[X86] Mark the AAD and AAM aliases as not valid in 64-bit mode.
[oota-llvm.git] / lib / Target / X86 / X86FastISel.cpp
index 220ba312197993ac7eaf069c056d4876eca1b1c5..17704da91c2a72d5fb0e5aaac250b8e691fb1d80 100644 (file)
-//===-- X86FastISel.cpp - X86 FastISel implementation ---------------------===//\r
-//\r
-//                     The LLVM Compiler Infrastructure\r
-//\r
-// This file is distributed under the University of Illinois Open Source\r
-// License. See LICENSE.TXT for details.\r
-//\r
-//===----------------------------------------------------------------------===//\r
-//\r
-// This file defines the X86-specific support for the FastISel class. Much\r
-// of the target-specific code is generated by tablegen in the file\r
-// X86GenFastISel.inc, which is #included here.\r
-//\r
-//===----------------------------------------------------------------------===//\r
-\r
-#include "X86.h"\r
-#include "X86CallingConv.h"\r
-#include "X86InstrBuilder.h"\r
-#include "X86InstrInfo.h"\r
-#include "X86MachineFunctionInfo.h"\r
-#include "X86RegisterInfo.h"\r
-#include "X86Subtarget.h"\r
-#include "X86TargetMachine.h"\r
-#include "llvm/Analysis/BranchProbabilityInfo.h"\r
-#include "llvm/CodeGen/Analysis.h"\r
-#include "llvm/CodeGen/FastISel.h"\r
-#include "llvm/CodeGen/FunctionLoweringInfo.h"\r
-#include "llvm/CodeGen/MachineConstantPool.h"\r
-#include "llvm/CodeGen/MachineFrameInfo.h"\r
-#include "llvm/CodeGen/MachineRegisterInfo.h"\r
-#include "llvm/IR/CallSite.h"\r
-#include "llvm/IR/CallingConv.h"\r
-#include "llvm/IR/DerivedTypes.h"\r
-#include "llvm/IR/GetElementPtrTypeIterator.h"\r
-#include "llvm/IR/GlobalAlias.h"\r
-#include "llvm/IR/GlobalVariable.h"\r
-#include "llvm/IR/Instructions.h"\r
-#include "llvm/IR/IntrinsicInst.h"\r
-#include "llvm/IR/Operator.h"\r
-#include "llvm/Support/ErrorHandling.h"\r
-#include "llvm/Target/TargetOptions.h"\r
-using namespace llvm;\r
-\r
-namespace {\r
-\r
-class X86FastISel final : public FastISel {\r
-  /// Subtarget - Keep a pointer to the X86Subtarget around so that we can\r
-  /// make the right decision when generating code for different targets.\r
-  const X86Subtarget *Subtarget;\r
-\r
-  /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87\r
-  /// floating point ops.\r
-  /// When SSE is available, use it for f32 operations.\r
-  /// When SSE2 is available, use it for f64 operations.\r
-  bool X86ScalarSSEf64;\r
-  bool X86ScalarSSEf32;\r
-\r
-public:\r
-  explicit X86FastISel(FunctionLoweringInfo &funcInfo,\r
-                       const TargetLibraryInfo *libInfo)\r
-    : FastISel(funcInfo, libInfo) {\r
-    Subtarget = &TM.getSubtarget<X86Subtarget>();\r
-    X86ScalarSSEf64 = Subtarget->hasSSE2();\r
-    X86ScalarSSEf32 = Subtarget->hasSSE1();\r
-  }\r
-\r
-  bool fastSelectInstruction(const Instruction *I) override;\r
-\r
-  /// \brief The specified machine instr operand is a vreg, and that\r
-  /// vreg is being provided by the specified load instruction.  If possible,\r
-  /// try to fold the load as an operand to the instruction, returning true if\r
-  /// possible.\r
-  bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,\r
-                           const LoadInst *LI) override;\r
-\r
-  bool fastLowerArguments() override;\r
-  bool fastLowerCall(CallLoweringInfo &CLI) override;\r
-  bool fastLowerIntrinsicCall(const IntrinsicInst *II) override;\r
-\r
-#include "X86GenFastISel.inc"\r
-\r
-private:\r
-  bool X86FastEmitCompare(const Value *LHS, const Value *RHS, EVT VT, DebugLoc DL);\r
-\r
-  bool X86FastEmitLoad(EVT VT, const X86AddressMode &AM, MachineMemOperand *MMO,\r
-                       unsigned &ResultReg);\r
-\r
-  bool X86FastEmitStore(EVT VT, const Value *Val, const X86AddressMode &AM,\r
-                        MachineMemOperand *MMO = nullptr, bool Aligned = false);\r
-  bool X86FastEmitStore(EVT VT, unsigned ValReg, bool ValIsKill,\r
-                        const X86AddressMode &AM,\r
-                        MachineMemOperand *MMO = nullptr, bool Aligned = false);\r
-\r
-  bool X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src, EVT SrcVT,\r
-                         unsigned &ResultReg);\r
-\r
-  bool X86SelectAddress(const Value *V, X86AddressMode &AM);\r
-  bool X86SelectCallAddress(const Value *V, X86AddressMode &AM);\r
-\r
-  bool X86SelectLoad(const Instruction *I);\r
-\r
-  bool X86SelectStore(const Instruction *I);\r
-\r
-  bool X86SelectRet(const Instruction *I);\r
-\r
-  bool X86SelectCmp(const Instruction *I);\r
-\r
-  bool X86SelectZExt(const Instruction *I);\r
-\r
-  bool X86SelectBranch(const Instruction *I);\r
-\r
-  bool X86SelectShift(const Instruction *I);\r
-\r
-  bool X86SelectDivRem(const Instruction *I);\r
-\r
-  bool X86FastEmitCMoveSelect(MVT RetVT, const Instruction *I);\r
-\r
-  bool X86FastEmitSSESelect(MVT RetVT, const Instruction *I);\r
-\r
-  bool X86FastEmitPseudoSelect(MVT RetVT, const Instruction *I);\r
-\r
-  bool X86SelectSelect(const Instruction *I);\r
-\r
-  bool X86SelectTrunc(const Instruction *I);\r
-\r
-  bool X86SelectFPExt(const Instruction *I);\r
-  bool X86SelectFPTrunc(const Instruction *I);\r
-\r
-  const X86InstrInfo *getInstrInfo() const {\r
-    return getTargetMachine()->getSubtargetImpl()->getInstrInfo();\r
-  }\r
-  const X86TargetMachine *getTargetMachine() const {\r
-    return static_cast<const X86TargetMachine *>(&TM);\r
-  }\r
-\r
-  bool handleConstantAddresses(const Value *V, X86AddressMode &AM);\r
-\r
-  unsigned X86MaterializeInt(const ConstantInt *CI, MVT VT);\r
-  unsigned X86MaterializeFP(const ConstantFP *CFP, MVT VT);\r
-  unsigned X86MaterializeGV(const GlobalValue *GV, MVT VT);\r
-  unsigned fastMaterializeConstant(const Constant *C) override;\r
-\r
-  unsigned fastMaterializeAlloca(const AllocaInst *C) override;\r
-\r
-  unsigned fastMaterializeFloatZero(const ConstantFP *CF) override;\r
-\r
-  /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is\r
-  /// computed in an SSE register, not on the X87 floating point stack.\r
-  bool isScalarFPTypeInSSEReg(EVT VT) const {\r
-    return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2\r
-      (VT == MVT::f32 && X86ScalarSSEf32);   // f32 is when SSE1\r
-  }\r
-\r
-  bool isTypeLegal(Type *Ty, MVT &VT, bool AllowI1 = false);\r
-\r
-  bool IsMemcpySmall(uint64_t Len);\r
-\r
-  bool TryEmitSmallMemcpy(X86AddressMode DestAM,\r
-                          X86AddressMode SrcAM, uint64_t Len);\r
-\r
-  bool foldX86XALUIntrinsic(X86::CondCode &CC, const Instruction *I,\r
-                            const Value *Cond);\r
-};\r
-\r
-} // end anonymous namespace.\r
-\r
-static std::pair<X86::CondCode, bool>\r
-getX86ConditionCode(CmpInst::Predicate Predicate) {\r
-  X86::CondCode CC = X86::COND_INVALID;\r
-  bool NeedSwap = false;\r
-  switch (Predicate) {\r
-  default: break;\r
-  // Floating-point Predicates\r
-  case CmpInst::FCMP_UEQ: CC = X86::COND_E;       break;\r
-  case CmpInst::FCMP_OLT: NeedSwap = true; // fall-through\r
-  case CmpInst::FCMP_OGT: CC = X86::COND_A;       break;\r
-  case CmpInst::FCMP_OLE: NeedSwap = true; // fall-through\r
-  case CmpInst::FCMP_OGE: CC = X86::COND_AE;      break;\r
-  case CmpInst::FCMP_UGT: NeedSwap = true; // fall-through\r
-  case CmpInst::FCMP_ULT: CC = X86::COND_B;       break;\r
-  case CmpInst::FCMP_UGE: NeedSwap = true; // fall-through\r
-  case CmpInst::FCMP_ULE: CC = X86::COND_BE;      break;\r
-  case CmpInst::FCMP_ONE: CC = X86::COND_NE;      break;\r
-  case CmpInst::FCMP_UNO: CC = X86::COND_P;       break;\r
-  case CmpInst::FCMP_ORD: CC = X86::COND_NP;      break;\r
-  case CmpInst::FCMP_OEQ: // fall-through\r
-  case CmpInst::FCMP_UNE: CC = X86::COND_INVALID; break;\r
-\r
-  // Integer Predicates\r
-  case CmpInst::ICMP_EQ:  CC = X86::COND_E;       break;\r
-  case CmpInst::ICMP_NE:  CC = X86::COND_NE;      break;\r
-  case CmpInst::ICMP_UGT: CC = X86::COND_A;       break;\r
-  case CmpInst::ICMP_UGE: CC = X86::COND_AE;      break;\r
-  case CmpInst::ICMP_ULT: CC = X86::COND_B;       break;\r
-  case CmpInst::ICMP_ULE: CC = X86::COND_BE;      break;\r
-  case CmpInst::ICMP_SGT: CC = X86::COND_G;       break;\r
-  case CmpInst::ICMP_SGE: CC = X86::COND_GE;      break;\r
-  case CmpInst::ICMP_SLT: CC = X86::COND_L;       break;\r
-  case CmpInst::ICMP_SLE: CC = X86::COND_LE;      break;\r
-  }\r
-\r
-  return std::make_pair(CC, NeedSwap);\r
-}\r
-\r
-static std::pair<unsigned, bool>\r
-getX86SSEConditionCode(CmpInst::Predicate Predicate) {\r
-  unsigned CC;\r
-  bool NeedSwap = false;\r
-\r
-  // SSE Condition code mapping:\r
-  //  0 - EQ\r
-  //  1 - LT\r
-  //  2 - LE\r
-  //  3 - UNORD\r
-  //  4 - NEQ\r
-  //  5 - NLT\r
-  //  6 - NLE\r
-  //  7 - ORD\r
-  switch (Predicate) {\r
-  default: llvm_unreachable("Unexpected predicate");\r
-  case CmpInst::FCMP_OEQ: CC = 0;          break;\r
-  case CmpInst::FCMP_OGT: NeedSwap = true; // fall-through\r
-  case CmpInst::FCMP_OLT: CC = 1;          break;\r
-  case CmpInst::FCMP_OGE: NeedSwap = true; // fall-through\r
-  case CmpInst::FCMP_OLE: CC = 2;          break;\r
-  case CmpInst::FCMP_UNO: CC = 3;          break;\r
-  case CmpInst::FCMP_UNE: CC = 4;          break;\r
-  case CmpInst::FCMP_ULE: NeedSwap = true; // fall-through\r
-  case CmpInst::FCMP_UGE: CC = 5;          break;\r
-  case CmpInst::FCMP_ULT: NeedSwap = true; // fall-through\r
-  case CmpInst::FCMP_UGT: CC = 6;          break;\r
-  case CmpInst::FCMP_ORD: CC = 7;          break;\r
-  case CmpInst::FCMP_UEQ:\r
-  case CmpInst::FCMP_ONE: CC = 8;          break;\r
-  }\r
-\r
-  return std::make_pair(CC, NeedSwap);\r
-}\r
-\r
-/// \brief Check if it is possible to fold the condition from the XALU intrinsic\r
-/// into the user. The condition code will only be updated on success.\r
-bool X86FastISel::foldX86XALUIntrinsic(X86::CondCode &CC, const Instruction *I,\r
-                                       const Value *Cond) {\r
-  if (!isa<ExtractValueInst>(Cond))\r
-    return false;\r
-\r
-  const auto *EV = cast<ExtractValueInst>(Cond);\r
-  if (!isa<IntrinsicInst>(EV->getAggregateOperand()))\r
-    return false;\r
-\r
-  const auto *II = cast<IntrinsicInst>(EV->getAggregateOperand());\r
-  MVT RetVT;\r
-  const Function *Callee = II->getCalledFunction();\r
-  Type *RetTy =\r
-    cast<StructType>(Callee->getReturnType())->getTypeAtIndex(0U);\r
-  if (!isTypeLegal(RetTy, RetVT))\r
-    return false;\r
-\r
-  if (RetVT != MVT::i32 && RetVT != MVT::i64)\r
-    return false;\r
-\r
-  X86::CondCode TmpCC;\r
-  switch (II->getIntrinsicID()) {\r
-  default: return false;\r
-  case Intrinsic::sadd_with_overflow:\r
-  case Intrinsic::ssub_with_overflow:\r
-  case Intrinsic::smul_with_overflow:\r
-  case Intrinsic::umul_with_overflow: TmpCC = X86::COND_O; break;\r
-  case Intrinsic::uadd_with_overflow:\r
-  case Intrinsic::usub_with_overflow: TmpCC = X86::COND_B; break;\r
-  }\r
-\r
-  // Check if both instructions are in the same basic block.\r
-  if (II->getParent() != I->getParent())\r
-    return false;\r
-\r
-  // Make sure nothing is in the way\r
-  BasicBlock::const_iterator Start = I;\r
-  BasicBlock::const_iterator End = II;\r
-  for (auto Itr = std::prev(Start); Itr != End; --Itr) {\r
-    // We only expect extractvalue instructions between the intrinsic and the\r
-    // instruction to be selected.\r
-    if (!isa<ExtractValueInst>(Itr))\r
-      return false;\r
-\r
-    // Check that the extractvalue operand comes from the intrinsic.\r
-    const auto *EVI = cast<ExtractValueInst>(Itr);\r
-    if (EVI->getAggregateOperand() != II)\r
-      return false;\r
-  }\r
-\r
-  CC = TmpCC;\r
-  return true;\r
-}\r
-\r
-bool X86FastISel::isTypeLegal(Type *Ty, MVT &VT, bool AllowI1) {\r
-  EVT evt = TLI.getValueType(Ty, /*HandleUnknown=*/true);\r
-  if (evt == MVT::Other || !evt.isSimple())\r
-    // Unhandled type. Halt "fast" selection and bail.\r
-    return false;\r
-\r
-  VT = evt.getSimpleVT();\r
-  // For now, require SSE/SSE2 for performing floating-point operations,\r
-  // since x87 requires additional work.\r
-  if (VT == MVT::f64 && !X86ScalarSSEf64)\r
-    return false;\r
-  if (VT == MVT::f32 && !X86ScalarSSEf32)\r
-    return false;\r
-  // Similarly, no f80 support yet.\r
-  if (VT == MVT::f80)\r
-    return false;\r
-  // We only handle legal types. For example, on x86-32 the instruction\r
-  // selector contains all of the 64-bit instructions from x86-64,\r
-  // under the assumption that i64 won't be used if the target doesn't\r
-  // support it.\r
-  return (AllowI1 && VT == MVT::i1) || TLI.isTypeLegal(VT);\r
-}\r
-\r
-#include "X86GenCallingConv.inc"\r
-\r
-/// X86FastEmitLoad - Emit a machine instruction to load a value of type VT.\r
-/// The address is either pre-computed, i.e. Ptr, or a GlobalAddress, i.e. GV.\r
-/// Return true and the result register by reference if it is possible.\r
-bool X86FastISel::X86FastEmitLoad(EVT VT, const X86AddressMode &AM,\r
-                                  MachineMemOperand *MMO, unsigned &ResultReg) {\r
-  // Get opcode and regclass of the output for the given load instruction.\r
-  unsigned Opc = 0;\r
-  const TargetRegisterClass *RC = nullptr;\r
-  switch (VT.getSimpleVT().SimpleTy) {\r
-  default: return false;\r
-  case MVT::i1:\r
-  case MVT::i8:\r
-    Opc = X86::MOV8rm;\r
-    RC  = &X86::GR8RegClass;\r
-    break;\r
-  case MVT::i16:\r
-    Opc = X86::MOV16rm;\r
-    RC  = &X86::GR16RegClass;\r
-    break;\r
-  case MVT::i32:\r
-    Opc = X86::MOV32rm;\r
-    RC  = &X86::GR32RegClass;\r
-    break;\r
-  case MVT::i64:\r
-    // Must be in x86-64 mode.\r
-    Opc = X86::MOV64rm;\r
-    RC  = &X86::GR64RegClass;\r
-    break;\r
-  case MVT::f32:\r
-    if (X86ScalarSSEf32) {\r
-      Opc = Subtarget->hasAVX() ? X86::VMOVSSrm : X86::MOVSSrm;\r
-      RC  = &X86::FR32RegClass;\r
-    } else {\r
-      Opc = X86::LD_Fp32m;\r
-      RC  = &X86::RFP32RegClass;\r
-    }\r
-    break;\r
-  case MVT::f64:\r
-    if (X86ScalarSSEf64) {\r
-      Opc = Subtarget->hasAVX() ? X86::VMOVSDrm : X86::MOVSDrm;\r
-      RC  = &X86::FR64RegClass;\r
-    } else {\r
-      Opc = X86::LD_Fp64m;\r
-      RC  = &X86::RFP64RegClass;\r
-    }\r
-    break;\r
-  case MVT::f80:\r
-    // No f80 support yet.\r
-    return false;\r
-  }\r
-\r
-  ResultReg = createResultReg(RC);\r
-  MachineInstrBuilder MIB =\r
-    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg);\r
-  addFullAddress(MIB, AM);\r
-  if (MMO)\r
-    MIB->addMemOperand(*FuncInfo.MF, MMO);\r
-  return true;\r
-}\r
-\r
-/// X86FastEmitStore - Emit a machine instruction to store a value Val of\r
-/// type VT. The address is either pre-computed, consisted of a base ptr, Ptr\r
-/// and a displacement offset, or a GlobalAddress,\r
-/// i.e. V. Return true if it is possible.\r
-bool X86FastISel::X86FastEmitStore(EVT VT, unsigned ValReg, bool ValIsKill,\r
-                                   const X86AddressMode &AM,\r
-                                   MachineMemOperand *MMO, bool Aligned) {\r
-  // Get opcode and regclass of the output for the given store instruction.\r
-  unsigned Opc = 0;\r
-  switch (VT.getSimpleVT().SimpleTy) {\r
-  case MVT::f80: // No f80 support yet.\r
-  default: return false;\r
-  case MVT::i1: {\r
-    // Mask out all but lowest bit.\r
-    unsigned AndResult = createResultReg(&X86::GR8RegClass);\r
-    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,\r
-            TII.get(X86::AND8ri), AndResult)\r
-      .addReg(ValReg, getKillRegState(ValIsKill)).addImm(1);\r
-    ValReg = AndResult;\r
-  }\r
-  // FALLTHROUGH, handling i1 as i8.\r
-  case MVT::i8:  Opc = X86::MOV8mr;  break;\r
-  case MVT::i16: Opc = X86::MOV16mr; break;\r
-  case MVT::i32: Opc = X86::MOV32mr; break;\r
-  case MVT::i64: Opc = X86::MOV64mr; break; // Must be in x86-64 mode.\r
-  case MVT::f32:\r
-    Opc = X86ScalarSSEf32 ?\r
-          (Subtarget->hasAVX() ? X86::VMOVSSmr : X86::MOVSSmr) : X86::ST_Fp32m;\r
-    break;\r
-  case MVT::f64:\r
-    Opc = X86ScalarSSEf64 ?\r
-          (Subtarget->hasAVX() ? X86::VMOVSDmr : X86::MOVSDmr) : X86::ST_Fp64m;\r
-    break;\r
-  case MVT::v4f32:\r
-    if (Aligned)\r
-      Opc = Subtarget->hasAVX() ? X86::VMOVAPSmr : X86::MOVAPSmr;\r
-    else\r
-      Opc = Subtarget->hasAVX() ? X86::VMOVUPSmr : X86::MOVUPSmr;\r
-    break;\r
-  case MVT::v2f64:\r
-    if (Aligned)\r
-      Opc = Subtarget->hasAVX() ? X86::VMOVAPDmr : X86::MOVAPDmr;\r
-    else\r
-      Opc = Subtarget->hasAVX() ? X86::VMOVUPDmr : X86::MOVUPDmr;\r
-    break;\r
-  case MVT::v4i32:\r
-  case MVT::v2i64:\r
-  case MVT::v8i16:\r
-  case MVT::v16i8:\r
-    if (Aligned)\r
-      Opc = Subtarget->hasAVX() ? X86::VMOVDQAmr : X86::MOVDQAmr;\r
-    else\r
-      Opc = Subtarget->hasAVX() ? X86::VMOVDQUmr : X86::MOVDQUmr;\r
-    break;\r
-  }\r
-\r
-  MachineInstrBuilder MIB =\r
-    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc));\r
-  addFullAddress(MIB, AM).addReg(ValReg, getKillRegState(ValIsKill));\r
-  if (MMO)\r
-    MIB->addMemOperand(*FuncInfo.MF, MMO);\r
-\r
-  return true;\r
-}\r
-\r
-bool X86FastISel::X86FastEmitStore(EVT VT, const Value *Val,\r
-                                   const X86AddressMode &AM,\r
-                                   MachineMemOperand *MMO, bool Aligned) {\r
-  // Handle 'null' like i32/i64 0.\r
-  if (isa<ConstantPointerNull>(Val))\r
-    Val = Constant::getNullValue(DL.getIntPtrType(Val->getContext()));\r
-\r
-  // If this is a store of a simple constant, fold the constant into the store.\r
-  if (const ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {\r
-    unsigned Opc = 0;\r
-    bool Signed = true;\r
-    switch (VT.getSimpleVT().SimpleTy) {\r
-    default: break;\r
-    case MVT::i1:  Signed = false;     // FALLTHROUGH to handle as i8.\r
-    case MVT::i8:  Opc = X86::MOV8mi;  break;\r
-    case MVT::i16: Opc = X86::MOV16mi; break;\r
-    case MVT::i32: Opc = X86::MOV32mi; break;\r
-    case MVT::i64:\r
-      // Must be a 32-bit sign extended value.\r
-      if (isInt<32>(CI->getSExtValue()))\r
-        Opc = X86::MOV64mi32;\r
-      break;\r
-    }\r
-\r
-    if (Opc) {\r
-      MachineInstrBuilder MIB =\r
-        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc));\r
-      addFullAddress(MIB, AM).addImm(Signed ? (uint64_t) CI->getSExtValue()\r
-                                            : CI->getZExtValue());\r
-      if (MMO)\r
-        MIB->addMemOperand(*FuncInfo.MF, MMO);\r
-      return true;\r
-    }\r
-  }\r
-\r
-  unsigned ValReg = getRegForValue(Val);\r
-  if (ValReg == 0)\r
-    return false;\r
-\r
-  bool ValKill = hasTrivialKill(Val);\r
-  return X86FastEmitStore(VT, ValReg, ValKill, AM, MMO, Aligned);\r
-}\r
-\r
-/// X86FastEmitExtend - Emit a machine instruction to extend a value Src of\r
-/// type SrcVT to type DstVT using the specified extension opcode Opc (e.g.\r
-/// ISD::SIGN_EXTEND).\r
-bool X86FastISel::X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT,\r
-                                    unsigned Src, EVT SrcVT,\r
-                                    unsigned &ResultReg) {\r
-  unsigned RR = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc,\r
-                           Src, /*TODO: Kill=*/false);\r
-  if (RR == 0)\r
-    return false;\r
-\r
-  ResultReg = RR;\r
-  return true;\r
-}\r
-\r
-bool X86FastISel::handleConstantAddresses(const Value *V, X86AddressMode &AM) {\r
-  // Handle constant address.\r
-  if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {\r
-    // Can't handle alternate code models yet.\r
-    if (TM.getCodeModel() != CodeModel::Small)\r
-      return false;\r
-\r
-    // Can't handle TLS yet.\r
-    if (GV->isThreadLocal())\r
-      return false;\r
-\r
-    // RIP-relative addresses can't have additional register operands, so if\r
-    // we've already folded stuff into the addressing mode, just force the\r
-    // global value into its own register, which we can use as the basereg.\r
-    if (!Subtarget->isPICStyleRIPRel() ||\r
-        (AM.Base.Reg == 0 && AM.IndexReg == 0)) {\r
-      // Okay, we've committed to selecting this global. Set up the address.\r
-      AM.GV = GV;\r
-\r
-      // Allow the subtarget to classify the global.\r
-      unsigned char GVFlags = Subtarget->ClassifyGlobalReference(GV, TM);\r
-\r
-      // If this reference is relative to the pic base, set it now.\r
-      if (isGlobalRelativeToPICBase(GVFlags)) {\r
-        // FIXME: How do we know Base.Reg is free??\r
-        AM.Base.Reg = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);\r
-      }\r
-\r
-      // Unless the ABI requires an extra load, return a direct reference to\r
-      // the global.\r
-      if (!isGlobalStubReference(GVFlags)) {\r
-        if (Subtarget->isPICStyleRIPRel()) {\r
-          // Use rip-relative addressing if we can.  Above we verified that the\r
-          // base and index registers are unused.\r
-          assert(AM.Base.Reg == 0 && AM.IndexReg == 0);\r
-          AM.Base.Reg = X86::RIP;\r
-        }\r
-        AM.GVOpFlags = GVFlags;\r
-        return true;\r
-      }\r
-\r
-      // Ok, we need to do a load from a stub.  If we've already loaded from\r
-      // this stub, reuse the loaded pointer, otherwise emit the load now.\r
-      DenseMap<const Value *, unsigned>::iterator I = LocalValueMap.find(V);\r
-      unsigned LoadReg;\r
-      if (I != LocalValueMap.end() && I->second != 0) {\r
