X86Subtarget *Subtarget;
@@ -156,20 +161,24 @@ namespace {
 
   public:
     explicit X86DAGToDAGISel(X86TargetMachine &tm, CodeGenOpt::Level OptLevel)
-      : SelectionDAGISel(tm, OptLevel),
-        X86Lowering(*tm.getTargetLowering()),
-        Subtarget(&tm.getSubtarget<X86Subtarget>()),
-        OptForSize(false) {}
+        : SelectionDAGISel(tm, OptLevel), OptForSize(false) {}
 
-    virtual const char *getPassName() const {
+    const char *getPassName() const override {
       return "X86 DAG->DAG Instruction Selection";
     }
 
-    virtual void EmitFunctionEntryCode();
+    bool runOnMachineFunction(MachineFunction &MF) override {
+      // Reset the subtarget each time through.
+      Subtarget = &MF.getSubtarget<X86Subtarget>();
+      SelectionDAGISel::runOnMachineFunction(MF);
+      return true;
+    }
+
+    void EmitFunctionEntryCode() override;
 
-    virtual bool IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const;
+    bool IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const override;
 
-    virtual void PreprocessISelDAG();
+    void PreprocessISelDAG() override;
 
     inline bool immSext8(SDNode *N) const {
       return isInt<8>(cast<ConstantSDNode>(N)->getSExtValue());
@@ -186,12 +195,12 @@ namespace {
 #include "X86GenDAGISel.inc"
 
   private:
-    SDNode *Select(SDNode *N);
-    SDNode *SelectAtomic64(SDNode *Node, unsigned Opc);
-    SDNode *SelectAtomicLoadAdd(SDNode *Node, EVT NVT);
+    SDNode *Select(SDNode *N) override;
+    SDNode *SelectGather(SDNode *N, unsigned Opc);
+    SDNode *SelectAtomicLoadArith(SDNode *Node, MVT NVT);
 
-    bool MatchSegmentBaseAddress(SDValue N, X86ISelAddressMode &AM);
-    bool MatchLoad(SDValue N, X86ISelAddressMode &AM);
+    bool FoldOffsetIntoAddress(uint64_t Offset, X86ISelAddressMode &AM);
+    bool MatchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM);
     bool MatchWrapper(SDValue N, X86ISelAddressMode &AM);
     bool MatchAddress(SDValue N, X86ISelAddressMode &AM);
     bool MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
@@ -200,9 +209,16 @@ namespace {
     bool SelectAddr(SDNode *Parent, SDValue N, SDValue &Base,
                     SDValue &Scale, SDValue &Index, SDValue &Disp,
                     SDValue &Segment);
+    bool SelectVectorAddr(SDNode *Parent, SDValue N, SDValue &Base,
+                          SDValue &Scale, SDValue &Index, SDValue &Disp,
+                          SDValue &Segment);
+    bool SelectMOV64Imm32(SDValue N, SDValue &Imm);
     bool SelectLEAAddr(SDValue N, SDValue &Base,
                        SDValue &Scale, SDValue &Index, SDValue &Disp,
                        SDValue &Segment);
+    bool SelectLEA64_32Addr(SDValue N, SDValue &Base,
+                            SDValue &Scale, SDValue &Index, SDValue &Disp,
+                            SDValue &Segment);
     bool SelectTLSADDRAddr(SDValue N, SDValue &Base,
                            SDValue &Scale, SDValue &Index, SDValue &Disp,
                            SDValue &Segment);
@@ -211,46 +227,55 @@ namespace {
                              SDValue &Index, SDValue &Disp,
                              SDValue &Segment,
                              SDValue &NodeWithChain);
-    
+
     bool TryFoldLoad(SDNode *P, SDValue N,
                      SDValue &Base, SDValue &Scale,
                      SDValue &Index, SDValue &Disp,
                      SDValue &Segment);
-    
+
     /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
     /// inline asm expressions.
-    virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op,
-                                              char ConstraintCode,
-                                              std::vector<SDValue> &OutOps);
-    
-    void EmitSpecialCodeForMain(MachineBasicBlock *BB, MachineFrameInfo *MFI);
-
-    inline void getAddressOperands(X86ISelAddressMode &AM, SDValue &Base, 
-                                   SDValue &Scale, SDValue &Index,
-                                   SDValue &Disp, SDValue &Segment) {
-      Base  = (AM.BaseType == X86ISelAddressMode::FrameIndexBase) ?
-        CurDAG->getTargetFrameIndex(AM.Base_FrameIndex, TLI.getPointerTy()) :
-        AM.Base_Reg;
-      Scale = getI8Imm(AM.Scale);
+    bool SelectInlineAsmMemoryOperand(const SDValue &Op,
+                                      unsigned ConstraintID,
+                                      std::vector<SDValue> &OutOps) override;
+
+    void EmitSpecialCodeForMain();
+
+    inline void getAddressOperands(X86ISelAddressMode &AM, SDLoc DL,
+                                   SDValue &Base, SDValue &Scale,
+                                   SDValue &Index, SDValue &Disp,
+                                   SDValue &Segment) {
+      Base = (AM.BaseType == X86ISelAddressMode::FrameIndexBase)
+                 ? CurDAG->getTargetFrameIndex(
+                       AM.Base_FrameIndex,
+                       TLI->getPointerTy(CurDAG->getDataLayout()))
+                 : AM.Base_Reg;
+      Scale = getI8Imm(AM.Scale, DL);
       Index = AM.IndexReg;
       // These are 32-bit even in 64-bit mode since RIP relative offset
       // is 32-bit.
       if (AM.GV)
-        Disp = CurDAG->getTargetGlobalAddress(AM.GV, DebugLoc(),
+        Disp = CurDAG->getTargetGlobalAddress(AM.GV, SDLoc(),
                                               MVT::i32, AM.Disp,
                                               AM.SymbolFlags);
       else if (AM.CP)
         Disp = CurDAG->getTargetConstantPool(AM.CP, MVT::i32,
                                              AM.Align, AM.Disp, AM.SymbolFlags);
-      else if (AM.ES)
+      else if (AM.ES) {
+        assert(!AM.Disp && "Non-zero displacement is ignored with ES.");
         Disp = CurDAG->getTargetExternalSymbol(AM.ES, MVT::i32, AM.SymbolFlags);
-      else if (AM.JT != -1)
+      } else if (AM.MCSym) {
+        assert(!AM.Disp && "Non-zero displacement is ignored with MCSym.");
+        assert(AM.SymbolFlags == 0 && "oo");
+        Disp = CurDAG->getMCSymbol(AM.MCSym, MVT::i32);
+      } else if (AM.JT != -1) {
+        assert(!AM.Disp && "Non-zero displacement is ignored with JT.");
         Disp = CurDAG->getTargetJumpTable(AM.JT, MVT::i32, AM.SymbolFlags);
-      else if (AM.BlockAddr)
-        Disp = CurDAG->getBlockAddress(AM.BlockAddr, MVT::i32,
-                                       true, AM.SymbolFlags);
+      else if (AM.BlockAddr)
+        Disp = CurDAG->getTargetBlockAddress(AM.BlockAddr, MVT::i32, AM.Disp,
+                                             AM.SymbolFlags);
       else
-        Disp = CurDAG->getTargetConstant(AM.Disp, MVT::i32);
+        Disp = CurDAG->getTargetConstant(AM.Disp, DL, MVT::i32);
 
       if (AM.Segment.getNode())
         Segment = AM.Segment;
@@ -258,16 +283,92 @@ namespace {
         Segment = CurDAG->getRegister(0, MVT::i32);
     }
 
+    // Utility function to determine whether we should avoid selecting
+    // immediate forms of instructions for better code size or not.
+    // At a high level, we'd like to avoid such instructions when
+    // we have similar constants used within the same basic block
+    // that can be kept in a register.
+    //
+    bool shouldAvoidImmediateInstFormsForSize(SDNode *N) const {
+      uint32_t UseCount = 0;
+
+      // Do not want to hoist if we're not optimizing for size.
+      // TODO: We'd like to remove this restriction.
+      // See the comment in X86InstrInfo.td for more info.
+      if (!OptForSize)
+        return false;
+
+      // Walk all the users of the immediate.
+      for (SDNode::use_iterator UI = N->use_begin(),
+           UE = N->use_end(); (UI != UE) && (UseCount < 2); ++UI) {
+
+        SDNode *User = *UI;
+
+        // This user is already selected. Count it as a legitimate use and
+        // move on.
+        if (User->isMachineOpcode()) {
+          UseCount++;
+          continue;
+        }
+
+        // We want to count stores of immediates as real uses.
+        if (User->getOpcode() == ISD::STORE &&
+            User->getOperand(1).getNode() == N) {
+          UseCount++;
+          continue;
+        }
+
+        // We don't currently match users that have > 2 operands (except
+        // for stores, which are handled above)
+        // Those instruction won't match in ISEL, for now, and would
+        // be counted incorrectly.
+        // This may change in the future as we add additional instruction
+        // types.
+        if (User->getNumOperands() != 2)
+          continue;
+        
+        // Immediates that are used for offsets as part of stack
+        // manipulation should be left alone. These are typically
+        // used to indicate SP offsets for argument passing and
+        // will get pulled into stores/pushes (implicitly).
+        if (User->getOpcode() == X86ISD::ADD ||
+            User->getOpcode() == ISD::ADD    ||
+            User->getOpcode() == X86ISD::SUB ||
+            User->getOpcode() == ISD::SUB) {
+
+          // Find the other operand of the add/sub.
+          SDValue OtherOp = User->getOperand(0);
+          if (OtherOp.getNode() == N)
+            OtherOp = User->getOperand(1);
+
+          // Don't count if the other operand is SP.
+          RegisterSDNode *RegNode;
+          if (OtherOp->getOpcode() == ISD::CopyFromReg &&
+              (RegNode = dyn_cast_or_null<RegisterSDNode>(
+                 OtherOp->getOperand(1).getNode())))
+            if ((RegNode->getReg() == X86::ESP) ||
+                (RegNode->getReg() == X86::RSP))
+              continue;
+        }
+
+        // ... otherwise, count this and move on.
+        UseCount++;
+      }
+
+      // If we have more than 1 use, then recommend for hoisting.
+      return (UseCount > 1);
+    }
+
     /// getI8Imm - Return a target constant with the specified value, of type
     /// i8.
-    inline SDValue getI8Imm(unsigned Imm) {
-      return CurDAG->getTargetConstant(Imm, MVT::i8);
+    inline SDValue getI8Imm(unsigned Imm, SDLoc DL) {
+      return CurDAG->getTargetConstant(Imm, DL, MVT::i8);
     }
 
     /// getI32Imm - Return a target constant with the specified value, of type
     /// i32.
-    inline SDValue getI32Imm(unsigned Imm) {
-      return CurDAG->getTargetConstant(Imm, MVT::i32);
+    inline SDValue getI32Imm(unsigned Imm, SDLoc DL) {
+      return CurDAG->getTargetConstant(Imm, DL, MVT::i32);
     }
 
     /// getGlobalBaseReg - Return an SDNode that returns the value of
@@ -278,14 +379,21 @@ namespace {
 
     /// getTargetMachine - Return a reference to the TargetMachine, casted
     /// to the target-specific type.
-    const X86TargetMachine &getTargetMachine() {
+    const X86TargetMachine &getTargetMachine() const {
       return static_cast<const X86TargetMachine &>(TM);
     }
 
     /// getInstrInfo - Return a reference to the TargetInstrInfo, casted
     /// to the target-specific type.
-    const X86InstrInfo *getInstrInfo() {
-      return getTargetMachine().getInstrInfo();
+    const X86InstrInfo *getInstrInfo() const {
+      return Subtarget->getInstrInfo();
+    }
+
+    /// \brief Address-mode matching performs shift-of-and to and-of-shift
+    /// reassociation in order to expose more scaled addressing
+    /// opportunities.
+    bool ComplexPatternFuncMutatesDAG() const override {
+      return true;
     }
   };
 }
@@ -341,7 +449,7 @@ X86DAGToDAGISel::IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const {
       // addl    %gs:0, %eax
       // if the block also has an access to a second TLS address this will save
       // a load.
-      // FIXME: This is probably also true for non TLS addresses.
+      // FIXME: This is probably also true for non-TLS addresses.
       if (Op1.getOpcode() == X86ISD::Wrapper) {
         SDValue Val = Op1.getOperand(0);
         if (Val.getOpcode() == ISD::TargetGlobalTLSAddress)
@@ -357,7 +465,7 @@ X86DAGToDAGISel::IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const {
 /// MoveBelowCallOrigChain - Replace the original chain operand of the call with
 /// load's chain operand and move load below the call's chain operand.
 static void MoveBelowOrigChain(SelectionDAG *CurDAG, SDValue Load,
-                                  SDValue Call, SDValue OrigChain) {
+                               SDValue Call, SDValue OrigChain) {
   SmallVector<SDValue, 8> Ops;
   SDValue Chain = OrigChain.getOperand(0);
   if (Chain.getNode() == Load.getNode())
@@ -371,21 +479,19 @@ static void MoveBelowOrigChain(SelectionDAG *CurDAG, SDValue Load,
       else
         Ops.push_back(Chain.getOperand(i));
     SDValue NewChain =
-      CurDAG->getNode(ISD::TokenFactor, Load.getDebugLoc(),
-                      MVT::Other, &Ops[0], Ops.size());
+      CurDAG->getNode(ISD::TokenFactor, SDLoc(Load), MVT::Other, Ops);
     Ops.clear();
     Ops.push_back(NewChain);
   }
-  for (unsigned i = 1, e = OrigChain.getNumOperands(); i != e; ++i)
-    Ops.push_back(OrigChain.getOperand(i));
-  CurDAG->UpdateNodeOperands(OrigChain.getNode(), &Ops[0], Ops.size());
+  Ops.append(OrigChain->op_begin() + 1, OrigChain->op_end());
+  CurDAG->UpdateNodeOperands(OrigChain.getNode(), Ops);
   CurDAG->UpdateNodeOperands(Load.getNode(), Call.getOperand(0),
                              Load.getOperand(1), Load.getOperand(2));
+
   Ops.clear();
   Ops.push_back(SDValue(Load.getNode(), 1));
-  for (unsigned i = 1, e = Call.getNode()->getNumOperands(); i != e; ++i)
-    Ops.push_back(Call.getOperand(i));
-  CurDAG->UpdateNodeOperands(Call.getNode(), &Ops[0], Ops.size());
+  Ops.append(Call->op_begin() + 1, Call->op_end());
+  CurDAG->UpdateNodeOperands(Call.getNode(), Ops);
 }
 
 /// isCalleeLoad - Return true if call address is a load and it can be
@@ -394,6 +500,10 @@ static void MoveBelowOrigChain(SelectionDAG *CurDAG, SDValue Load,
 /// In the case of a tail call, there isn't a callseq node between the call
 /// chain and the load.
 static bool isCalleeLoad(SDValue Callee, SDValue &Chain, bool HasCallSeq) {
+  // The transformation is somewhat dangerous if the call's chain was glued to
+  // the call. After MoveBelowOrigChain the load is moved between the call and
+  // the chain, this can create a cycle if the load is not folded. So it is
+  // *really* important that we are sure the load will be folded.
   if (Callee.getNode() == Chain.getNode() || !Callee.hasOneUse())
     return false;
   LoadSDNode *LD = dyn_cast<LoadSDNode>(Callee.getNode());
@@ -412,6 +522,11 @@ static bool isCalleeLoad(SDValue Callee, SDValue &Chain, bool HasCallSeq) {
 
   if (!Chain.getNumOperands())
     return false;
+  // Since we are not checking for AA here, conservatively abort if the chain
+  // writes to memory. It's not safe to move the callee (a load) across a store.
+  if (isa<MemSDNode>(Chain.getNode()) &&
+      cast<MemSDNode>(Chain.getNode())->writeMem())
+    return false;
   if (Chain.getOperand(0).getNode() == Callee.getNode())
     return true;
   if (Chain.getOperand(0).getOpcode() == ISD::TokenFactor &&
@@ -423,15 +538,20 @@ static bool isCalleeLoad(SDValue Callee, SDValue &Chain, bool HasCallSeq) {
 
 void X86DAGToDAGISel::PreprocessISelDAG() {
   // OptForSize is used in pattern predicates that isel is matching.
-  OptForSize = MF->getFunction()->hasFnAttr(Attribute::OptimizeForSize);
-  
+  OptForSize = MF->getFunction()->optForSize();
+
   for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
        E = CurDAG->allnodes_end(); I != E; ) {
     SDNode *N = I++;  // Preincrement iterator to avoid invalidation issues.
 
     if (OptLevel != CodeGenOpt::None &&
-        (N->getOpcode() == X86ISD::CALL ||
-         N->getOpcode() == X86ISD::TC_RETURN)) {
+        // Only does this when target favors doesn't favor register indirect
+        // call.
+        ((N->getOpcode() == X86ISD::CALL && !Subtarget->callRegIndirect()) ||
+         (N->getOpcode() == X86ISD::TC_RETURN &&
+          // Only does this if load can be folded into TC_RETURN.
+          (Subtarget->is64Bit() ||
+           getTargetMachine().getRelocationModel() != Reloc::PIC_)))) {
       /// Also try moving call address load from outside callseq_start to just
       /// before the call to allow it to be folded.
       ///
@@ -460,7 +580,7 @@ void X86DAGToDAGISel::PreprocessISelDAG() {
       ++NumLoadMoved;
       continue;
     }
-    
+
     // Lower fpround and fpextend nodes that target the FP stack to be store and
     // load to the stack.  This is a gross hack.  We would like to simply mark
     // these as being illegal, but when we do that, legalize produces these when
@@ -471,13 +591,20 @@ void X86DAGToDAGISel::PreprocessISelDAG() {
     // FIXME: This should only happen when not compiled with -O0.
     if (N->getOpcode() != ISD::FP_ROUND && N->getOpcode() != ISD::FP_EXTEND)
       continue;
-    
+
+    MVT SrcVT = N->getOperand(0).getSimpleValueType();
+    MVT DstVT = N->getSimpleValueType(0);
+
+    // If any of the sources are vectors, no fp stack involved.
+    if (SrcVT.isVector() || DstVT.isVector())
+      continue;
+
     // If the source and destination are SSE registers, then this is a legal
     // conversion that should not be lowered.
-    EVT SrcVT = N->getOperand(0).getValueType();
-    EVT DstVT = N->getValueType(0);
-    bool SrcIsSSE = X86Lowering.isScalarFPTypeInSSEReg(SrcVT);
-    bool DstIsSSE = X86Lowering.isScalarFPTypeInSSEReg(DstVT);
+    const X86TargetLowering *X86Lowering =
+        static_cast<const X86TargetLowering *>(TLI);
+    bool SrcIsSSE = X86Lowering->isScalarFPTypeInSSEReg(SrcVT);
+    bool DstIsSSE = X86Lowering->isScalarFPTypeInSSEReg(DstVT);
     if (SrcIsSSE && DstIsSSE)
       continue;
 
@@ -489,27 +616,27 @@ void X86DAGToDAGISel::PreprocessISelDAG() {
       if (N->getConstantOperandVal(1))
         continue;
     }
-   
+
     // Here we could have an FP stack truncation or an FPStack <-> SSE convert.
     // FPStack has extload and truncstore.  SSE can fold direct loads into other
     // operations.  Based on this, decide what we want to do.
-    EVT MemVT;
+    MVT MemVT;
     if (N->getOpcode() == ISD::FP_ROUND)
       MemVT = DstVT;  // FP_ROUND must use DstVT, we can't do a 'trunc load'.
     else
       MemVT = SrcIsSSE ? SrcVT : DstVT;
-    
+
     SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT);
-    DebugLoc dl = N->getDebugLoc();
-    
+    SDLoc dl(N);
+
     // FIXME: optimize the case where the src/dest is a load or store?
     SDValue Store = CurDAG->getTruncStore(CurDAG->getEntryNode(), dl,
                                           N->getOperand(0),
                                           MemTmp, MachinePointerInfo(), MemVT,
                                           false, false, 0);
-    SDValue Result = CurDAG->getExtLoad(ISD::EXTLOAD, DstVT, dl, Store, MemTmp,
+    SDValue Result = CurDAG->getExtLoad(ISD::EXTLOAD, dl, DstVT, Store, MemTmp,
                                         MachinePointerInfo(),
-                                        MemVT, false, false, 0);
+                                        MemVT, false, false, false, 0);
 
     // We're about to replace all uses of the FP_ROUND/FP_EXTEND with the
     // extload we created.  This will cause general havok on the dag because
@@ -517,55 +644,92 @@ void X86DAGToDAGISel::PreprocessISelDAG() {
     // To avoid invalidating 'I', back it up to the convert node.
     --I;
     CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
-    
+
     // Now that we did that, the node is dead.  Increment the iterator to the
     // next node to process, then delete N.
     ++I;
     CurDAG->DeleteNode(N);
-  }  
+  }
 }
 
 
 /// EmitSpecialCodeForMain - Emit any code that needs to be executed only in
 /// the main function.
-void X86DAGToDAGISel::EmitSpecialCodeForMain(MachineBasicBlock *BB,
-                                             MachineFrameInfo *MFI) {
-  const TargetInstrInfo *TII = TM.getInstrInfo();
-  if (Subtarget->isTargetCygMing())
-    BuildMI(BB, DebugLoc(),
-            TII->get(X86::CALLpcrel32)).addExternalSymbol("__main");
+void X86DAGToDAGISel::EmitSpecialCodeForMain() {
+  if (Subtarget->isTargetCygMing()) {
+    TargetLowering::ArgListTy Args;
+    auto &DL = CurDAG->getDataLayout();
+
+    TargetLowering::CallLoweringInfo CLI(*CurDAG);
+    CLI.setChain(CurDAG->getRoot())
+        .setCallee(CallingConv::C, Type::getVoidTy(*CurDAG->getContext()),
+                   CurDAG->getExternalSymbol("__main", TLI->getPointerTy(DL)),
+                   std::move(Args), 0);
+    const TargetLowering &TLI = CurDAG->getTargetLoweringInfo();
+    std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
+    CurDAG->setRoot(Result.second);
+  }
 }
 
 void X86DAGToDAGISel::EmitFunctionEntryCode() {
   // If this is main, emit special code for main.
   if (const Function *Fn = MF->getFunction())
     if (Fn->hasExternalLinkage() && Fn->getName() == "main")
-      EmitSpecialCodeForMain(MF->begin(), MF->getFrameInfo());
+      EmitSpecialCodeForMain();
 }
 
+static bool isDispSafeForFrameIndex(int64_t Val) {
+  // On 64-bit platforms, we can run into an issue where a frame index
+  // includes a displacement that, when added to the explicit displacement,
+  // will overflow the displacement field. Assuming that the frame index
+  // displacement fits into a 31-bit integer  (which is only slightly more
+  // aggressive than the current fundamental assumption that it fits into
+  // a 32-bit integer), a 31-bit disp should always be safe.
+  return isInt<31>(Val);
+}
 
-bool X86DAGToDAGISel::MatchSegmentBaseAddress(SDValue N,
-                                              X86ISelAddressMode &AM) {
-  assert(N.getOpcode() == X86ISD::SegmentBaseAddress);
-  SDValue Segment = N.getOperand(0);
-
-  if (AM.Segment.getNode() == 0) {
-    AM.Segment = Segment;
-    return false;
+bool X86DAGToDAGISel::FoldOffsetIntoAddress(uint64_t Offset,
+                                            X86ISelAddressMode &AM) {
+  // Cannot combine ExternalSymbol displacements with integer offsets.
+  if (Offset != 0 && (AM.ES || AM.MCSym))
+    return true;
+  int64_t Val = AM.Disp + Offset;
+  CodeModel::Model M = TM.getCodeModel();
+  if (Subtarget->is64Bit()) {
+    if (!X86::isOffsetSuitableForCodeModel(Val, M,
+                                           AM.hasSymbolicDisplacement()))
+      return true;
+    // In addition to the checks required for a register base, check that
+    // we do not try to use an unsafe Disp with a frame index.
+    if (AM.BaseType == X86ISelAddressMode::FrameIndexBase &&
+        !isDispSafeForFrameIndex(Val))
+      return true;
   }
+  AM.Disp = Val;
+  return false;
 
-  return true;
 }
 
-bool X86DAGToDAGISel::MatchLoad(SDValue N, X86ISelAddressMode &AM) {
+bool X86DAGToDAGISel::MatchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM){
+  SDValue Address = N->getOperand(1);
+
+  // load gs:0 -> GS segment register.
+  // load fs:0 -> FS segment register.
+  //
   // This optimization is valid because the GNU TLS model defines that
   // gs:0 (or fs:0 on X86-64) contains its own address.
   // For more information see http://people.redhat.com/drepper/tls.pdf
-
-  SDValue Address = N.getOperand(1);
-  if (Address.getOpcode() == X86ISD::SegmentBaseAddress &&
-      !MatchSegmentBaseAddress(Address, AM))
-    return false;
+  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Address))
+    if (C->getSExtValue() == 0 && AM.Segment.getNode() == nullptr &&
+        Subtarget->isTargetLinux())
+      switch (N->getPointerInfo().getAddrSpace()) {
+      case 256:
+        AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
+        return false;
+      case 257:
+        AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
+        return false;
+      }
 
   return true;
 }
@@ -585,37 +749,49 @@ bool X86DAGToDAGISel::MatchWrapper(SDValue N, X86ISelAddressMode &AM) {
 
   // Handle X86-64 rip-relative addresses.  We check this before checking direct
   // folding because RIP is preferable to non-RIP accesses.
-  if (Subtarget->is64Bit() &&
+  if (Subtarget->is64Bit() && N.getOpcode() == X86ISD::WrapperRIP &&
       // Under X86-64 non-small code model, GV (and friends) are 64-bits, so
       // they cannot be folded into immediate fields.
       // FIXME: This can be improved for kernel and other models?
-      (M == CodeModel::Small || M == CodeModel::Kernel) &&
-      // Base and index reg must be 0 in order to use %rip as base and lowering
-      // must allow RIP.
-      !AM.hasBaseOrIndexReg() && N.getOpcode() == X86ISD::WrapperRIP) {
+      (M == CodeModel::Small || M == CodeModel::Kernel)) {
+    // Base and index reg must be 0 in order to use %rip as base.
+    if (AM.hasBaseOrIndexReg())
+      return true;
     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
-      int64_t Offset = AM.Disp + G->getOffset();
-      if (!X86::isOffsetSuitableForCodeModel(Offset, M)) return true;
+      X86ISelAddressMode Backup = AM;
       AM.GV = G->getGlobal();
-      AM.Disp = Offset;
       AM.SymbolFlags = G->getTargetFlags();
+      if (FoldOffsetIntoAddress(G->getOffset(), AM)) {
+        AM = Backup;
+        return true;
+      }
     } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
-      int64_t Offset = AM.Disp + CP->getOffset();
-      if (!X86::isOffsetSuitableForCodeModel(Offset, M)) return true;
+      X86ISelAddressMode Backup = AM;
       AM.CP = CP->getConstVal();
       AM.Align = CP->getAlignment();
-      AM.Disp = Offset;
       AM.SymbolFlags = CP->getTargetFlags();
+      if (FoldOffsetIntoAddress(CP->getOffset(), AM)) {
+        AM = Backup;
+        return true;
+      }
     } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) {
       AM.ES = S->getSymbol();
       AM.SymbolFlags = S->getTargetFlags();
+    } else if (auto *S = dyn_cast<MCSymbolSDNode>(N0)) {
+      AM.MCSym = S->getMCSymbol();
     } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
       AM.JT = J->getIndex();
       AM.SymbolFlags = J->getTargetFlags();
-    } else {
-      AM.BlockAddr = cast<BlockAddressSDNode>(N0)->getBlockAddress();
-      AM.SymbolFlags = cast<BlockAddressSDNode>(N0)->getTargetFlags();
-    }
+    } else if (BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(N0)) {
+      X86ISelAddressMode Backup = AM;
+      AM.BlockAddr = BA->getBlockAddress();
+      AM.SymbolFlags = BA->getTargetFlags();
+      if (FoldOffsetIntoAddress(BA->getOffset(), AM)) {
+        AM = Backup;
+        return true;
+      }
+    } else
+      llvm_unreachable("Unhandled symbol reference node.");
 
     if (N.getOpcode() == X86ISD::WrapperRIP)
       AM.setBaseReg(CurDAG->getRegister(X86::RIP, MVT::i64));
@@ -623,11 +799,12 @@ bool X86DAGToDAGISel::MatchWrapper(SDValue N, X86ISelAddressMode &AM) {
   }
 
   // Handle the case when globals fit in our immediate field: This is true for
-  // X86-32 always and X86-64 when in -static -mcmodel=small mode.  In 64-bit
-  // mode, this results in a non-RIP-relative computation.
+  // X86-32 always and X86-64 when in -mcmodel=small mode.  In 64-bit
+  // mode, this only applies to a non-RIP-relative computation.
   if (!Subtarget->is64Bit() ||
-      ((M == CodeModel::Small || M == CodeModel::Kernel) &&
-       TM.getRelocationModel() == Reloc::Static)) {
+      M == CodeModel::Small || M == CodeModel::Kernel) {
+    assert(N.getOpcode() != X86ISD::WrapperRIP &&
+           "RIP-relative addressing already handled");
     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
       AM.GV = G->getGlobal();
       AM.Disp += G->getOffset();
@@ -640,13 +817,17 @@ bool X86DAGToDAGISel::MatchWrapper(SDValue N, X86ISelAddressMode &AM) {
     } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) {
       AM.ES = S->getSymbol();
       AM.SymbolFlags = S->getTargetFlags();
+    } else if (auto *S = dyn_cast<MCSymbolSDNode>(N0)) {
+      AM.MCSym = S->getMCSymbol();
     } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
       AM.JT = J->getIndex();
       AM.SymbolFlags = J->getTargetFlags();
-    } else {
-      AM.BlockAddr = cast<BlockAddressSDNode>(N0)->getBlockAddress();
-      AM.SymbolFlags = cast<BlockAddressSDNode>(N0)->getTargetFlags();
-    }
+    } else if (BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(N0)) {
+      AM.BlockAddr = BA->getBlockAddress();
+      AM.Disp += BA->getOffset();
+      AM.SymbolFlags = BA->getTargetFlags();
+    } else
+      llvm_unreachable("Unhandled symbol reference node.");
     return false;
   }
 
@@ -664,7 +845,7 @@ bool X86DAGToDAGISel::MatchAddress(SDValue N, X86ISelAddressMode &AM) {
   // a smaller encoding and avoids a scaled-index.
   if (AM.Scale == 2 &&
       AM.BaseType == X86ISelAddressMode::RegBase &&
-      AM.Base_Reg.getNode() == 0) {
+      AM.Base_Reg.getNode() == nullptr) {
     AM.Base_Reg = AM.IndexReg;
     AM.Scale = 1;
   }
@@ -676,8 +857,8 @@ bool X86DAGToDAGISel::MatchAddress(SDValue N, X86ISelAddressMode &AM) {
       Subtarget->is64Bit() &&
       AM.Scale == 1 &&
       AM.BaseType == X86ISelAddressMode::RegBase &&
-      AM.Base_Reg.getNode() == 0 &&
-      AM.IndexReg.getNode() == 0 &&
+      AM.Base_Reg.getNode() == nullptr &&
+      AM.IndexReg.getNode() == nullptr &&
       AM.SymbolFlags == X86II::MO_NO_FLAG &&
       AM.hasSymbolicDisplacement())
     AM.Base_Reg = CurDAG->getRegister(X86::RIP, MVT::i64);
@@ -685,29 +866,217 @@ bool X86DAGToDAGISel::MatchAddress(SDValue N, X86ISelAddressMode &AM) {
   return false;
 }
 
-/// isLogicallyAddWithConstant - Return true if this node is semantically an
-/// add of a value with a constantint.
-static bool isLogicallyAddWithConstant(SDValue V, SelectionDAG *CurDAG) {
-  // Check for (add x, Cst)
-  if (V->getOpcode() == ISD::ADD)
-    return isa<ConstantSDNode>(V->getOperand(1));
+// Insert a node into the DAG at least before the Pos node's position. This
+// will reposition the node as needed, and will assign it a node ID that is <=
+// the Pos node's ID. Note that this does *not* preserve the uniqueness of node
+// IDs! The selection DAG must no longer depend on their uniqueness when this
+// is used.
+static void InsertDAGNode(SelectionDAG &DAG, SDValue Pos, SDValue N) {
+  if (N.getNode()->getNodeId() == -1 ||
+      N.getNode()->getNodeId() > Pos.getNode()->getNodeId()) {
+    DAG.RepositionNode(Pos.getNode(), N.getNode());
+    N.getNode()->setNodeId(Pos.getNode()->getNodeId());
+  }
+}
 