-        LoadReg = I->second;\r
-      } else {\r
-        // Issue load from stub.\r
-        unsigned Opc = 0;\r
-        const TargetRegisterClass *RC = nullptr;\r
-        X86AddressMode StubAM;\r
-        StubAM.Base.Reg = AM.Base.Reg;\r
-        StubAM.GV = GV;\r
-        StubAM.GVOpFlags = GVFlags;\r
-\r
-        // Prepare for inserting code in the local-value area.\r
-        SavePoint SaveInsertPt = enterLocalValueArea();\r
-\r
-        if (TLI.getPointerTy() == MVT::i64) {\r
-          Opc = X86::MOV64rm;\r
-          RC  = &X86::GR64RegClass;\r
-\r
-          if (Subtarget->isPICStyleRIPRel())\r
-            StubAM.Base.Reg = X86::RIP;\r
-        } else {\r
-          Opc = X86::MOV32rm;\r
-          RC  = &X86::GR32RegClass;\r
-        }\r
-\r
-        LoadReg = createResultReg(RC);\r
-        MachineInstrBuilder LoadMI =\r
-          BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), LoadReg);\r
-        addFullAddress(LoadMI, StubAM);\r
-\r
-        // Ok, back to normal mode.\r
-        leaveLocalValueArea(SaveInsertPt);\r
-\r
-        // Prevent loading GV stub multiple times in same MBB.\r
-        LocalValueMap[V] = LoadReg;\r
-      }\r
-\r
-      // Now construct the final address. Note that the Disp, Scale,\r
-      // and Index values may already be set here.\r
-      AM.Base.Reg = LoadReg;\r
-      AM.GV = nullptr;\r
-      return true;\r
-    }\r
-  }\r
-\r
-  // If all else fails, try to materialize the value in a register.\r
-  if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {\r
-    if (AM.Base.Reg == 0) {\r
-      AM.Base.Reg = getRegForValue(V);\r
-      return AM.Base.Reg != 0;\r
-    }\r
-    if (AM.IndexReg == 0) {\r
-      assert(AM.Scale == 1 && "Scale with no index!");\r
-      AM.IndexReg = getRegForValue(V);\r
-      return AM.IndexReg != 0;\r
-    }\r
-  }\r
-\r
-  return false;\r
-}\r
-\r
-/// X86SelectAddress - Attempt to fill in an address from the given value.\r
-///\r
-bool X86FastISel::X86SelectAddress(const Value *V, X86AddressMode &AM) {\r
-  SmallVector<const Value *, 32> GEPs;\r
-redo_gep:\r
-  const User *U = nullptr;\r
-  unsigned Opcode = Instruction::UserOp1;\r
-  if (const Instruction *I = dyn_cast<Instruction>(V)) {\r
-    // Don't walk into other basic blocks; it's possible we haven't\r
-    // visited them yet, so the instructions may not yet be assigned\r
-    // virtual registers.\r
-    if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(V)) ||\r
-        FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {\r
-      Opcode = I->getOpcode();\r
-      U = I;\r
-    }\r
-  } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {\r
-    Opcode = C->getOpcode();\r
-    U = C;\r
-  }\r
-\r
-  if (PointerType *Ty = dyn_cast<PointerType>(V->getType()))\r
-    if (Ty->getAddressSpace() > 255)\r
-      // Fast instruction selection doesn't support the special\r
-      // address spaces.\r
-      return false;\r
-\r
-  switch (Opcode) {\r
-  default: break;\r
-  case Instruction::BitCast:\r
-    // Look past bitcasts.\r
-    return X86SelectAddress(U->getOperand(0), AM);\r
-\r
-  case Instruction::IntToPtr:\r
-    // Look past no-op inttoptrs.\r
-    if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())\r
-      return X86SelectAddress(U->getOperand(0), AM);\r
-    break;\r
-\r
-  case Instruction::PtrToInt:\r
-    // Look past no-op ptrtoints.\r
-    if (TLI.getValueType(U->getType()) == TLI.getPointerTy())\r
-      return X86SelectAddress(U->getOperand(0), AM);\r
-    break;\r
-\r
-  case Instruction::Alloca: {\r
-    // Do static allocas.\r
-    const AllocaInst *A = cast<AllocaInst>(V);\r
-    DenseMap<const AllocaInst *, int>::iterator SI =\r
-      FuncInfo.StaticAllocaMap.find(A);\r
-    if (SI != FuncInfo.StaticAllocaMap.end()) {\r
-      AM.BaseType = X86AddressMode::FrameIndexBase;\r
-      AM.Base.FrameIndex = SI->second;\r
-      return true;\r
-    }\r
-    break;\r
-  }\r
-\r
-  case Instruction::Add: {\r
-    // Adds of constants are common and easy enough.\r
-    if (const ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {\r
-      uint64_t Disp = (int32_t)AM.Disp + (uint64_t)CI->getSExtValue();\r
-      // They have to fit in the 32-bit signed displacement field though.\r
-      if (isInt<32>(Disp)) {\r
-        AM.Disp = (uint32_t)Disp;\r
-        return X86SelectAddress(U->getOperand(0), AM);\r
-      }\r
-    }\r
-    break;\r
-  }\r
-\r
-  case Instruction::GetElementPtr: {\r
-    X86AddressMode SavedAM = AM;\r
-\r
-    // Pattern-match simple GEPs.\r
-    uint64_t Disp = (int32_t)AM.Disp;\r
-    unsigned IndexReg = AM.IndexReg;\r
-    unsigned Scale = AM.Scale;\r
-    gep_type_iterator GTI = gep_type_begin(U);\r
-    // Iterate through the indices, folding what we can. Constants can be\r
-    // folded, and one dynamic index can be handled, if the scale is supported.\r
-    for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end();\r
-         i != e; ++i, ++GTI) {\r
-      const Value *Op = *i;\r
-      if (StructType *STy = dyn_cast<StructType>(*GTI)) {\r
-        const StructLayout *SL = DL.getStructLayout(STy);\r
-        Disp += SL->getElementOffset(cast<ConstantInt>(Op)->getZExtValue());\r
-        continue;\r
-      }\r
-\r
-      // A array/variable index is always of the form i*S where S is the\r
-      // constant scale size.  See if we can push the scale into immediates.\r
-      uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType());\r
-      for (;;) {\r
-        if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {\r
-          // Constant-offset addressing.\r
-          Disp += CI->getSExtValue() * S;\r
-          break;\r
-        }\r
-        if (canFoldAddIntoGEP(U, Op)) {\r
-          // A compatible add with a constant operand. Fold the constant.\r
-          ConstantInt *CI =\r
-            cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));\r
-          Disp += CI->getSExtValue() * S;\r
-          // Iterate on the other operand.\r
-          Op = cast<AddOperator>(Op)->getOperand(0);\r
-          continue;\r
-        }\r
-        if (IndexReg == 0 &&\r
-            (!AM.GV || !Subtarget->isPICStyleRIPRel()) &&\r
-            (S == 1 || S == 2 || S == 4 || S == 8)) {\r
-          // Scaled-index addressing.\r
-          Scale = S;\r
-          IndexReg = getRegForGEPIndex(Op).first;\r
-          if (IndexReg == 0)\r
-            return false;\r
-          break;\r
-        }\r
-        // Unsupported.\r
-        goto unsupported_gep;\r
-      }\r
-    }\r
-\r
-    // Check for displacement overflow.\r
-    if (!isInt<32>(Disp))\r
-      break;\r
-\r
-    AM.IndexReg = IndexReg;\r
-    AM.Scale = Scale;\r
-    AM.Disp = (uint32_t)Disp;\r
-    GEPs.push_back(V);\r
-\r
-    if (const GetElementPtrInst *GEP =\r
-          dyn_cast<GetElementPtrInst>(U->getOperand(0))) {\r
-      // Ok, the GEP indices were covered by constant-offset and scaled-index\r
-      // addressing. Update the address state and move on to examining the base.\r
-      V = GEP;\r
-      goto redo_gep;\r
-    } else if (X86SelectAddress(U->getOperand(0), AM)) {\r
-      return true;\r
-    }\r
-\r
-    // If we couldn't merge the gep value into this addr mode, revert back to\r
-    // our address and just match the value instead of completely failing.\r
-    AM = SavedAM;\r
-\r
-    for (SmallVectorImpl<const Value *>::reverse_iterator\r
-           I = GEPs.rbegin(), E = GEPs.rend(); I != E; ++I)\r
-      if (handleConstantAddresses(*I, AM))\r
-        return true;\r
-\r
-    return false;\r
-  unsupported_gep:\r
-    // Ok, the GEP indices weren't all covered.\r
-    break;\r
-  }\r
-  }\r
-\r
-  return handleConstantAddresses(V, AM);\r
-}\r
-\r
-/// X86SelectCallAddress - Attempt to fill in an address from the given value.\r
-///\r
-bool X86FastISel::X86SelectCallAddress(const Value *V, X86AddressMode &AM) {\r
-  const User *U = nullptr;\r
-  unsigned Opcode = Instruction::UserOp1;\r
-  const Instruction *I = dyn_cast<Instruction>(V);\r
-  // Record if the value is defined in the same basic block.\r
-  //\r
-  // This information is crucial to know whether or not folding an\r
-  // operand is valid.\r
-  // Indeed, FastISel generates or reuses a virtual register for all\r
-  // operands of all instructions it selects. Obviously, the definition and\r
-  // its uses must use the same virtual register otherwise the produced\r
-  // code is incorrect.\r
-  // Before instruction selection, FunctionLoweringInfo::set sets the virtual\r
-  // registers for values that are alive across basic blocks. This ensures\r
-  // that the values are consistently set between across basic block, even\r
-  // if different instruction selection mechanisms are used (e.g., a mix of\r
-  // SDISel and FastISel).\r
-  // For values local to a basic block, the instruction selection process\r
-  // generates these virtual registers with whatever method is appropriate\r
-  // for its needs. In particular, FastISel and SDISel do not share the way\r
-  // local virtual registers are set.\r
-  // Therefore, this is impossible (or at least unsafe) to share values\r
-  // between basic blocks unless they use the same instruction selection\r
-  // method, which is not guarantee for X86.\r
-  // Moreover, things like hasOneUse could not be used accurately, if we\r
-  // allow to reference values across basic blocks whereas they are not\r
-  // alive across basic blocks initially.\r
-  bool InMBB = true;\r
-  if (I) {\r
-    Opcode = I->getOpcode();\r
-    U = I;\r
-    InMBB = I->getParent() == FuncInfo.MBB->getBasicBlock();\r
-  } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {\r
-    Opcode = C->getOpcode();\r
-    U = C;\r
-  }\r
-\r
-  switch (Opcode) {\r
-  default: break;\r
-  case Instruction::BitCast:\r
-    // Look past bitcasts if its operand is in the same BB.\r
-    if (InMBB)\r
-      return X86SelectCallAddress(U->getOperand(0), AM);\r
-    break;\r
-\r
-  case Instruction::IntToPtr:\r
-    // Look past no-op inttoptrs if its operand is in the same BB.\r
-    if (InMBB &&\r
-        TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())\r
-      return X86SelectCallAddress(U->getOperand(0), AM);\r
-    break;\r
-\r
-  case Instruction::PtrToInt:\r
-    // Look past no-op ptrtoints if its operand is in the same BB.\r
-    if (InMBB &&\r
-        TLI.getValueType(U->getType()) == TLI.getPointerTy())\r
-      return X86SelectCallAddress(U->getOperand(0), AM);\r
-    break;\r
-  }\r
-\r
-  // Handle constant address.\r
-  if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {\r
-    // Can't handle alternate code models yet.\r
-    if (TM.getCodeModel() != CodeModel::Small)\r
-      return false;\r
-\r
-    // RIP-relative addresses can't have additional register operands.\r
-    if (Subtarget->isPICStyleRIPRel() &&\r
-        (AM.Base.Reg != 0 || AM.IndexReg != 0))\r
-      return false;\r
-\r
-    // Can't handle DLL Import.\r
-    if (GV->hasDLLImportStorageClass())\r
-      return false;\r
-\r
-    // Can't handle TLS.\r
-    if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))\r
-      if (GVar->isThreadLocal())\r
-        return false;\r
-\r
-    // Okay, we've committed to selecting this global. Set up the basic address.\r
-    AM.GV = GV;\r
-\r
-    // No ABI requires an extra load for anything other than DLLImport, which\r
-    // we rejected above. Return a direct reference to the global.\r
-    if (Subtarget->isPICStyleRIPRel()) {\r
-      // Use rip-relative addressing if we can.  Above we verified that the\r
-      // base and index registers are unused.\r
-      assert(AM.Base.Reg == 0 && AM.IndexReg == 0);\r
-      AM.Base.Reg = X86::RIP;\r
-    } else if (Subtarget->isPICStyleStubPIC()) {\r
-      AM.GVOpFlags = X86II::MO_PIC_BASE_OFFSET;\r
-    } else if (Subtarget->isPICStyleGOT()) {\r
-      AM.GVOpFlags = X86II::MO_GOTOFF;\r
-    }\r
-\r
-    return true;\r
-  }\r
-\r
-  // If all else fails, try to materialize the value in a register.\r
-  if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {\r
-    if (AM.Base.Reg == 0) {\r
-      AM.Base.Reg = getRegForValue(V);\r
-      return AM.Base.Reg != 0;\r
-    }\r
-    if (AM.IndexReg == 0) {\r
-      assert(AM.Scale == 1 && "Scale with no index!");\r
-      AM.IndexReg = getRegForValue(V);\r
-      return AM.IndexReg != 0;\r
-    }\r
-  }\r
-\r
-  return false;\r
-}\r
-\r
-\r
-/// X86SelectStore - Select and emit code to implement store instructions.\r
-bool X86FastISel::X86SelectStore(const Instruction *I) {\r
-  // Atomic stores need special handling.\r
-  const StoreInst *S = cast<StoreInst>(I);\r
-\r
-  if (S->isAtomic())\r
-    return false;\r
-\r
-  const Value *Val = S->getValueOperand();\r
-  const Value *Ptr = S->getPointerOperand();\r
-\r
-  MVT VT;\r
-  if (!isTypeLegal(Val->getType(), VT, /*AllowI1=*/true))\r
-    return false;\r
-\r
-  unsigned Alignment = S->getAlignment();\r
-  unsigned ABIAlignment = DL.getABITypeAlignment(Val->getType());\r
-  if (Alignment == 0) // Ensure that codegen never sees alignment 0\r
-    Alignment = ABIAlignment;\r
-  bool Aligned = Alignment >= ABIAlignment;\r
-\r
-  X86AddressMode AM;\r
-  if (!X86SelectAddress(Ptr, AM))\r
-    return false;\r
-\r
-  return X86FastEmitStore(VT, Val, AM, createMachineMemOperandFor(I), Aligned);\r
-}\r
-\r
-/// X86SelectRet - Select and emit code to implement ret instructions.\r
-bool X86FastISel::X86SelectRet(const Instruction *I) {\r
-  const ReturnInst *Ret = cast<ReturnInst>(I);\r
-  const Function &F = *I->getParent()->getParent();\r
-  const X86MachineFunctionInfo *X86MFInfo =\r
-      FuncInfo.MF->getInfo<X86MachineFunctionInfo>();\r
-\r
-  if (!FuncInfo.CanLowerReturn)\r
-    return false;\r
-\r
-  CallingConv::ID CC = F.getCallingConv();\r
-  if (CC != CallingConv::C &&\r
-      CC != CallingConv::Fast &&\r
-      CC != CallingConv::X86_FastCall &&\r
-      CC != CallingConv::X86_64_SysV)\r
-    return false;\r
-\r
-  if (Subtarget->isCallingConvWin64(CC))\r
-    return false;\r
-\r
-  // Don't handle popping bytes on return for now.\r
-  if (X86MFInfo->getBytesToPopOnReturn() != 0)\r
-    return false;\r
-\r
-  // fastcc with -tailcallopt is intended to provide a guaranteed\r
-  // tail call optimization. Fastisel doesn't know how to do that.\r
-  if (CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt)\r
-    return false;\r
-\r
-  // Let SDISel handle vararg functions.\r
-  if (F.isVarArg())\r
-    return false;\r
-\r
-  // Build a list of return value registers.\r
-  SmallVector<unsigned, 4> RetRegs;\r
-\r
-  if (Ret->getNumOperands() > 0) {\r
-    SmallVector<ISD::OutputArg, 4> Outs;\r
-    GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI);\r
-\r
-    // Analyze operands of the call, assigning locations to each operand.\r
-    SmallVector<CCValAssign, 16> ValLocs;\r
-    CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, I->getContext());\r
-    CCInfo.AnalyzeReturn(Outs, RetCC_X86);\r
-\r
-    const Value *RV = Ret->getOperand(0);\r
-    unsigned Reg = getRegForValue(RV);\r
-    if (Reg == 0)\r
-      return false;\r
-\r
-    // Only handle a single return value for now.\r
-    if (ValLocs.size() != 1)\r
-      return false;\r
-\r
-    CCValAssign &VA = ValLocs[0];\r
-\r
-    // Don't bother handling odd stuff for now.\r
-    if (VA.getLocInfo() != CCValAssign::Full)\r
-      return false;\r
-    // Only handle register returns for now.\r
-    if (!VA.isRegLoc())\r
-      return false;\r
-\r
-    // The calling-convention tables for x87 returns don't tell\r
-    // the whole story.\r
-    if (VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1)\r
-      return false;\r
-\r
-    unsigned SrcReg = Reg + VA.getValNo();\r
-    EVT SrcVT = TLI.getValueType(RV->getType());\r
-    EVT DstVT = VA.getValVT();\r
-    // Special handling for extended integers.\r
-    if (SrcVT != DstVT) {\r
-      if (SrcVT != MVT::i1 && SrcVT != MVT::i8 && SrcVT != MVT::i16)\r
-        return false;\r
-\r
-      if (!Outs[0].Flags.isZExt() && !Outs[0].Flags.isSExt())\r
-        return false;\r
-\r
-      assert(DstVT == MVT::i32 && "X86 should always ext to i32");\r
-\r
-      if (SrcVT == MVT::i1) {\r
-        if (Outs[0].Flags.isSExt())\r
-          return false;\r
-        SrcReg = fastEmitZExtFromI1(MVT::i8, SrcReg, /*TODO: Kill=*/false);\r
-        SrcVT = MVT::i8;\r
-      }\r
-      unsigned Op = Outs[0].Flags.isZExt() ? ISD::ZERO_EXTEND :\r
-                                             ISD::SIGN_EXTEND;\r
-      SrcReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Op,\r
-                          SrcReg, /*TODO: Kill=*/false);\r
-    }\r
-\r
-    // Make the copy.\r
-    unsigned DstReg = VA.getLocReg();\r
-    const TargetRegisterClass *SrcRC = MRI.getRegClass(SrcReg);\r
-    // Avoid a cross-class copy. This is very unlikely.\r
-    if (!SrcRC->contains(DstReg))\r
-      return false;\r
-    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,\r
-            TII.get(TargetOpcode::COPY), DstReg).addReg(SrcReg);\r
-\r
-    // Add register to return instruction.\r
-    RetRegs.push_back(VA.getLocReg());\r
-  }\r
-\r
-  // The x86-64 ABI for returning structs by value requires that we copy\r
-  // the sret argument into %rax for the return. We saved the argument into\r
-  // a virtual register in the entry block, so now we copy the value out\r
-  // and into %rax. We also do the same with %eax for Win32.\r
-  if (F.hasStructRetAttr() &&\r
-      (Subtarget->is64Bit() || Subtarget->isTargetKnownWindowsMSVC())) {\r
-    unsigned Reg = X86MFInfo->getSRetReturnReg();\r
-    assert(Reg &&\r
-           "SRetReturnReg should have been set in LowerFormalArguments()!");\r
-    unsigned RetReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;\r
-    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,\r
-            TII.get(TargetOpcode::COPY), RetReg).addReg(Reg);\r
-    RetRegs.push_back(RetReg);\r
-  }\r
-\r
-  // Now emit the RET.\r
-  MachineInstrBuilder MIB =\r
-    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,\r
-            TII.get(Subtarget->is64Bit() ? X86::RETQ : X86::RETL));\r
-  for (unsigned i = 0, e = RetRegs.size(); i != e; ++i)\r
-    MIB.addReg(RetRegs[i], RegState::Implicit);\r
-  return true;\r
-}\r
-\r
-/// X86SelectLoad - Select and emit code to implement load instructions.\r
-///\r
-bool X86FastISel::X86SelectLoad(const Instruction *I) {\r
-  const LoadInst *LI = cast<LoadInst>(I);\r
-\r
-  // Atomic loads need special handling.\r
-  if (LI->isAtomic())\r
-    return false;\r
-\r
-  MVT VT;\r
-  if (!isTypeLegal(LI->getType(), VT, /*AllowI1=*/true))\r
-    return false;\r
-\r
-  const Value *Ptr = LI->getPointerOperand();\r
-\r
-  X86AddressMode AM;\r
-  if (!X86SelectAddress(Ptr, AM))\r
-    return false;\r
-\r
-  unsigned ResultReg = 0;\r
-  if (!X86FastEmitLoad(VT, AM, createMachineMemOperandFor(LI), ResultReg))\r
-    return false;\r
-\r
-  updateValueMap(I, ResultReg);\r
-  return true;\r
-}\r
-\r
-static unsigned X86ChooseCmpOpcode(EVT VT, const X86Subtarget *Subtarget) {\r
-  bool HasAVX = Subtarget->hasAVX();\r
-  bool X86ScalarSSEf32 = Subtarget->hasSSE1();\r
-  bool X86ScalarSSEf64 = Subtarget->hasSSE2();\r
-\r
-  switch (VT.getSimpleVT().SimpleTy) {\r
-  default:       return 0;\r
-  case MVT::i8:  return X86::CMP8rr;\r
-  case MVT::i16: return X86::CMP16rr;\r
-  case MVT::i32: return X86::CMP32rr;\r
-  case MVT::i64: return X86::CMP64rr;\r
-  case MVT::f32:\r
-    return X86ScalarSSEf32 ? (HasAVX ? X86::VUCOMISSrr : X86::UCOMISSrr) : 0;\r
-  case MVT::f64:\r
-    return X86ScalarSSEf64 ? (HasAVX ? X86::VUCOMISDrr : X86::UCOMISDrr) : 0;\r
-  }\r
-}\r
-\r
-/// X86ChooseCmpImmediateOpcode - If we have a comparison with RHS as the RHS\r
-/// of the comparison, return an opcode that works for the compare (e.g.\r
-/// CMP32ri) otherwise return 0.\r
-static unsigned X86ChooseCmpImmediateOpcode(EVT VT, const ConstantInt *RHSC) {\r
-  switch (VT.getSimpleVT().SimpleTy) {\r
-  // Otherwise, we can't fold the immediate into this comparison.\r
-  default: return 0;\r
-  case MVT::i8: return X86::CMP8ri;\r
-  case MVT::i16: return X86::CMP16ri;\r
-  case MVT::i32: return X86::CMP32ri;\r
-  case MVT::i64:\r
-    // 64-bit comparisons are only valid if the immediate fits in a 32-bit sext\r
-    // field.\r
-    if ((int)RHSC->getSExtValue() == RHSC->getSExtValue())\r
-      return X86::CMP64ri32;\r
-    return 0;\r
-  }\r
-}\r
-\r
-bool X86FastISel::X86FastEmitCompare(const Value *Op0, const Value *Op1,\r
-                                     EVT VT, DebugLoc CurDbgLoc) {\r
-  unsigned Op0Reg = getRegForValue(Op0);\r
-  if (Op0Reg == 0) return false;\r
-\r
-  // Handle 'null' like i32/i64 0.\r
-  if (isa<ConstantPointerNull>(Op1))\r
-    Op1 = Constant::getNullValue(DL.getIntPtrType(Op0->getContext()));\r
-\r
-  // We have two options: compare with register or immediate.  If the RHS of\r
-  // the compare is an immediate that we can fold into this compare, use\r
-  // CMPri, otherwise use CMPrr.\r
-  if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {\r
-    if (unsigned CompareImmOpc = X86ChooseCmpImmediateOpcode(VT, Op1C)) {\r
-      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, CurDbgLoc, TII.get(CompareImmOpc))\r
-        .addReg(Op0Reg)\r
-        .addImm(Op1C->getSExtValue());\r
-      return true;\r