-  // Check for (or x, Cst), where Cst & x == 0.
-  if (V->getOpcode() != ISD::OR ||
-      !isa<ConstantSDNode>(V->getOperand(1)))
-    return false;
-  
-  // Handle "X | C" as "X + C" iff X is known to have C bits clear.
-  ConstantSDNode *CN = cast<ConstantSDNode>(V->getOperand(1));
-    
-  // Check to see if the LHS & C is zero.
-  return CurDAG->MaskedValueIsZero(V->getOperand(0), CN->getAPIntValue());
+// Transform "(X >> (8-C1)) & (0xff << C1)" to "((X >> 8) & 0xff) << C1" if
+// safe. This allows us to convert the shift and and into an h-register
+// extract and a scaled index. Returns false if the simplification is
+// performed.
+static bool FoldMaskAndShiftToExtract(SelectionDAG &DAG, SDValue N,
+                                      uint64_t Mask,
+                                      SDValue Shift, SDValue X,
+                                      X86ISelAddressMode &AM) {
+  if (Shift.getOpcode() != ISD::SRL ||
+      !isa<ConstantSDNode>(Shift.getOperand(1)) ||
+      !Shift.hasOneUse())
+    return true;
+
+  int ScaleLog = 8 - Shift.getConstantOperandVal(1);
+  if (ScaleLog <= 0 || ScaleLog >= 4 ||
+      Mask != (0xffu << ScaleLog))
+    return true;
+
+  MVT VT = N.getSimpleValueType();
+  SDLoc DL(N);
+  SDValue Eight = DAG.getConstant(8, DL, MVT::i8);
+  SDValue NewMask = DAG.getConstant(0xff, DL, VT);
+  SDValue Srl = DAG.getNode(ISD::SRL, DL, VT, X, Eight);
+  SDValue And = DAG.getNode(ISD::AND, DL, VT, Srl, NewMask);
+  SDValue ShlCount = DAG.getConstant(ScaleLog, DL, MVT::i8);
+  SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, And, ShlCount);
+
+  // Insert the new nodes into the topological ordering. We must do this in
+  // a valid topological ordering as nothing is going to go back and re-sort
+  // these nodes. We continually insert before 'N' in sequence as this is
+  // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
+  // hierarchy left to express.
+  InsertDAGNode(DAG, N, Eight);
+  InsertDAGNode(DAG, N, Srl);
+  InsertDAGNode(DAG, N, NewMask);
+  InsertDAGNode(DAG, N, And);
+  InsertDAGNode(DAG, N, ShlCount);
+  InsertDAGNode(DAG, N, Shl);
+  DAG.ReplaceAllUsesWith(N, Shl);
+  AM.IndexReg = And;
+  AM.Scale = (1 << ScaleLog);
+  return false;
+}
+
+// Transforms "(X << C1) & C2" to "(X & (C2>>C1)) << C1" if safe and if this
+// allows us to fold the shift into this addressing mode. Returns false if the
+// transform succeeded.
+static bool FoldMaskedShiftToScaledMask(SelectionDAG &DAG, SDValue N,
+                                        uint64_t Mask,
+                                        SDValue Shift, SDValue X,
+                                        X86ISelAddressMode &AM) {
+  if (Shift.getOpcode() != ISD::SHL ||
+      !isa<ConstantSDNode>(Shift.getOperand(1)))
+    return true;
+
+  // Not likely to be profitable if either the AND or SHIFT node has more
+  // than one use (unless all uses are for address computation). Besides,
+  // isel mechanism requires their node ids to be reused.
+  if (!N.hasOneUse() || !Shift.hasOneUse())
+    return true;
+
+  // Verify that the shift amount is something we can fold.
+  unsigned ShiftAmt = Shift.getConstantOperandVal(1);
+  if (ShiftAmt != 1 && ShiftAmt != 2 && ShiftAmt != 3)
+    return true;
+
+  MVT VT = N.getSimpleValueType();
+  SDLoc DL(N);
+  SDValue NewMask = DAG.getConstant(Mask >> ShiftAmt, DL, VT);
+  SDValue NewAnd = DAG.getNode(ISD::AND, DL, VT, X, NewMask);
+  SDValue NewShift = DAG.getNode(ISD::SHL, DL, VT, NewAnd, Shift.getOperand(1));
+
+  // Insert the new nodes into the topological ordering. We must do this in
+  // a valid topological ordering as nothing is going to go back and re-sort
+  // these nodes. We continually insert before 'N' in sequence as this is
+  // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
+  // hierarchy left to express.
+  InsertDAGNode(DAG, N, NewMask);
+  InsertDAGNode(DAG, N, NewAnd);
+  InsertDAGNode(DAG, N, NewShift);
+  DAG.ReplaceAllUsesWith(N, NewShift);
+
+  AM.Scale = 1 << ShiftAmt;
+  AM.IndexReg = NewAnd;
+  return false;
+}
+
+// Implement some heroics to detect shifts of masked values where the mask can
+// be replaced by extending the shift and undoing that in the addressing mode
+// scale. Patterns such as (shl (srl x, c1), c2) are canonicalized into (and
+// (srl x, SHIFT), MASK) by DAGCombines that don't know the shl can be done in
+// the addressing mode. This results in code such as:
+//
+//   int f(short *y, int *lookup_table) {
+//     ...
+//     return *y + lookup_table[*y >> 11];
+//   }
+//
+// Turning into:
+//   movzwl (%rdi), %eax
+//   movl %eax, %ecx
+//   shrl $11, %ecx
+//   addl (%rsi,%rcx,4), %eax
+//
+// Instead of:
+//   movzwl (%rdi), %eax
+//   movl %eax, %ecx
+//   shrl $9, %ecx
+//   andl $124, %rcx
+//   addl (%rsi,%rcx), %eax
+//
+// Note that this function assumes the mask is provided as a mask *after* the
+// value is shifted. The input chain may or may not match that, but computing
+// such a mask is trivial.
+static bool FoldMaskAndShiftToScale(SelectionDAG &DAG, SDValue N,
+                                    uint64_t Mask,
+                                    SDValue Shift, SDValue X,
+                                    X86ISelAddressMode &AM) {
+  if (Shift.getOpcode() != ISD::SRL || !Shift.hasOneUse() ||
+      !isa<ConstantSDNode>(Shift.getOperand(1)))
+    return true;
+
+  unsigned ShiftAmt = Shift.getConstantOperandVal(1);
+  unsigned MaskLZ = countLeadingZeros(Mask);
+  unsigned MaskTZ = countTrailingZeros(Mask);
+
+  // The amount of shift we're trying to fit into the addressing mode is taken
+  // from the trailing zeros of the mask.
+  unsigned AMShiftAmt = MaskTZ;
+
+  // There is nothing we can do here unless the mask is removing some bits.
+  // Also, the addressing mode can only represent shifts of 1, 2, or 3 bits.
+  if (AMShiftAmt <= 0 || AMShiftAmt > 3) return true;
+
+  // We also need to ensure that mask is a continuous run of bits.
+  if (countTrailingOnes(Mask >> MaskTZ) + MaskTZ + MaskLZ != 64) return true;
+
+  // Scale the leading zero count down based on the actual size of the value.
+  // Also scale it down based on the size of the shift.
+  MaskLZ -= (64 - X.getSimpleValueType().getSizeInBits()) + ShiftAmt;
+
+  // The final check is to ensure that any masked out high bits of X are
+  // already known to be zero. Otherwise, the mask has a semantic impact
+  // other than masking out a couple of low bits. Unfortunately, because of
+  // the mask, zero extensions will be removed from operands in some cases.
+  // This code works extra hard to look through extensions because we can
+  // replace them with zero extensions cheaply if necessary.
+  bool ReplacingAnyExtend = false;
+  if (X.getOpcode() == ISD::ANY_EXTEND) {
+    unsigned ExtendBits = X.getSimpleValueType().getSizeInBits() -
+                          X.getOperand(0).getSimpleValueType().getSizeInBits();
+    // Assume that we'll replace the any-extend with a zero-extend, and
+    // narrow the search to the extended value.
+    X = X.getOperand(0);
+    MaskLZ = ExtendBits > MaskLZ ? 0 : MaskLZ - ExtendBits;
+    ReplacingAnyExtend = true;
+  }
+  APInt MaskedHighBits =
+    APInt::getHighBitsSet(X.getSimpleValueType().getSizeInBits(), MaskLZ);
+  APInt KnownZero, KnownOne;
+  DAG.computeKnownBits(X, KnownZero, KnownOne);
+  if (MaskedHighBits != KnownZero) return true;
+
+  // We've identified a pattern that can be transformed into a single shift
+  // and an addressing mode. Make it so.
+  MVT VT = N.getSimpleValueType();
+  if (ReplacingAnyExtend) {
+    assert(X.getValueType() != VT);
+    // We looked through an ANY_EXTEND node, insert a ZERO_EXTEND.
+    SDValue NewX = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(X), VT, X);
+    InsertDAGNode(DAG, N, NewX);
+    X = NewX;
+  }
+  SDLoc DL(N);
+  SDValue NewSRLAmt = DAG.getConstant(ShiftAmt + AMShiftAmt, DL, MVT::i8);
+  SDValue NewSRL = DAG.getNode(ISD::SRL, DL, VT, X, NewSRLAmt);
+  SDValue NewSHLAmt = DAG.getConstant(AMShiftAmt, DL, MVT::i8);
+  SDValue NewSHL = DAG.getNode(ISD::SHL, DL, VT, NewSRL, NewSHLAmt);
+
+  // Insert the new nodes into the topological ordering. We must do this in
+  // a valid topological ordering as nothing is going to go back and re-sort
+  // these nodes. We continually insert before 'N' in sequence as this is
+  // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
+  // hierarchy left to express.
+  InsertDAGNode(DAG, N, NewSRLAmt);
+  InsertDAGNode(DAG, N, NewSRL);
+  InsertDAGNode(DAG, N, NewSHLAmt);
+  InsertDAGNode(DAG, N, NewSHL);
+  DAG.ReplaceAllUsesWith(N, NewSHL);
+
+  AM.Scale = 1 << AMShiftAmt;
+  AM.IndexReg = NewSRL;
+  return false;
 }
 
 bool X86DAGToDAGISel::MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
                                               unsigned Depth) {
-  bool is64Bit = Subtarget->is64Bit();
-  DebugLoc dl = N.getDebugLoc();
+  SDLoc dl(N);
   DEBUG({
       dbgs() << "MatchAddress: ";
       AM.dump();
@@ -716,8 +1085,6 @@ bool X86DAGToDAGISel::MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
   if (Depth > 5)
     return MatchAddressBase(N, AM);
 
-  CodeModel::Model M = TM.getCodeModel();
-
   // If this is already a %rip relative address, we can only merge immediates
   // into it.  Instead of handling this in every case, we handle it here.
   // RIP relative addressing: %rip + 32-bit displacement!
@@ -725,37 +1092,33 @@ bool X86DAGToDAGISel::MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
     // FIXME: JumpTable and ExternalSymbol address currently don't like
     // displacements.  It isn't very important, but this should be fixed for
     // consistency.
-    if (!AM.ES && AM.JT != -1) return true;
+    if (!(AM.ES || AM.MCSym) && AM.JT != -1)
+      return true;
 
-    if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N)) {
-      int64_t Val = AM.Disp + Cst->getSExtValue();
-      if (X86::isOffsetSuitableForCodeModel(Val, M,
-                                            AM.hasSymbolicDisplacement())) {
-        AM.Disp = Val;
+    if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N))
+      if (!FoldOffsetIntoAddress(Cst->getSExtValue(), AM))
         return false;
-      }
-    }
     return true;
   }
 
   switch (N.getOpcode()) {
   default: break;
+  case ISD::LOCAL_RECOVER: {
+    if (!AM.hasSymbolicDisplacement() && AM.Disp == 0)
+      if (const auto *ESNode = dyn_cast<MCSymbolSDNode>(N.getOperand(0))) {
+        // Use the symbol and don't prefix it.
+        AM.MCSym = ESNode->getMCSymbol();
+        return false;
+      }
+    break;
+  }
   case ISD::Constant: {
     uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
-    if (!is64Bit ||
-        X86::isOffsetSuitableForCodeModel(AM.Disp + Val, M,
-                                          AM.hasSymbolicDisplacement())) {
-      AM.Disp += Val;
+    if (!FoldOffsetIntoAddress(Val, AM))
       return false;
-    }
     break;
   }
 
-  case X86ISD::SegmentBaseAddress:
-    if (!MatchSegmentBaseAddress(N, AM))
-      return false;
-    break;
-
   case X86ISD::Wrapper:
   case X86ISD::WrapperRIP:
     if (!MatchWrapper(N, AM))
@@ -763,13 +1126,14 @@ bool X86DAGToDAGISel::MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
     break;
 
   case ISD::LOAD:
-    if (!MatchLoad(N, AM))
+    if (!MatchLoadInAddress(cast<LoadSDNode>(N), AM))
       return false;
     break;
 
   case ISD::FrameIndex:
-    if (AM.BaseType == X86ISelAddressMode::RegBase
-        && AM.Base_Reg.getNode() == 0) {
+    if (AM.BaseType == X86ISelAddressMode::RegBase &&
+        AM.Base_Reg.getNode() == nullptr &&
+        (!Subtarget->is64Bit() || isDispSafeForFrameIndex(AM.Disp))) {
       AM.BaseType = X86ISelAddressMode::FrameIndexBase;
       AM.Base_FrameIndex = cast<FrameIndexSDNode>(N)->getIndex();
       return false;
@@ -777,9 +1141,9 @@ bool X86DAGToDAGISel::MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
     break;
 
   case ISD::SHL:
-    if (AM.IndexReg.getNode() != 0 || AM.Scale != 1)
+    if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1)
       break;
-      
+
     if (ConstantSDNode
           *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1))) {
       unsigned Val = CN->getZExtValue();
@@ -794,24 +1158,47 @@ bool X86DAGToDAGISel::MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
         // Okay, we know that we have a scale by now.  However, if the scaled
         // value is an add of something and a constant, we can fold the
         // constant into the disp field here.
-        if (isLogicallyAddWithConstant(ShVal, CurDAG)) {
+        if (CurDAG->isBaseWithConstantOffset(ShVal)) {
           AM.IndexReg = ShVal.getNode()->getOperand(0);
           ConstantSDNode *AddVal =
             cast<ConstantSDNode>(ShVal.getNode()->getOperand(1));
-          uint64_t Disp = AM.Disp + (AddVal->getSExtValue() << Val);
-          if (!is64Bit ||
-              X86::isOffsetSuitableForCodeModel(Disp, M,
-                                                AM.hasSymbolicDisplacement()))
-            AM.Disp = Disp;
-          else
-            AM.IndexReg = ShVal;
-        } else {
-          AM.IndexReg = ShVal;
+          uint64_t Disp = (uint64_t)AddVal->getSExtValue() << Val;
+          if (!FoldOffsetIntoAddress(Disp, AM))
+            return false;
         }
+
+        AM.IndexReg = ShVal;
         return false;
       }
-    break;
     }
+    break;
+
+  case ISD::SRL: {
+    // Scale must not be used already.
+    if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1) break;
+
+    SDValue And = N.getOperand(0);
+    if (And.getOpcode() != ISD::AND) break;
+    SDValue X = And.getOperand(0);
+
+    // We only handle up to 64-bit values here as those are what matter for
+    // addressing mode optimizations.
+    if (X.getSimpleValueType().getSizeInBits() > 64) break;
+
+    // The mask used for the transform is expected to be post-shift, but we
+    // found the shift first so just apply the shift to the mask before passing
+    // it down.
+    if (!isa<ConstantSDNode>(N.getOperand(1)) ||
+        !isa<ConstantSDNode>(And.getOperand(1)))
+      break;
+    uint64_t Mask = And.getConstantOperandVal(1) >> N.getConstantOperandVal(1);
+
+    // Try to fold the mask and shift into the scale, and return false if we
+    // succeed.
+    if (!FoldMaskAndShiftToScale(*CurDAG, N, Mask, N, X, AM))
+      return false;
+    break;
+  }
 
   case ISD::SMUL_LOHI:
   case ISD::UMUL_LOHI:
@@ -822,8 +1209,8 @@ bool X86DAGToDAGISel::MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
   case X86ISD::MUL_IMM:
     // X*[3,5,9] -> X+X*[2,4,8]
     if (AM.BaseType == X86ISelAddressMode::RegBase &&
-        AM.Base_Reg.getNode() == 0 &&
-        AM.IndexReg.getNode() == 0) {
+        AM.Base_Reg.getNode() == nullptr &&
+        AM.IndexReg.getNode() == nullptr) {
       if (ConstantSDNode
             *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1)))
         if (CN->getZExtValue() == 3 || CN->getZExtValue() == 5 ||
@@ -841,13 +1228,8 @@ bool X86DAGToDAGISel::MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
             Reg = MulVal.getNode()->getOperand(0);
             ConstantSDNode *AddVal =
               cast<ConstantSDNode>(MulVal.getNode()->getOperand(1));
-            uint64_t Disp = AM.Disp + AddVal->getSExtValue() *
-                                      CN->getZExtValue();
-            if (!is64Bit ||
-                X86::isOffsetSuitableForCodeModel(Disp, M,
-                                                  AM.hasSymbolicDisplacement()))
-              AM.Disp = Disp;
-            else
+            uint64_t Disp = AddVal->getSExtValue() * CN->getZExtValue();
+            if (FoldOffsetIntoAddress(Disp, AM))
               Reg = N.getNode()->getOperand(0);
           } else {
             Reg = N.getNode()->getOperand(0);
@@ -915,22 +1297,14 @@ bool X86DAGToDAGISel::MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
     }
 
     // Ok, the transformation is legal and appears profitable. Go for it.
-    SDValue Zero = CurDAG->getConstant(0, N.getValueType());
+    SDValue Zero = CurDAG->getConstant(0, dl, N.getValueType());
     SDValue Neg = CurDAG->getNode(ISD::SUB, dl, N.getValueType(), Zero, RHS);
     AM.IndexReg = Neg;
     AM.Scale = 1;
 
     // Insert the new nodes into the topological ordering.
-    if (Zero.getNode()->getNodeId() == -1 ||
-        Zero.getNode()->getNodeId() > N.getNode()->getNodeId()) {
-      CurDAG->RepositionNode(N.getNode(), Zero.getNode());
-      Zero.getNode()->setNodeId(N.getNode()->getNodeId());
-    }
-    if (Neg.getNode()->getNodeId() == -1 ||
-        Neg.getNode()->getNodeId() > N.getNode()->getNodeId()) {
-      CurDAG->RepositionNode(N.getNode(), Neg.getNode());
-      Neg.getNode()->setNodeId(N.getNode()->getNodeId());
-    }
+    InsertDAGNode(*CurDAG, N, Zero);
+    InsertDAGNode(*CurDAG, N, Neg);
     return false;
   }
 
@@ -938,24 +1312,18 @@ bool X86DAGToDAGISel::MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
     // Add an artificial use to this node so that we can keep track of
     // it if it gets CSE'd with a different node.
     HandleSDNode Handle(N);
-    SDValue LHS = Handle.getValue().getNode()->getOperand(0);
-    SDValue RHS = Handle.getValue().getNode()->getOperand(1);
 
     X86ISelAddressMode Backup = AM;
-    if (!MatchAddressRecursively(LHS, AM, Depth+1) &&
-        !MatchAddressRecursively(RHS, AM, Depth+1))
+    if (!MatchAddressRecursively(N.getOperand(0), AM, Depth+1) &&
+        !MatchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1))
       return false;
     AM = Backup;
-    LHS = Handle.getValue().getNode()->getOperand(0);
-    RHS = Handle.getValue().getNode()->getOperand(1);
 
     // Try again after commuting the operands.
-    if (!MatchAddressRecursively(RHS, AM, Depth+1) &&
-        !MatchAddressRecursively(LHS, AM, Depth+1))
+    if (!MatchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1)&&
+        !MatchAddressRecursively(Handle.getValue().getOperand(0), AM, Depth+1))
       return false;
     AM = Backup;
-    LHS = Handle.getValue().getNode()->getOperand(0);
-    RHS = Handle.getValue().getNode()->getOperand(1);
 
     // If we couldn't fold both operands into the address at the same time,
     // see if we can just put each operand into a register and fold at least
@@ -963,155 +1331,62 @@ bool X86DAGToDAGISel::MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
     if (AM.BaseType == X86ISelAddressMode::RegBase &&
         !AM.Base_Reg.getNode() &&
         !AM.IndexReg.getNode()) {
-      AM.Base_Reg = LHS;
-      AM.IndexReg = RHS;
+      N = Handle.getValue();
+      AM.Base_Reg = N.getOperand(0);
+      AM.IndexReg = N.getOperand(1);
       AM.Scale = 1;
       return false;
     }
+    N = Handle.getValue();
     break;
   }
 
   case ISD::OR:
     // Handle "X | C" as "X + C" iff X is known to have C bits clear.
-    if (isLogicallyAddWithConstant(N, CurDAG)) {
+    if (CurDAG->isBaseWithConstantOffset(N)) {
       X86ISelAddressMode Backup = AM;
       ConstantSDNode *CN = cast<ConstantSDNode>(N.getOperand(1));
-      uint64_t Offset = CN->getSExtValue();
 
       // Start with the LHS as an addr mode.
       if (!MatchAddressRecursively(N.getOperand(0), AM, Depth+1) &&
-          // Address could not have picked a GV address for the displacement.
-          AM.GV == NULL &&
-          // On x86-64, the resultant disp must fit in 32-bits.
-          (!is64Bit ||
-           X86::isOffsetSuitableForCodeModel(AM.Disp + Offset, M,
-                                             AM.hasSymbolicDisplacement()))) {
-        AM.Disp += Offset;
+          !FoldOffsetIntoAddress(CN->getSExtValue(), AM))
         return false;
-      }
       AM = Backup;
     }
     break;
-      
+
   case ISD::AND: {
     // Perform some heroic transforms on an and of a constant-count shift
     // with a constant to enable use of the scaled offset field.
 