-    }\r
-  }\r
-\r
-  unsigned CompareOpc = X86ChooseCmpOpcode(VT, Subtarget);\r
-  if (CompareOpc == 0) return false;\r
-\r
-  unsigned Op1Reg = getRegForValue(Op1);\r
-  if (Op1Reg == 0) return false;\r
-  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, CurDbgLoc, TII.get(CompareOpc))\r
-    .addReg(Op0Reg)\r
-    .addReg(Op1Reg);\r
-\r
-  return true;\r
-}\r
-\r
-bool X86FastISel::X86SelectCmp(const Instruction *I) {\r
-  const CmpInst *CI = cast<CmpInst>(I);\r
-\r
-  MVT VT;\r
-  if (!isTypeLegal(I->getOperand(0)->getType(), VT))\r
-    return false;\r
-\r
-  // Try to optimize or fold the cmp.\r
-  CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);\r
-  unsigned ResultReg = 0;\r
-  switch (Predicate) {\r
-  default: break;\r
-  case CmpInst::FCMP_FALSE: {\r
-    ResultReg = createResultReg(&X86::GR32RegClass);\r
-    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV32r0),\r
-            ResultReg);\r
-    ResultReg = fastEmitInst_extractsubreg(MVT::i8, ResultReg, /*Kill=*/true,\r
-                                           X86::sub_8bit);\r
-    if (!ResultReg)\r
-      return false;\r
-    break;\r
-  }\r
-  case CmpInst::FCMP_TRUE: {\r
-    ResultReg = createResultReg(&X86::GR8RegClass);\r
-    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV8ri),\r
-            ResultReg).addImm(1);\r
-    break;\r
-  }\r
-  }\r
-\r
-  if (ResultReg) {\r
-    updateValueMap(I, ResultReg);\r
-    return true;\r
-  }\r
-\r
-  const Value *LHS = CI->getOperand(0);\r
-  const Value *RHS = CI->getOperand(1);\r
-\r
-  // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 0.0.\r
-  // We don't have to materialize a zero constant for this case and can just use\r
-  // %x again on the RHS.\r
-  if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) {\r
-    const auto *RHSC = dyn_cast<ConstantFP>(RHS);\r
-    if (RHSC && RHSC->isNullValue())\r
-      RHS = LHS;\r
-  }\r
-\r
-  // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction.\r
-  static unsigned SETFOpcTable[2][3] = {\r
-    { X86::SETEr,  X86::SETNPr, X86::AND8rr },\r
-    { X86::SETNEr, X86::SETPr,  X86::OR8rr  }\r
-  };\r
-  unsigned *SETFOpc = nullptr;\r
-  switch (Predicate) {\r
-  default: break;\r
-  case CmpInst::FCMP_OEQ: SETFOpc = &SETFOpcTable[0][0]; break;\r
-  case CmpInst::FCMP_UNE: SETFOpc = &SETFOpcTable[1][0]; break;\r
-  }\r
-\r
-  ResultReg = createResultReg(&X86::GR8RegClass);\r
-  if (SETFOpc) {\r
-    if (!X86FastEmitCompare(LHS, RHS, VT, I->getDebugLoc()))\r
-      return false;\r
-\r
-    unsigned FlagReg1 = createResultReg(&X86::GR8RegClass);\r
-    unsigned FlagReg2 = createResultReg(&X86::GR8RegClass);\r
-    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[0]),\r
-            FlagReg1);\r
-    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[1]),\r
-            FlagReg2);\r
-    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[2]),\r
-            ResultReg).addReg(FlagReg1).addReg(FlagReg2);\r
-    updateValueMap(I, ResultReg);\r
-    return true;\r
-  }\r
-\r
-  X86::CondCode CC;\r
-  bool SwapArgs;\r
-  std::tie(CC, SwapArgs) = getX86ConditionCode(Predicate);\r
-  assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code.");\r
-  unsigned Opc = X86::getSETFromCond(CC);\r
-\r
-  if (SwapArgs)\r
-    std::swap(LHS, RHS);\r
-\r
-  // Emit a compare of LHS/RHS.\r
-  if (!X86FastEmitCompare(LHS, RHS, VT, I->getDebugLoc()))\r
-    return false;\r
-\r
-  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg);\r
-  updateValueMap(I, ResultReg);\r
-  return true;\r
-}\r
-\r
-bool X86FastISel::X86SelectZExt(const Instruction *I) {\r
-  EVT DstVT = TLI.getValueType(I->getType());\r
-  if (!TLI.isTypeLegal(DstVT))\r
-    return false;\r
-\r
-  unsigned ResultReg = getRegForValue(I->getOperand(0));\r
-  if (ResultReg == 0)\r
-    return false;\r
-\r
-  // Handle zero-extension from i1 to i8, which is common.\r
-  MVT SrcVT = TLI.getSimpleValueType(I->getOperand(0)->getType());\r
-  if (SrcVT.SimpleTy == MVT::i1) {\r
-    // Set the high bits to zero.\r
-    ResultReg = fastEmitZExtFromI1(MVT::i8, ResultReg, /*TODO: Kill=*/false);\r
-    SrcVT = MVT::i8;\r
-\r
-    if (ResultReg == 0)\r
-      return false;\r
-  }\r
-\r
-  if (DstVT == MVT::i64) {\r
-    // Handle extension to 64-bits via sub-register shenanigans.\r
-    unsigned MovInst;\r
-\r
-    switch (SrcVT.SimpleTy) {\r
-    case MVT::i8:  MovInst = X86::MOVZX32rr8;  break;\r
-    case MVT::i16: MovInst = X86::MOVZX32rr16; break;\r
-    case MVT::i32: MovInst = X86::MOV32rr;     break;\r
-    default: llvm_unreachable("Unexpected zext to i64 source type");\r
-    }\r
-\r
-    unsigned Result32 = createResultReg(&X86::GR32RegClass);\r
-    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovInst), Result32)\r
-      .addReg(ResultReg);\r
-\r
-    ResultReg = createResultReg(&X86::GR64RegClass);\r
-    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::SUBREG_TO_REG),\r
-            ResultReg)\r
-      .addImm(0).addReg(Result32).addImm(X86::sub_32bit);\r
-  } else if (DstVT != MVT::i8) {\r
-    ResultReg = fastEmit_r(MVT::i8, DstVT.getSimpleVT(), ISD::ZERO_EXTEND,\r
-                           ResultReg, /*Kill=*/true);\r
-    if (ResultReg == 0)\r
-      return false;\r
-  }\r
-\r
-  updateValueMap(I, ResultReg);\r
-  return true;\r
-}\r
-\r
-bool X86FastISel::X86SelectBranch(const Instruction *I) {\r
-  // Unconditional branches are selected by tablegen-generated code.\r
-  // Handle a conditional branch.\r
-  const BranchInst *BI = cast<BranchInst>(I);\r
-  MachineBasicBlock *TrueMBB = FuncInfo.MBBMap[BI->getSuccessor(0)];\r
-  MachineBasicBlock *FalseMBB = FuncInfo.MBBMap[BI->getSuccessor(1)];\r
-\r
-  // Fold the common case of a conditional branch with a comparison\r
-  // in the same block (values defined on other blocks may not have\r
-  // initialized registers).\r
-  X86::CondCode CC;\r
-  if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {\r
-    if (CI->hasOneUse() && CI->getParent() == I->getParent()) {\r
-      EVT VT = TLI.getValueType(CI->getOperand(0)->getType());\r
-\r
-      // Try to optimize or fold the cmp.\r
-      CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);\r
-      switch (Predicate) {\r
-      default: break;\r
-      case CmpInst::FCMP_FALSE: fastEmitBranch(FalseMBB, DbgLoc); return true;\r
-      case CmpInst::FCMP_TRUE:  fastEmitBranch(TrueMBB, DbgLoc); return true;\r
-      }\r
-\r
-      const Value *CmpLHS = CI->getOperand(0);\r
-      const Value *CmpRHS = CI->getOperand(1);\r
-\r
-      // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x,\r
-      // 0.0.\r
-      // We don't have to materialize a zero constant for this case and can just\r
-      // use %x again on the RHS.\r
-      if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) {\r
-        const auto *CmpRHSC = dyn_cast<ConstantFP>(CmpRHS);\r
-        if (CmpRHSC && CmpRHSC->isNullValue())\r
-          CmpRHS = CmpLHS;\r
-      }\r
-\r
-      // Try to take advantage of fallthrough opportunities.\r
-      if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) {\r
-        std::swap(TrueMBB, FalseMBB);\r
-        Predicate = CmpInst::getInversePredicate(Predicate);\r
-      }\r
-\r
-      // FCMP_OEQ and FCMP_UNE cannot be expressed with a single flag/condition\r
-      // code check. Instead two branch instructions are required to check all\r
-      // the flags. First we change the predicate to a supported condition code,\r
-      // which will be the first branch. Later one we will emit the second\r
-      // branch.\r
-      bool NeedExtraBranch = false;\r
-      switch (Predicate) {\r
-      default: break;\r
-      case CmpInst::FCMP_OEQ:\r
-        std::swap(TrueMBB, FalseMBB); // fall-through\r
-      case CmpInst::FCMP_UNE:\r
-        NeedExtraBranch = true;\r
-        Predicate = CmpInst::FCMP_ONE;\r
-        break;\r
-      }\r
-\r
-      bool SwapArgs;\r
-      unsigned BranchOpc;\r
-      std::tie(CC, SwapArgs) = getX86ConditionCode(Predicate);\r
-      assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code.");\r
-\r
-      BranchOpc = X86::GetCondBranchFromCond(CC);\r
-      if (SwapArgs)\r
-        std::swap(CmpLHS, CmpRHS);\r
-\r
-      // Emit a compare of the LHS and RHS, setting the flags.\r
-      if (!X86FastEmitCompare(CmpLHS, CmpRHS, VT, CI->getDebugLoc()))\r
-        return false;\r
-\r
-      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BranchOpc))\r
-        .addMBB(TrueMBB);\r
-\r
-      // X86 requires a second branch to handle UNE (and OEQ, which is mapped\r
-      // to UNE above).\r
-      if (NeedExtraBranch) {\r
-        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JP_1))\r
-          .addMBB(TrueMBB);\r
-      }\r
-\r
-      // Obtain the branch weight and add the TrueBB to the successor list.\r
-      uint32_t BranchWeight = 0;\r
-      if (FuncInfo.BPI)\r
-        BranchWeight = FuncInfo.BPI->getEdgeWeight(BI->getParent(),\r
-                                                   TrueMBB->getBasicBlock());\r
-      FuncInfo.MBB->addSuccessor(TrueMBB, BranchWeight);\r
-\r
-      // Emits an unconditional branch to the FalseBB, obtains the branch\r
-      // weight, and adds it to the successor list.\r
-      fastEmitBranch(FalseMBB, DbgLoc);\r
-\r
-      return true;\r
-    }\r
-  } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) {\r
-    // Handle things like "%cond = trunc i32 %X to i1 / br i1 %cond", which\r
-    // typically happen for _Bool and C++ bools.\r
-    MVT SourceVT;\r
-    if (TI->hasOneUse() && TI->getParent() == I->getParent() &&\r
-        isTypeLegal(TI->getOperand(0)->getType(), SourceVT)) {\r
-      unsigned TestOpc = 0;\r
-      switch (SourceVT.SimpleTy) {\r
-      default: break;\r
-      case MVT::i8:  TestOpc = X86::TEST8ri; break;\r
-      case MVT::i16: TestOpc = X86::TEST16ri; break;\r
-      case MVT::i32: TestOpc = X86::TEST32ri; break;\r
-      case MVT::i64: TestOpc = X86::TEST64ri32; break;\r
-      }\r
-      if (TestOpc) {\r
-        unsigned OpReg = getRegForValue(TI->getOperand(0));\r
-        if (OpReg == 0) return false;\r
-        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TestOpc))\r
-          .addReg(OpReg).addImm(1);\r
-\r
-        unsigned JmpOpc = X86::JNE_1;\r
-        if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) {\r
-          std::swap(TrueMBB, FalseMBB);\r
-          JmpOpc = X86::JE_1;\r
-        }\r
-\r
-        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(JmpOpc))\r
-          .addMBB(TrueMBB);\r
-        fastEmitBranch(FalseMBB, DbgLoc);\r
-        uint32_t BranchWeight = 0;\r
-        if (FuncInfo.BPI)\r
-          BranchWeight = FuncInfo.BPI->getEdgeWeight(BI->getParent(),\r
-                                                     TrueMBB->getBasicBlock());\r
-        FuncInfo.MBB->addSuccessor(TrueMBB, BranchWeight);\r
-        return true;\r
-      }\r
-    }\r
-  } else if (foldX86XALUIntrinsic(CC, BI, BI->getCondition())) {\r
-    // Fake request the condition, otherwise the intrinsic might be completely\r
-    // optimized away.\r
-    unsigned TmpReg = getRegForValue(BI->getCondition());\r
-    if (TmpReg == 0)\r
-      return false;\r
-\r
-    unsigned BranchOpc = X86::GetCondBranchFromCond(CC);\r
-\r
-    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BranchOpc))\r
-      .addMBB(TrueMBB);\r
-    fastEmitBranch(FalseMBB, DbgLoc);\r
-    uint32_t BranchWeight = 0;\r
-    if (FuncInfo.BPI)\r
-      BranchWeight = FuncInfo.BPI->getEdgeWeight(BI->getParent(),\r
-                                                 TrueMBB->getBasicBlock());\r
-    FuncInfo.MBB->addSuccessor(TrueMBB, BranchWeight);\r
-    return true;\r
-  }\r
-\r
-  // Otherwise do a clumsy setcc and re-test it.\r
-  // Note that i1 essentially gets ANY_EXTEND'ed to i8 where it isn't used\r
-  // in an explicit cast, so make sure to handle that correctly.\r
-  unsigned OpReg = getRegForValue(BI->getCondition());\r
-  if (OpReg == 0) return false;\r
-\r
-  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri))\r
-    .addReg(OpReg).addImm(1);\r
-  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JNE_1))\r
-    .addMBB(TrueMBB);\r
-  fastEmitBranch(FalseMBB, DbgLoc);\r
-  uint32_t BranchWeight = 0;\r
-  if (FuncInfo.BPI)\r
-    BranchWeight = FuncInfo.BPI->getEdgeWeight(BI->getParent(),\r
-                                               TrueMBB->getBasicBlock());\r
-  FuncInfo.MBB->addSuccessor(TrueMBB, BranchWeight);\r
-  return true;\r
-}\r
-\r
-bool X86FastISel::X86SelectShift(const Instruction *I) {\r
-  unsigned CReg = 0, OpReg = 0;\r
-  const TargetRegisterClass *RC = nullptr;\r
-  if (I->getType()->isIntegerTy(8)) {\r
-    CReg = X86::CL;\r
-    RC = &X86::GR8RegClass;\r
-    switch (I->getOpcode()) {\r
-    case Instruction::LShr: OpReg = X86::SHR8rCL; break;\r
-    case Instruction::AShr: OpReg = X86::SAR8rCL; break;\r
-    case Instruction::Shl:  OpReg = X86::SHL8rCL; break;\r
-    default: return false;\r
-    }\r
-  } else if (I->getType()->isIntegerTy(16)) {\r
-    CReg = X86::CX;\r
-    RC = &X86::GR16RegClass;\r
-    switch (I->getOpcode()) {\r
-    case Instruction::LShr: OpReg = X86::SHR16rCL; break;\r
-    case Instruction::AShr: OpReg = X86::SAR16rCL; break;\r
-    case Instruction::Shl:  OpReg = X86::SHL16rCL; break;\r
-    default: return false;\r
-    }\r
-  } else if (I->getType()->isIntegerTy(32)) {\r
-    CReg = X86::ECX;\r
-    RC = &X86::GR32RegClass;\r
-    switch (I->getOpcode()) {\r
-    case Instruction::LShr: OpReg = X86::SHR32rCL; break;\r
-    case Instruction::AShr: OpReg = X86::SAR32rCL; break;\r
-    case Instruction::Shl:  OpReg = X86::SHL32rCL; break;\r
-    default: return false;\r
-    }\r
-  } else if (I->getType()->isIntegerTy(64)) {\r
-    CReg = X86::RCX;\r
-    RC = &X86::GR64RegClass;\r
-    switch (I->getOpcode()) {\r
-    case Instruction::LShr: OpReg = X86::SHR64rCL; break;\r
-    case Instruction::AShr: OpReg = X86::SAR64rCL; break;\r
-    case Instruction::Shl:  OpReg = X86::SHL64rCL; break;\r
-    default: return false;\r
-    }\r
-  } else {\r
-    return false;\r
-  }\r
-\r
-  MVT VT;\r
-  if (!isTypeLegal(I->getType(), VT))\r
-    return false;\r
-\r
-  unsigned Op0Reg = getRegForValue(I->getOperand(0));\r
-  if (Op0Reg == 0) return false;\r
-\r
-  unsigned Op1Reg = getRegForValue(I->getOperand(1));\r
-  if (Op1Reg == 0) return false;\r
-  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY),\r
-          CReg).addReg(Op1Reg);\r
-\r
-  // The shift instruction uses X86::CL. If we defined a super-register\r
-  // of X86::CL, emit a subreg KILL to precisely describe what we're doing here.\r
-  if (CReg != X86::CL)\r
-    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,\r
-            TII.get(TargetOpcode::KILL), X86::CL)\r
-      .addReg(CReg, RegState::Kill);\r
-\r
-  unsigned ResultReg = createResultReg(RC);\r
-  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(OpReg), ResultReg)\r
-    .addReg(Op0Reg);\r
-  updateValueMap(I, ResultReg);\r
-  return true;\r
-}\r
-\r
-bool X86FastISel::X86SelectDivRem(const Instruction *I) {\r
-  const static unsigned NumTypes = 4; // i8, i16, i32, i64\r
-  const static unsigned NumOps   = 4; // SDiv, SRem, UDiv, URem\r
-  const static bool S = true;  // IsSigned\r
-  const static bool U = false; // !IsSigned\r
-  const static unsigned Copy = TargetOpcode::COPY;\r
-  // For the X86 DIV/IDIV instruction, in most cases the dividend\r
-  // (numerator) must be in a specific register pair highreg:lowreg,\r
-  // producing the quotient in lowreg and the remainder in highreg.\r
-  // For most data types, to set up the instruction, the dividend is\r
-  // copied into lowreg, and lowreg is sign-extended or zero-extended\r
-  // into highreg.  The exception is i8, where the dividend is defined\r
-  // as a single register rather than a register pair, and we\r
-  // therefore directly sign-extend or zero-extend the dividend into\r
-  // lowreg, instead of copying, and ignore the highreg.\r
-  const static struct DivRemEntry {\r
-    // The following portion depends only on the data type.\r
-    const TargetRegisterClass *RC;\r
-    unsigned LowInReg;  // low part of the register pair\r
-    unsigned HighInReg; // high part of the register pair\r
-    // The following portion depends on both the data type and the operation.\r
-    struct DivRemResult {\r
-    unsigned OpDivRem;        // The specific DIV/IDIV opcode to use.\r
-    unsigned OpSignExtend;    // Opcode for sign-extending lowreg into\r
-                              // highreg, or copying a zero into highreg.\r
-    unsigned OpCopy;          // Opcode for copying dividend into lowreg, or\r
-                              // zero/sign-extending into lowreg for i8.\r
-    unsigned DivRemResultReg; // Register containing the desired result.\r
-    bool IsOpSigned;          // Whether to use signed or unsigned form.\r
-    } ResultTable[NumOps];\r
-  } OpTable[NumTypes] = {\r
-    { &X86::GR8RegClass,  X86::AX,  0, {\r
-        { X86::IDIV8r,  0,            X86::MOVSX16rr8, X86::AL,  S }, // SDiv\r
-        { X86::IDIV8r,  0,            X86::MOVSX16rr8, X86::AH,  S }, // SRem\r
-        { X86::DIV8r,   0,            X86::MOVZX16rr8, X86::AL,  U }, // UDiv\r
-        { X86::DIV8r,   0,            X86::MOVZX16rr8, X86::AH,  U }, // URem\r
-      }\r
-    }, // i8\r
-    { &X86::GR16RegClass, X86::AX,  X86::DX, {\r
-        { X86::IDIV16r, X86::CWD,     Copy,            X86::AX,  S }, // SDiv\r
-        { X86::IDIV16r, X86::CWD,     Copy,            X86::DX,  S }, // SRem\r
-        { X86::DIV16r,  X86::MOV32r0, Copy,            X86::AX,  U }, // UDiv\r
-        { X86::DIV16r,  X86::MOV32r0, Copy,            X86::DX,  U }, // URem\r
-      }\r
-    }, // i16\r
-    { &X86::GR32RegClass, X86::EAX, X86::EDX, {\r
-        { X86::IDIV32r, X86::CDQ,     Copy,            X86::EAX, S }, // SDiv\r
-        { X86::IDIV32r, X86::CDQ,     Copy,            X86::EDX, S }, // SRem\r
-        { X86::DIV32r,  X86::MOV32r0, Copy,            X86::EAX, U }, // UDiv\r
-        { X86::DIV32r,  X86::MOV32r0, Copy,            X86::EDX, U }, // URem\r
-      }\r
-    }, // i32\r
-    { &X86::GR64RegClass, X86::RAX, X86::RDX, {\r
-        { X86::IDIV64r, X86::CQO,     Copy,            X86::RAX, S }, // SDiv\r
-        { X86::IDIV64r, X86::CQO,     Copy,            X86::RDX, S }, // SRem\r
-        { X86::DIV64r,  X86::MOV32r0, Copy,            X86::RAX, U }, // UDiv\r
-        { X86::DIV64r,  X86::MOV32r0, Copy,            X86::RDX, U }, // URem\r
-      }\r
-    }, // i64\r
-  };\r
-\r
-  MVT VT;\r
-  if (!isTypeLegal(I->getType(), VT))\r
-    return false;\r
-\r
-  unsigned TypeIndex, OpIndex;\r
-  switch (VT.SimpleTy) {\r
-  default: return false;\r
-  case MVT::i8:  TypeIndex = 0; break;\r
-  case MVT::i16: TypeIndex = 1; break;\r
-  case MVT::i32: TypeIndex = 2; break;\r
-  case MVT::i64: TypeIndex = 3;\r
-    if (!Subtarget->is64Bit())\r
-      return false;\r
-    break;\r
-  }\r
-\r
-  switch (I->getOpcode()) {\r
-  default: llvm_unreachable("Unexpected div/rem opcode");\r
-  case Instruction::SDiv: OpIndex = 0; break;\r
-  case Instruction::SRem: OpIndex = 1; break;\r
-  case Instruction::UDiv: OpIndex = 2; break;\r
-  case Instruction::URem: OpIndex = 3; break;\r
-  }\r
-\r
-  const DivRemEntry &TypeEntry = OpTable[TypeIndex];\r
-  const DivRemEntry::DivRemResult &OpEntry = TypeEntry.ResultTable[OpIndex];\r
-  unsigned Op0Reg = getRegForValue(I->getOperand(0));\r
-  if (Op0Reg == 0)\r
-    return false;\r
-  unsigned Op1Reg = getRegForValue(I->getOperand(1));\r
-  if (Op1Reg == 0)\r
-    return false;\r
-\r
-  // Move op0 into low-order input register.\r
-  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,\r
-          TII.get(OpEntry.OpCopy), TypeEntry.LowInReg).addReg(Op0Reg);\r
-  // Zero-extend or sign-extend into high-order input register.\r
-  if (OpEntry.OpSignExtend) {\r
-    if (OpEntry.IsOpSigned)\r
-      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,\r
-              TII.get(OpEntry.OpSignExtend));\r
-    else {\r
-      unsigned Zero32 = createResultReg(&X86::GR32RegClass);\r
-      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,\r
-              TII.get(X86::MOV32r0), Zero32);\r
-\r
-      // Copy the zero into the appropriate sub/super/identical physical\r
-      // register. Unfortunately the operations needed are not uniform enough\r
-      // to fit neatly into the table above.\r
-      if (VT.SimpleTy == MVT::i16) {\r
-        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,\r
-                TII.get(Copy), TypeEntry.HighInReg)\r
-          .addReg(Zero32, 0, X86::sub_16bit);\r
-      } else if (VT.SimpleTy == MVT::i32) {\r
-        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,\r
-                TII.get(Copy), TypeEntry.HighInReg)\r
-            .addReg(Zero32);\r
-      } else if (VT.SimpleTy == MVT::i64) {\r
-        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,\r
-                TII.get(TargetOpcode::SUBREG_TO_REG), TypeEntry.HighInReg)\r
-            .addImm(0).addReg(Zero32).addImm(X86::sub_32bit);\r
-      }\r
-    }\r
-  }\r
-  // Generate the DIV/IDIV instruction.\r
-  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,\r
-          TII.get(OpEntry.OpDivRem)).addReg(Op1Reg);\r
-  // For i8 remainder, we can't reference AH directly, as we'll end\r
-  // up with bogus copies like %R9B = COPY %AH. Reference AX\r
-  // instead to prevent AH references in a REX instruction.\r
-  //\r
-  // The current assumption of the fast register allocator is that isel\r
-  // won't generate explicit references to the GPR8_NOREX registers. If\r
-  // the allocator and/or the backend get enhanced to be more robust in\r
-  // that regard, this can be, and should be, removed.\r
-  unsigned ResultReg = 0;\r
-  if ((I->getOpcode() == Instruction::SRem ||\r
-       I->getOpcode() == Instruction::URem) &&\r
-      OpEntry.DivRemResultReg == X86::AH && Subtarget->is64Bit()) {\r
-    unsigned SourceSuperReg = createResultReg(&X86::GR16RegClass);\r
-    unsigned ResultSuperReg = createResultReg(&X86::GR16RegClass);\r
-    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,\r
-            TII.get(Copy), SourceSuperReg).addReg(X86::AX);\r
-\r
-    // Shift AX right by 8 bits instead of using AH.\r
-    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SHR16ri),\r
-            ResultSuperReg).addReg(SourceSuperReg).addImm(8);\r
-\r
-    // Now reference the 8-bit subreg of the result.\r
-    ResultReg = fastEmitInst_extractsubreg(MVT::i8, ResultSuperReg,\r
-                                           /*Kill=*/true, X86::sub_8bit);\r
-  }\r
-  // Copy the result out of the physreg if we haven't already.\r
-  if (!ResultReg) {\r
-    ResultReg = createResultReg(TypeEntry.RC);\r
-    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Copy), ResultReg)\r
-        .addReg(OpEntry.DivRemResultReg);\r
-  }\r
-  updateValueMap(I, ResultReg);\r
-\r
-  return true;\r
-}\r
-\r
-/// \brief Emit a conditional move instruction (if the are supported) to lower\r
-/// the select.\r
-bool X86FastISel::X86FastEmitCMoveSelect(MVT RetVT, const Instruction *I) {\r
-  // Check if the subtarget supports these instructions.\r
-  if (!Subtarget->hasCMov())\r
-    return false;\r
-\r
-  // FIXME: Add support for i8.\r
-  if (RetVT < MVT::i16 || RetVT > MVT::i64)\r
-    return false;\r
-\r
-  const Value *Cond = I->getOperand(0);\r
-  const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);\r
-  bool NeedTest = true;\r
-  X86::CondCode CC = X86::COND_NE;\r
-\r
-  // Optimize conditions coming from a compare if both instructions are in the\r
-  // same basic block (values defined in other basic blocks may not have\r
-  // initialized registers).\r
-  const auto *CI = dyn_cast<CmpInst>(Cond);\r
-  if (CI && (CI->getParent() == I->getParent())) {\r
-    CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);\r
-\r
-    // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction.\r
-    static unsigned SETFOpcTable[2][3] = {\r
-      { X86::SETNPr, X86::SETEr , X86::TEST8rr },\r
-      { X86::SETPr,  X86::SETNEr, X86::OR8rr   }\r
-    };\r
-    unsigned *SETFOpc = nullptr;\r
-    switch (Predicate) {\r
-    default: break;\r
-    case CmpInst::FCMP_OEQ:\r
-      SETFOpc = &SETFOpcTable[0][0];\r
-      Predicate = CmpInst::ICMP_NE;\r
-      break;\r
-    case CmpInst::FCMP_UNE:\r
-      SETFOpc = &SETFOpcTable[1][0];\r
-      Predicate = CmpInst::ICMP_NE;\r
-      break;\r
-    }\r
-\r
-    bool NeedSwap;\r
-    std::tie(CC, NeedSwap) = getX86ConditionCode(Predicate);\r
-    assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code.");\r
-\r
-    const Value *CmpLHS = CI->getOperand(0);\r
-    const Value *CmpRHS = CI->getOperand(1);\r
-    if (NeedSwap)\r
-      std::swap(CmpLHS, CmpRHS);\r
-\r
-    EVT CmpVT = TLI.getValueType(CmpLHS->getType());\r
-    // Emit a compare of the LHS and RHS, setting the flags.\r
-    if (!X86FastEmitCompare(CmpLHS, CmpRHS, CmpVT, CI->getDebugLoc()))\r
-      return false;\r
-\r
-    if (SETFOpc) {\r
-      unsigned FlagReg1 = createResultReg(&X86::GR8RegClass);\r
-      unsigned FlagReg2 = createResultReg(&X86::GR8RegClass);\r
-      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[0]),\r
-              FlagReg1);\r
-      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[1]),\r
-              FlagReg2);\r
-      auto const &II = TII.get(SETFOpc[2]);\r
-      if (II.getNumDefs()) {\r
-        unsigned TmpReg = createResultReg(&X86::GR8RegClass);\r
-        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, TmpReg)\r
-          .addReg(FlagReg2).addReg(FlagReg1);\r
-      } else {\r
-        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)\r
-          .addReg(FlagReg2).addReg(FlagReg1);\r
-      }\r
-    }\r
-    NeedTest = false;\r
-  } else if (foldX86XALUIntrinsic(CC, I, Cond)) {\r
-    // Fake request the condition, otherwise the intrinsic might be completely\r
-    // optimized away.\r
-    unsigned TmpReg = getRegForValue(Cond);\r
-    if (TmpReg == 0)\r
-      return false;\r
-\r
-    NeedTest = false;\r
-  }\r
-\r
-  if (NeedTest) {\r
-    // Selects operate on i1, however, CondReg is 8 bits width and may contain\r
-    // garbage. Indeed, only the less significant bit is supposed to be\r
-    // accurate. If we read more than the lsb, we may see non-zero values\r
-    // whereas lsb is zero. Therefore, we have to truncate Op0Reg to i1 for\r
-    // the select. This is achieved by performing TEST against 1.\r
-    unsigned CondReg = getRegForValue(Cond);\r
-    if (CondReg == 0)\r
-      return false;\r
-    bool CondIsKill = hasTrivialKill(Cond);\r
-\r
-    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri))\r
-      .addReg(CondReg, getKillRegState(CondIsKill)).addImm(1);\r
-  }\r
-\r
-  const Value *LHS = I->getOperand(1);\r
-  const Value *RHS = I->getOperand(2);\r
-\r
-  unsigned RHSReg = getRegForValue(RHS);\r
-  bool RHSIsKill = hasTrivialKill(RHS);\r
-\r
-  unsigned LHSReg = getRegForValue(LHS);\r
-  bool LHSIsKill = hasTrivialKill(LHS);\r
-\r
-  if (!LHSReg || !RHSReg)\r
-    return false;\r
-\r
-  unsigned Opc = X86::getCMovFromCond(CC, RC->getSize());\r
-  unsigned ResultReg = fastEmitInst_rr(Opc, RC, RHSReg, RHSIsKill,\r
-                                       LHSReg, LHSIsKill);\r
-  updateValueMap(I, ResultReg);\r
-  return true;\r
-}\r
-\r
-/// \brief Emit SSE instructions to lower the select.\r
-///\r
-/// Try to use SSE1/SSE2 instructions to simulate a select without branches.\r
-/// This lowers fp selects into a CMP/AND/ANDN/OR sequence when the necessary\r
-/// SSE instructions are available.\r
-bool X86FastISel::X86FastEmitSSESelect(MVT RetVT, const Instruction *I) {\r
-  // Optimize conditions coming from a compare if both instructions are in the\r
-  // same basic block (values defined in other basic blocks may not have\r
-  // initialized registers).\r
-  const auto *CI = dyn_cast<FCmpInst>(I->getOperand(0));\r
-  if (!CI || (CI->getParent() != I->getParent()))\r
-    return false;\r
-\r
-  if (I->getType() != CI->getOperand(0)->getType() ||\r
-      !((Subtarget->hasSSE1() && RetVT == MVT::f32) ||\r
-        (Subtarget->hasSSE2() && RetVT == MVT::f64)))\r
-    return false;\r
-\r
-  const Value *CmpLHS = CI->getOperand(0);\r
-  const Value *CmpRHS = CI->getOperand(1);\r
-  CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);\r
-\r
-  // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 0.0.\r
-  // We don't have to materialize a zero constant for this case and can just use\r
-  // %x again on the RHS.\r
-  if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) {\r
-    const auto *CmpRHSC = dyn_cast<ConstantFP>(CmpRHS);\r
-    if (CmpRHSC && CmpRHSC->isNullValue())\r
-      CmpRHS = CmpLHS;\r
-  }\r
-\r
-  unsigned CC;\r
-  bool NeedSwap;\r
-  std::tie(CC, NeedSwap) = getX86SSEConditionCode(Predicate);\r
-  if (CC > 7)\r
-    return false;\r
-\r
-  if (NeedSwap)\r
-    std::swap(CmpLHS, CmpRHS);\r
-\r
-  static unsigned OpcTable[2][2][4] = {\r
-    { { X86::CMPSSrr,  X86::FsANDPSrr,  X86::FsANDNPSrr,  X86::FsORPSrr  },\r
-      { X86::VCMPSSrr, X86::VFsANDPSrr, X86::VFsANDNPSrr, X86::VFsORPSrr }  },\r
-    { { X86::CMPSDrr,  X86::FsANDPDrr,  X86::FsANDNPDrr,  X86::FsORPDrr  },\r
-      { X86::VCMPSDrr, X86::VFsANDPDrr, X86::VFsANDNPDrr, X86::VFsORPDrr }  }\r
-  };\r
-\r
-  bool HasAVX = Subtarget->hasAVX();\r
-  unsigned *Opc = nullptr;\r
-  switch (RetVT.SimpleTy) {\r
-  default: return false;\r
-  case MVT::f32: Opc = &OpcTable[0][HasAVX][0]; break;\r
-  case MVT::f64: Opc = &OpcTable[1][HasAVX][0]; break;\r
-  }\r
-\r
-  const Value *LHS = I->getOperand(1);\r
-  const Value *RHS = I->getOperand(2);\r
-\r
-  unsigned LHSReg = getRegForValue(LHS);\r
-  bool LHSIsKill = hasTrivialKill(LHS);\r
-\r
-  unsigned RHSReg = getRegForValue(RHS);\r
-  bool RHSIsKill = hasTrivialKill(RHS);\r
-\r
-  unsigned CmpLHSReg = getRegForValue(CmpLHS);\r
-  bool CmpLHSIsKill = hasTrivialKill(CmpLHS);\r
-\r
-  unsigned CmpRHSReg = getRegForValue(CmpRHS);\r
-  bool CmpRHSIsKill = hasTrivialKill(CmpRHS);\r
-\r
-  if (!LHSReg || !RHSReg || !CmpLHS || !CmpRHS)\r
-    return false;\r
-\r
-  const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);\r
-  unsigned CmpReg = fastEmitInst_rri(Opc[0], RC, CmpLHSReg, CmpLHSIsKill,\r
-                                     CmpRHSReg, CmpRHSIsKill, CC);\r
-  unsigned AndReg = fastEmitInst_rr(Opc[1], RC, CmpReg, /*IsKill=*/false,\r
-                                    LHSReg, LHSIsKill);\r
-  unsigned AndNReg = fastEmitInst_rr(Opc[2], RC, CmpReg, /*IsKill=*/true,\r
-                                     RHSReg, RHSIsKill);\r
-  unsigned ResultReg = fastEmitInst_rr(Opc[3], RC, AndNReg, /*IsKill=*/true,\r
-                                       AndReg, /*IsKill=*/true);\r
-  updateValueMap(I, ResultReg);\r
-  return true;\r
-}\r
-\r
-bool X86FastISel::X86FastEmitPseudoSelect(MVT RetVT, const Instruction *I) {\r
-  // These are pseudo CMOV instructions and will be later expanded into control-\r
-  // flow.\r
-  unsigned Opc;\r
-  switch (RetVT.SimpleTy) {\r
-  default: return false;\r
-  case MVT::i8:  Opc = X86::CMOV_GR8;  break;\r
-  case MVT::i16: Opc = X86::CMOV_GR16; break;\r
-  case MVT::i32: Opc = X86::CMOV_GR32; break;\r
-  case MVT::f32: Opc = X86::CMOV_FR32; break;\r
-  case MVT::f64: Opc = X86::CMOV_FR64; break;\r
-  }\r
-\r
-  const Value *Cond = I->getOperand(0);\r
-  X86::CondCode CC = X86::COND_NE;\r
-\r
-  // Optimize conditions coming from a compare if both instructions are in the\r
-  // same basic block (values defined in other basic blocks may not have\r
-  // initialized registers).\r
-  const auto *CI = dyn_cast<CmpInst>(Cond);\r
-  if (CI && (CI->getParent() == I->getParent())) {\r
-    bool NeedSwap;\r
-    std::tie(CC, NeedSwap) = getX86ConditionCode(CI->getPredicate());\r
-    if (CC > X86::LAST_VALID_COND)\r
-      return false;\r
-\r
-    const Value *CmpLHS = CI->getOperand(0);\r
-    const Value *CmpRHS = CI->getOperand(1);\r
-\r
-    if (NeedSwap)\r
-      std::swap(CmpLHS, CmpRHS);\r
-\r
-    EVT CmpVT = TLI.getValueType(CmpLHS->getType());\r
-    if (!X86FastEmitCompare(CmpLHS, CmpRHS, CmpVT, CI->getDebugLoc()))\r
-      return false;\r
-  } else {\r
-    unsigned CondReg = getRegForValue(Cond);\r
-    if (CondReg == 0)\r
-      return false;\r
-    bool CondIsKill = hasTrivialKill(Cond);\r
-    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri))\r
-      .addReg(CondReg, getKillRegState(CondIsKill)).addImm(1);\r
-  }\r
-\r
-  const Value *LHS = I->getOperand(1);\r
-  const Value *RHS = I->getOperand(2);\r
-\r
-  unsigned LHSReg = getRegForValue(LHS);\r
-  bool LHSIsKill = hasTrivialKill(LHS);\r
-\r
-  unsigned RHSReg = getRegForValue(RHS);\r
-  bool RHSIsKill = hasTrivialKill(RHS);\r
-\r
-  if (!LHSReg || !RHSReg)\r
-    return false;\r
-\r
-  const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);\r
-\r
-  unsigned ResultReg =\r
-    fastEmitInst_rri(Opc, RC, RHSReg, RHSIsKill, LHSReg, LHSIsKill, CC);\r
-  updateValueMap(I, ResultReg);\r
-  return true;\r
-}\r
-\r
-bool X86FastISel::X86SelectSelect(const Instruction *I) {\r
-  MVT RetVT;\r
-  if (!isTypeLegal(I->getType(), RetVT))\r
-    return false;\r
-\r
-  // Check if we can fold the select.\r
-  if (const auto *CI = dyn_cast<CmpInst>(I->getOperand(0))) {\r
-    CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);\r
-    const Value *Opnd = nullptr;\r
-    switch (Predicate) {\r
-    default:                              break;\r
-    case CmpInst::FCMP_FALSE: Opnd = I->getOperand(2); break;\r
-    case CmpInst::FCMP_TRUE:  Opnd = I->getOperand(1); break;\r
-    }\r
-    // No need for a select anymore - this is an unconditional move.\r
-    if (Opnd) {\r
-      unsigned OpReg = getRegForValue(Opnd);\r
-      if (OpReg == 0)\r
-        return false;\r
-      bool OpIsKill = hasTrivialKill(Opnd);\r
-      const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);\r
-      unsigned ResultReg = createResultReg(RC);\r
-      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,\r
-              TII.get(TargetOpcode::COPY), ResultReg)\r
-        .addReg(OpReg, getKillRegState(OpIsKill));\r
-      updateValueMap(I, ResultReg);\r
-      return true;\r
-    }\r
-  }\r
-\r
-  // First try to use real conditional move instructions.\r
-  if (X86FastEmitCMoveSelect(RetVT, I))\r
-    return true;\r
-\r
-  // Try to use a sequence of SSE instructions to simulate a conditional move.\r
-  if (X86FastEmitSSESelect(RetVT, I))\r
-    return true;\r
-\r
-  // Fall-back to pseudo conditional move instructions, which will be later\r
-  // converted to control-flow.\r
-  if (X86FastEmitPseudoSelect(RetVT, I))\r
-    return true;\r
-\r
-  return false;\r
-}\r
-\r
-bool X86FastISel::X86SelectFPExt(const Instruction *I) {\r
-  // fpext from float to double.\r
-  if (X86ScalarSSEf64 &&\r
-      I->getType()->isDoubleTy()) {\r
-    const Value *V = I->getOperand(0);\r
-    if (V->getType()->isFloatTy()) {\r
-      unsigned OpReg = getRegForValue(V);\r
-      if (OpReg == 0) return false;\r
-      unsigned ResultReg = createResultReg(&X86::FR64RegClass);\r
-      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,\r
-              TII.get(X86::CVTSS2SDrr), ResultReg)\r
-        .addReg(OpReg);\r
-      updateValueMap(I, ResultReg);\r
-      return true;\r
-    }\r
-  }\r
-\r
-  return false;\r
-}\r
-\r
-bool X86FastISel::X86SelectFPTrunc(const Instruction *I) {\r
-  if (X86ScalarSSEf64) {\r
-    if (I->getType()->isFloatTy()) {\r
-      const Value *V = I->getOperand(0);\r
-      if (V->getType()->isDoubleTy()) {\r
-        unsigned OpReg = getRegForValue(V);\r
-        if (OpReg == 0) return false;\r
-        unsigned ResultReg = createResultReg(&X86::FR32RegClass);\r
-        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,\r
-                TII.get(X86::CVTSD2SSrr), ResultReg)\r
-          .addReg(OpReg);\r
-        updateValueMap(I, ResultReg);\r
-        return true;\r
-      }\r
-    }\r
-  }\r
-\r
-  return false;\r
-}\r
-\r
-bool X86FastISel::X86SelectTrunc(const Instruction *I) {\r
-  EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());\r
-  EVT DstVT = TLI.getValueType(I->getType());\r
-\r
-  // This code only handles truncation to byte.\r
-  if (DstVT != MVT::i8 && DstVT != MVT::i1)\r
-    return false;\r
-  if (!TLI.isTypeLegal(SrcVT))\r
-    return false;\r
-\r
-  unsigned InputReg = getRegForValue(I->getOperand(0));\r
-  if (!InputReg)\r
-    // Unhandled operand.  Halt "fast" selection and bail.\r
-    return false;\r
-\r
-  if (SrcVT == MVT::i8) {\r
-    // Truncate from i8 to i1; no code needed.\r
-    updateValueMap(I, InputReg);\r
-    return true;\r
-  }\r
-\r
-  if (!Subtarget->is64Bit()) {\r
-    // If we're on x86-32; we can't extract an i8 from a general register.\r
-    // First issue a copy to GR16_ABCD or GR32_ABCD.\r
-    const TargetRegisterClass *CopyRC =\r
-      (SrcVT == MVT::i16) ? &X86::GR16_ABCDRegClass : &X86::GR32_ABCDRegClass;\r
-    unsigned CopyReg = createResultReg(CopyRC);\r
-    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,\r
-            TII.get(TargetOpcode::COPY), CopyReg).addReg(InputReg);\r
-    InputReg = CopyReg;\r
-  }\r
-\r
-  // Issue an extract_subreg.\r
-  unsigned ResultReg = fastEmitInst_extractsubreg(MVT::i8,\r
-                                                  InputReg, /*Kill=*/true,\r
-                                                  X86::sub_8bit);\r
-  if (!ResultReg)\r
-    return false;\r
-\r
-  updateValueMap(I, ResultReg);\r
-  return true;\r
-}\r
-\r
-bool X86FastISel::IsMemcpySmall(uint64_t Len) {\r
-  return Len <= (Subtarget->is64Bit() ? 32 : 16);\r
-}\r
-\r
-bool X86FastISel::TryEmitSmallMemcpy(X86AddressMode DestAM,\r
-                                     X86AddressMode SrcAM, uint64_t Len) {\r
-\r
-  // Make sure we don't bloat code by inlining very large memcpy's.\r
-  if (!IsMemcpySmall(Len))\r
-    return false;\r
-\r
-  bool i64Legal = Subtarget->is64Bit();\r
-\r
-  // We don't care about alignment here since we just emit integer accesses.\r
-  while (Len) {\r
-    MVT VT;\r
-    if (Len >= 8 && i64Legal)\r
-      VT = MVT::i64;\r
-    else if (Len >= 4)\r
-      VT = MVT::i32;\r
-    else if (Len >= 2)\r
-      VT = MVT::i16;\r
-    else\r
-      VT = MVT::i8;\r
-\r
-    unsigned Reg;\r
-    bool RV = X86FastEmitLoad(VT, SrcAM, nullptr, Reg);\r
-    RV &= X86FastEmitStore(VT, Reg, /*Kill=*/true, DestAM);\r
-    assert(RV && "Failed to emit load or store??");\r
-\r
-    unsigned Size = VT.getSizeInBits()/8;\r
-    Len -= Size;\r
-    DestAM.Disp += Size;\r
-    SrcAM.Disp += Size;\r
-  }\r
-\r
-  return true;\r
-}\r
-\r
-bool X86FastISel::fastLowerIntrinsicCall(const IntrinsicInst *II) {\r
-  // FIXME: Handle more intrinsics.\r
-  switch (II->getIntrinsicID()) {\r
-  default: return false;\r
-  case Intrinsic::frameaddress: {\r
-    Type *RetTy = II->getCalledFunction()->getReturnType();\r
-\r
-    MVT VT;\r
-    if (!isTypeLegal(RetTy, VT))\r
-      return false;\r
-\r
-    unsigned Opc;\r
-    const TargetRegisterClass *RC = nullptr;\r
-\r
-    switch (VT.SimpleTy) {\r
-    default: llvm_unreachable("Invalid result type for frameaddress.");\r
-    case MVT::i32: Opc = X86::MOV32rm; RC = &X86::GR32RegClass; break;\r
-    case MVT::i64: Opc = X86::MOV64rm; RC = &X86::GR64RegClass; break;\r
-    }\r
-\r
-    // This needs to be set before we call getPtrSizedFrameRegister, otherwise\r
-    // we get the wrong frame register.\r
-    MachineFrameInfo *MFI = FuncInfo.MF->getFrameInfo();\r
-    MFI->setFrameAddressIsTaken(true);\r
-\r
-    const X86RegisterInfo *RegInfo = static_cast<const X86RegisterInfo *>(\r
-        TM.getSubtargetImpl()->getRegisterInfo());\r
-    unsigned FrameReg = RegInfo->getPtrSizedFrameRegister(*(FuncInfo.MF));\r
-    assert(((FrameReg == X86::RBP && VT == MVT::i64) ||\r
-            (FrameReg == X86::EBP && VT == MVT::i32)) &&\r
-           "Invalid Frame Register!");\r
-\r
-    // Always make a copy of the frame register to to a vreg first, so that we\r
-    // never directly reference the frame register (the TwoAddressInstruction-\r
-    // Pass doesn't like that).\r
-    unsigned SrcReg = createResultReg(RC);\r
-    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,\r
-            TII.get(TargetOpcode::COPY), SrcReg).addReg(FrameReg);\r
-\r
-    // Now recursively load from the frame address.\r
-    // movq (%rbp), %rax\r
-    // movq (%rax), %rax\r
-    // movq (%rax), %rax\r
-    // ...\r
-    unsigned DestReg;\r
-    unsigned Depth = cast<ConstantInt>(II->getOperand(0))->getZExtValue();\r
-    while (Depth--) {\r
-      DestReg = createResultReg(RC);\r
-      addDirectMem(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,\r
-                           TII.get(Opc), DestReg), SrcReg);\r
-      SrcReg = DestReg;\r
-    }\r
-\r
-    updateValueMap(II, SrcReg);\r
-    return true;\r
-  }\r
-  case Intrinsic::memcpy: {\r
-    const MemCpyInst *MCI = cast<MemCpyInst>(II);\r
-    // Don't handle volatile or variable length memcpys.\r
-    if (MCI->isVolatile())\r
-      return false;\r
-\r
-    if (isa<ConstantInt>(MCI->getLength())) {\r
-      // Small memcpy's are common enough that we want to do them\r
-      // without a call if possible.\r
-      uint64_t Len = cast<ConstantInt>(MCI->getLength())->getZExtValue();\r
-      if (IsMemcpySmall(Len)) {\r
-        X86AddressMode DestAM, SrcAM;\r
-        if (!X86SelectAddress(MCI->getRawDest(), DestAM) ||\r
-            !X86SelectAddress(MCI->getRawSource(), SrcAM))\r
-          return false;\r
-        TryEmitSmallMemcpy(DestAM, SrcAM, Len);\r
-        return true;\r
-      }\r
-    }\r
-\r
-    unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32;\r
-    if (!MCI->getLength()->getType()->isIntegerTy(SizeWidth))\r
-      return false;\r
-\r
-    if (MCI->getSourceAddressSpace() > 255 || MCI->getDestAddressSpace() > 255)\r
-      return false;\r
-\r
-    return lowerCallTo(II, "memcpy", II->getNumArgOperands() - 2);\r
-  }\r
-  case Intrinsic::memset: {\r
-    const MemSetInst *MSI = cast<MemSetInst>(II);\r
-\r
-    if (MSI->isVolatile())\r
-      return false;\r
-\r
-    unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32;\r
-    if (!MSI->getLength()->getType()->isIntegerTy(SizeWidth))\r
-      return false;\r
-\r
-    if (MSI->getDestAddressSpace() > 255)\r
-      return false;\r
-\r
-    return lowerCallTo(II, "memset", II->getNumArgOperands() - 2);\r
-  }\r
-  case Intrinsic::stackprotector: {\r
-    // Emit code to store the stack guard onto the stack.\r