-    SDValue Shift = N.getOperand(0);
-    if (Shift.getNumOperands() != 2) break;
-
     // Scale must not be used already.
-    if (AM.IndexReg.getNode() != 0 || AM.Scale != 1) break;
+    if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1) break;
 
+    SDValue Shift = N.getOperand(0);
+    if (Shift.getOpcode() != ISD::SRL && Shift.getOpcode() != ISD::SHL) break;
     SDValue X = Shift.getOperand(0);
-    ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N.getOperand(1));
-    ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
-    if (!C1 || !C2) break;
-
-    // Handle "(X >> (8-C1)) & C2" as "(X >> 8) & 0xff)" if safe. This
-    // allows us to convert the shift and and into an h-register extract and
-    // a scaled index.
-    if (Shift.getOpcode() == ISD::SRL && Shift.hasOneUse()) {
-      unsigned ScaleLog = 8 - C1->getZExtValue();
-      if (ScaleLog > 0 && ScaleLog < 4 &&
-          C2->getZExtValue() == (UINT64_C(0xff) << ScaleLog)) {
-        SDValue Eight = CurDAG->getConstant(8, MVT::i8);
-        SDValue Mask = CurDAG->getConstant(0xff, N.getValueType());
-        SDValue Srl = CurDAG->getNode(ISD::SRL, dl, N.getValueType(),
-                                      X, Eight);
-        SDValue And = CurDAG->getNode(ISD::AND, dl, N.getValueType(),
-                                      Srl, Mask);
-        SDValue ShlCount = CurDAG->getConstant(ScaleLog, MVT::i8);
-        SDValue Shl = CurDAG->getNode(ISD::SHL, dl, N.getValueType(),
-                                      And, ShlCount);
-
-        // Insert the new nodes into the topological ordering.
-        if (Eight.getNode()->getNodeId() == -1 ||
-            Eight.getNode()->getNodeId() > X.getNode()->getNodeId()) {
-          CurDAG->RepositionNode(X.getNode(), Eight.getNode());
-          Eight.getNode()->setNodeId(X.getNode()->getNodeId());
-        }
-        if (Mask.getNode()->getNodeId() == -1 ||
-            Mask.getNode()->getNodeId() > X.getNode()->getNodeId()) {
-          CurDAG->RepositionNode(X.getNode(), Mask.getNode());
-          Mask.getNode()->setNodeId(X.getNode()->getNodeId());
-        }
-        if (Srl.getNode()->getNodeId() == -1 ||
-            Srl.getNode()->getNodeId() > Shift.getNode()->getNodeId()) {
-          CurDAG->RepositionNode(Shift.getNode(), Srl.getNode());
-          Srl.getNode()->setNodeId(Shift.getNode()->getNodeId());
-        }
-        if (And.getNode()->getNodeId() == -1 ||
-            And.getNode()->getNodeId() > N.getNode()->getNodeId()) {
-          CurDAG->RepositionNode(N.getNode(), And.getNode());
-          And.getNode()->setNodeId(N.getNode()->getNodeId());
-        }
-        if (ShlCount.getNode()->getNodeId() == -1 ||
-            ShlCount.getNode()->getNodeId() > X.getNode()->getNodeId()) {
-          CurDAG->RepositionNode(X.getNode(), ShlCount.getNode());
-          ShlCount.getNode()->setNodeId(N.getNode()->getNodeId());
-        }
-        if (Shl.getNode()->getNodeId() == -1 ||
-            Shl.getNode()->getNodeId() > N.getNode()->getNodeId()) {
-          CurDAG->RepositionNode(N.getNode(), Shl.getNode());
-          Shl.getNode()->setNodeId(N.getNode()->getNodeId());
-        }
-        CurDAG->ReplaceAllUsesWith(N, Shl);
-        AM.IndexReg = And;
-        AM.Scale = (1 << ScaleLog);
-        return false;
-      }
-    }
 
-    // Handle "(X << C1) & C2" as "(X & (C2>>C1)) << C1" if safe and if this
-    // allows us to fold the shift into this addressing mode.
-    if (Shift.getOpcode() != ISD::SHL) break;
+    // We only handle up to 64-bit values here as those are what matter for
+    // addressing mode optimizations.
+    if (X.getSimpleValueType().getSizeInBits() > 64) break;
 
-    // Not likely to be profitable if either the AND or SHIFT node has more
-    // than one use (unless all uses are for address computation). Besides,
-    // isel mechanism requires their node ids to be reused.
-    if (!N.hasOneUse() || !Shift.hasOneUse())
+    if (!isa<ConstantSDNode>(N.getOperand(1)))
       break;
-    
-    // Verify that the shift amount is something we can fold.
-    unsigned ShiftCst = C1->getZExtValue();
-    if (ShiftCst != 1 && ShiftCst != 2 && ShiftCst != 3)
-      break;
-    
-    // Get the new AND mask, this folds to a constant.
-    SDValue NewANDMask = CurDAG->getNode(ISD::SRL, dl, N.getValueType(),
-                                         SDValue(C2, 0), SDValue(C1, 0));
-    SDValue NewAND = CurDAG->getNode(ISD::AND, dl, N.getValueType(), X, 
-                                     NewANDMask);
-    SDValue NewSHIFT = CurDAG->getNode(ISD::SHL, dl, N.getValueType(),
-                                       NewAND, SDValue(C1, 0));
+    uint64_t Mask = N.getConstantOperandVal(1);
 
-    // Insert the new nodes into the topological ordering.
-    if (C1->getNodeId() > X.getNode()->getNodeId()) {
-      CurDAG->RepositionNode(X.getNode(), C1);
-      C1->setNodeId(X.getNode()->getNodeId());
-    }
-    if (NewANDMask.getNode()->getNodeId() == -1 ||
-        NewANDMask.getNode()->getNodeId() > X.getNode()->getNodeId()) {
-      CurDAG->RepositionNode(X.getNode(), NewANDMask.getNode());
-      NewANDMask.getNode()->setNodeId(X.getNode()->getNodeId());
-    }
-    if (NewAND.getNode()->getNodeId() == -1 ||
-        NewAND.getNode()->getNodeId() > Shift.getNode()->getNodeId()) {
-      CurDAG->RepositionNode(Shift.getNode(), NewAND.getNode());
-      NewAND.getNode()->setNodeId(Shift.getNode()->getNodeId());
-    }
-    if (NewSHIFT.getNode()->getNodeId() == -1 ||
-        NewSHIFT.getNode()->getNodeId() > N.getNode()->getNodeId()) {
-      CurDAG->RepositionNode(N.getNode(), NewSHIFT.getNode());
-      NewSHIFT.getNode()->setNodeId(N.getNode()->getNodeId());
-    }
+    // Try to fold the mask and shift into an extract and scale.
+    if (!FoldMaskAndShiftToExtract(*CurDAG, N, Mask, Shift, X, AM))
+      return false;
 
-    CurDAG->ReplaceAllUsesWith(N, NewSHIFT);
-    
-    AM.Scale = 1 << ShiftCst;
-    AM.IndexReg = NewAND;
-    return false;
+    // Try to fold the mask and shift directly into the scale.
+    if (!FoldMaskAndShiftToScale(*CurDAG, N, Mask, Shift, X, AM))
+      return false;
+
+    // Try to swap the mask and shift to place shifts which can be done as
+    // a scale on the outside of the mask.
+    if (!FoldMaskedShiftToScaledMask(*CurDAG, N, Mask, Shift, X, AM))
+      return false;
+    break;
   }
   }
 
@@ -1124,7 +1399,7 @@ bool X86DAGToDAGISel::MatchAddressBase(SDValue N, X86ISelAddressMode &AM) {
   // Is the base register already occupied?
   if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base_Reg.getNode()) {
     // If so, check to see if the scale index register is set.
-    if (AM.IndexReg.getNode() == 0) {
+    if (!AM.IndexReg.getNode()) {
       AM.IndexReg = N;
       AM.Scale = 1;
       return false;
@@ -1140,6 +1415,42 @@ bool X86DAGToDAGISel::MatchAddressBase(SDValue N, X86ISelAddressMode &AM) {
   return false;
 }
 
+bool X86DAGToDAGISel::SelectVectorAddr(SDNode *Parent, SDValue N, SDValue &Base,
+                                      SDValue &Scale, SDValue &Index,
+                                      SDValue &Disp, SDValue &Segment) {
+
+  MaskedGatherScatterSDNode *Mgs = dyn_cast<MaskedGatherScatterSDNode>(Parent);
+  if (!Mgs)
+    return false;
+  X86ISelAddressMode AM;
+  unsigned AddrSpace = Mgs->getPointerInfo().getAddrSpace();
+  // AddrSpace 256 -> GS, 257 -> FS.
+  if (AddrSpace == 256)
+    AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
+  if (AddrSpace == 257)
+    AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
+
+  SDLoc DL(N);
+  Base = Mgs->getBasePtr();
+  Index = Mgs->getIndex();
+  unsigned ScalarSize = Mgs->getValue().getValueType().getScalarSizeInBits();
+  Scale = getI8Imm(ScalarSize/8, DL);
+
+  // If Base is 0, the whole address is in index and the Scale is 1
+  if (isa<ConstantSDNode>(Base)) {
+    assert(dyn_cast<ConstantSDNode>(Base)->isNullValue() &&
+           "Unexpected base in gather/scatter");
+    Scale = getI8Imm(1, DL);
+    Base = CurDAG->getRegister(0, MVT::i32);
+  }
+  if (AM.Segment.getNode())
+    Segment = AM.Segment;
+  else
+    Segment = CurDAG->getRegister(0, MVT::i32);
+  Disp = CurDAG->getTargetConstant(0, DL, MVT::i32);
+  return true;
+}
+
 /// SelectAddr - returns true if it is able pattern match an addressing mode.
 /// It returns the operands which make up the maximal addressing mode it can
 /// match by reference.
@@ -1151,40 +1462,37 @@ bool X86DAGToDAGISel::SelectAddr(SDNode *Parent, SDValue N, SDValue &Base,
                                  SDValue &Scale, SDValue &Index,
                                  SDValue &Disp, SDValue &Segment) {
   X86ISelAddressMode AM;
-  if (MatchAddress(N, AM))
-    return false;
-
-  EVT VT = N.getValueType();
-  if (AM.BaseType == X86ISelAddressMode::RegBase) {
-    if (!AM.Base_Reg.getNode())
-      AM.Base_Reg = CurDAG->getRegister(0, VT);
-  }
-
-  if (!AM.IndexReg.getNode())
-    AM.IndexReg = CurDAG->getRegister(0, VT);
 
   if (Parent &&
       // This list of opcodes are all the nodes that have an "addr:$ptr" operand
       // that are not a MemSDNode, and thus don't have proper addrspace info.
-      Parent->getOpcode() != ISD::PREFETCH &&
       Parent->getOpcode() != ISD::INTRINSIC_W_CHAIN && // unaligned loads, fixme
-      Parent->getOpcode() != ISD::INTRINSIC_VOID && // nontemporal stores.
-      Parent->getOpcode() != X86ISD::FNSTCW16m &&
-      Parent->getOpcode() != X86ISD::FLD &&
-      Parent->getOpcode() != X86ISD::FILD &&
-      Parent->getOpcode() != X86ISD::FILD_FLAG &&
-      Parent->getOpcode() != X86ISD::FST) {
+      Parent->getOpcode() != ISD::INTRINSIC_VOID && // nontemporal stores
+      Parent->getOpcode() != X86ISD::TLSCALL && // Fixme
+      Parent->getOpcode() != X86ISD::EH_SJLJ_SETJMP && // setjmp
+      Parent->getOpcode() != X86ISD::EH_SJLJ_LONGJMP) { // longjmp
     unsigned AddrSpace =
       cast<MemSDNode>(Parent)->getPointerInfo().getAddrSpace();
     // AddrSpace 256 -> GS, 257 -> FS.
     if (AddrSpace == 256)
-      AM.Segment = CurDAG->getRegister(X86::GS, VT);
+      AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
     if (AddrSpace == 257)
-      AM.Segment = CurDAG->getRegister(X86::FS, VT);
+      AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
+  }
+
+  if (MatchAddress(N, AM))
+    return false;
+
+  MVT VT = N.getSimpleValueType();
+  if (AM.BaseType == X86ISelAddressMode::RegBase) {
+    if (!AM.Base_Reg.getNode())
+      AM.Base_Reg = CurDAG->getRegister(0, VT);
   }
-  
-  
-  getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
+
+  if (!AM.IndexReg.getNode())
+    AM.IndexReg = CurDAG->getRegister(0, VT);
+
+  getAddressOperands(AM, SDLoc(N), Base, Scale, Index, Disp, Segment);
   return true;
 }
 
@@ -1217,7 +1525,7 @@ bool X86DAGToDAGISel::SelectScalarSSELoad(SDNode *Root,
   // elements.  This is a vector shuffle from the zero vector.
   if (N.getOpcode() == X86ISD::VZEXT_MOVL && N.getNode()->hasOneUse() &&
       // Check to see if the top elements are all zeros (or bitcast of zeros).
-      N.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR && 
+      N.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR &&
       N.getOperand(0).getNode()->hasOneUse() &&
       ISD::isNON_EXTLoad(N.getOperand(0).getOperand(0).getNode()) &&
       N.getOperand(0).getOperand(0).hasOneUse() &&
@@ -1234,6 +1542,73 @@ bool X86DAGToDAGISel::SelectScalarSSELoad(SDNode *Root,
 }
 
 
+bool X86DAGToDAGISel::SelectMOV64Imm32(SDValue N, SDValue &Imm) {
+  if (const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
+    uint64_t ImmVal = CN->getZExtValue();
+    if ((uint32_t)ImmVal != (uint64_t)ImmVal)
+      return false;
+
+    Imm = CurDAG->getTargetConstant(ImmVal, SDLoc(N), MVT::i64);
+    return true;
+  }
+
+  // In static codegen with small code model, we can get the address of a label
+  // into a register with 'movl'. TableGen has already made sure we're looking
+  // at a label of some kind.
+  assert(N->getOpcode() == X86ISD::Wrapper &&
+         "Unexpected node type for MOV32ri64");
+  N = N.getOperand(0);
+
+  if (N->getOpcode() != ISD::TargetConstantPool &&
+      N->getOpcode() != ISD::TargetJumpTable &&
+      N->getOpcode() != ISD::TargetGlobalAddress &&
+      N->getOpcode() != ISD::TargetExternalSymbol &&
+      N->getOpcode() != ISD::MCSymbol &&
+      N->getOpcode() != ISD::TargetBlockAddress)
+    return false;
+
+  Imm = N;
+  return TM.getCodeModel() == CodeModel::Small;
+}
+
+bool X86DAGToDAGISel::SelectLEA64_32Addr(SDValue N, SDValue &Base,
+                                         SDValue &Scale, SDValue &Index,
+                                         SDValue &Disp, SDValue &Segment) {
+  if (!SelectLEAAddr(N, Base, Scale, Index, Disp, Segment))
+    return false;
+
+  SDLoc DL(N);
+  RegisterSDNode *RN = dyn_cast<RegisterSDNode>(Base);
+  if (RN && RN->getReg() == 0)
+    Base = CurDAG->getRegister(0, MVT::i64);
+  else if (Base.getValueType() == MVT::i32 && !dyn_cast<FrameIndexSDNode>(Base)) {
+    // Base could already be %rip, particularly in the x32 ABI.
+    Base = SDValue(CurDAG->getMachineNode(
+                       TargetOpcode::SUBREG_TO_REG, DL, MVT::i64,
+                       CurDAG->getTargetConstant(0, DL, MVT::i64),
+                       Base,
+                       CurDAG->getTargetConstant(X86::sub_32bit, DL, MVT::i32)),
+                   0);
+  }
+
+  RN = dyn_cast<RegisterSDNode>(Index);
+  if (RN && RN->getReg() == 0)
+    Index = CurDAG->getRegister(0, MVT::i64);
+  else {
+    assert(Index.getValueType() == MVT::i32 &&
+           "Expect to be extending 32-bit registers for use in LEA");
+    Index = SDValue(CurDAG->getMachineNode(
+                        TargetOpcode::SUBREG_TO_REG, DL, MVT::i64,
+                        CurDAG->getTargetConstant(0, DL, MVT::i64),
+                        Index,
+                        CurDAG->getTargetConstant(X86::sub_32bit, DL,
+                                                  MVT::i32)),
+                    0);
+  }
+
+  return true;
+}
+
 /// SelectLEAAddr - it calls SelectAddr and determines if the maximal addressing
 /// mode it matches can be cost effectively emitted as an LEA instruction.
 bool X86DAGToDAGISel::SelectLEAAddr(SDValue N,
@@ -1252,7 +1627,7 @@ bool X86DAGToDAGISel::SelectLEAAddr(SDValue N,
   assert (T == AM.Segment);
   AM.Segment = Copy;
 