-    EVT PtrTy = TLI.getPointerTy();\r
-\r
-    const Value *Op1 = II->getArgOperand(0); // The guard's value.\r
-    const AllocaInst *Slot = cast<AllocaInst>(II->getArgOperand(1));\r
-\r
-    MFI.setStackProtectorIndex(FuncInfo.StaticAllocaMap[Slot]);\r
-\r
-    // Grab the frame index.\r
-    X86AddressMode AM;\r
-    if (!X86SelectAddress(Slot, AM)) return false;\r
-    if (!X86FastEmitStore(PtrTy, Op1, AM)) return false;\r
-    return true;\r
-  }\r
-  case Intrinsic::dbg_declare: {\r
-    const DbgDeclareInst *DI = cast<DbgDeclareInst>(II);\r
-    X86AddressMode AM;\r
-    assert(DI->getAddress() && "Null address should be checked earlier!");\r
-    if (!X86SelectAddress(DI->getAddress(), AM))\r
-      return false;\r
-    const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);\r
-    // FIXME may need to add RegState::Debug to any registers produced,\r
-    // although ESP/EBP should be the only ones at the moment.\r
-    addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II), AM)\r
-        .addImm(0)\r
-        .addMetadata(DI->getVariable())\r
-        .addMetadata(DI->getExpression());\r
-    return true;\r
-  }\r
-  case Intrinsic::trap: {\r
-    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TRAP));\r
-    return true;\r
-  }\r
-  case Intrinsic::sqrt: {\r
-    if (!Subtarget->hasSSE1())\r
-      return false;\r
-\r
-    Type *RetTy = II->getCalledFunction()->getReturnType();\r
-\r
-    MVT VT;\r
-    if (!isTypeLegal(RetTy, VT))\r
-      return false;\r
-\r
-    // Unfortunately we can't use fastEmit_r, because the AVX version of FSQRT\r
-    // is not generated by FastISel yet.\r
-    // FIXME: Update this code once tablegen can handle it.\r
-    static const unsigned SqrtOpc[2][2] = {\r
-      {X86::SQRTSSr, X86::VSQRTSSr},\r
-      {X86::SQRTSDr, X86::VSQRTSDr}\r
-    };\r
-    bool HasAVX = Subtarget->hasAVX();\r
-    unsigned Opc;\r
-    const TargetRegisterClass *RC;\r
-    switch (VT.SimpleTy) {\r
-    default: return false;\r
-    case MVT::f32: Opc = SqrtOpc[0][HasAVX]; RC = &X86::FR32RegClass; break;\r
-    case MVT::f64: Opc = SqrtOpc[1][HasAVX]; RC = &X86::FR64RegClass; break;\r
-    }\r
-\r
-    const Value *SrcVal = II->getArgOperand(0);\r
-    unsigned SrcReg = getRegForValue(SrcVal);\r
-\r
-    if (SrcReg == 0)\r
-      return false;\r
-\r
-    unsigned ImplicitDefReg = 0;\r
-    if (HasAVX) {\r
-      ImplicitDefReg = createResultReg(RC);\r
-      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,\r
-              TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg);\r
-    }\r
-\r
-    unsigned ResultReg = createResultReg(RC);\r
-    MachineInstrBuilder MIB;\r
-    MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc),\r
-                  ResultReg);\r
-\r
-    if (ImplicitDefReg)\r
-      MIB.addReg(ImplicitDefReg);\r
-\r
-    MIB.addReg(SrcReg);\r
-\r
-    updateValueMap(II, ResultReg);\r
-    return true;\r
-  }\r
-  case Intrinsic::sadd_with_overflow:\r
-  case Intrinsic::uadd_with_overflow:\r
-  case Intrinsic::ssub_with_overflow:\r
-  case Intrinsic::usub_with_overflow:\r
-  case Intrinsic::smul_with_overflow:\r
-  case Intrinsic::umul_with_overflow: {\r
-    // This implements the basic lowering of the xalu with overflow intrinsics\r
-    // into add/sub/mul followed by either seto or setb.\r
-    const Function *Callee = II->getCalledFunction();\r
-    auto *Ty = cast<StructType>(Callee->getReturnType());\r
-    Type *RetTy = Ty->getTypeAtIndex(0U);\r
-    Type *CondTy = Ty->getTypeAtIndex(1);\r
-\r
-    MVT VT;\r
-    if (!isTypeLegal(RetTy, VT))\r
-      return false;\r
-\r
-    if (VT < MVT::i8 || VT > MVT::i64)\r
-      return false;\r
-\r
-    const Value *LHS = II->getArgOperand(0);\r
-    const Value *RHS = II->getArgOperand(1);\r
-\r
-    // Canonicalize immediate to the RHS.\r
-    if (isa<ConstantInt>(LHS) && !isa<ConstantInt>(RHS) &&\r
-        isCommutativeIntrinsic(II))\r
-      std::swap(LHS, RHS);\r
-\r
-    bool UseIncDec = false;\r
-    if (isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isOne())\r
-      UseIncDec = true;\r
-\r
-    unsigned BaseOpc, CondOpc;\r
-    switch (II->getIntrinsicID()) {\r
-    default: llvm_unreachable("Unexpected intrinsic!");\r
-    case Intrinsic::sadd_with_overflow:\r
-      BaseOpc = UseIncDec ? unsigned(X86ISD::INC) : unsigned(ISD::ADD);\r
-      CondOpc = X86::SETOr;\r
-      break;\r
-    case Intrinsic::uadd_with_overflow:\r
-      BaseOpc = ISD::ADD; CondOpc = X86::SETBr; break;\r
-    case Intrinsic::ssub_with_overflow:\r
-      BaseOpc = UseIncDec ? unsigned(X86ISD::DEC) : unsigned(ISD::SUB);\r
-      CondOpc = X86::SETOr;\r
-      break;\r
-    case Intrinsic::usub_with_overflow:\r
-      BaseOpc = ISD::SUB; CondOpc = X86::SETBr; break;\r
-    case Intrinsic::smul_with_overflow:\r
-      BaseOpc = X86ISD::SMUL; CondOpc = X86::SETOr; break;\r
-    case Intrinsic::umul_with_overflow:\r
-      BaseOpc = X86ISD::UMUL; CondOpc = X86::SETOr; break;\r
-    }\r
-\r
-    unsigned LHSReg = getRegForValue(LHS);\r
-    if (LHSReg == 0)\r
-      return false;\r
-    bool LHSIsKill = hasTrivialKill(LHS);\r
-\r
-    unsigned ResultReg = 0;\r
-    // Check if we have an immediate version.\r
-    if (const auto *CI = dyn_cast<ConstantInt>(RHS)) {\r
-      static const unsigned Opc[2][4] = {\r
-        { X86::INC8r, X86::INC16r, X86::INC32r, X86::INC64r },\r
-        { X86::DEC8r, X86::DEC16r, X86::DEC32r, X86::DEC64r }\r
-      };\r
-\r
-      if (BaseOpc == X86ISD::INC || BaseOpc == X86ISD::DEC) {\r
-        ResultReg = createResultReg(TLI.getRegClassFor(VT));\r
-        bool IsDec = BaseOpc == X86ISD::DEC;\r
-        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,\r
-                TII.get(Opc[IsDec][VT.SimpleTy-MVT::i8]), ResultReg)\r
-          .addReg(LHSReg, getKillRegState(LHSIsKill));\r
-      } else\r
-        ResultReg = fastEmit_ri(VT, VT, BaseOpc, LHSReg, LHSIsKill,\r
-                                CI->getZExtValue());\r
-    }\r
-\r
-    unsigned RHSReg;\r
-    bool RHSIsKill;\r
-    if (!ResultReg) {\r
-      RHSReg = getRegForValue(RHS);\r
-      if (RHSReg == 0)\r
-        return false;\r
-      RHSIsKill = hasTrivialKill(RHS);\r
-      ResultReg = fastEmit_rr(VT, VT, BaseOpc, LHSReg, LHSIsKill, RHSReg,\r
-                              RHSIsKill);\r
-    }\r
-\r
-    // FastISel doesn't have a pattern for all X86::MUL*r and X86::IMUL*r. Emit\r
-    // it manually.\r
-    if (BaseOpc == X86ISD::UMUL && !ResultReg) {\r
-      static const unsigned MULOpc[] =\r
-        { X86::MUL8r, X86::MUL16r, X86::MUL32r, X86::MUL64r };\r
-      static const unsigned Reg[] = { X86::AL, X86::AX, X86::EAX, X86::RAX };\r
-      // First copy the first operand into RAX, which is an implicit input to\r
-      // the X86::MUL*r instruction.\r
-      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,\r
-              TII.get(TargetOpcode::COPY), Reg[VT.SimpleTy-MVT::i8])\r
-        .addReg(LHSReg, getKillRegState(LHSIsKill));\r
-      ResultReg = fastEmitInst_r(MULOpc[VT.SimpleTy-MVT::i8],\r
-                                 TLI.getRegClassFor(VT), RHSReg, RHSIsKill);\r
-    } else if (BaseOpc == X86ISD::SMUL && !ResultReg) {\r
-      static const unsigned MULOpc[] =\r
-        { X86::IMUL8r, X86::IMUL16rr, X86::IMUL32rr, X86::IMUL64rr };\r
-      if (VT == MVT::i8) {\r
-        // Copy the first operand into AL, which is an implicit input to the\r
-        // X86::IMUL8r instruction.\r
-        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,\r
-               TII.get(TargetOpcode::COPY), X86::AL)\r
-          .addReg(LHSReg, getKillRegState(LHSIsKill));\r
-        ResultReg = fastEmitInst_r(MULOpc[0], TLI.getRegClassFor(VT), RHSReg,\r
-                                   RHSIsKill);\r
-      } else\r
-        ResultReg = fastEmitInst_rr(MULOpc[VT.SimpleTy-MVT::i8],\r
-                                    TLI.getRegClassFor(VT), LHSReg, LHSIsKill,\r
-                                    RHSReg, RHSIsKill);\r
-    }\r
-\r
-    if (!ResultReg)\r
-      return false;\r
-\r
-    unsigned ResultReg2 = FuncInfo.CreateRegs(CondTy);\r
-    assert((ResultReg+1) == ResultReg2 && "Nonconsecutive result registers.");\r
-    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CondOpc),\r
-            ResultReg2);\r
-\r
-    updateValueMap(II, ResultReg, 2);\r
-    return true;\r
-  }\r
-  case Intrinsic::x86_sse_cvttss2si:\r
-  case Intrinsic::x86_sse_cvttss2si64:\r
-  case Intrinsic::x86_sse2_cvttsd2si:\r
-  case Intrinsic::x86_sse2_cvttsd2si64: {\r
-    bool IsInputDouble;\r
-    switch (II->getIntrinsicID()) {\r
-    default: llvm_unreachable("Unexpected intrinsic.");\r
-    case Intrinsic::x86_sse_cvttss2si:\r
-    case Intrinsic::x86_sse_cvttss2si64:\r
-      if (!Subtarget->hasSSE1())\r
-        return false;\r
-      IsInputDouble = false;\r
-      break;\r
-    case Intrinsic::x86_sse2_cvttsd2si:\r
-    case Intrinsic::x86_sse2_cvttsd2si64:\r
-      if (!Subtarget->hasSSE2())\r
-        return false;\r
-      IsInputDouble = true;\r
-      break;\r
-    }\r
-\r
-    Type *RetTy = II->getCalledFunction()->getReturnType();\r
-    MVT VT;\r
-    if (!isTypeLegal(RetTy, VT))\r
-      return false;\r
-\r
-    static const unsigned CvtOpc[2][2][2] = {\r
-      { { X86::CVTTSS2SIrr,   X86::VCVTTSS2SIrr   },\r
-        { X86::CVTTSS2SI64rr, X86::VCVTTSS2SI64rr }  },\r
-      { { X86::CVTTSD2SIrr,   X86::VCVTTSD2SIrr   },\r
-        { X86::CVTTSD2SI64rr, X86::VCVTTSD2SI64rr }  }\r
-    };\r
-    bool HasAVX = Subtarget->hasAVX();\r
-    unsigned Opc;\r
-    switch (VT.SimpleTy) {\r
-    default: llvm_unreachable("Unexpected result type.");\r
-    case MVT::i32: Opc = CvtOpc[IsInputDouble][0][HasAVX]; break;\r
-    case MVT::i64: Opc = CvtOpc[IsInputDouble][1][HasAVX]; break;\r
-    }\r
-\r
-    // Check if we can fold insertelement instructions into the convert.\r
-    const Value *Op = II->getArgOperand(0);\r
-    while (auto *IE = dyn_cast<InsertElementInst>(Op)) {\r
-      const Value *Index = IE->getOperand(2);\r
-      if (!isa<ConstantInt>(Index))\r
-        break;\r
-      unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();\r
-\r
-      if (Idx == 0) {\r
-        Op = IE->getOperand(1);\r
-        break;\r
-      }\r
-      Op = IE->getOperand(0);\r
-    }\r
-\r
-    unsigned Reg = getRegForValue(Op);\r
-    if (Reg == 0)\r
-      return false;\r
-\r
-    unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));\r
-    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)\r
-      .addReg(Reg);\r
-\r
-    updateValueMap(II, ResultReg);\r
-    return true;\r
-  }\r
-  }\r
-}\r
-\r
-bool X86FastISel::fastLowerArguments() {\r
-  if (!FuncInfo.CanLowerReturn)\r
-    return false;\r
-\r
-  const Function *F = FuncInfo.Fn;\r
-  if (F->isVarArg())\r
-    return false;\r
-\r
-  CallingConv::ID CC = F->getCallingConv();\r
-  if (CC != CallingConv::C)\r
-    return false;\r
-\r
-  if (Subtarget->isCallingConvWin64(CC))\r
-    return false;\r
-\r
-  if (!Subtarget->is64Bit())\r
-    return false;\r
-\r
-  // Only handle simple cases. i.e. Up to 6 i32/i64 scalar arguments.\r
-  unsigned GPRCnt = 0;\r
-  unsigned FPRCnt = 0;\r
-  unsigned Idx = 0;\r
-  for (auto const &Arg : F->args()) {\r
-    // The first argument is at index 1.\r
-    ++Idx;\r
-    if (F->getAttributes().hasAttribute(Idx, Attribute::ByVal) ||\r
-        F->getAttributes().hasAttribute(Idx, Attribute::InReg) ||\r
-        F->getAttributes().hasAttribute(Idx, Attribute::StructRet) ||\r
-        F->getAttributes().hasAttribute(Idx, Attribute::Nest))\r
-      return false;\r
-\r
-    Type *ArgTy = Arg.getType();\r
-    if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy())\r
-      return false;\r
-\r
-    EVT ArgVT = TLI.getValueType(ArgTy);\r
-    if (!ArgVT.isSimple()) return false;\r
-    switch (ArgVT.getSimpleVT().SimpleTy) {\r
-    default: return false;\r
-    case MVT::i32:\r
-    case MVT::i64:\r
-      ++GPRCnt;\r
-      break;\r
-    case MVT::f32:\r
-    case MVT::f64:\r
-      if (!Subtarget->hasSSE1())\r
-        return false;\r
-      ++FPRCnt;\r
-      break;\r
-    }\r
-\r
-    if (GPRCnt > 6)\r
-      return false;\r
-\r
-    if (FPRCnt > 8)\r
-      return false;\r
-  }\r
-\r
-  static const MCPhysReg GPR32ArgRegs[] = {\r
-    X86::EDI, X86::ESI, X86::EDX, X86::ECX, X86::R8D, X86::R9D\r
-  };\r
-  static const MCPhysReg GPR64ArgRegs[] = {\r
-    X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8 , X86::R9\r
-  };\r
-  static const MCPhysReg XMMArgRegs[] = {\r
-    X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,\r
-    X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7\r
-  };\r
-\r
-  unsigned GPRIdx = 0;\r
-  unsigned FPRIdx = 0;\r
-  for (auto const &Arg : F->args()) {\r
-    MVT VT = TLI.getSimpleValueType(Arg.getType());\r
-    const TargetRegisterClass *RC = TLI.getRegClassFor(VT);\r
-    unsigned SrcReg;\r
-    switch (VT.SimpleTy) {\r
-    default: llvm_unreachable("Unexpected value type.");\r
-    case MVT::i32: SrcReg = GPR32ArgRegs[GPRIdx++]; break;\r
-    case MVT::i64: SrcReg = GPR64ArgRegs[GPRIdx++]; break;\r
-    case MVT::f32: // fall-through\r
-    case MVT::f64: SrcReg = XMMArgRegs[FPRIdx++]; break;\r
-    }\r
-    unsigned DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC);\r
-    // FIXME: Unfortunately it's necessary to emit a copy from the livein copy.\r
-    // Without this, EmitLiveInCopies may eliminate the livein if its only\r
-    // use is a bitcast (which isn't turned into an instruction).\r
-    unsigned ResultReg = createResultReg(RC);\r
-    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,\r
-            TII.get(TargetOpcode::COPY), ResultReg)\r
-      .addReg(DstReg, getKillRegState(true));\r
-    updateValueMap(&Arg, ResultReg);\r
-  }\r
-  return true;\r
-}\r
-\r
-static unsigned computeBytesPoppedByCallee(const X86Subtarget *Subtarget,\r
-                                           CallingConv::ID CC,\r
-                                           ImmutableCallSite *CS) {\r
-  if (Subtarget->is64Bit())\r
-    return 0;\r
-  if (Subtarget->getTargetTriple().isOSMSVCRT())\r
-    return 0;\r
-  if (CC == CallingConv::Fast || CC == CallingConv::GHC ||\r
-      CC == CallingConv::HiPE)\r
-    return 0;\r
-  if (CS && !CS->paramHasAttr(1, Attribute::StructRet))\r
-    return 0;\r
-  if (CS && CS->paramHasAttr(1, Attribute::InReg))\r
-    return 0;\r
-  return 4;\r
-}\r
-\r
-bool X86FastISel::fastLowerCall(CallLoweringInfo &CLI) {\r
-  auto &OutVals       = CLI.OutVals;\r
-  auto &OutFlags      = CLI.OutFlags;\r
-  auto &OutRegs       = CLI.OutRegs;\r
-  auto &Ins           = CLI.Ins;\r
-  auto &InRegs        = CLI.InRegs;\r
-  CallingConv::ID CC  = CLI.CallConv;\r
-  bool &IsTailCall    = CLI.IsTailCall;\r
-  bool IsVarArg       = CLI.IsVarArg;\r
-  const Value *Callee = CLI.Callee;\r
-  const char *SymName = CLI.SymName;\r
-\r
-  bool Is64Bit        = Subtarget->is64Bit();\r
-  bool IsWin64        = Subtarget->isCallingConvWin64(CC);\r
-\r
-  // Handle only C, fastcc, and webkit_js calling conventions for now.\r
-  switch (CC) {\r
-  default: return false;\r
-  case CallingConv::C:\r
-  case CallingConv::Fast:\r
-  case CallingConv::WebKit_JS:\r
-  case CallingConv::X86_FastCall:\r
-  case CallingConv::X86_64_Win64:\r
-  case CallingConv::X86_64_SysV:\r
-    break;\r
-  }\r
-\r
-  // Allow SelectionDAG isel to handle tail calls.\r
-  if (IsTailCall)\r
-    return false;\r
-\r
-  // fastcc with -tailcallopt is intended to provide a guaranteed\r
-  // tail call optimization. Fastisel doesn't know how to do that.\r
-  if (CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt)\r
-    return false;\r
-\r
-  // Don't know how to handle Win64 varargs yet.  Nothing special needed for\r
-  // x86-32. Special handling for x86-64 is implemented.\r
-  if (IsVarArg && IsWin64)\r
-    return false;\r
-\r
-  // Don't know about inalloca yet.\r
-  if (CLI.CS && CLI.CS->hasInAllocaArgument())\r
-    return false;\r
-\r
-  // Fast-isel doesn't know about callee-pop yet.\r
-  if (X86::isCalleePop(CC, Subtarget->is64Bit(), IsVarArg,\r
-                       TM.Options.GuaranteedTailCallOpt))\r
-    return false;\r
-\r
-  SmallVector<MVT, 16> OutVTs;\r
-  SmallVector<unsigned, 16> ArgRegs;\r
-\r
-  // If this is a constant i1/i8/i16 argument, promote to i32 to avoid an extra\r
-  // instruction. This is safe because it is common to all FastISel supported\r
-  // calling conventions on x86.\r
-  for (int i = 0, e = OutVals.size(); i != e; ++i) {\r
-    Value *&Val = OutVals[i];\r
-    ISD::ArgFlagsTy Flags = OutFlags[i];\r
-    if (auto *CI = dyn_cast<ConstantInt>(Val)) {\r
-      if (CI->getBitWidth() < 32) {\r
-        if (Flags.isSExt())\r
-          Val = ConstantExpr::getSExt(CI, Type::getInt32Ty(CI->getContext()));\r
-        else\r
-          Val = ConstantExpr::getZExt(CI, Type::getInt32Ty(CI->getContext()));\r
-      }\r
-    }\r
-\r
-    // Passing bools around ends up doing a trunc to i1 and passing it.\r
-    // Codegen this as an argument + "and 1".\r
-    MVT VT;\r
-    auto *TI = dyn_cast<TruncInst>(Val);\r
-    unsigned ResultReg;\r
-    if (TI && TI->getType()->isIntegerTy(1) && CLI.CS &&\r
-              (TI->getParent() == CLI.CS->getInstruction()->getParent()) &&\r
-              TI->hasOneUse()) {\r
-      Value *PrevVal = TI->getOperand(0);\r
-      ResultReg = getRegForValue(PrevVal);\r
-\r
-      if (!ResultReg)\r
-        return false;\r
-\r
-      if (!isTypeLegal(PrevVal->getType(), VT))\r
-        return false;\r
-\r
-      ResultReg =\r
-        fastEmit_ri(VT, VT, ISD::AND, ResultReg, hasTrivialKill(PrevVal), 1);\r
-    } else {\r
-      if (!isTypeLegal(Val->getType(), VT))\r
-        return false;\r
-      ResultReg = getRegForValue(Val);\r
-    }\r
-\r
-    if (!ResultReg)\r
-      return false;\r
-\r
-    ArgRegs.push_back(ResultReg);\r
-    OutVTs.push_back(VT);\r
-  }\r
-\r
-  // Analyze operands of the call, assigning locations to each operand.\r
-  SmallVector<CCValAssign, 16> ArgLocs;\r
-  CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, ArgLocs, CLI.RetTy->getContext());\r
-\r
-  // Allocate shadow area for Win64\r
-  if (IsWin64)\r
-    CCInfo.AllocateStack(32, 8);\r
-\r
-  CCInfo.AnalyzeCallOperands(OutVTs, OutFlags, CC_X86);\r
-\r
-  // Get a count of how many bytes are to be pushed on the stack.\r
-  unsigned NumBytes = CCInfo.getNextStackOffset();\r
-\r
-  // Issue CALLSEQ_START\r
-  unsigned AdjStackDown = TII.getCallFrameSetupOpcode();\r
-  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown))\r
-    .addImm(NumBytes).addImm(0);\r
-\r
-  // Walk the register/memloc assignments, inserting copies/loads.\r
-  const X86RegisterInfo *RegInfo = static_cast<const X86RegisterInfo *>(\r
-      TM.getSubtargetImpl()->getRegisterInfo());\r
-  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {\r
-    CCValAssign const &VA = ArgLocs[i];\r
-    const Value *ArgVal = OutVals[VA.getValNo()];\r
-    MVT ArgVT = OutVTs[VA.getValNo()];\r
-\r
-    if (ArgVT == MVT::x86mmx)\r
-      return false;\r
-\r
-    unsigned ArgReg = ArgRegs[VA.getValNo()];\r
-\r
-    // Promote the value if needed.\r
-    switch (VA.getLocInfo()) {\r
-    case CCValAssign::Full: break;\r
-    case CCValAssign::SExt: {\r
-      assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&\r
-             "Unexpected extend");\r
-      bool Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), ArgReg,\r
-                                       ArgVT, ArgReg);\r
-      assert(Emitted && "Failed to emit a sext!"); (void)Emitted;\r
-      ArgVT = VA.getLocVT();\r
-      break;\r
-    }\r
-    case CCValAssign::ZExt: {\r
-      assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&\r
-             "Unexpected extend");\r
-      bool Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), ArgReg,\r
-                                       ArgVT, ArgReg);\r
-      assert(Emitted && "Failed to emit a zext!"); (void)Emitted;\r
-      ArgVT = VA.getLocVT();\r
-      break;\r
-    }\r
-    case CCValAssign::AExt: {\r
-      assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&\r
-             "Unexpected extend");\r
-      bool Emitted = X86FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(), ArgReg,\r
-                                       ArgVT, ArgReg);\r
-      if (!Emitted)\r
-        Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), ArgReg,\r
-                                    ArgVT, ArgReg);\r
-      if (!Emitted)\r
-        Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), ArgReg,\r
-                                    ArgVT, ArgReg);\r
-\r
-      assert(Emitted && "Failed to emit a aext!"); (void)Emitted;\r
-      ArgVT = VA.getLocVT();\r
-      break;\r
-    }\r
-    case CCValAssign::BCvt: {\r
-      ArgReg = fastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, ArgReg,\r
-                          /*TODO: Kill=*/false);\r
-      assert(ArgReg && "Failed to emit a bitcast!");\r
-      ArgVT = VA.getLocVT();\r
-      break;\r
-    }\r
-    case CCValAssign::VExt:\r
-      // VExt has not been implemented, so this should be impossible to reach\r
-      // for now.  However, fallback to Selection DAG isel once implemented.\r
-      return false;\r
-    case CCValAssign::AExtUpper:\r
-    case CCValAssign::SExtUpper:\r
-    case CCValAssign::ZExtUpper:\r
-    case CCValAssign::FPExt:\r
-      llvm_unreachable("Unexpected loc info!");\r
-    case CCValAssign::Indirect:\r
-      // FIXME: Indirect doesn't need extending, but fast-isel doesn't fully\r
-      // support this.\r
-      return false;\r
-    }\r
-\r
-    if (VA.isRegLoc()) {\r
-      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,\r
-              TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(ArgReg);\r
-      OutRegs.push_back(VA.getLocReg());\r
-    } else {\r
-      assert(VA.isMemLoc());\r
-\r
-      // Don't emit stores for undef values.\r
-      if (isa<UndefValue>(ArgVal))\r
-        continue;\r
-\r
-      unsigned LocMemOffset = VA.getLocMemOffset();\r
-      X86AddressMode AM;\r
-      AM.Base.Reg = RegInfo->getStackRegister();\r
-      AM.Disp = LocMemOffset;\r
-      ISD::ArgFlagsTy Flags = OutFlags[VA.getValNo()];\r
-      unsigned Alignment = DL.getABITypeAlignment(ArgVal->getType());\r
-      MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(\r
-        MachinePointerInfo::getStack(LocMemOffset), MachineMemOperand::MOStore,\r
-        ArgVT.getStoreSize(), Alignment);\r
-      if (Flags.isByVal()) {\r
-        X86AddressMode SrcAM;\r
-        SrcAM.Base.Reg = ArgReg;\r
-        if (!TryEmitSmallMemcpy(AM, SrcAM, Flags.getByValSize()))\r
-          return false;\r
-      } else if (isa<ConstantInt>(ArgVal) || isa<ConstantPointerNull>(ArgVal)) {\r
-        // If this is a really simple value, emit this with the Value* version\r
-        // of X86FastEmitStore.  If it isn't simple, we don't want to do this,\r
-        // as it can cause us to reevaluate the argument.\r
-        if (!X86FastEmitStore(ArgVT, ArgVal, AM, MMO))\r
-          return false;\r
-      } else {\r
-        bool ValIsKill = hasTrivialKill(ArgVal);\r
-        if (!X86FastEmitStore(ArgVT, ArgReg, ValIsKill, AM, MMO))\r
-          return false;\r
-      }\r
-    }\r
-  }\r
-\r
-  // ELF / PIC requires GOT in the EBX register before function calls via PLT\r
-  // GOT pointer.\r
-  if (Subtarget->isPICStyleGOT()) {\r
-    unsigned Base = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);\r
-    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,\r
-            TII.get(TargetOpcode::COPY), X86::EBX).addReg(Base);\r
-  }\r
-\r
-  if (Is64Bit && IsVarArg && !IsWin64) {\r
-    // From AMD64 ABI document:\r
-    // For calls that may call functions that use varargs or stdargs\r
-    // (prototype-less calls or calls to functions containing ellipsis (...) in\r
-    // the declaration) %al is used as hidden argument to specify the number\r
-    // of SSE registers used. The contents of %al do not need to match exactly\r
-    // the number of registers, but must be an ubound on the number of SSE\r
-    // registers used and is in the range 0 - 8 inclusive.\r
-\r
-    // Count the number of XMM registers allocated.\r
-    static const MCPhysReg XMMArgRegs[] = {\r
-      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,\r
-      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7\r
-    };\r
-    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);\r
-    assert((Subtarget->hasSSE1() || !NumXMMRegs)\r
-           && "SSE registers cannot be used when SSE is disabled");\r
-    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV8ri),\r
-            X86::AL).addImm(NumXMMRegs);\r
-  }\r
-\r
-  // Materialize callee address in a register. FIXME: GV address can be\r
-  // handled with a CALLpcrel32 instead.\r
-  X86AddressMode CalleeAM;\r
-  if (!X86SelectCallAddress(Callee, CalleeAM))\r
-    return false;\r
-\r
-  unsigned CalleeOp = 0;\r
-  const GlobalValue *GV = nullptr;\r
-  if (CalleeAM.GV != nullptr) {\r
-    GV = CalleeAM.GV;\r
-  } else if (CalleeAM.Base.Reg != 0) {\r
-    CalleeOp = CalleeAM.Base.Reg;\r
-  } else\r
-    return false;\r
-\r
-  // Issue the call.\r
-  MachineInstrBuilder MIB;\r
-  if (CalleeOp) {\r
-    // Register-indirect call.\r
-    unsigned CallOpc = Is64Bit ? X86::CALL64r : X86::CALL32r;\r
-    MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CallOpc))\r
-      .addReg(CalleeOp);\r
-  } else {\r
-    // Direct call.\r
-    assert(GV && "Not a direct call");\r
-    unsigned CallOpc = Is64Bit ? X86::CALL64pcrel32 : X86::CALLpcrel32;\r
-\r
-    // See if we need any target-specific flags on the GV operand.\r
-    unsigned char OpFlags = 0;\r
-\r
-    // On ELF targets, in both X86-64 and X86-32 mode, direct calls to\r
-    // external symbols most go through the PLT in PIC mode.  If the symbol\r
-    // has hidden or protected visibility, or if it is static or local, then\r
-    // we don't need to use the PLT - we can directly call it.\r
-    if (Subtarget->isTargetELF() &&\r
-        TM.getRelocationModel() == Reloc::PIC_ &&\r
-        GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {\r
-      OpFlags = X86II::MO_PLT;\r
-    } else if (Subtarget->isPICStyleStubAny() &&\r
-               (GV->isDeclaration() || GV->isWeakForLinker()) &&\r
-               (!Subtarget->getTargetTriple().isMacOSX() ||\r
-                Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {\r
-      // PC-relative references to external symbols should go through $stub,\r
-      // unless we're building with the leopard linker or later, which\r
-      // automatically synthesizes these stubs.\r
-      OpFlags = X86II::MO_DARWIN_STUB;\r
-    }\r
-\r
-    MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CallOpc));\r
-    if (SymName)\r
-      MIB.addExternalSymbol(SymName, OpFlags);\r
-    else\r
-      MIB.addGlobalAddress(GV, 0, OpFlags);\r
-  }\r
-\r
-  // Add a register mask operand representing the call-preserved registers.\r
-  // Proper defs for return values will be added by setPhysRegsDeadExcept().\r
-  MIB.addRegMask(TRI.getCallPreservedMask(CC));\r
-\r
-  // Add an implicit use GOT pointer in EBX.\r
-  if (Subtarget->isPICStyleGOT())\r
-    MIB.addReg(X86::EBX, RegState::Implicit);\r
-\r
-  if (Is64Bit && IsVarArg && !IsWin64)\r
-    MIB.addReg(X86::AL, RegState::Implicit);\r
-\r
-  // Add implicit physical register uses to the call.\r
-  for (auto Reg : OutRegs)\r
-    MIB.addReg(Reg, RegState::Implicit);\r
-\r
-  // Issue CALLSEQ_END\r
-  unsigned NumBytesForCalleeToPop =\r
-    computeBytesPoppedByCallee(Subtarget, CC, CLI.CS);\r
-  unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();\r
-  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp))\r
-    .addImm(NumBytes).addImm(NumBytesForCalleeToPop);\r
-\r
-  // Now handle call return values.\r
-  SmallVector<CCValAssign, 16> RVLocs;\r
-  CCState CCRetInfo(CC, IsVarArg, *FuncInfo.MF, RVLocs,\r
-                    CLI.RetTy->getContext());\r
-  CCRetInfo.AnalyzeCallResult(Ins, RetCC_X86);\r
-\r
-  // Copy all of the result registers out of their specified physreg.\r
-  unsigned ResultReg = FuncInfo.CreateRegs(CLI.RetTy);\r
-  for (unsigned i = 0; i != RVLocs.size(); ++i) {\r
-    CCValAssign &VA = RVLocs[i];\r
-    EVT CopyVT = VA.getValVT();\r
-    unsigned CopyReg = ResultReg + i;\r
-\r
-    // If this is x86-64, and we disabled SSE, we can't return FP values\r
-    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&\r
-        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {\r
-      report_fatal_error("SSE register return with SSE disabled");\r
-    }\r
-\r
-    // If we prefer to use the value in xmm registers, copy it out as f80 and\r
-    // use a truncate to move it from fp stack reg to xmm reg.\r
-    if ((VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1) &&\r
-        isScalarFPTypeInSSEReg(VA.getValVT())) {\r
-      CopyVT = MVT::f80;\r
-      CopyReg = createResultReg(&X86::RFP80RegClass);\r
-    }\r
-\r
-    // Copy out the result.\r
-    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,\r
-            TII.get(TargetOpcode::COPY), CopyReg).addReg(VA.getLocReg());\r
-    InRegs.push_back(VA.getLocReg());\r
-\r
-    // Round the f80 to the right size, which also moves it to the appropriate\r
-    // xmm register. This is accomplished by storing the f80 value in memory\r
-    // and then loading it back.\r
-    if (CopyVT != VA.getValVT()) {\r
-      EVT ResVT = VA.getValVT();\r
-      unsigned Opc = ResVT == MVT::f32 ? X86::ST_Fp80m32 : X86::ST_Fp80m64;\r
-      unsigned MemSize = ResVT.getSizeInBits()/8;\r
-      int FI = MFI.CreateStackObject(MemSize, MemSize, false);\r
-      addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,\r
-                                TII.get(Opc)), FI)\r
-        .addReg(CopyReg);\r
-      Opc = ResVT == MVT::f32 ? X86::MOVSSrm : X86::MOVSDrm;\r
-      addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,\r
-                                TII.get(Opc), ResultReg + i), FI);\r
-    }\r
-  }\r
-\r
-  CLI.ResultReg = ResultReg;\r
-  CLI.NumResultRegs = RVLocs.size();\r
-  CLI.Call = MIB;\r
-\r
-  return true;\r
-}\r
-\r
-bool\r
-X86FastISel::fastSelectInstruction(const Instruction *I)  {\r
-  switch (I->getOpcode()) {\r
-  default: break;\r
-  case Instruction::Load:\r
-    return X86SelectLoad(I);\r
-  case Instruction::Store:\r
-    return X86SelectStore(I);\r
-  case Instruction::Ret:\r
-    return X86SelectRet(I);\r
-  case Instruction::ICmp:\r
-  case Instruction::FCmp:\r
-    return X86SelectCmp(I);\r
-  case Instruction::ZExt:\r
-    return X86SelectZExt(I);\r
-  case Instruction::Br:\r
-    return X86SelectBranch(I);\r
-  case Instruction::LShr:\r
-  case Instruction::AShr:\r
-  case Instruction::Shl:\r
-    return X86SelectShift(I);\r
-  case Instruction::SDiv:\r
-  case Instruction::UDiv:\r
-  case Instruction::SRem:\r
-  case Instruction::URem:\r
-    return X86SelectDivRem(I);\r
-  case Instruction::Select:\r
-    return X86SelectSelect(I);\r
-  case Instruction::Trunc:\r
-    return X86SelectTrunc(I);\r
-  case Instruction::FPExt:\r
-    return X86SelectFPExt(I);\r
-  case Instruction::FPTrunc:\r
-    return X86SelectFPTrunc(I);\r
-  case Instruction::IntToPtr: // Deliberate fall-through.\r
-  case Instruction::PtrToInt: {\r
-    EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());\r
-    EVT DstVT = TLI.getValueType(I->getType());\r
-    if (DstVT.bitsGT(SrcVT))\r
-      return X86SelectZExt(I);\r
-    if (DstVT.bitsLT(SrcVT))\r
-      return X86SelectTrunc(I);\r
-    unsigned Reg = getRegForValue(I->getOperand(0));\r
-    if (Reg == 0) return false;\r
-    updateValueMap(I, Reg);\r
-    return true;\r
-  }\r
-  }\r
-\r
-  return false;\r
-}\r
-\r
-unsigned X86FastISel::X86MaterializeInt(const ConstantInt *CI, MVT VT) {\r
-  if (VT > MVT::i64)\r
-    return 0;\r
-\r
-  uint64_t Imm = CI->getZExtValue();\r
-  if (Imm == 0) {\r
-    unsigned SrcReg = fastEmitInst_(X86::MOV32r0, &X86::GR32RegClass);\r
-    switch (VT.SimpleTy) {\r
-    default: llvm_unreachable("Unexpected value type");\r
-    case MVT::i1:\r
-    case MVT::i8:\r
-      return fastEmitInst_extractsubreg(MVT::i8, SrcReg, /*Kill=*/true,\r
-                                        X86::sub_8bit);\r
-    case MVT::i16:\r
-      return fastEmitInst_extractsubreg(MVT::i16, SrcReg, /*Kill=*/true,\r
-                                        X86::sub_16bit);\r
-    case MVT::i32:\r
-      return SrcReg;\r
-    case MVT::i64: {\r
-      unsigned ResultReg = createResultReg(&X86::GR64RegClass);\r
-      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,\r
-              TII.get(TargetOpcode::SUBREG_TO_REG), ResultReg)\r
-        .addImm(0).addReg(SrcReg).addImm(X86::sub_32bit);\r
-      return ResultReg;\r
-    }\r
-    }\r
-  }\r
-\r
-  unsigned Opc = 0;\r
-  switch (VT.SimpleTy) {\r
-  default: llvm_unreachable("Unexpected value type");\r
-  case MVT::i1:  VT = MVT::i8; // fall-through\r
-  case MVT::i8:  Opc = X86::MOV8ri;  break;\r
-  case MVT::i16: Opc = X86::MOV16ri; break;\r
-  case MVT::i32: Opc = X86::MOV32ri; break;\r
-  case MVT::i64: {\r
-    if (isUInt<32>(Imm))\r
-      Opc = X86::MOV32ri;\r
-    else if (isInt<32>(Imm))\r
-      Opc = X86::MOV64ri32;\r
-    else\r
-      Opc = X86::MOV64ri;\r
-    break;\r
-  }\r
-  }\r
-  if (VT == MVT::i64 && Opc == X86::MOV32ri) {\r
-    unsigned SrcReg = fastEmitInst_i(Opc, &X86::GR32RegClass, Imm);\r
-    unsigned ResultReg = createResultReg(&X86::GR64RegClass);\r
-    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,\r
-            TII.get(TargetOpcode::SUBREG_TO_REG), ResultReg)\r
-      .addImm(0).addReg(SrcReg).addImm(X86::sub_32bit);\r
-    return ResultReg;\r
-  }\r
-  return fastEmitInst_i(Opc, TLI.getRegClassFor(VT), Imm);\r
-}\r
-\r
-unsigned X86FastISel::X86MaterializeFP(const ConstantFP *CFP, MVT VT) {\r
-  if (CFP->isNullValue())\r
-    return fastMaterializeFloatZero(CFP);\r
-\r
-  // Can't handle alternate code models yet.\r
-  CodeModel::Model CM = TM.getCodeModel();\r
-  if (CM != CodeModel::Small && CM != CodeModel::Large)\r
-    return 0;\r
-\r
-  // Get opcode and regclass of the output for the given load instruction.\r
-  unsigned Opc = 0;\r
-  const TargetRegisterClass *RC = nullptr;\r
-  switch (VT.SimpleTy) {\r
-  default: return 0;\r
-  case MVT::f32:\r
-    if (X86ScalarSSEf32) {\r
-      Opc = Subtarget->hasAVX() ? X86::VMOVSSrm : X86::MOVSSrm;\r
-      RC  = &X86::FR32RegClass;\r
-    } else {\r
-      Opc = X86::LD_Fp32m;\r
-      RC  = &X86::RFP32RegClass;\r
-    }\r
-    break;\r
-  case MVT::f64:\r
-    if (X86ScalarSSEf64) {\r
-      Opc = Subtarget->hasAVX() ? X86::VMOVSDrm : X86::MOVSDrm;\r
-      RC  = &X86::FR64RegClass;\r
-    } else {\r
-      Opc = X86::LD_Fp64m;\r
-      RC  = &X86::RFP64RegClass;\r
-    }\r
-    break;\r
-  case MVT::f80:\r
-    // No f80 support yet.\r
-    return 0;\r
-  }\r
-\r
-  // MachineConstantPool wants an explicit alignment.\r
-  unsigned Align = DL.getPrefTypeAlignment(CFP->getType());\r
-  if (Align == 0) {\r
-    // Alignment of vector types. FIXME!\r
-    Align = DL.getTypeAllocSize(CFP->getType());\r
-  }\r
-\r
-  // x86-32 PIC requires a PIC base register for constant pools.\r
-  unsigned PICBase = 0;\r
-  unsigned char OpFlag = 0;\r
-  if (Subtarget->isPICStyleStubPIC()) { // Not dynamic-no-pic\r
-    OpFlag = X86II::MO_PIC_BASE_OFFSET;\r
-    PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);\r
-  } else if (Subtarget->isPICStyleGOT()) {\r
-    OpFlag = X86II::MO_GOTOFF;\r
-    PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);\r
-  } else if (Subtarget->isPICStyleRIPRel() &&\r
-             TM.getCodeModel() == CodeModel::Small) {\r
-    PICBase = X86::RIP;\r
-  }\r
-\r
-  // Create the load from the constant pool.\r
-  unsigned CPI = MCP.getConstantPoolIndex(CFP, Align);\r
-  unsigned ResultReg = createResultReg(RC);\r
-\r
-  if (CM == CodeModel::Large) {\r
-    unsigned AddrReg = createResultReg(&X86::GR64RegClass);\r
-    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV64ri),\r
-            AddrReg)\r
-      .addConstantPoolIndex(CPI, 0, OpFlag);\r
-    MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,\r
-                                      TII.get(Opc), ResultReg);\r
-    addDirectMem(MIB, AddrReg);\r
-    MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(\r
-        MachinePointerInfo::getConstantPool(), MachineMemOperand::MOLoad,\r
-        TM.getDataLayout()->getPointerSize(), Align);\r
-    MIB->addMemOperand(*FuncInfo.MF, MMO);\r
-    return ResultReg;\r
-  }\r
-\r
-  addConstantPoolReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,\r
-                                   TII.get(Opc), ResultReg),\r
-                           CPI, PICBase, OpFlag);\r
-  return ResultReg;\r
-}\r
-\r
-unsigned X86FastISel::X86MaterializeGV(const GlobalValue *GV, MVT VT) {\r
-  // Can't handle alternate code models yet.\r
-  if (TM.getCodeModel() != CodeModel::Small)\r
-    return 0;\r
-\r
-  // Materialize addresses with LEA/MOV instructions.\r
-  X86AddressMode AM;\r
-  if (X86SelectAddress(GV, AM)) {\r
-    // If the expression is just a basereg, then we're done, otherwise we need\r
-    // to emit an LEA.\r
-    if (AM.BaseType == X86AddressMode::RegBase &&\r
-        AM.IndexReg == 0 && AM.Disp == 0 && AM.GV == nullptr)\r
-      return AM.Base.Reg;\r
-\r
-    unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));\r
-    if (TM.getRelocationModel() == Reloc::Static &&\r
-        TLI.getPointerTy() == MVT::i64) {\r
-      // The displacement code could be more than 32 bits away so we need to use\r
-      // an instruction with a 64 bit immediate\r
-      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV64ri),\r
-              ResultReg)\r
-        .addGlobalAddress(GV);\r
-    } else {\r
-      unsigned Opc = TLI.getPointerTy() == MVT::i32\r
-                     ? (Subtarget->isTarget64BitILP32()\r
-                        ? X86::LEA64_32r : X86::LEA32r)\r
-                     : X86::LEA64r;\r
-      addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,\r
-                             TII.get(Opc), ResultReg), AM);\r
-    }\r
-    return ResultReg;\r
-  }\r
-  return 0;\r
-}\r
-\r
-unsigned X86FastISel::fastMaterializeConstant(const Constant *C) {\r
-  EVT CEVT = TLI.getValueType(C->getType(), true);\r
-\r
-  // Only handle simple types.\r
-  if (!CEVT.isSimple())\r
-    return 0;\r
-  MVT VT = CEVT.getSimpleVT();\r
-\r
-  if (const auto *CI = dyn_cast<ConstantInt>(C))\r
-    return X86MaterializeInt(CI, VT);\r
-  else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))\r
-    return X86MaterializeFP(CFP, VT);\r
-  else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))\r
-    return X86MaterializeGV(GV, VT);\r
-\r
-  return 0;\r
-}\r
-\r
-unsigned X86FastISel::fastMaterializeAlloca(const AllocaInst *C) {\r
-  // Fail on dynamic allocas. At this point, getRegForValue has already\r
-  // checked its CSE maps, so if we're here trying to handle a dynamic\r
-  // alloca, we're not going to succeed. X86SelectAddress has a\r
-  // check for dynamic allocas, because it's called directly from\r
-  // various places, but targetMaterializeAlloca also needs a check\r
-  // in order to avoid recursion between getRegForValue,\r
-  // X86SelectAddrss, and targetMaterializeAlloca.\r
-  if (!FuncInfo.StaticAllocaMap.count(C))\r
-    return 0;\r
-  assert(C->isStaticAlloca() && "dynamic alloca in the static alloca map?");\r
-\r
-  X86AddressMode AM;\r
-  if (!X86SelectAddress(C, AM))\r
-    return 0;\r
-  unsigned Opc = TLI.getPointerTy() == MVT::i32\r
-                 ? (Subtarget->isTarget64BitILP32()\r
-                    ? X86::LEA64_32r : X86::LEA32r)\r
-                 : X86::LEA64r;\r
-  const TargetRegisterClass* RC = TLI.getRegClassFor(TLI.getPointerTy());\r
-  unsigned ResultReg = createResultReg(RC);\r
-  addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,\r
-                         TII.get(Opc), ResultReg), AM);\r
-  return ResultReg;\r
-}\r
-\r
-unsigned X86FastISel::fastMaterializeFloatZero(const ConstantFP *CF) {\r
-  MVT VT;\r
-  if (!isTypeLegal(CF->getType(), VT))\r
-    return 0;\r
-\r
-  // Get opcode and regclass for the given zero.\r
-  unsigned Opc = 0;\r
-  const TargetRegisterClass *RC = nullptr;\r
-  switch (VT.SimpleTy) {\r
-  default: return 0;\r
-  case MVT::f32:\r
-    if (X86ScalarSSEf32) {\r
-      Opc = X86::FsFLD0SS;\r
-      RC  = &X86::FR32RegClass;\r
-    } else {\r
-      Opc = X86::LD_Fp032;\r
-      RC  = &X86::RFP32RegClass;\r
-    }\r
-    break;\r
-  case MVT::f64:\r
-    if (X86ScalarSSEf64) {\r
-      Opc = X86::FsFLD0SD;\r
-      RC  = &X86::FR64RegClass;\r
-    } else {\r
-      Opc = X86::LD_Fp064;\r
-      RC  = &X86::RFP64RegClass;\r
-    }\r
-    break;\r
-  case MVT::f80:\r
-    // No f80 support yet.\r
-    return 0;\r
-  }\r
-\r
-  unsigned ResultReg = createResultReg(RC);\r
-  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg);\r
-  return ResultReg;\r
-}\r
-\r
-\r
-bool X86FastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,\r
-                                      const LoadInst *LI) {\r
-  const Value *Ptr = LI->getPointerOperand();\r
-  X86AddressMode AM;\r
-  if (!X86SelectAddress(Ptr, AM))\r
-    return false;\r
-\r
-  const X86InstrInfo &XII = (const X86InstrInfo &)TII;\r
-\r
-  unsigned Size = DL.getTypeAllocSize(LI->getType());\r
-  unsigned Alignment = LI->getAlignment();\r
-\r
-  if (Alignment == 0)  // Ensure that codegen never sees alignment 0\r
-    Alignment = DL.getABITypeAlignment(LI->getType());\r
-\r
-  SmallVector<MachineOperand, 8> AddrOps;\r
-  AM.getFullAddress(AddrOps);\r
-\r
-  MachineInstr *Result =\r
-    XII.foldMemoryOperandImpl(*FuncInfo.MF, MI, OpNo, AddrOps,\r
-                              Size, Alignment, /*AllowCommute=*/true);\r
-  if (!Result)\r
-    return false;\r
-\r
-  Result->addMemOperand(*FuncInfo.MF, createMachineMemOperandFor(LI));\r
-  FuncInfo.MBB->insert(FuncInfo.InsertPt, Result);\r
-  MI->eraseFromParent();\r
-  return true;\r
-}\r
-\r
-\r
-namespace llvm {\r
-  FastISel *X86::createFastISel(FunctionLoweringInfo &funcInfo,\r
-                                const TargetLibraryInfo *libInfo) {\r
-    return new X86FastISel(funcInfo, libInfo);\r
-  }\r
-}\r
+//===-- X86FastISel.cpp - X86 FastISel implementation ---------------------===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the X86-specific support for the FastISel class. Much
+// of the target-specific code is generated by tablegen in the file
+// X86GenFastISel.inc, which is #included here.