-  EVT VT = N.getValueType();
+  MVT VT = N.getSimpleValueType();
   unsigned Complexity = 0;
   if (AM.BaseType == X86ISelAddressMode::RegBase)
     if (AM.Base_Reg.getNode())
@@ -1292,8 +1667,8 @@ bool X86DAGToDAGISel::SelectLEAAddr(SDValue N,
   // If it isn't worth using an LEA, reject it.
   if (Complexity <= 2)
     return false;
-  
-  getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
+
+  getAddressOperands(AM, SDLoc(N), Base, Scale, Index, Disp, Segment);
   return true;
 }
 
@@ -1303,7 +1678,7 @@ bool X86DAGToDAGISel::SelectTLSADDRAddr(SDValue N, SDValue &Base,
                                         SDValue &Disp, SDValue &Segment) {
   assert(N.getOpcode() == ISD::TargetGlobalTLSAddress);
   const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
-    
+
   X86ISelAddressMode AM;
   AM.GV = GA->getGlobal();
   AM.Disp += GA->getOffset();
@@ -1316,8 +1691,8 @@ bool X86DAGToDAGISel::SelectTLSADDRAddr(SDValue N, SDValue &Base,
   } else {
     AM.IndexReg = CurDAG->getRegister(0, MVT::i64);
   }
-  
-  getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
+
+  getAddressOperands(AM, SDLoc(N), Base, Scale, Index, Disp, Segment);
   return true;
 }
 
@@ -1330,7 +1705,7 @@ bool X86DAGToDAGISel::TryFoldLoad(SDNode *P, SDValue N,
       !IsProfitableToFold(N, P, P) ||
       !IsLegalToFold(N, P, P, OptLevel))
     return false;
-  
+
   return SelectAddr(N.getNode(),
                     N.getOperand(1), Base, Scale, Index, Disp, Segment);
 }
@@ -1341,175 +1716,297 @@ bool X86DAGToDAGISel::TryFoldLoad(SDNode *P, SDValue N,
 ///
 SDNode *X86DAGToDAGISel::getGlobalBaseReg() {
   unsigned GlobalBaseReg = getInstrInfo()->getGlobalBaseReg(MF);
-  return CurDAG->getRegister(GlobalBaseReg, TLI.getPointerTy()).getNode();
+  auto &DL = MF->getDataLayout();
+  return CurDAG->getRegister(GlobalBaseReg, TLI->getPointerTy(DL)).getNode();
 }
 
-SDNode *X86DAGToDAGISel::SelectAtomic64(SDNode *Node, unsigned Opc) {
-  SDValue Chain = Node->getOperand(0);
-  SDValue In1 = Node->getOperand(1);
-  SDValue In2L = Node->getOperand(2);
-  SDValue In2H = Node->getOperand(3);
-  SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
-  if (!SelectAddr(Node, In1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4))
-    return NULL;
-  MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
-  MemOp[0] = cast<MemSDNode>(Node)->getMemOperand();
-  const SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, In2L, In2H, Chain};
-  SDNode *ResNode = CurDAG->getMachineNode(Opc, Node->getDebugLoc(),
-                                           MVT::i32, MVT::i32, MVT::Other, Ops,
-                                           array_lengthof(Ops));
-  cast<MachineSDNode>(ResNode)->setMemRefs(MemOp, MemOp + 1);
-  return ResNode;
+/// Atomic opcode table
+///
+enum AtomicOpc {
+  ADD,
+  SUB,
+  INC,
+  DEC,
+  OR,
+  AND,
+  XOR,
+  AtomicOpcEnd
+};
+
+enum AtomicSz {
+  ConstantI8,
+  I8,
+  SextConstantI16,
+  ConstantI16,
+  I16,
+  SextConstantI32,
+  ConstantI32,
+  I32,
+  SextConstantI64,
+  ConstantI64,
+  I64,
+  AtomicSzEnd
+};
+
+static const uint16_t AtomicOpcTbl[AtomicOpcEnd][AtomicSzEnd] = {
+  {
+    X86::LOCK_ADD8mi,
+    X86::LOCK_ADD8mr,
+    X86::LOCK_ADD16mi8,
+    X86::LOCK_ADD16mi,
+    X86::LOCK_ADD16mr,
+    X86::LOCK_ADD32mi8,
+    X86::LOCK_ADD32mi,
+    X86::LOCK_ADD32mr,
+    X86::LOCK_ADD64mi8,
+    X86::LOCK_ADD64mi32,
+    X86::LOCK_ADD64mr,
+  },
+  {
+    X86::LOCK_SUB8mi,
+    X86::LOCK_SUB8mr,
+    X86::LOCK_SUB16mi8,
+    X86::LOCK_SUB16mi,
+    X86::LOCK_SUB16mr,
+    X86::LOCK_SUB32mi8,
+    X86::LOCK_SUB32mi,
+    X86::LOCK_SUB32mr,
+    X86::LOCK_SUB64mi8,
+    X86::LOCK_SUB64mi32,
+    X86::LOCK_SUB64mr,
+  },
+  {
+    0,
+    X86::LOCK_INC8m,
+    0,
+    0,
+    X86::LOCK_INC16m,
+    0,
+    0,
+    X86::LOCK_INC32m,
+    0,
+    0,
+    X86::LOCK_INC64m,
+  },
+  {
+    0,
+    X86::LOCK_DEC8m,
+    0,
+    0,
+    X86::LOCK_DEC16m,
+    0,
+    0,
+    X86::LOCK_DEC32m,
+    0,
+    0,
+    X86::LOCK_DEC64m,
+  },
+  {
+    X86::LOCK_OR8mi,
+    X86::LOCK_OR8mr,
+    X86::LOCK_OR16mi8,
+    X86::LOCK_OR16mi,
+    X86::LOCK_OR16mr,
+    X86::LOCK_OR32mi8,
+    X86::LOCK_OR32mi,
+    X86::LOCK_OR32mr,
+    X86::LOCK_OR64mi8,
+    X86::LOCK_OR64mi32,
+    X86::LOCK_OR64mr,
+  },
+  {
+    X86::LOCK_AND8mi,
+    X86::LOCK_AND8mr,
+    X86::LOCK_AND16mi8,
+    X86::LOCK_AND16mi,
+    X86::LOCK_AND16mr,
+    X86::LOCK_AND32mi8,
+    X86::LOCK_AND32mi,
+    X86::LOCK_AND32mr,
+    X86::LOCK_AND64mi8,
+    X86::LOCK_AND64mi32,
+    X86::LOCK_AND64mr,
+  },
+  {
+    X86::LOCK_XOR8mi,
+    X86::LOCK_XOR8mr,
+    X86::LOCK_XOR16mi8,
+    X86::LOCK_XOR16mi,
+    X86::LOCK_XOR16mr,
+    X86::LOCK_XOR32mi8,
+    X86::LOCK_XOR32mi,
+    X86::LOCK_XOR32mr,
+    X86::LOCK_XOR64mi8,
+    X86::LOCK_XOR64mi32,
+    X86::LOCK_XOR64mr,
+  }
+};
+
+// Return the target constant operand for atomic-load-op and do simple
+// translations, such as from atomic-load-add to lock-sub. The return value is
+// one of the following 3 cases:
+// + target-constant, the operand could be supported as a target constant.
+// + empty, the operand is not needed any more with the new op selected.
+// + non-empty, otherwise.
+static SDValue getAtomicLoadArithTargetConstant(SelectionDAG *CurDAG,
+                                                SDLoc dl,
+                                                enum AtomicOpc &Op, MVT NVT,
+                                                SDValue Val,
+                                                const X86Subtarget *Subtarget) {
+  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Val)) {
+    int64_t CNVal = CN->getSExtValue();
+    // Quit if not 32-bit imm.
+    if ((int32_t)CNVal != CNVal)
+      return Val;
+    // Quit if INT32_MIN: it would be negated as it is negative and overflow,
+    // producing an immediate that does not fit in the 32 bits available for
+    // an immediate operand to sub. However, it still fits in 32 bits for the
+    // add (since it is not negated) so we can return target-constant.
+    if (CNVal == INT32_MIN)
+      return CurDAG->getTargetConstant(CNVal, dl, NVT);
+    // For atomic-load-add, we could do some optimizations.
+    if (Op == ADD) {
+      // Translate to INC/DEC if ADD by 1 or -1.
+      if (((CNVal == 1) || (CNVal == -1)) && !Subtarget->slowIncDec()) {
+        Op = (CNVal == 1) ? INC : DEC;
+        // No more constant operand after being translated into INC/DEC.
+        return SDValue();
+      }
+      // Translate to SUB if ADD by negative value.
+      if (CNVal < 0) {
+        Op = SUB;
+        CNVal = -CNVal;
+      }
+    }
+    return CurDAG->getTargetConstant(CNVal, dl, NVT);
+  }
+
+  // If the value operand is single-used, try to optimize it.
+  if (Op == ADD && Val.hasOneUse()) {
+    // Translate (atomic-load-add ptr (sub 0 x)) back to (lock-sub x).
+    if (Val.getOpcode() == ISD::SUB && X86::isZeroNode(Val.getOperand(0))) {
+      Op = SUB;
+      return Val.getOperand(1);
+    }
+    // A special case for i16, which needs truncating as, in most cases, it's
+    // promoted to i32. We will translate
+    // (atomic-load-add (truncate (sub 0 x))) to (lock-sub (EXTRACT_SUBREG x))
+    if (Val.getOpcode() == ISD::TRUNCATE && NVT == MVT::i16 &&
+        Val.getOperand(0).getOpcode() == ISD::SUB &&
+        X86::isZeroNode(Val.getOperand(0).getOperand(0))) {
+      Op = SUB;
+      Val = Val.getOperand(0);
+      return CurDAG->getTargetExtractSubreg(X86::sub_16bit, dl, NVT,
+                                            Val.getOperand(1));
+    }
+  }
+
+  return Val;
 }
 
-SDNode *X86DAGToDAGISel::SelectAtomicLoadAdd(SDNode *Node, EVT NVT) {
+SDNode *X86DAGToDAGISel::SelectAtomicLoadArith(SDNode *Node, MVT NVT) {
   if (Node->hasAnyUseOfValue(0))
-    return 0;
-
-  // Optimize common patterns for __sync_add_and_fetch and
-  // __sync_sub_and_fetch where the result is not used. This allows us
-  // to use "lock" version of add, sub, inc, dec instructions.
-  // FIXME: Do not use special instructions but instead add the "lock"
-  // prefix to the target node somehow. The extra information will then be
-  // transferred to machine instruction and it denotes the prefix.
+    return nullptr;
+
+  SDLoc dl(Node);
+
+  // Optimize common patterns for __sync_or_and_fetch and similar arith
+  // operations where the result is not used. This allows us to use the "lock"
+  // version of the arithmetic instruction.
   SDValue Chain = Node->getOperand(0);
   SDValue Ptr = Node->getOperand(1);
   SDValue Val = Node->getOperand(2);
-  SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
-  if (!SelectAddr(Node, Ptr, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4))
-    return 0;
-
-  bool isInc = false, isDec = false, isSub = false, isCN = false;
-  ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Val);
-  if (CN) {
-    isCN = true;
-    int64_t CNVal = CN->getSExtValue();
-    if (CNVal == 1)
-      isInc = true;
-    else if (CNVal == -1)
-      isDec = true;
-    else if (CNVal >= 0)
-      Val = CurDAG->getTargetConstant(CNVal, NVT);
-    else {
-      isSub = true;
-      Val = CurDAG->getTargetConstant(-CNVal, NVT);
-    }
-  } else if (Val.hasOneUse() &&
-             Val.getOpcode() == ISD::SUB &&
-             X86::isZeroNode(Val.getOperand(0))) {
-    isSub = true;
-    Val = Val.getOperand(1);
+  SDValue Base, Scale, Index, Disp, Segment;
+  if (!SelectAddr(Node, Ptr, Base, Scale, Index, Disp, Segment))
+    return nullptr;
+
+  // Which index into the table.
+  enum AtomicOpc Op;
+  switch (Node->getOpcode()) {
+    default:
+      return nullptr;
+    case ISD::ATOMIC_LOAD_OR:
+      Op = OR;
+      break;
+    case ISD::ATOMIC_LOAD_AND:
+      Op = AND;
+      break;
+    case ISD::ATOMIC_LOAD_XOR:
+      Op = XOR;
+      break;
+    case ISD::ATOMIC_LOAD_ADD:
+      Op = ADD;
+      break;
   }
 
+  Val = getAtomicLoadArithTargetConstant(CurDAG, dl, Op, NVT, Val, Subtarget);
+  bool isUnOp = !Val.getNode();
+  bool isCN = Val.getNode() && (Val.getOpcode() == ISD::TargetConstant);
+
   unsigned Opc = 0;
-  switch (NVT.getSimpleVT().SimpleTy) {
-  default: return 0;
-  case MVT::i8:
-    if (isInc)
-      Opc = X86::LOCK_INC8m;
-    else if (isDec)
-      Opc = X86::LOCK_DEC8m;
-    else if (isSub) {
-      if (isCN)
-        Opc = X86::LOCK_SUB8mi;
-      else
-        Opc = X86::LOCK_SUB8mr;
-    } else {
+  switch (NVT.SimpleTy) {
+    default: return nullptr;
+    case MVT::i8:
       if (isCN)
-        Opc = X86::LOCK_ADD8mi;
+        Opc = AtomicOpcTbl[Op][ConstantI8];
       else
-        Opc = X86::LOCK_ADD8mr;
-    }
-    break;
-  case MVT::i16:
-    if (isInc)
-      Opc = X86::LOCK_INC16m;
-    else if (isDec)
-      Opc = X86::LOCK_DEC16m;
-    else if (isSub) {
-      if (isCN) {
-        if (immSext8(Val.getNode()))
-          Opc = X86::LOCK_SUB16mi8;
-        else
-          Opc = X86::LOCK_SUB16mi;
-      } else
-        Opc = X86::LOCK_SUB16mr;
-    } else {
+        Opc = AtomicOpcTbl[Op][I8];
+      break;
+    case MVT::i16:
       if (isCN) {
         if (immSext8(Val.getNode()))
-          Opc = X86::LOCK_ADD16mi8;
+          Opc = AtomicOpcTbl[Op][SextConstantI16];
         else
-          Opc = X86::LOCK_ADD16mi;
+          Opc = AtomicOpcTbl[Op][ConstantI16];
       } else
-        Opc = X86::LOCK_ADD16mr;
-    }
-    break;
-  case MVT::i32:
-    if (isInc)
-      Opc = X86::LOCK_INC32m;
-    else if (isDec)
-      Opc = X86::LOCK_DEC32m;
-    else if (isSub) {
+        Opc = AtomicOpcTbl[Op][I16];
+      break;
+    case MVT::i32:
       if (isCN) {
         if (immSext8(Val.getNode()))
-          Opc = X86::LOCK_SUB32mi8;
+          Opc = AtomicOpcTbl[Op][SextConstantI32];
         else
-          Opc = X86::LOCK_SUB32mi;
+          Opc = AtomicOpcTbl[Op][ConstantI32];
       } else
-        Opc = X86::LOCK_SUB32mr;
-    } else {
+        Opc = AtomicOpcTbl[Op][I32];
+      break;
+    case MVT::i64:
       if (isCN) {
         if (immSext8(Val.getNode()))
-          Opc = X86::LOCK_ADD32mi8;
+          Opc = AtomicOpcTbl[Op][SextConstantI64];
+        else if (i64immSExt32(Val.getNode()))
+          Opc = AtomicOpcTbl[Op][ConstantI64];
         else
-          Opc = X86::LOCK_ADD32mi;
+          llvm_unreachable("True 64 bits constant in SelectAtomicLoadArith");
       } else
-        Opc = X86::LOCK_ADD32mr;
-    }
-    break;
-  case MVT::i64:
-    if (isInc)
-      Opc = X86::LOCK_INC64m;
-    else if (isDec)
-      Opc = X86::LOCK_DEC64m;
-    else if (isSub) {
-      Opc = X86::LOCK_SUB64mr;
-      if (isCN) {
-        if (immSext8(Val.getNode()))
-          Opc = X86::LOCK_SUB64mi8;
-        else if (i64immSExt32(Val.getNode()))
-          Opc = X86::LOCK_SUB64mi32;
-      }
-    } else {
-      Opc = X86::LOCK_ADD64mr;
-      if (isCN) {
-        if (immSext8(Val.getNode()))
-          Opc = X86::LOCK_ADD64mi8;
-        else if (i64immSExt32(Val.getNode()))
-          Opc = X86::LOCK_ADD64mi32;
-      }
-    }
-    break;
+        Opc = AtomicOpcTbl[Op][I64];
+      break;
   }
 