+//
+//===----------------------------------------------------------------------===//
+
+#include "X86.h"
+#include "X86CallingConv.h"
+#include "X86InstrBuilder.h"
+#include "X86InstrInfo.h"
+#include "X86MachineFunctionInfo.h"
+#include "X86RegisterInfo.h"
+#include "X86Subtarget.h"
+#include "X86TargetMachine.h"
+#include "llvm/Analysis/BranchProbabilityInfo.h"
+#include "llvm/CodeGen/Analysis.h"
+#include "llvm/CodeGen/FastISel.h"
+#include "llvm/CodeGen/FunctionLoweringInfo.h"
+#include "llvm/CodeGen/MachineConstantPool.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/IR/CallSite.h"
+#include "llvm/IR/CallingConv.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/GetElementPtrTypeIterator.h"
+#include "llvm/IR/GlobalAlias.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Operator.h"
+#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/MC/MCSymbol.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Target/TargetOptions.h"
+using namespace llvm;
+
+namespace {
+
+class X86FastISel final : public FastISel {
+  /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
+  /// make the right decision when generating code for different targets.
+  const X86Subtarget *Subtarget;
+
+  /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87
+  /// floating point ops.
+  /// When SSE is available, use it for f32 operations.
+  /// When SSE2 is available, use it for f64 operations.
+  bool X86ScalarSSEf64;
+  bool X86ScalarSSEf32;
+
+public:
+  explicit X86FastISel(FunctionLoweringInfo &funcInfo,
+                       const TargetLibraryInfo *libInfo)
+      : FastISel(funcInfo, libInfo) {
+    Subtarget = &funcInfo.MF->getSubtarget<X86Subtarget>();
+    X86ScalarSSEf64 = Subtarget->hasSSE2();
+    X86ScalarSSEf32 = Subtarget->hasSSE1();
+  }
+
+  bool fastSelectInstruction(const Instruction *I) override;
+
+  /// \brief The specified machine instr operand is a vreg, and that
+  /// vreg is being provided by the specified load instruction.  If possible,
+  /// try to fold the load as an operand to the instruction, returning true if
+  /// possible.
+  bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
+                           const LoadInst *LI) override;
+
+  bool fastLowerArguments() override;
+  bool fastLowerCall(CallLoweringInfo &CLI) override;
+  bool fastLowerIntrinsicCall(const IntrinsicInst *II) override;
+
+#include "X86GenFastISel.inc"
+
+private:
+  bool X86FastEmitCompare(const Value *LHS, const Value *RHS, EVT VT, DebugLoc DL);
+
+  bool X86FastEmitLoad(EVT VT, X86AddressMode &AM, MachineMemOperand *MMO,
+                       unsigned &ResultReg, unsigned Alignment = 1);
+
+  bool X86FastEmitStore(EVT VT, const Value *Val, X86AddressMode &AM,
+                        MachineMemOperand *MMO = nullptr, bool Aligned = false);
+  bool X86FastEmitStore(EVT VT, unsigned ValReg, bool ValIsKill,
+                        X86AddressMode &AM,
+                        MachineMemOperand *MMO = nullptr, bool Aligned = false);
+
+  bool X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src, EVT SrcVT,
+                         unsigned &ResultReg);
+
+  bool X86SelectAddress(const Value *V, X86AddressMode &AM);
+  bool X86SelectCallAddress(const Value *V, X86AddressMode &AM);
+
+  bool X86SelectLoad(const Instruction *I);
+
+  bool X86SelectStore(const Instruction *I);
+
+  bool X86SelectRet(const Instruction *I);
+
+  bool X86SelectCmp(const Instruction *I);
+
+  bool X86SelectZExt(const Instruction *I);
+
+  bool X86SelectBranch(const Instruction *I);
+
+  bool X86SelectShift(const Instruction *I);
+
+  bool X86SelectDivRem(const Instruction *I);
+
+  bool X86FastEmitCMoveSelect(MVT RetVT, const Instruction *I);
+
+  bool X86FastEmitSSESelect(MVT RetVT, const Instruction *I);
+
+  bool X86FastEmitPseudoSelect(MVT RetVT, const Instruction *I);
+
+  bool X86SelectSelect(const Instruction *I);
+
+  bool X86SelectTrunc(const Instruction *I);
+
+  bool X86SelectFPExtOrFPTrunc(const Instruction *I, unsigned Opc,
+                               const TargetRegisterClass *RC);
+
+  bool X86SelectFPExt(const Instruction *I);
+  bool X86SelectFPTrunc(const Instruction *I);
+  bool X86SelectSIToFP(const Instruction *I);
+
+  const X86InstrInfo *getInstrInfo() const {
+    return Subtarget->getInstrInfo();
+  }
+  const X86TargetMachine *getTargetMachine() const {
+    return static_cast<const X86TargetMachine *>(&TM);
+  }
+
+  bool handleConstantAddresses(const Value *V, X86AddressMode &AM);
+
+  unsigned X86MaterializeInt(const ConstantInt *CI, MVT VT);
+  unsigned X86MaterializeFP(const ConstantFP *CFP, MVT VT);
+  unsigned X86MaterializeGV(const GlobalValue *GV, MVT VT);
+  unsigned fastMaterializeConstant(const Constant *C) override;
+
+  unsigned fastMaterializeAlloca(const AllocaInst *C) override;
+
+  unsigned fastMaterializeFloatZero(const ConstantFP *CF) override;
+
+  /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is
+  /// computed in an SSE register, not on the X87 floating point stack.
+  bool isScalarFPTypeInSSEReg(EVT VT) const {
+    return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2
+      (VT == MVT::f32 && X86ScalarSSEf32);   // f32 is when SSE1
+  }
+
+  bool isTypeLegal(Type *Ty, MVT &VT, bool AllowI1 = false);
+
+  bool IsMemcpySmall(uint64_t Len);
+
+  bool TryEmitSmallMemcpy(X86AddressMode DestAM,
+                          X86AddressMode SrcAM, uint64_t Len);
+
+  bool foldX86XALUIntrinsic(X86::CondCode &CC, const Instruction *I,
+                            const Value *Cond);
+
+  const MachineInstrBuilder &addFullAddress(const MachineInstrBuilder &MIB,
+                                            X86AddressMode &AM);
+};
+
+} // end anonymous namespace.
+
+static std::pair<X86::CondCode, bool>
+getX86ConditionCode(CmpInst::Predicate Predicate) {
+  X86::CondCode CC = X86::COND_INVALID;
+  bool NeedSwap = false;
+  switch (Predicate) {
+  default: break;
+  // Floating-point Predicates
+  case CmpInst::FCMP_UEQ: CC = X86::COND_E;       break;
+  case CmpInst::FCMP_OLT: NeedSwap = true; // fall-through
+  case CmpInst::FCMP_OGT: CC = X86::COND_A;       break;
+  case CmpInst::FCMP_OLE: NeedSwap = true; // fall-through
+  case CmpInst::FCMP_OGE: CC = X86::COND_AE;      break;
+  case CmpInst::FCMP_UGT: NeedSwap = true; // fall-through
+  case CmpInst::FCMP_ULT: CC = X86::COND_B;       break;
+  case CmpInst::FCMP_UGE: NeedSwap = true; // fall-through
+  case CmpInst::FCMP_ULE: CC = X86::COND_BE;      break;
+  case CmpInst::FCMP_ONE: CC = X86::COND_NE;      break;
+  case CmpInst::FCMP_UNO: CC = X86::COND_P;       break;
+  case CmpInst::FCMP_ORD: CC = X86::COND_NP;      break;
+  case CmpInst::FCMP_OEQ: // fall-through
+  case CmpInst::FCMP_UNE: CC = X86::COND_INVALID; break;
+
+  // Integer Predicates
+  case CmpInst::ICMP_EQ:  CC = X86::COND_E;       break;
+  case CmpInst::ICMP_NE:  CC = X86::COND_NE;      break;
+  case CmpInst::ICMP_UGT: CC = X86::COND_A;       break;
+  case CmpInst::ICMP_UGE: CC = X86::COND_AE;      break;
+  case CmpInst::ICMP_ULT: CC = X86::COND_B;       break;
+  case CmpInst::ICMP_ULE: CC = X86::COND_BE;      break;
+  case CmpInst::ICMP_SGT: CC = X86::COND_G;       break;
+  case CmpInst::ICMP_SGE: CC = X86::COND_GE;      break;
+  case CmpInst::ICMP_SLT: CC = X86::COND_L;       break;
+  case CmpInst::ICMP_SLE: CC = X86::COND_LE;      break;
+  }
+
+  return std::make_pair(CC, NeedSwap);
+}
+
+static std::pair<unsigned, bool>
+getX86SSEConditionCode(CmpInst::Predicate Predicate) {
+  unsigned CC;
+  bool NeedSwap = false;
+
+  // SSE Condition code mapping:
+  //  0 - EQ
+  //  1 - LT
+  //  2 - LE
+  //  3 - UNORD
+  //  4 - NEQ
+  //  5 - NLT
+  //  6 - NLE
+  //  7 - ORD
+  switch (Predicate) {
+  default: llvm_unreachable("Unexpected predicate");
+  case CmpInst::FCMP_OEQ: CC = 0;          break;
+  case CmpInst::FCMP_OGT: NeedSwap = true; // fall-through
+  case CmpInst::FCMP_OLT: CC = 1;          break;
+  case CmpInst::FCMP_OGE: NeedSwap = true; // fall-through
+  case CmpInst::FCMP_OLE: CC = 2;          break;
+  case CmpInst::FCMP_UNO: CC = 3;          break;
+  case CmpInst::FCMP_UNE: CC = 4;          break;
+  case CmpInst::FCMP_ULE: NeedSwap = true; // fall-through
+  case CmpInst::FCMP_UGE: CC = 5;          break;
+  case CmpInst::FCMP_ULT: NeedSwap = true; // fall-through
+  case CmpInst::FCMP_UGT: CC = 6;          break;
+  case CmpInst::FCMP_ORD: CC = 7;          break;
+  case CmpInst::FCMP_UEQ:
+  case CmpInst::FCMP_ONE: CC = 8;          break;
+  }
+
+  return std::make_pair(CC, NeedSwap);
+}
+
+/// \brief Adds a complex addressing mode to the given machine instr builder.
+/// Note, this will constrain the index register.  If its not possible to
+/// constrain the given index register, then a new one will be created.  The
+/// IndexReg field of the addressing mode will be updated to match in this case.
+const MachineInstrBuilder &
+X86FastISel::addFullAddress(const MachineInstrBuilder &MIB,
+                            X86AddressMode &AM) {
+  // First constrain the index register.  It needs to be a GR64_NOSP.
+  AM.IndexReg = constrainOperandRegClass(MIB->getDesc(), AM.IndexReg,
+                                         MIB->getNumOperands() +
+                                         X86::AddrIndexReg);
+  return ::addFullAddress(MIB, AM);
+}
+
+/// \brief Check if it is possible to fold the condition from the XALU intrinsic
+/// into the user. The condition code will only be updated on success.
+bool X86FastISel::foldX86XALUIntrinsic(X86::CondCode &CC, const Instruction *I,
+                                       const Value *Cond) {
+  if (!isa<ExtractValueInst>(Cond))
+    return false;
+
+  const auto *EV = cast<ExtractValueInst>(Cond);
+  if (!isa<IntrinsicInst>(EV->getAggregateOperand()))
+    return false;
+
+  const auto *II = cast<IntrinsicInst>(EV->getAggregateOperand());
+  MVT RetVT;
+  const Function *Callee = II->getCalledFunction();
+  Type *RetTy =
+    cast<StructType>(Callee->getReturnType())->getTypeAtIndex(0U);
+  if (!isTypeLegal(RetTy, RetVT))
+    return false;
+
+  if (RetVT != MVT::i32 && RetVT != MVT::i64)
+    return false;
+
+  X86::CondCode TmpCC;
+  switch (II->getIntrinsicID()) {
+  default: return false;
+  case Intrinsic::sadd_with_overflow:
+  case Intrinsic::ssub_with_overflow:
+  case Intrinsic::smul_with_overflow:
+  case Intrinsic::umul_with_overflow: TmpCC = X86::COND_O; break;
+  case Intrinsic::uadd_with_overflow:
+  case Intrinsic::usub_with_overflow: TmpCC = X86::COND_B; break;
+  }
+
+  // Check if both instructions are in the same basic block.
+  if (II->getParent() != I->getParent())
+    return false;
+
+  // Make sure nothing is in the way
+  BasicBlock::const_iterator Start = I;
+  BasicBlock::const_iterator End = II;
+  for (auto Itr = std::prev(Start); Itr != End; --Itr) {
+    // We only expect extractvalue instructions between the intrinsic and the
+    // instruction to be selected.
+    if (!isa<ExtractValueInst>(Itr))
+      return false;
+
+    // Check that the extractvalue operand comes from the intrinsic.
+    const auto *EVI = cast<ExtractValueInst>(Itr);
+    if (EVI->getAggregateOperand() != II)
+      return false;
+  }
+
+  CC = TmpCC;
+  return true;
+}
+
+bool X86FastISel::isTypeLegal(Type *Ty, MVT &VT, bool AllowI1) {
+  EVT evt = TLI.getValueType(DL, Ty, /*HandleUnknown=*/true);
+  if (evt == MVT::Other || !evt.isSimple())
+    // Unhandled type. Halt "fast" selection and bail.
+    return false;
+
+  VT = evt.getSimpleVT();
+  // For now, require SSE/SSE2 for performing floating-point operations,
+  // since x87 requires additional work.
+  if (VT == MVT::f64 && !X86ScalarSSEf64)
+    return false;
+  if (VT == MVT::f32 && !X86ScalarSSEf32)
+    return false;
+  // Similarly, no f80 support yet.
+  if (VT == MVT::f80)
+    return false;
+  // We only handle legal types. For example, on x86-32 the instruction
+  // selector contains all of the 64-bit instructions from x86-64,
+  // under the assumption that i64 won't be used if the target doesn't
+  // support it.
+  return (AllowI1 && VT == MVT::i1) || TLI.isTypeLegal(VT);
+}
+
+#include "X86GenCallingConv.inc"
+
+/// X86FastEmitLoad - Emit a machine instruction to load a value of type VT.
+/// The address is either pre-computed, i.e. Ptr, or a GlobalAddress, i.e. GV.
+/// Return true and the result register by reference if it is possible.
+bool X86FastISel::X86FastEmitLoad(EVT VT, X86AddressMode &AM,
+                                  MachineMemOperand *MMO, unsigned &ResultReg,
+                                  unsigned Alignment) {
+  // Get opcode and regclass of the output for the given load instruction.
+  unsigned Opc = 0;
+  const TargetRegisterClass *RC = nullptr;
+  switch (VT.getSimpleVT().SimpleTy) {
+  default: return false;
+  case MVT::i1:
+  case MVT::i8:
+    Opc = X86::MOV8rm;
+    RC  = &X86::GR8RegClass;
+    break;
+  case MVT::i16:
+    Opc = X86::MOV16rm;
+    RC  = &X86::GR16RegClass;
+    break;
+  case MVT::i32:
+    Opc = X86::MOV32rm;
+    RC  = &X86::GR32RegClass;
+    break;
+  case MVT::i64:
+    // Must be in x86-64 mode.
+    Opc = X86::MOV64rm;
+    RC  = &X86::GR64RegClass;
+    break;
+  case MVT::f32:
+    if (X86ScalarSSEf32) {
+      Opc = Subtarget->hasAVX() ? X86::VMOVSSrm : X86::MOVSSrm;
+      RC  = &X86::FR32RegClass;
+    } else {
+      Opc = X86::LD_Fp32m;
+      RC  = &X86::RFP32RegClass;
+    }
+    break;
+  case MVT::f64:
+    if (X86ScalarSSEf64) {
+      Opc = Subtarget->hasAVX() ? X86::VMOVSDrm : X86::MOVSDrm;
+      RC  = &X86::FR64RegClass;
+    } else {
+      Opc = X86::LD_Fp64m;
+      RC  = &X86::RFP64RegClass;
+    }
+    break;
+  case MVT::f80:
+    // No f80 support yet.
+    return false;
+  case MVT::v4f32:
+    if (Alignment >= 16)
+      Opc = Subtarget->hasAVX() ? X86::VMOVAPSrm : X86::MOVAPSrm;
+    else
+      Opc = Subtarget->hasAVX() ? X86::VMOVUPSrm : X86::MOVUPSrm;
+    RC  = &X86::VR128RegClass;
+    break;
+  case MVT::v2f64:
+    if (Alignment >= 16)
+      Opc = Subtarget->hasAVX() ? X86::VMOVAPDrm : X86::MOVAPDrm;
+    else
+      Opc = Subtarget->hasAVX() ? X86::VMOVUPDrm : X86::MOVUPDrm;
+    RC  = &X86::VR128RegClass;
+    break;
+  case MVT::v4i32:
+  case MVT::v2i64:
+  case MVT::v8i16:
+  case MVT::v16i8:
+    if (Alignment >= 16)
+      Opc = Subtarget->hasAVX() ? X86::VMOVDQArm : X86::MOVDQArm;
+    else
+      Opc = Subtarget->hasAVX() ? X86::VMOVDQUrm : X86::MOVDQUrm;
+    RC  = &X86::VR128RegClass;
+    break;
+  }
+
+  ResultReg = createResultReg(RC);
+  MachineInstrBuilder MIB =
+    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg);
+  addFullAddress(MIB, AM);
+  if (MMO)
+    MIB->addMemOperand(*FuncInfo.MF, MMO);
+  return true;
+}
+
+/// X86FastEmitStore - Emit a machine instruction to store a value Val of
+/// type VT. The address is either pre-computed, consisted of a base ptr, Ptr
+/// and a displacement offset, or a GlobalAddress,
+/// i.e. V. Return true if it is possible.
+bool X86FastISel::X86FastEmitStore(EVT VT, unsigned ValReg, bool ValIsKill,
+                                   X86AddressMode &AM,
+                                   MachineMemOperand *MMO, bool Aligned) {
+  // Get opcode and regclass of the output for the given store instruction.
+  unsigned Opc = 0;
+  switch (VT.getSimpleVT().SimpleTy) {
+  case MVT::f80: // No f80 support yet.
+  default: return false;
+  case MVT::i1: {
+    // Mask out all but lowest bit.
+    unsigned AndResult = createResultReg(&X86::GR8RegClass);
+    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+            TII.get(X86::AND8ri), AndResult)
+      .addReg(ValReg, getKillRegState(ValIsKill)).addImm(1);
+    ValReg = AndResult;
+  }
+  // FALLTHROUGH, handling i1 as i8.
+  case MVT::i8:  Opc = X86::MOV8mr;  break;
+  case MVT::i16: Opc = X86::MOV16mr; break;
+  case MVT::i32: Opc = X86::MOV32mr; break;
+  case MVT::i64: Opc = X86::MOV64mr; break; // Must be in x86-64 mode.
+  case MVT::f32:
+    Opc = X86ScalarSSEf32 ?
+          (Subtarget->hasAVX() ? X86::VMOVSSmr : X86::MOVSSmr) : X86::ST_Fp32m;
+    break;
+  case MVT::f64:
+    Opc = X86ScalarSSEf64 ?
+          (Subtarget->hasAVX() ? X86::VMOVSDmr : X86::MOVSDmr) : X86::ST_Fp64m;
+    break;
+  case MVT::v4f32:
+    if (Aligned)
+      Opc = Subtarget->hasAVX() ? X86::VMOVAPSmr : X86::MOVAPSmr;
+    else
+      Opc = Subtarget->hasAVX() ? X86::VMOVUPSmr : X86::MOVUPSmr;
+    break;
+  case MVT::v2f64:
+    if (Aligned)
+      Opc = Subtarget->hasAVX() ? X86::VMOVAPDmr : X86::MOVAPDmr;
+    else
+      Opc = Subtarget->hasAVX() ? X86::VMOVUPDmr : X86::MOVUPDmr;
+    break;
+  case MVT::v4i32:
+  case MVT::v2i64:
+  case MVT::v8i16:
+  case MVT::v16i8:
+    if (Aligned)
+      Opc = Subtarget->hasAVX() ? X86::VMOVDQAmr : X86::MOVDQAmr;
+    else
+      Opc = Subtarget->hasAVX() ? X86::VMOVDQUmr : X86::MOVDQUmr;
+    break;
+  }
+
+  MachineInstrBuilder MIB =
+    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc));
+  addFullAddress(MIB, AM).addReg(ValReg, getKillRegState(ValIsKill));
+  if (MMO)
+    MIB->addMemOperand(*FuncInfo.MF, MMO);
+
+  return true;
+}
+
+bool X86FastISel::X86FastEmitStore(EVT VT, const Value *Val,
+                                   X86AddressMode &AM,
+                                   MachineMemOperand *MMO, bool Aligned) {
+  // Handle 'null' like i32/i64 0.
+  if (isa<ConstantPointerNull>(Val))
+    Val = Constant::getNullValue(DL.getIntPtrType(Val->getContext()));
+
+  // If this is a store of a simple constant, fold the constant into the store.
+  if (const ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
+    unsigned Opc = 0;
+    bool Signed = true;
+    switch (VT.getSimpleVT().SimpleTy) {
+    default: break;
+    case MVT::i1:  Signed = false;     // FALLTHROUGH to handle as i8.
+    case MVT::i8:  Opc = X86::MOV8mi;  break;
+    case MVT::i16: Opc = X86::MOV16mi; break;
+    case MVT::i32: Opc = X86::MOV32mi; break;
+    case MVT::i64:
+      // Must be a 32-bit sign extended value.
+      if (isInt<32>(CI->getSExtValue()))
+        Opc = X86::MOV64mi32;
+      break;
+    }
+
+    if (Opc) {
+      MachineInstrBuilder MIB =
+        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc));
+      addFullAddress(MIB, AM).addImm(Signed ? (uint64_t) CI->getSExtValue()
+                                            : CI->getZExtValue());
+      if (MMO)
+        MIB->addMemOperand(*FuncInfo.MF, MMO);
+      return true;
+    }
+  }
+
+  unsigned ValReg = getRegForValue(Val);
+  if (ValReg == 0)
+    return false;
+
+  bool ValKill = hasTrivialKill(Val);
+  return X86FastEmitStore(VT, ValReg, ValKill, AM, MMO, Aligned);
+}
+
+/// X86FastEmitExtend - Emit a machine instruction to extend a value Src of
+/// type SrcVT to type DstVT using the specified extension opcode Opc (e.g.
+/// ISD::SIGN_EXTEND).