-  DebugLoc dl = Node->getDebugLoc();
-  SDValue Undef = SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,
-                                                 dl, NVT), 0);
-  MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
-  MemOp[0] = cast<MemSDNode>(Node)->getMemOperand();
-  if (isInc || isDec) {
-    SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Chain };
-    SDValue Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops, 6), 0);
-    cast<MachineSDNode>(Ret)->setMemRefs(MemOp, MemOp + 1);
-    SDValue RetVals[] = { Undef, Ret };
-    return CurDAG->getMergeValues(RetVals, 2, dl).getNode();
+  assert(Opc != 0 && "Invalid arith lock transform!");
+
+  // Building the new node.
+  SDValue Ret;
+  if (isUnOp) {
+    SDValue Ops[] = { Base, Scale, Index, Disp, Segment, Chain };
+    Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops), 0);
   } else {
-    SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Val, Chain };
-    SDValue Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops, 7), 0);
-    cast<MachineSDNode>(Ret)->setMemRefs(MemOp, MemOp + 1);
-    SDValue RetVals[] = { Undef, Ret };
-    return CurDAG->getMergeValues(RetVals, 2, dl).getNode();
+    SDValue Ops[] = { Base, Scale, Index, Disp, Segment, Val, Chain };
+    Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops), 0);
   }
+
+  // Copying the MachineMemOperand.
+  MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
+  MemOp[0] = cast<MemSDNode>(Node)->getMemOperand();
+  cast<MachineSDNode>(Ret)->setMemRefs(MemOp, MemOp + 1);
+
+  // We need to have two outputs as that is what the original instruction had.
+  // So we add a dummy, undefined output. This is safe as we checked first
+  // that no-one uses our output anyway.
+  SDValue Undef = SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,
+                                                 dl, NVT), 0);
+  SDValue RetVals[] = { Undef, Ret };
+  return CurDAG->getMergeValues(RetVals, dl).getNode();
 }
 
 /// HasNoSignedComparisonUses - Test whether the given X86ISD::CMP node has
@@ -1539,8 +2036,8 @@ static bool HasNoSignedComparisonUses(SDNode *N) {
       case X86::SETEr: case X86::SETNEr: case X86::SETPr: case X86::SETNPr:
       case X86::SETAm: case X86::SETAEm: case X86::SETBm: case X86::SETBEm:
       case X86::SETEm: case X86::SETNEm: case X86::SETPm: case X86::SETNPm:
-      case X86::JA_4: case X86::JAE_4: case X86::JB_4: case X86::JBE_4:
-      case X86::JE_4: case X86::JNE_4: case X86::JP_4: case X86::JNP_4:
+      case X86::JA_1: case X86::JAE_1: case X86::JB_1: case X86::JBE_1:
+      case X86::JE_1: case X86::JNE_1: case X86::JP_1: case X86::JNP_1:
       case X86::CMOVA16rr: case X86::CMOVA16rm:
       case X86::CMOVA32rr: case X86::CMOVA32rm:
       case X86::CMOVA64rr: case X86::CMOVA64rm:
@@ -1574,45 +2071,380 @@ static bool HasNoSignedComparisonUses(SDNode *N) {
   return true;
 }
 
+/// isLoadIncOrDecStore - Check whether or not the chain ending in StoreNode
+/// is suitable for doing the {load; increment or decrement; store} to modify
+/// transformation.
+static bool isLoadIncOrDecStore(StoreSDNode *StoreNode, unsigned Opc,
+                                SDValue StoredVal, SelectionDAG *CurDAG,
+                                LoadSDNode* &LoadNode, SDValue &InputChain) {
+
+  // is the value stored the result of a DEC or INC?
+  if (!(Opc == X86ISD::DEC || Opc == X86ISD::INC)) return false;
+
+  // is the stored value result 0 of the load?
+  if (StoredVal.getResNo() != 0) return false;
+
+  // are there other uses of the loaded value than the inc or dec?
+  if (!StoredVal.getNode()->hasNUsesOfValue(1, 0)) return false;
+
+  // is the store non-extending and non-indexed?
+  if (!ISD::isNormalStore(StoreNode) || StoreNode->isNonTemporal())
+    return false;
+
+  SDValue Load = StoredVal->getOperand(0);
+  // Is the stored value a non-extending and non-indexed load?
+  if (!ISD::isNormalLoad(Load.getNode())) return false;
+
+  // Return LoadNode by reference.
+  LoadNode = cast<LoadSDNode>(Load);
+  // is the size of the value one that we can handle? (i.e. 64, 32, 16, or 8)
+  EVT LdVT = LoadNode->getMemoryVT();
+  if (LdVT != MVT::i64 && LdVT != MVT::i32 && LdVT != MVT::i16 &&
+      LdVT != MVT::i8)
+    return false;
+
+  // Is store the only read of the loaded value?
+  if (!Load.hasOneUse())
+    return false;
+
+  // Is the address of the store the same as the load?
+  if (LoadNode->getBasePtr() != StoreNode->getBasePtr() ||
+      LoadNode->getOffset() != StoreNode->getOffset())
+    return false;
+
+  // Check if the chain is produced by the load or is a TokenFactor with
+  // the load output chain as an operand. Return InputChain by reference.
+  SDValue Chain = StoreNode->getChain();
+
+  bool ChainCheck = false;
+  if (Chain == Load.getValue(1)) {
+    ChainCheck = true;
+    InputChain = LoadNode->getChain();
+  } else if (Chain.getOpcode() == ISD::TokenFactor) {
+    SmallVector<SDValue, 4> ChainOps;
+    for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i) {
+      SDValue Op = Chain.getOperand(i);
+      if (Op == Load.getValue(1)) {
+        ChainCheck = true;
+        continue;
+      }
+
+      // Make sure using Op as part of the chain would not cause a cycle here.
+      // In theory, we could check whether the chain node is a predecessor of
+      // the load. But that can be very expensive. Instead visit the uses and
+      // make sure they all have smaller node id than the load.
+      int LoadId = LoadNode->getNodeId();
+      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
+             UE = UI->use_end(); UI != UE; ++UI) {
+        if (UI.getUse().getResNo() != 0)
+          continue;
+        if (UI->getNodeId() > LoadId)
+          return false;
+      }
+
+      ChainOps.push_back(Op);
+    }
+
+    if (ChainCheck)
+      // Make a new TokenFactor with all the other input chains except
+      // for the load.
+      InputChain = CurDAG->getNode(ISD::TokenFactor, SDLoc(Chain),
+                                   MVT::Other, ChainOps);
+  }
+  if (!ChainCheck)
+    return false;
+
+  return true;
+}
+
+/// getFusedLdStOpcode - Get the appropriate X86 opcode for an in memory
+/// increment or decrement. Opc should be X86ISD::DEC or X86ISD::INC.
+static unsigned getFusedLdStOpcode(EVT &LdVT, unsigned Opc) {
+  if (Opc == X86ISD::DEC) {
+    if (LdVT == MVT::i64) return X86::DEC64m;
+    if (LdVT == MVT::i32) return X86::DEC32m;
+    if (LdVT == MVT::i16) return X86::DEC16m;
+    if (LdVT == MVT::i8)  return X86::DEC8m;
+  } else {
+    assert(Opc == X86ISD::INC && "unrecognized opcode");
+    if (LdVT == MVT::i64) return X86::INC64m;
+    if (LdVT == MVT::i32) return X86::INC32m;
+    if (LdVT == MVT::i16) return X86::INC16m;
+    if (LdVT == MVT::i8)  return X86::INC8m;
+  }
+  llvm_unreachable("unrecognized size for LdVT");
+}
+
+/// SelectGather - Customized ISel for GATHER operations.
+///
+SDNode *X86DAGToDAGISel::SelectGather(SDNode *Node, unsigned Opc) {
+  // Operands of Gather: VSrc, Base, VIdx, VMask, Scale
+  SDValue Chain = Node->getOperand(0);
+  SDValue VSrc = Node->getOperand(2);
+  SDValue Base = Node->getOperand(3);
+  SDValue VIdx = Node->getOperand(4);
+  SDValue VMask = Node->getOperand(5);
+  ConstantSDNode *Scale = dyn_cast<ConstantSDNode>(Node->getOperand(6));
+  if (!Scale)
+    return nullptr;
+
+  SDVTList VTs = CurDAG->getVTList(VSrc.getValueType(), VSrc.getValueType(),
+                                   MVT::Other);
+
+  SDLoc DL(Node);
+
+  // Memory Operands: Base, Scale, Index, Disp, Segment
+  SDValue Disp = CurDAG->getTargetConstant(0, DL, MVT::i32);
+  SDValue Segment = CurDAG->getRegister(0, MVT::i32);
+  const SDValue Ops[] = { VSrc, Base, getI8Imm(Scale->getSExtValue(), DL), VIdx,
+                          Disp, Segment, VMask, Chain};
+  SDNode *ResNode = CurDAG->getMachineNode(Opc, DL, VTs, Ops);
+  // Node has 2 outputs: VDst and MVT::Other.
+  // ResNode has 3 outputs: VDst, VMask_wb, and MVT::Other.
+  // We replace VDst of Node with VDst of ResNode, and Other of Node with Other
+  // of ResNode.
+  ReplaceUses(SDValue(Node, 0), SDValue(ResNode, 0));
+  ReplaceUses(SDValue(Node, 1), SDValue(ResNode, 2));
+  return ResNode;
+}
+
 SDNode *X86DAGToDAGISel::Select(SDNode *Node) {
-  EVT NVT = Node->getValueType(0);
+  MVT NVT = Node->getSimpleValueType(0);
   unsigned Opc, MOpc;
   unsigned Opcode = Node->getOpcode();
-  DebugLoc dl = Node->getDebugLoc();
-  
+  SDLoc dl(Node);
+
   DEBUG(dbgs() << "Selecting: "; Node->dump(CurDAG); dbgs() << '\n');
 
   if (Node->isMachineOpcode()) {
     DEBUG(dbgs() << "== ";  Node->dump(CurDAG); dbgs() << '\n');
-    return NULL;   // Already selected.
+    Node->setNodeId(-1);
+    return nullptr;   // Already selected.
   }
 
   switch (Opcode) {
   default: break;
+  case ISD::BRIND: {
+    if (Subtarget->isTargetNaCl())
+      // NaCl has its own pass where jmp %r32 are converted to jmp %r64. We
+      // leave the instruction alone.
+      break;
+    if (Subtarget->isTarget64BitILP32()) {
+      // Converts a 32-bit register to a 64-bit, zero-extended version of
+      // it. This is needed because x86-64 can do many things, but jmp %r32
+      // ain't one of them.
+      const SDValue &Target = Node->getOperand(1);
+      assert(Target.getSimpleValueType() == llvm::MVT::i32);
+      SDValue ZextTarget = CurDAG->getZExtOrTrunc(Target, dl, EVT(MVT::i64));
+      SDValue Brind = CurDAG->getNode(ISD::BRIND, dl, MVT::Other,
+                                      Node->getOperand(0), ZextTarget);
+      ReplaceUses(SDValue(Node, 0), Brind);
+      SelectCode(ZextTarget.getNode());
+      SelectCode(Brind.getNode());
+      return nullptr;
+    }
+    break;
+  }
+  case ISD::INTRINSIC_W_CHAIN: {
+    unsigned IntNo = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
+    switch (IntNo) {
+    default: break;
+    case Intrinsic::x86_avx2_gather_d_pd:
+    case Intrinsic::x86_avx2_gather_d_pd_256:
+    case Intrinsic::x86_avx2_gather_q_pd:
+    case Intrinsic::x86_avx2_gather_q_pd_256:
+    case Intrinsic::x86_avx2_gather_d_ps:
+    case Intrinsic::x86_avx2_gather_d_ps_256:
+    case Intrinsic::x86_avx2_gather_q_ps:
+    case Intrinsic::x86_avx2_gather_q_ps_256:
+    case Intrinsic::x86_avx2_gather_d_q:
+    case Intrinsic::x86_avx2_gather_d_q_256:
+    case Intrinsic::x86_avx2_gather_q_q:
+    case Intrinsic::x86_avx2_gather_q_q_256:
+    case Intrinsic::x86_avx2_gather_d_d:
+    case Intrinsic::x86_avx2_gather_d_d_256:
+    case Intrinsic::x86_avx2_gather_q_d:
+    case Intrinsic::x86_avx2_gather_q_d_256: {
+      if (!Subtarget->hasAVX2())
+        break;
+      unsigned Opc;
+      switch (IntNo) {
+      default: llvm_unreachable("Impossible intrinsic");
+      case Intrinsic::x86_avx2_gather_d_pd:     Opc = X86::VGATHERDPDrm;  break;
+      case Intrinsic::x86_avx2_gather_d_pd_256: Opc = X86::VGATHERDPDYrm; break;
+      case Intrinsic::x86_avx2_gather_q_pd:     Opc = X86::VGATHERQPDrm;  break;
+      case Intrinsic::x86_avx2_gather_q_pd_256: Opc = X86::VGATHERQPDYrm; break;
+      case Intrinsic::x86_avx2_gather_d_ps:     Opc = X86::VGATHERDPSrm;  break;
+      case Intrinsic::x86_avx2_gather_d_ps_256: Opc = X86::VGATHERDPSYrm; break;
+      case Intrinsic::x86_avx2_gather_q_ps:     Opc = X86::VGATHERQPSrm;  break;
+      case Intrinsic::x86_avx2_gather_q_ps_256: Opc = X86::VGATHERQPSYrm; break;
+      case Intrinsic::x86_avx2_gather_d_q:      Opc = X86::VPGATHERDQrm;  break;
+      case Intrinsic::x86_avx2_gather_d_q_256:  Opc = X86::VPGATHERDQYrm; break;
+      case Intrinsic::x86_avx2_gather_q_q:      Opc = X86::VPGATHERQQrm;  break;
+      case Intrinsic::x86_avx2_gather_q_q_256:  Opc = X86::VPGATHERQQYrm; break;
+      case Intrinsic::x86_avx2_gather_d_d:      Opc = X86::VPGATHERDDrm;  break;
+      case Intrinsic::x86_avx2_gather_d_d_256:  Opc = X86::VPGATHERDDYrm; break;
+      case Intrinsic::x86_avx2_gather_q_d:      Opc = X86::VPGATHERQDrm;  break;
+      case Intrinsic::x86_avx2_gather_q_d_256:  Opc = X86::VPGATHERQDYrm; break;
+      }
+      SDNode *RetVal = SelectGather(Node, Opc);
+      if (RetVal)
+        // We already called ReplaceUses inside SelectGather.
+        return nullptr;
+      break;
+    }
+    }
+    break;
+  }
   case X86ISD::GlobalBaseReg:
     return getGlobalBaseReg();
 
-  case X86ISD::ATOMOR64_DAG:
-    return SelectAtomic64(Node, X86::ATOMOR6432);
-  case X86ISD::ATOMXOR64_DAG:
-    return SelectAtomic64(Node, X86::ATOMXOR6432);
-  case X86ISD::ATOMADD64_DAG:
-    return SelectAtomic64(Node, X86::ATOMADD6432);
-  case X86ISD::ATOMSUB64_DAG:
-    return SelectAtomic64(Node, X86::ATOMSUB6432);
-  case X86ISD::ATOMNAND64_DAG:
-    return SelectAtomic64(Node, X86::ATOMNAND6432);
-  case X86ISD::ATOMAND64_DAG:
-    return SelectAtomic64(Node, X86::ATOMAND6432);
-  case X86ISD::ATOMSWAP64_DAG:
-    return SelectAtomic64(Node, X86::ATOMSWAP6432);
+  case X86ISD::SHRUNKBLEND: {
+    // SHRUNKBLEND selects like a regular VSELECT.
+    SDValue VSelect = CurDAG->getNode(
+        ISD::VSELECT, SDLoc(Node), Node->getValueType(0), Node->getOperand(0),
+        Node->getOperand(1), Node->getOperand(2));
+    ReplaceUses(SDValue(Node, 0), VSelect);
+    SelectCode(VSelect.getNode());
+    // We already called ReplaceUses.
+    return nullptr;
+  }
 
+  case ISD::ATOMIC_LOAD_XOR:
+  case ISD::ATOMIC_LOAD_AND:
+  case ISD::ATOMIC_LOAD_OR:
   case ISD::ATOMIC_LOAD_ADD: {
-    SDNode *RetVal = SelectAtomicLoadAdd(Node, NVT);
+    SDNode *RetVal = SelectAtomicLoadArith(Node, NVT);
     if (RetVal)
       return RetVal;
     break;
   }
+  case ISD::AND:
+  case ISD::OR:
+  case ISD::XOR: {
+    // For operations of the form (x << C1) op C2, check if we can use a smaller
+    // encoding for C2 by transforming it into (x op (C2>>C1)) << C1.
+    SDValue N0 = Node->getOperand(0);
+    SDValue N1 = Node->getOperand(1);
+
+    if (N0->getOpcode() != ISD::SHL || !N0->hasOneUse())
+      break;
+
+    // i8 is unshrinkable, i16 should be promoted to i32.
+    if (NVT != MVT::i32 && NVT != MVT::i64)
+      break;
+
+    ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N1);
+    ConstantSDNode *ShlCst = dyn_cast<ConstantSDNode>(N0->getOperand(1));
+    if (!Cst || !ShlCst)
+      break;
+
+    int64_t Val = Cst->getSExtValue();
+    uint64_t ShlVal = ShlCst->getZExtValue();
+
+    // Make sure that we don't change the operation by removing bits.
+    // This only matters for OR and XOR, AND is unaffected.
+    uint64_t RemovedBitsMask = (1ULL << ShlVal) - 1;
+    if (Opcode != ISD::AND && (Val & RemovedBitsMask) != 0)
+      break;
+
+    unsigned ShlOp, AddOp, Op;
+    MVT CstVT = NVT;
+
+    // Check the minimum bitwidth for the new constant.
+    // TODO: AND32ri is the same as AND64ri32 with zext imm.
+    // TODO: MOV32ri+OR64r is cheaper than MOV64ri64+OR64rr
+    // TODO: Using 16 and 8 bit operations is also possible for or32 & xor32.
+    if (!isInt<8>(Val) && isInt<8>(Val >> ShlVal))
+      CstVT = MVT::i8;
+    else if (!isInt<32>(Val) && isInt<32>(Val >> ShlVal))
+      CstVT = MVT::i32;
+
+    // Bail if there is no smaller encoding.
+    if (NVT == CstVT)
+      break;
+
+    switch (NVT.SimpleTy) {
+    default: llvm_unreachable("Unsupported VT!");
+    case MVT::i32:
+      assert(CstVT == MVT::i8);
+      ShlOp = X86::SHL32ri;
+      AddOp = X86::ADD32rr;
+
+      switch (Opcode) {
+      default: llvm_unreachable("Impossible opcode");
+      case ISD::AND: Op = X86::AND32ri8; break;
+      case ISD::OR:  Op =  X86::OR32ri8; break;
+      case ISD::XOR: Op = X86::XOR32ri8; break;
+      }
+      break;
+    case MVT::i64:
+      assert(CstVT == MVT::i8 || CstVT == MVT::i32);
+      ShlOp = X86::SHL64ri;
+      AddOp = X86::ADD64rr;
+
+      switch (Opcode) {
+      default: llvm_unreachable("Impossible opcode");
+      case ISD::AND: Op = CstVT==MVT::i8? X86::AND64ri8 : X86::AND64ri32; break;
+      case ISD::OR:  Op = CstVT==MVT::i8?  X86::OR64ri8 :  X86::OR64ri32; break;
+      case ISD::XOR: Op = CstVT==MVT::i8? X86::XOR64ri8 : X86::XOR64ri32; break;
+      }
+      break;
+    }
+
+    // Emit the smaller op and the shift.
+    SDValue NewCst = CurDAG->getTargetConstant(Val >> ShlVal, dl, CstVT);
+    SDNode *New = CurDAG->getMachineNode(Op, dl, NVT, N0->getOperand(0),NewCst);
+    if (ShlVal == 1)
+      return CurDAG->SelectNodeTo(Node, AddOp, NVT, SDValue(New, 0),
+                                  SDValue(New, 0));
+    return CurDAG->SelectNodeTo(Node, ShlOp, NVT, SDValue(New, 0),
+                                getI8Imm(ShlVal, dl));
+  }
+  case X86ISD::UMUL8:
+  case X86ISD::SMUL8: {
+    SDValue N0 = Node->getOperand(0);
+    SDValue N1 = Node->getOperand(1);
+
+    Opc = (Opcode == X86ISD::SMUL8 ? X86::IMUL8r : X86::MUL8r);
+
+    SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, X86::AL,
+                                          N0, SDValue()).getValue(1);
+
+    SDVTList VTs = CurDAG->getVTList(NVT, MVT::i32);
+    SDValue Ops[] = {N1, InFlag};
+    SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
+
+    ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0));
+    ReplaceUses(SDValue(Node, 1), SDValue(CNode, 1));
+    return nullptr;
+  }
+
+  case X86ISD::UMUL: {
+    SDValue N0 = Node->getOperand(0);
+    SDValue N1 = Node->getOperand(1);
+
+    unsigned LoReg;
+    switch (NVT.SimpleTy) {
+    default: llvm_unreachable("Unsupported VT!");
+    case MVT::i8:  LoReg = X86::AL;  Opc = X86::MUL8r; break;
+    case MVT::i16: LoReg = X86::AX;  Opc = X86::MUL16r; break;
+    case MVT::i32: LoReg = X86::EAX; Opc = X86::MUL32r; break;
+    case MVT::i64: LoReg = X86::RAX; Opc = X86::MUL64r; break;
+    }
+
+    SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg,
+                                          N0, SDValue()).getValue(1);
+
+    SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::i32);
+    SDValue Ops[] = {N1, InFlag};
+    SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
+
+    ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0));
+    ReplaceUses(SDValue(Node, 1), SDValue(CNode, 1));
+    ReplaceUses(SDValue(Node, 2), SDValue(CNode, 2));
+    return nullptr;
+  }
 
   case ISD::SMUL_LOHI:
   case ISD::UMUL_LOHI: {
@@ -1620,16 +2452,19 @@ SDNode *X86DAGToDAGISel::Select(SDNode *Node) {
     SDValue N1 = Node->getOperand(1);
 
     bool isSigned = Opcode == ISD::SMUL_LOHI;
+    bool hasBMI2 = Subtarget->hasBMI2();
     if (!isSigned) {
-      switch (NVT.getSimpleVT().SimpleTy) {
+      switch (NVT.SimpleTy) {
       default: llvm_unreachable("Unsupported VT!");
       case MVT::i8:  Opc = X86::MUL8r;  MOpc = X86::MUL8m;  break;
       case MVT::i16: Opc = X86::MUL16r; MOpc = X86::MUL16m; break;
-      case MVT::i32: Opc = X86::MUL32r; MOpc = X86::MUL32m; break;
-      case MVT::i64: Opc = X86::MUL64r; MOpc = X86::MUL64m; break;
+      case MVT::i32: Opc = hasBMI2 ? X86::MULX32rr : X86::MUL32r;
+                     MOpc = hasBMI2 ? X86::MULX32rm : X86::MUL32m; break;
+      case MVT::i64: Opc = hasBMI2 ? X86::MULX64rr : X86::MUL64r;
+                     MOpc = hasBMI2 ? X86::MULX64rm : X86::MUL64m; break;
       }
     } else {
-      switch (NVT.getSimpleVT().SimpleTy) {
+      switch (NVT.SimpleTy) {
       default: llvm_unreachable("Unsupported VT!");
       case MVT::i8:  Opc = X86::IMUL8r;  MOpc = X86::IMUL8m;  break;
       case MVT::i16: Opc = X86::IMUL16r; MOpc = X86::IMUL16m; break;
@@ -1638,13 +2473,31 @@ SDNode *X86DAGToDAGISel::Select(SDNode *Node) {
       }
     }
 
-    unsigned LoReg, HiReg;
-    switch (NVT.getSimpleVT().SimpleTy) {
-    default: llvm_unreachable("Unsupported VT!");
-    case MVT::i8:  LoReg = X86::AL;  HiReg = X86::AH;  break;
-    case MVT::i16: LoReg = X86::AX;  HiReg = X86::DX;  break;
-    case MVT::i32: LoReg = X86::EAX; HiReg = X86::EDX; break;
-    case MVT::i64: LoReg = X86::RAX; HiReg = X86::RDX; break;
+    unsigned SrcReg, LoReg, HiReg;
+    switch (Opc) {
+    default: llvm_unreachable("Unknown MUL opcode!");
+    case X86::IMUL8r:
+    case X86::MUL8r:
+      SrcReg = LoReg = X86::AL; HiReg = X86::AH;
+      break;
+    case X86::IMUL16r:
+    case X86::MUL16r:
+      SrcReg = LoReg = X86::AX; HiReg = X86::DX;
+      break;
+    case X86::IMUL32r:
+    case X86::MUL32r:
+      SrcReg = LoReg = X86::EAX; HiReg = X86::EDX;
+      break;
+    case X86::IMUL64r:
+    case X86::MUL64r:
+      SrcReg = LoReg = X86::RAX; HiReg = X86::RDX;
+      break;
+    case X86::MULX32rr:
+      SrcReg = X86::EDX; LoReg = HiReg = 0;
+      break;
+    case X86::MULX64rr:
+      SrcReg = X86::RDX; LoReg = HiReg = 0;
+      break;
     }
 
     SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
@@ -1656,21 +2509,43 @@ SDNode *X86DAGToDAGISel::Select(SDNode *Node) {
         std::swap(N0, N1);
     }
 
-    SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg,
-                                            N0, SDValue()).getValue(1);
+    SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, SrcReg,
+                                          N0, SDValue()).getValue(1);
+    SDValue ResHi, ResLo;
 
     if (foldedLoad) {
+      SDValue Chain;
       SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
                         InFlag };
-      SDNode *CNode =
-        CurDAG->getMachineNode(MOpc, dl, MVT::Other, MVT::Flag, Ops,
-                               array_lengthof(Ops));
-      InFlag = SDValue(CNode, 1);
+      if (MOpc == X86::MULX32rm || MOpc == X86::MULX64rm) {
+        SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::Other, MVT::Glue);
+        SDNode *CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
+        ResHi = SDValue(CNode, 0);
+        ResLo = SDValue(CNode, 1);
+        Chain = SDValue(CNode, 2);
+        InFlag = SDValue(CNode, 3);
+      } else {
+        SDVTList VTs = CurDAG->getVTList(MVT::Other, MVT::Glue);
+        SDNode *CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
+        Chain = SDValue(CNode, 0);
+        InFlag = SDValue(CNode, 1);
+      }
+
       // Update the chain.
-      ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
+      ReplaceUses(N1.getValue(1), Chain);
     } else {
-      InFlag =
-        SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Flag, N1, InFlag), 0);
+      SDValue Ops[] = { N1, InFlag };
+      if (Opc == X86::MULX32rr || Opc == X86::MULX64rr) {
+        SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::Glue);
+        SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
+        ResHi = SDValue(CNode, 0);
+        ResLo = SDValue(CNode, 1);
+        InFlag = SDValue(CNode, 2);
+      } else {
+        SDVTList VTs = CurDAG->getVTList(MVT::Glue);
+        SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
+        InFlag = SDValue(CNode, 0);
+      }
     }
 
     // Prevent use of AH in a REX instruction by referencing AX instead.
@@ -1688,39 +2563,49 @@ SDNode *X86DAGToDAGISel::Select(SDNode *Node) {
       // Shift AX down 8 bits.
       Result = SDValue(CurDAG->getMachineNode(X86::SHR16ri, dl, MVT::i16,
                                               Result,
-                                     CurDAG->getTargetConstant(8, MVT::i8)), 0);
+                                     CurDAG->getTargetConstant(8, dl, MVT::i8)),
+                       0);
       // Then truncate it down to i8.
       ReplaceUses(SDValue(Node, 1),
         CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
     }
     // Copy the low half of the result, if it is needed.
     if (!SDValue(Node, 0).use_empty()) {
-      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
-                                                LoReg, NVT, InFlag);
-      InFlag = Result.getValue(2);
-      ReplaceUses(SDValue(Node, 0), Result);
-      DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
+      if (!ResLo.getNode()) {
+        assert(LoReg && "Register for low half is not defined!");
+        ResLo = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, LoReg, NVT,
+                                       InFlag);
+        InFlag = ResLo.getValue(2);
+      }
+      ReplaceUses(SDValue(Node, 0), ResLo);
+      DEBUG(dbgs() << "=> "; ResLo.getNode()->dump(CurDAG); dbgs() << '\n');
     }
     // Copy the high half of the result, if it is needed.
     if (!SDValue(Node, 1).use_empty()) {
-      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
-                                              HiReg, NVT, InFlag);
-      InFlag = Result.getValue(2);
-      ReplaceUses(SDValue(Node, 1), Result);
-      DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
+      if (!ResHi.getNode()) {
+        assert(HiReg && "Register for high half is not defined!");
+        ResHi = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, HiReg, NVT,
+                                       InFlag);
+        InFlag = ResHi.getValue(2);
+      }
+      ReplaceUses(SDValue(Node, 1), ResHi);
+      DEBUG(dbgs() << "=> "; ResHi.getNode()->dump(CurDAG); dbgs() << '\n');
     }
 
-    return NULL;
+    return nullptr;
   }
 
   case ISD::SDIVREM:
-  case ISD::UDIVREM: {
+  case ISD::UDIVREM:
+  case X86ISD::SDIVREM8_SEXT_HREG:
+  case X86ISD::UDIVREM8_ZEXT_HREG: {
     SDValue N0 = Node->getOperand(0);
     SDValue N1 = Node->getOperand(1);
 
-    bool isSigned = Opcode == ISD::SDIVREM;
+    bool isSigned = (Opcode == ISD::SDIVREM ||
+                     Opcode == X86ISD::SDIVREM8_SEXT_HREG);
     if (!isSigned) {
-      switch (NVT.getSimpleVT().SimpleTy) {
+      switch (NVT.SimpleTy) {
       default: llvm_unreachable("Unsupported VT!");
       case MVT::i8:  Opc = X86::DIV8r;  MOpc = X86::DIV8m;  break;
       case MVT::i16: Opc = X86::DIV16r; MOpc = X86::DIV16m; break;
@@ -1728,7 +2613,7 @@ SDNode *X86DAGToDAGISel::Select(SDNode *Node) {
       case MVT::i64: Opc = X86::DIV64r; MOpc = X86::DIV64m; break;
       }
     } else {
-      switch (NVT.getSimpleVT().SimpleTy) {
+      switch (NVT.SimpleTy) {
       default: llvm_unreachable("Unsupported VT!");
       case MVT::i8:  Opc = X86::IDIV8r;  MOpc = X86::IDIV8m;  break;
       case MVT::i16: Opc = X86::IDIV16r; MOpc = X86::IDIV16m; break;
@@ -1738,27 +2623,24 @@ SDNode *X86DAGToDAGISel::Select(SDNode *Node) {
     }
 
     unsigned LoReg, HiReg, ClrReg;
-    unsigned ClrOpcode, SExtOpcode;
-    switch (NVT.getSimpleVT().SimpleTy) {
+    unsigned SExtOpcode;
+    switch (NVT.SimpleTy) {
     default: llvm_unreachable("Unsupported VT!");
     case MVT::i8:
       LoReg = X86::AL;  ClrReg = HiReg = X86::AH;
-      ClrOpcode  = 0;
       SExtOpcode = X86::CBW;
       break;
     case MVT::i16:
       LoReg = X86::AX;  HiReg = X86::DX;
-      ClrOpcode  = X86::MOV16r0; ClrReg = X86::DX;
+      ClrReg = X86::DX;
       SExtOpcode = X86::CWD;
       break;
     case MVT::i32:
       LoReg = X86::EAX; ClrReg = HiReg = X86::EDX;
-      ClrOpcode  = X86::MOV32r0;
       SExtOpcode = X86::CDQ;
       break;
     case MVT::i64:
       LoReg = X86::RAX; ClrReg = HiReg = X86::RDX;
-      ClrOpcode  = X86::MOV64r0;
       SExtOpcode = X86::CQO;
       break;
     }
@@ -1775,17 +2657,16 @@ SDNode *X86DAGToDAGISel::Select(SDNode *Node) {
       if (TryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
         SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N0.getOperand(0) };
         Move =
-          SDValue(CurDAG->getMachineNode(X86::MOVZX16rm8, dl, MVT::i16,
-                                         MVT::Other, Ops,
-                                         array_lengthof(Ops)), 0);
+          SDValue(CurDAG->getMachineNode(X86::MOVZX32rm8, dl, MVT::i32,
+                                         MVT::Other, Ops), 0);
         Chain = Move.getValue(1);
         ReplaceUses(N0.getValue(1), Chain);
       } else {
         Move =
-          SDValue(CurDAG->getMachineNode(X86::MOVZX16rr8, dl, MVT::i16, N0),0);
+          SDValue(CurDAG->getMachineNode(X86::MOVZX32rr8, dl, MVT::i32, N0),0);
         Chain = CurDAG->getEntryNode();
       }
-      Chain  = CurDAG->getCopyToReg(Chain, dl, X86::AX, Move, SDValue());
+      Chain  = CurDAG->getCopyToReg(Chain, dl, X86::EAX, Move, SDValue());
       InFlag = Chain.getValue(1);
     } else {
       InFlag =
@@ -1794,11 +2675,34 @@ SDNode *X86DAGToDAGISel::Select(SDNode *Node) {
       if (isSigned && !signBitIsZero) {
         // Sign extend the low part into the high part.
         InFlag =
-          SDValue(CurDAG->getMachineNode(SExtOpcode, dl, MVT::Flag, InFlag),0);
+          SDValue(CurDAG->getMachineNode(SExtOpcode, dl, MVT::Glue, InFlag),0);
       } else {
         // Zero out the high part, effectively zero extending the input.
-        SDValue ClrNode =
-          SDValue(CurDAG->getMachineNode(ClrOpcode, dl, NVT), 0);
+        SDValue ClrNode = SDValue(CurDAG->getMachineNode(X86::MOV32r0, dl, NVT), 0);
+        switch (NVT.SimpleTy) {
+        case MVT::i16:
+          ClrNode =
+              SDValue(CurDAG->getMachineNode(
+                          TargetOpcode::EXTRACT_SUBREG, dl, MVT::i16, ClrNode,
+                          CurDAG->getTargetConstant(X86::sub_16bit, dl,
+                                                    MVT::i32)),
+                      0);
+          break;
+        case MVT::i32:
+          break;
+        case MVT::i64:
+          ClrNode =
+              SDValue(CurDAG->getMachineNode(
+                          TargetOpcode::SUBREG_TO_REG, dl, MVT::i64,
+                          CurDAG->getTargetConstant(0, dl, MVT::i64), ClrNode,
+                          CurDAG->getTargetConstant(X86::sub_32bit, dl,
+                                                    MVT::i32)),
+                      0);
+          break;
+        default:
+          llvm_unreachable("Unexpected division source");
+        }
+
         InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, ClrReg,
                                       ClrNode, InFlag).getValue(1);
       }
@@ -1808,38 +2712,53 @@ SDNode *X86DAGToDAGISel::Select(SDNode *Node) {
       SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
                         InFlag };
       SDNode *CNode =
-        CurDAG->getMachineNode(MOpc, dl, MVT::Other, MVT::Flag, Ops,
-                               array_lengthof(Ops));
+        CurDAG->getMachineNode(MOpc, dl, MVT::Other, MVT::Glue, Ops);
       InFlag = SDValue(CNode, 1);
       // Update the chain.
       ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
     } else {
       InFlag =
-        SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Flag, N1, InFlag), 0);
+        SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, N1, InFlag), 0);
     }
 
-    // Prevent use of AH in a REX instruction by referencing AX instead.
-    // Shift it down 8 bits.
-    if (HiReg == X86::AH && Subtarget->is64Bit() &&
-        !SDValue(Node, 1).use_empty()) {
-      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
-                                              X86::AX, MVT::i16, InFlag);
-      InFlag = Result.getValue(2);
-
-      // If we also need AL (the quotient), get it by extracting a subreg from
-      // Result. The fast register allocator does not like multiple CopyFromReg
-      // nodes using aliasing registers.
-      if (!SDValue(Node, 0).use_empty())
-        ReplaceUses(SDValue(Node, 0),
-          CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
-
-      // Shift AX right by 8 bits instead of using AH.
-      Result = SDValue(CurDAG->getMachineNode(X86::SHR16ri, dl, MVT::i16,
-                                         Result,
-                                         CurDAG->getTargetConstant(8, MVT::i8)),
-                       0);
-      ReplaceUses(SDValue(Node, 1),
-        CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
+    // Prevent use of AH in a REX instruction by explicitly copying it to
+    // an ABCD_L register.
+    //
+    // The current assumption of the register allocator is that isel
+    // won't generate explicit references to the GR8_ABCD_H registers. If
+    // the allocator and/or the backend get enhanced to be more robust in
+    // that regard, this can be, and should be, removed.
+    if (HiReg == X86::AH && !SDValue(Node, 1).use_empty()) {
+      SDValue AHCopy = CurDAG->getRegister(X86::AH, MVT::i8);
+      unsigned AHExtOpcode =
+          isSigned ? X86::MOVSX32_NOREXrr8 : X86::MOVZX32_NOREXrr8;
+
+      SDNode *RNode = CurDAG->getMachineNode(AHExtOpcode, dl, MVT::i32,
+                                             MVT::Glue, AHCopy, InFlag);
+      SDValue Result(RNode, 0);
+      InFlag = SDValue(RNode, 1);
+
+      if (Opcode == X86ISD::UDIVREM8_ZEXT_HREG ||
+          Opcode == X86ISD::SDIVREM8_SEXT_HREG) {
+        if (Node->getValueType(1) == MVT::i64) {
+          // It's not possible to directly movsx AH to a 64bit register, because
+          // the latter needs the REX prefix, but the former can't have it.
+          assert(Opcode != X86ISD::SDIVREM8_SEXT_HREG &&
+                 "Unexpected i64 sext of h-register");
+          Result =
+              SDValue(CurDAG->getMachineNode(
+                          TargetOpcode::SUBREG_TO_REG, dl, MVT::i64,
+                          CurDAG->getTargetConstant(0, dl, MVT::i64), Result,
+                          CurDAG->getTargetConstant(X86::sub_32bit, dl,
+                                                    MVT::i32)),
+                      0);
+        }
+      } else {
+        Result =
+            CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result);
+      }
+      ReplaceUses(SDValue(Node, 1), Result);
+      DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
     }
     // Copy the division (low) result, if it is needed.
     if (!SDValue(Node, 0).use_empty()) {
@@ -1857,20 +2776,28 @@ SDNode *X86DAGToDAGISel::Select(SDNode *Node) {
       ReplaceUses(SDValue(Node, 1), Result);
       DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
     }
-    return NULL;
+    return nullptr;
   }
 
-  case X86ISD::CMP: {
+  case X86ISD::CMP:
+  case X86ISD::SUB: {
+    // Sometimes a SUB is used to perform comparison.
+    if (Opcode == X86ISD::SUB && Node->hasAnyUseOfValue(0))
+      // This node is not a CMP.
+      break;
     SDValue N0 = Node->getOperand(0);
     SDValue N1 = Node->getOperand(1);
 
-    // Look for (X86cmp (and $op, $imm), 0) and see if we can convert it to
-    // use a smaller encoding.
     if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() &&
         HasNoSignedComparisonUses(Node))
-      // Look past the truncate if CMP is the only use of it.
       N0 = N0.getOperand(0);
-    if (N0.getNode()->getOpcode() == ISD::AND && N0.getNode()->hasOneUse() &&
+
+    // Look for (X86cmp (and $op, $imm), 0) and see if we can convert it to
+    // use a smaller encoding.
+    // Look past the truncate if CMP is the only use of it.
+    if ((N0.getNode()->getOpcode() == ISD::AND ||
+         (N0.getResNo() == 0 && N0.getNode()->getOpcode() == X86ISD::AND)) &&
+        N0.getNode()->hasOneUse() &&
         N0.getValueType() != MVT::i8 &&
         X86::isZeroNode(N1)) {
       ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getNode()->getOperand(1));
@@ -1880,18 +2807,18 @@ SDNode *X86DAGToDAGISel::Select(SDNode *Node) {
       if ((C->getZExtValue() & ~UINT64_C(0xff)) == 0 &&
           (!(C->getZExtValue() & 0x80) ||
            HasNoSignedComparisonUses(Node))) {
-        SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i8);
+        SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), dl, MVT::i8);
         SDValue Reg = N0.getNode()->getOperand(0);
 
         // On x86-32, only the ABCD registers have 8-bit subregisters.
         if (!Subtarget->is64Bit()) {
-          TargetRegisterClass *TRC = 0;
-          switch (N0.getValueType().getSimpleVT().SimpleTy) {
+          const TargetRegisterClass *TRC;
+          switch (N0.getSimpleValueType().SimpleTy) {
           case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break;
           case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break;
           default: llvm_unreachable("Unsupported TEST operand type!");
           }
-          SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32);
+          SDValue RC = CurDAG->getTargetConstant(TRC->getID(), dl, MVT::i32);
           Reg = SDValue(CurDAG->getMachineNode(X86::COPY_TO_REGCLASS, dl,
                                                Reg.getValueType(), Reg, RC), 0);
         }
@@ -1901,7 +2828,13 @@ SDNode *X86DAGToDAGISel::Select(SDNode *Node) {
                                                         MVT::i8, Reg);
 
         // Emit a testb.
-        return CurDAG->getMachineNode(X86::TEST8ri, dl, MVT::i32, Subreg, Imm);
+        SDNode *NewNode = CurDAG->getMachineNode(X86::TEST8ri, dl, MVT::i32,
+                                                 Subreg, Imm);
+        // Replace SUB|CMP with TEST, since SUB has two outputs while TEST has
+        // one, do not call ReplaceAllUsesWith.
+        ReplaceUses(SDValue(Node, (Opcode == X86ISD::SUB ? 1 : 0)),
+                    SDValue(NewNode, 0));
+        return nullptr;
       }
 
       // For example, "testl %eax, $2048" to "testb %ah, $8".
@@ -1910,18 +2843,18 @@ SDNode *X86DAGToDAGISel::Select(SDNode *Node) {
            HasNoSignedComparisonUses(Node))) {
         // Shift the immediate right by 8 bits.
         SDValue ShiftedImm = CurDAG->getTargetConstant(C->getZExtValue() >> 8,
-                                                       MVT::i8);
+                                                       dl, MVT::i8);
         SDValue Reg = N0.getNode()->getOperand(0);
 
         // Put the value in an ABCD register.
-        TargetRegisterClass *TRC = 0;
-        switch (N0.getValueType().getSimpleVT().SimpleTy) {
+        const TargetRegisterClass *TRC;
+        switch (N0.getSimpleValueType().SimpleTy) {
         case MVT::i64: TRC = &X86::GR64_ABCDRegClass; break;
         case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break;
         case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break;
         default: llvm_unreachable("Unsupported TEST operand type!");
         }
-        SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32);
+        SDValue RC = CurDAG->getTargetConstant(TRC->getID(), dl, MVT::i32);
         Reg = SDValue(CurDAG->getMachineNode(X86::COPY_TO_REGCLASS, dl,
                                              Reg.getValueType(), Reg, RC), 0);
 
@@ -1929,10 +2862,16 @@ SDNode *X86DAGToDAGISel::Select(SDNode *Node) {
         SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_8bit_hi, dl,
                                                         MVT::i8, Reg);
 
-        // Emit a testb. No special NOREX tricks are needed since there's
-        // only one GPR operand!
-        return CurDAG->getMachineNode(X86::TEST8ri, dl, MVT::i32,
-                                      Subreg, ShiftedImm);
+        // Emit a testb.  The EXTRACT_SUBREG becomes a COPY that can only
+        // target GR8_NOREX registers, so make sure the register class is
+        // forced.
+        SDNode *NewNode = CurDAG->getMachineNode(X86::TEST8ri_NOREX, dl,
+                                                 MVT::i32, Subreg, ShiftedImm);
+        // Replace SUB|CMP with TEST, since SUB has two outputs while TEST has
+        // one, do not call ReplaceAllUsesWith.
+        ReplaceUses(SDValue(Node, (Opcode == X86ISD::SUB ? 1 : 0)),
+                    SDValue(NewNode, 0));
+        return nullptr;
       }
 
       // For example, "testl %eax, $32776" to "testw %ax, $32776".
@@ -1940,7 +2879,8 @@ SDNode *X86DAGToDAGISel::Select(SDNode *Node) {
           N0.getValueType() != MVT::i16 &&
           (!(C->getZExtValue() & 0x8000) ||
            HasNoSignedComparisonUses(Node))) {
-        SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i16);
+        SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), dl,
+                                                MVT::i16);
         SDValue Reg = N0.getNode()->getOperand(0);
 
         // Extract the 16-bit subregister.
@@ -1948,7 +2888,13 @@ SDNode *X86DAGToDAGISel::Select(SDNode *Node) {
                                                         MVT::i16, Reg);
 
         // Emit a testw.
-        return CurDAG->getMachineNode(X86::TEST16ri, dl, MVT::i32, Subreg, Imm);
+        SDNode *NewNode = CurDAG->getMachineNode(X86::TEST16ri, dl, MVT::i32,
+                                                 Subreg, Imm);
+        // Replace SUB|CMP with TEST, since SUB has two outputs while TEST has
+        // one, do not call ReplaceAllUsesWith.
+        ReplaceUses(SDValue(Node, (Opcode == X86ISD::SUB ? 1 : 0)),
+                    SDValue(NewNode, 0));
+        return nullptr;
       }
 
       // For example, "testq %rax, $268468232" to "testl %eax, $268468232".
@@ -1956,7 +2902,8 @@ SDNode *X86DAGToDAGISel::Select(SDNode *Node) {
           N0.getValueType() == MVT::i64 &&
           (!(C->getZExtValue() & 0x80000000) ||
            HasNoSignedComparisonUses(Node))) {
-        SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i32);
+        SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), dl,
+                                                MVT::i32);
         SDValue Reg = N0.getNode()->getOperand(0);
 
         // Extract the 32-bit subregister.
@@ -1964,17 +2911,72 @@ SDNode *X86DAGToDAGISel::Select(SDNode *Node) {
                                                         MVT::i32, Reg);
 
         // Emit a testl.
-        return CurDAG->getMachineNode(X86::TEST32ri, dl, MVT::i32, Subreg, Imm);
+        SDNode *NewNode = CurDAG->getMachineNode(X86::TEST32ri, dl, MVT::i32,
+                                                 Subreg, Imm);
+        // Replace SUB|CMP with TEST, since SUB has two outputs while TEST has
+        // one, do not call ReplaceAllUsesWith.
+        ReplaceUses(SDValue(Node, (Opcode == X86ISD::SUB ? 1 : 0)),
+                    SDValue(NewNode, 0));
+        return nullptr;
       }
     }
     break;
   }
+  case ISD::STORE: {
+    // Change a chain of {load; incr or dec; store} of the same value into
+    // a simple increment or decrement through memory of that value, if the
+    // uses of the modified value and its address are suitable.
+    // The DEC64m tablegen pattern is currently not able to match the case where
+    // the EFLAGS on the original DEC are used. (This also applies to
+    // {INC,DEC}X{64,32,16,8}.)
+    // We'll need to improve tablegen to allow flags to be transferred from a
+    // node in the pattern to the result node.  probably with a new keyword
+    // for example, we have this
+    // def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst",
+    //  [(store (add (loadi64 addr:$dst), -1), addr:$dst),
+    //   (implicit EFLAGS)]>;
+    // but maybe need something like this
+    // def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst",
+    //  [(store (add (loadi64 addr:$dst), -1), addr:$dst),
+    //   (transferrable EFLAGS)]>;
+
+    StoreSDNode *StoreNode = cast<StoreSDNode>(Node);
+    SDValue StoredVal = StoreNode->getOperand(1);
+    unsigned Opc = StoredVal->getOpcode();
+
+    LoadSDNode *LoadNode = nullptr;
+    SDValue InputChain;
+    if (!isLoadIncOrDecStore(StoreNode, Opc, StoredVal, CurDAG,
+                             LoadNode, InputChain))
+      break;
+
+    SDValue Base, Scale, Index, Disp, Segment;
+    if (!SelectAddr(LoadNode, LoadNode->getBasePtr(),
+                    Base, Scale, Index, Disp, Segment))
+      break;
+
+    MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(2);
+    MemOp[0] = StoreNode->getMemOperand();
+    MemOp[1] = LoadNode->getMemOperand();
+    const SDValue Ops[] = { Base, Scale, Index, Disp, Segment, InputChain };
+    EVT LdVT = LoadNode->getMemoryVT();
+    unsigned newOpc = getFusedLdStOpcode(LdVT, Opc);
+    MachineSDNode *Result = CurDAG->getMachineNode(newOpc,
+                                                   SDLoc(Node),
+                                                   MVT::i32, MVT::Other, Ops);
+    Result->setMemRefs(MemOp, MemOp + 2);
+
+    ReplaceUses(SDValue(StoreNode, 0), SDValue(Result, 1));
+    ReplaceUses(SDValue(StoredVal.getNode(), 1), SDValue(Result, 0));
+
+    return Result;
+  }
   }
 
   SDNode *ResNode = SelectCode(Node);
 
   DEBUG(dbgs() << "=> ";
-        if (ResNode == NULL || ResNode == Node)
+        if (ResNode == nullptr || ResNode == Node)
           Node->dump(CurDAG);
         else
           ResNode->dump(CurDAG);
@@ -1984,19 +2986,25 @@ SDNode *X86DAGToDAGISel::Select(SDNode *Node) {
 }
 
 bool X86DAGToDAGISel::
-SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode,
+SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintID,
                              std::vector<SDValue> &OutOps) {
   SDValue Op0, Op1, Op2, Op3, Op4;
-  switch (ConstraintCode) {
-  case 'o':   // offsetable        ??
-  case 'v':   // not offsetable    ??
-  default: return true;
-  case 'm':   // memory
-    if (!SelectAddr(0, Op, Op0, Op1, Op2, Op3, Op4))
+  switch (ConstraintID) {
+  default:
+    llvm_unreachable("Unexpected asm memory constraint");
+  case InlineAsm::Constraint_i:
+    // FIXME: It seems strange that 'i' is needed here since it's supposed to
+    //        be an immediate and not a memory constraint.
+    // Fallthrough.
+  case InlineAsm::Constraint_o: // offsetable        ??
+  case InlineAsm::Constraint_v: // not offsetable    ??
+  case InlineAsm::Constraint_m: // memory
+  case InlineAsm::Constraint_X:
+    if (!SelectAddr(nullptr, Op, Op0, Op1, Op2, Op3, Op4))
       return true;
     break;
   }
-  
+
   OutOps.push_back(Op0);
   OutOps.push_back(Op1);
   OutOps.push_back(Op2);
@@ -2005,10 +3013,10 @@ SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode,
   return false;
 }
 
-/// createX86ISelDag - This pass converts a legalized DAG into a 
+/// createX86ISelDag - This pass converts a legalized DAG into a
 /// X86-specific DAG, ready for instruction scheduling.
 ///
 FunctionPass *llvm::createX86ISelDag(X86TargetMachine &TM,
-                                     llvm::CodeGenOpt::Level OptLevel) {
+                                     CodeGenOpt::Level OptLevel) {
   return new X86DAGToDAGISel(TM, OptLevel);
 }