+bool X86FastISel::X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT,
+                                    unsigned Src, EVT SrcVT,
+                                    unsigned &ResultReg) {
+  unsigned RR = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc,
+                           Src, /*TODO: Kill=*/false);
+  if (RR == 0)
+    return false;
+
+  ResultReg = RR;
+  return true;
+}
+
+bool X86FastISel::handleConstantAddresses(const Value *V, X86AddressMode &AM) {
+  // Handle constant address.
+  if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
+    // Can't handle alternate code models yet.
+    if (TM.getCodeModel() != CodeModel::Small)
+      return false;
+
+    // Can't handle TLS yet.
+    if (GV->isThreadLocal())
+      return false;
+
+    // RIP-relative addresses can't have additional register operands, so if
+    // we've already folded stuff into the addressing mode, just force the
+    // global value into its own register, which we can use as the basereg.
+    if (!Subtarget->isPICStyleRIPRel() ||
+        (AM.Base.Reg == 0 && AM.IndexReg == 0)) {
+      // Okay, we've committed to selecting this global. Set up the address.
+      AM.GV = GV;
+
+      // Allow the subtarget to classify the global.
+      unsigned char GVFlags = Subtarget->ClassifyGlobalReference(GV, TM);
+
+      // If this reference is relative to the pic base, set it now.
+      if (isGlobalRelativeToPICBase(GVFlags)) {
+        // FIXME: How do we know Base.Reg is free??
+        AM.Base.Reg = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
+      }
+
+      // Unless the ABI requires an extra load, return a direct reference to
+      // the global.
+      if (!isGlobalStubReference(GVFlags)) {
+        if (Subtarget->isPICStyleRIPRel()) {
+          // Use rip-relative addressing if we can.  Above we verified that the
+          // base and index registers are unused.
+          assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
+          AM.Base.Reg = X86::RIP;
+        }
+        AM.GVOpFlags = GVFlags;
+        return true;
+      }
+
+      // Ok, we need to do a load from a stub.  If we've already loaded from
+      // this stub, reuse the loaded pointer, otherwise emit the load now.
+      DenseMap<const Value *, unsigned>::iterator I = LocalValueMap.find(V);
+      unsigned LoadReg;
+      if (I != LocalValueMap.end() && I->second != 0) {
+        LoadReg = I->second;
+      } else {
+        // Issue load from stub.
+        unsigned Opc = 0;
+        const TargetRegisterClass *RC = nullptr;
+        X86AddressMode StubAM;
+        StubAM.Base.Reg = AM.Base.Reg;
+        StubAM.GV = GV;
+        StubAM.GVOpFlags = GVFlags;
+
+        // Prepare for inserting code in the local-value area.
+        SavePoint SaveInsertPt = enterLocalValueArea();
+
+        if (TLI.getPointerTy(DL) == MVT::i64) {
+          Opc = X86::MOV64rm;
+          RC  = &X86::GR64RegClass;
+
+          if (Subtarget->isPICStyleRIPRel())
+            StubAM.Base.Reg = X86::RIP;
+        } else {
+          Opc = X86::MOV32rm;
+          RC  = &X86::GR32RegClass;
+        }
+
+        LoadReg = createResultReg(RC);
+        MachineInstrBuilder LoadMI =
+          BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), LoadReg);
+        addFullAddress(LoadMI, StubAM);
+
+        // Ok, back to normal mode.
+        leaveLocalValueArea(SaveInsertPt);
+
+        // Prevent loading GV stub multiple times in same MBB.
+        LocalValueMap[V] = LoadReg;
+      }
+
+      // Now construct the final address. Note that the Disp, Scale,
+      // and Index values may already be set here.
+      AM.Base.Reg = LoadReg;
+      AM.GV = nullptr;
+      return true;
+    }
+  }
+
+  // If all else fails, try to materialize the value in a register.
+  if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
+    if (AM.Base.Reg == 0) {
+      AM.Base.Reg = getRegForValue(V);
+      return AM.Base.Reg != 0;
+    }
+    if (AM.IndexReg == 0) {
+      assert(AM.Scale == 1 && "Scale with no index!");
+      AM.IndexReg = getRegForValue(V);
+      return AM.IndexReg != 0;
+    }
+  }
+
+  return false;
+}
+
+/// X86SelectAddress - Attempt to fill in an address from the given value.
+///
+bool X86FastISel::X86SelectAddress(const Value *V, X86AddressMode &AM) {
+  SmallVector<const Value *, 32> GEPs;
+redo_gep:
+  const User *U = nullptr;
+  unsigned Opcode = Instruction::UserOp1;
+  if (const Instruction *I = dyn_cast<Instruction>(V)) {
+    // Don't walk into other basic blocks; it's possible we haven't
+    // visited them yet, so the instructions may not yet be assigned
+    // virtual registers.
+    if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(V)) ||
+        FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
+      Opcode = I->getOpcode();
+      U = I;
+    }
+  } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
+    Opcode = C->getOpcode();
+    U = C;
+  }
+
+  if (PointerType *Ty = dyn_cast<PointerType>(V->getType()))
+    if (Ty->getAddressSpace() > 255)
+      // Fast instruction selection doesn't support the special
+      // address spaces.
+      return false;
+
+  switch (Opcode) {
+  default: break;
+  case Instruction::BitCast:
+    // Look past bitcasts.
+    return X86SelectAddress(U->getOperand(0), AM);
+
+  case Instruction::IntToPtr:
+    // Look past no-op inttoptrs.
+    if (TLI.getValueType(DL, U->getOperand(0)->getType()) ==
+        TLI.getPointerTy(DL))
+      return X86SelectAddress(U->getOperand(0), AM);
+    break;
+
+  case Instruction::PtrToInt:
+    // Look past no-op ptrtoints.
+    if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
+      return X86SelectAddress(U->getOperand(0), AM);
+    break;
+
+  case Instruction::Alloca: {
+    // Do static allocas.
+    const AllocaInst *A = cast<AllocaInst>(V);
+    DenseMap<const AllocaInst *, int>::iterator SI =
+      FuncInfo.StaticAllocaMap.find(A);
+    if (SI != FuncInfo.StaticAllocaMap.end()) {
+      AM.BaseType = X86AddressMode::FrameIndexBase;
+      AM.Base.FrameIndex = SI->second;
+      return true;
+    }
+    break;
+  }
+
+  case Instruction::Add: {
+    // Adds of constants are common and easy enough.
+    if (const ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
+      uint64_t Disp = (int32_t)AM.Disp + (uint64_t)CI->getSExtValue();
+      // They have to fit in the 32-bit signed displacement field though.
+      if (isInt<32>(Disp)) {
+        AM.Disp = (uint32_t)Disp;
+        return X86SelectAddress(U->getOperand(0), AM);
+      }
+    }
+    break;
+  }
+
+  case Instruction::GetElementPtr: {
+    X86AddressMode SavedAM = AM;
+
+    // Pattern-match simple GEPs.
+    uint64_t Disp = (int32_t)AM.Disp;
+    unsigned IndexReg = AM.IndexReg;
+    unsigned Scale = AM.Scale;
+    gep_type_iterator GTI = gep_type_begin(U);
+    // Iterate through the indices, folding what we can. Constants can be
+    // folded, and one dynamic index can be handled, if the scale is supported.
+    for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end();
+         i != e; ++i, ++GTI) {
+      const Value *Op = *i;
+      if (StructType *STy = dyn_cast<StructType>(*GTI)) {
+        const StructLayout *SL = DL.getStructLayout(STy);
+        Disp += SL->getElementOffset(cast<ConstantInt>(Op)->getZExtValue());
+        continue;
+      }
+
+      // A array/variable index is always of the form i*S where S is the
+      // constant scale size.  See if we can push the scale into immediates.
+      uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType());
+      for (;;) {
+        if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
+          // Constant-offset addressing.
+          Disp += CI->getSExtValue() * S;
+          break;
+        }
+        if (canFoldAddIntoGEP(U, Op)) {
+          // A compatible add with a constant operand. Fold the constant.
+          ConstantInt *CI =
+            cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
+          Disp += CI->getSExtValue() * S;
+          // Iterate on the other operand.
+          Op = cast<AddOperator>(Op)->getOperand(0);
+          continue;
+        }
+        if (IndexReg == 0 &&
+            (!AM.GV || !Subtarget->isPICStyleRIPRel()) &&
+            (S == 1 || S == 2 || S == 4 || S == 8)) {
+          // Scaled-index addressing.
+          Scale = S;
+          IndexReg = getRegForGEPIndex(Op).first;
+          if (IndexReg == 0)
+            return false;
+          break;
+        }
+        // Unsupported.
+        goto unsupported_gep;
+      }
+    }
+
+    // Check for displacement overflow.
+    if (!isInt<32>(Disp))
+      break;
+
+    AM.IndexReg = IndexReg;
+    AM.Scale = Scale;
+    AM.Disp = (uint32_t)Disp;
+    GEPs.push_back(V);
+
+    if (const GetElementPtrInst *GEP =
+          dyn_cast<GetElementPtrInst>(U->getOperand(0))) {
+      // Ok, the GEP indices were covered by constant-offset and scaled-index
+      // addressing. Update the address state and move on to examining the base.
+      V = GEP;
+      goto redo_gep;
+    } else if (X86SelectAddress(U->getOperand(0), AM)) {
+      return true;
+    }
+
+    // If we couldn't merge the gep value into this addr mode, revert back to
+    // our address and just match the value instead of completely failing.
+    AM = SavedAM;
+
+    for (SmallVectorImpl<const Value *>::reverse_iterator
+           I = GEPs.rbegin(), E = GEPs.rend(); I != E; ++I)
+      if (handleConstantAddresses(*I, AM))
+        return true;
+
+    return false;
+  unsupported_gep:
+    // Ok, the GEP indices weren't all covered.
+    break;
+  }
+  }
+
+  return handleConstantAddresses(V, AM);
+}
+
+/// X86SelectCallAddress - Attempt to fill in an address from the given value.
+///
+bool X86FastISel::X86SelectCallAddress(const Value *V, X86AddressMode &AM) {
+  const User *U = nullptr;
+  unsigned Opcode = Instruction::UserOp1;
+  const Instruction *I = dyn_cast<Instruction>(V);
+  // Record if the value is defined in the same basic block.
+  //
+  // This information is crucial to know whether or not folding an
+  // operand is valid.
+  // Indeed, FastISel generates or reuses a virtual register for all
+  // operands of all instructions it selects. Obviously, the definition and
+  // its uses must use the same virtual register otherwise the produced
+  // code is incorrect.
+  // Before instruction selection, FunctionLoweringInfo::set sets the virtual
+  // registers for values that are alive across basic blocks. This ensures
+  // that the values are consistently set between across basic block, even
+  // if different instruction selection mechanisms are used (e.g., a mix of
+  // SDISel and FastISel).
+  // For values local to a basic block, the instruction selection process
+  // generates these virtual registers with whatever method is appropriate
+  // for its needs. In particular, FastISel and SDISel do not share the way
+  // local virtual registers are set.
+  // Therefore, this is impossible (or at least unsafe) to share values
+  // between basic blocks unless they use the same instruction selection
+  // method, which is not guarantee for X86.
+  // Moreover, things like hasOneUse could not be used accurately, if we
+  // allow to reference values across basic blocks whereas they are not
+  // alive across basic blocks initially.
+  bool InMBB = true;
+  if (I) {
+    Opcode = I->getOpcode();
+    U = I;
+    InMBB = I->getParent() == FuncInfo.MBB->getBasicBlock();
+  } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
+    Opcode = C->getOpcode();
+    U = C;
+  }
+
+  switch (Opcode) {
+  default: break;
+  case Instruction::BitCast:
+    // Look past bitcasts if its operand is in the same BB.
+    if (InMBB)
+      return X86SelectCallAddress(U->getOperand(0), AM);
+    break;
+
+  case Instruction::IntToPtr:
+    // Look past no-op inttoptrs if its operand is in the same BB.
+    if (InMBB &&
+        TLI.getValueType(DL, U->getOperand(0)->getType()) ==
+            TLI.getPointerTy(DL))
+      return X86SelectCallAddress(U->getOperand(0), AM);
+    break;
+
+  case Instruction::PtrToInt:
+    // Look past no-op ptrtoints if its operand is in the same BB.
+    if (InMBB && TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
+      return X86SelectCallAddress(U->getOperand(0), AM);
+    break;
+  }
+
+  // Handle constant address.
+  if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
+    // Can't handle alternate code models yet.
+    if (TM.getCodeModel() != CodeModel::Small)
+      return false;
+
+    // RIP-relative addresses can't have additional register operands.
+    if (Subtarget->isPICStyleRIPRel() &&
+        (AM.Base.Reg != 0 || AM.IndexReg != 0))
+      return false;
+
+    // Can't handle DLL Import.
+    if (GV->hasDLLImportStorageClass())
+      return false;
+
+    // Can't handle TLS.
+    if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
+      if (GVar->isThreadLocal())
+        return false;
+
+    // Okay, we've committed to selecting this global. Set up the basic address.
+    AM.GV = GV;
+
+    // No ABI requires an extra load for anything other than DLLImport, which
+    // we rejected above. Return a direct reference to the global.
+    if (Subtarget->isPICStyleRIPRel()) {
+      // Use rip-relative addressing if we can.  Above we verified that the
+      // base and index registers are unused.
+      assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
+      AM.Base.Reg = X86::RIP;
+    } else if (Subtarget->isPICStyleStubPIC()) {
+      AM.GVOpFlags = X86II::MO_PIC_BASE_OFFSET;
+    } else if (Subtarget->isPICStyleGOT()) {
+      AM.GVOpFlags = X86II::MO_GOTOFF;
+    }
+
+    return true;
+  }
+
+  // If all else fails, try to materialize the value in a register.
+  if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
+    if (AM.Base.Reg == 0) {
+      AM.Base.Reg = getRegForValue(V);
+      return AM.Base.Reg != 0;
+    }
+    if (AM.IndexReg == 0) {
+      assert(AM.Scale == 1 && "Scale with no index!");
+      AM.IndexReg = getRegForValue(V);
+      return AM.IndexReg != 0;
+    }
+  }
+
+  return false;
+}
+
+
+/// X86SelectStore - Select and emit code to implement store instructions.
+bool X86FastISel::X86SelectStore(const Instruction *I) {
+  // Atomic stores need special handling.
+  const StoreInst *S = cast<StoreInst>(I);
+
+  if (S->isAtomic())
+    return false;
+
+  const Value *Val = S->getValueOperand();
+  const Value *Ptr = S->getPointerOperand();
+
+  MVT VT;
+  if (!isTypeLegal(Val->getType(), VT, /*AllowI1=*/true))
+    return false;
+
+  unsigned Alignment = S->getAlignment();
+  unsigned ABIAlignment = DL.getABITypeAlignment(Val->getType());
+  if (Alignment == 0) // Ensure that codegen never sees alignment 0
+    Alignment = ABIAlignment;
+  bool Aligned = Alignment >= ABIAlignment;
+
+  X86AddressMode AM;
+  if (!X86SelectAddress(Ptr, AM))
+    return false;
+
+  return X86FastEmitStore(VT, Val, AM, createMachineMemOperandFor(I), Aligned);
+}
+
+/// X86SelectRet - Select and emit code to implement ret instructions.
+bool X86FastISel::X86SelectRet(const Instruction *I) {
+  const ReturnInst *Ret = cast<ReturnInst>(I);
+  const Function &F = *I->getParent()->getParent();
+  const X86MachineFunctionInfo *X86MFInfo =
+      FuncInfo.MF->getInfo<X86MachineFunctionInfo>();
+
+  if (!FuncInfo.CanLowerReturn)
+    return false;
+
+  CallingConv::ID CC = F.getCallingConv();
+  if (CC != CallingConv::C &&
+      CC != CallingConv::Fast &&
+      CC != CallingConv::X86_FastCall &&
+      CC != CallingConv::X86_64_SysV)
+    return false;
+
+  if (Subtarget->isCallingConvWin64(CC))
+    return false;
+
+  // Don't handle popping bytes on return for now.
+  if (X86MFInfo->getBytesToPopOnReturn() != 0)
+    return false;
+
+  // fastcc with -tailcallopt is intended to provide a guaranteed
+  // tail call optimization. Fastisel doesn't know how to do that.
+  if (CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt)
+    return false;
+
+  // Let SDISel handle vararg functions.
+  if (F.isVarArg())
+    return false;
+
+  // Build a list of return value registers.
+  SmallVector<unsigned, 4> RetRegs;
+
+  if (Ret->getNumOperands() > 0) {
+    SmallVector<ISD::OutputArg, 4> Outs;
+    GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI, DL);
+
+    // Analyze operands of the call, assigning locations to each operand.
+    SmallVector<CCValAssign, 16> ValLocs;
+    CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, I->getContext());
+    CCInfo.AnalyzeReturn(Outs, RetCC_X86);
+
+    const Value *RV = Ret->getOperand(0);
+    unsigned Reg = getRegForValue(RV);
+    if (Reg == 0)
+      return false;
+
+    // Only handle a single return value for now.
+    if (ValLocs.size() != 1)
+      return false;
+
+    CCValAssign &VA = ValLocs[0];
+
+    // Don't bother handling odd stuff for now.
+    if (VA.getLocInfo() != CCValAssign::Full)
+      return false;
+    // Only handle register returns for now.
+    if (!VA.isRegLoc())
+      return false;
+
+    // The calling-convention tables for x87 returns don't tell
+    // the whole story.
+    if (VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1)
+      return false;
+
+    unsigned SrcReg = Reg + VA.getValNo();
+    EVT SrcVT = TLI.getValueType(DL, RV->getType());
+    EVT DstVT = VA.getValVT();
+    // Special handling for extended integers.
+    if (SrcVT != DstVT) {
+      if (SrcVT != MVT::i1 && SrcVT != MVT::i8 && SrcVT != MVT::i16)
+        return false;
+
+      if (!Outs[0].Flags.isZExt() && !Outs[0].Flags.isSExt())
+        return false;
+
+      assert(DstVT == MVT::i32 && "X86 should always ext to i32");
+
+      if (SrcVT == MVT::i1) {
+        if (Outs[0].Flags.isSExt())
+          return false;
+        SrcReg = fastEmitZExtFromI1(MVT::i8, SrcReg, /*TODO: Kill=*/false);
+        SrcVT = MVT::i8;
+      }
+      unsigned Op = Outs[0].Flags.isZExt() ? ISD::ZERO_EXTEND :
+                                             ISD::SIGN_EXTEND;
+      SrcReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Op,
+                          SrcReg, /*TODO: Kill=*/false);
+    }
+
+    // Make the copy.
+    unsigned DstReg = VA.getLocReg();
+    const TargetRegisterClass *SrcRC = MRI.getRegClass(SrcReg);
+    // Avoid a cross-class copy. This is very unlikely.
+    if (!SrcRC->contains(DstReg))
+      return false;
+    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+            TII.get(TargetOpcode::COPY), DstReg).addReg(SrcReg);
+
+    // Add register to return instruction.
+    RetRegs.push_back(VA.getLocReg());
+  }
+
+  // The x86-64 ABI for returning structs by value requires that we copy
+  // the sret argument into %rax for the return. We saved the argument into
+  // a virtual register in the entry block, so now we copy the value out
+  // and into %rax. We also do the same with %eax for Win32.
+  if (F.hasStructRetAttr() &&
+      (Subtarget->is64Bit() || Subtarget->isTargetKnownWindowsMSVC())) {
+    unsigned Reg = X86MFInfo->getSRetReturnReg();
+    assert(Reg &&
+           "SRetReturnReg should have been set in LowerFormalArguments()!");
+    unsigned RetReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
+    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+            TII.get(TargetOpcode::COPY), RetReg).addReg(Reg);
+    RetRegs.push_back(RetReg);
+  }
+
+  // Now emit the RET.
+  MachineInstrBuilder MIB =
+    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+            TII.get(Subtarget->is64Bit() ? X86::RETQ : X86::RETL));
+  for (unsigned i = 0, e = RetRegs.size(); i != e; ++i)
+    MIB.addReg(RetRegs[i], RegState::Implicit);
+  return true;
+}
+
+/// X86SelectLoad - Select and emit code to implement load instructions.
+///
+bool X86FastISel::X86SelectLoad(const Instruction *I) {
+  const LoadInst *LI = cast<LoadInst>(I);
+
+  // Atomic loads need special handling.
+  if (LI->isAtomic())
+    return false;
+
+  MVT VT;
+  if (!isTypeLegal(LI->getType(), VT, /*AllowI1=*/true))
+    return false;
+
+  const Value *Ptr = LI->getPointerOperand();
+
+  X86AddressMode AM;
+  if (!X86SelectAddress(Ptr, AM))
+    return false;
+
+  unsigned Alignment = LI->getAlignment();
+  unsigned ABIAlignment = DL.getABITypeAlignment(LI->getType());
+  if (Alignment == 0) // Ensure that codegen never sees alignment 0
+    Alignment = ABIAlignment;
+
+  unsigned ResultReg = 0;
+  if (!X86FastEmitLoad(VT, AM, createMachineMemOperandFor(LI), ResultReg,
+                       Alignment))
+    return false;
+
+  updateValueMap(I, ResultReg);
+  return true;
+}
+
+static unsigned X86ChooseCmpOpcode(EVT VT, const X86Subtarget *Subtarget) {
+  bool HasAVX = Subtarget->hasAVX();
+  bool X86ScalarSSEf32 = Subtarget->hasSSE1();
+  bool X86ScalarSSEf64 = Subtarget->hasSSE2();
+
+  switch (VT.getSimpleVT().SimpleTy) {
+  default:       return 0;
+  case MVT::i8:  return X86::CMP8rr;
+  case MVT::i16: return X86::CMP16rr;
+  case MVT::i32: return X86::CMP32rr;
+  case MVT::i64: return X86::CMP64rr;
+  case MVT::f32:
+    return X86ScalarSSEf32 ? (HasAVX ? X86::VUCOMISSrr : X86::UCOMISSrr) : 0;
+  case MVT::f64:
+    return X86ScalarSSEf64 ? (HasAVX ? X86::VUCOMISDrr : X86::UCOMISDrr) : 0;
+  }
+}
+
+/// If we have a comparison with RHS as the RHS  of the comparison, return an
+/// opcode that works for the compare (e.g. CMP32ri) otherwise return 0.
+static unsigned X86ChooseCmpImmediateOpcode(EVT VT, const ConstantInt *RHSC) {
+  int64_t Val = RHSC->getSExtValue();
+  switch (VT.getSimpleVT().SimpleTy) {
+  // Otherwise, we can't fold the immediate into this comparison.
+  default:
+    return 0;
+  case MVT::i8:
+    return X86::CMP8ri;
+  case MVT::i16:
+    if (isInt<8>(Val))
+      return X86::CMP16ri8;
+    return X86::CMP16ri;
+  case MVT::i32:
+    if (isInt<8>(Val))
+      return X86::CMP32ri8;
+    return X86::CMP32ri;
+  case MVT::i64:
+    if (isInt<8>(Val))
+      return X86::CMP64ri8;
+    // 64-bit comparisons are only valid if the immediate fits in a 32-bit sext
+    // field.
+    if (isInt<32>(Val))
+      return X86::CMP64ri32;
+    return 0;
+  }
+}
+
+bool X86FastISel::X86FastEmitCompare(const Value *Op0, const Value *Op1,
+                                     EVT VT, DebugLoc CurDbgLoc) {
+  unsigned Op0Reg = getRegForValue(Op0);
+  if (Op0Reg == 0) return false;
+
+  // Handle 'null' like i32/i64 0.
+  if (isa<ConstantPointerNull>(Op1))
+    Op1 = Constant::getNullValue(DL.getIntPtrType(Op0->getContext()));
+
+  // We have two options: compare with register or immediate.  If the RHS of
+  // the compare is an immediate that we can fold into this compare, use
+  // CMPri, otherwise use CMPrr.
+  if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
+    if (unsigned CompareImmOpc = X86ChooseCmpImmediateOpcode(VT, Op1C)) {
+      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, CurDbgLoc, TII.get(CompareImmOpc))
+        .addReg(Op0Reg)
+        .addImm(Op1C->getSExtValue());
+      return true;
+    }
+  }
+
+  unsigned CompareOpc = X86ChooseCmpOpcode(VT, Subtarget);
+  if (CompareOpc == 0) return false;
+
+  unsigned Op1Reg = getRegForValue(Op1);
+  if (Op1Reg == 0) return false;
+  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, CurDbgLoc, TII.get(CompareOpc))
+    .addReg(Op0Reg)
+    .addReg(Op1Reg);
+
+  return true;
+}
+
+bool X86FastISel::X86SelectCmp(const Instruction *I) {
+  const CmpInst *CI = cast<CmpInst>(I);
+
+  MVT VT;
+  if (!isTypeLegal(I->getOperand(0)->getType(), VT))
+    return false;
+
+  // Try to optimize or fold the cmp.
+  CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
+  unsigned ResultReg = 0;
+  switch (Predicate) {
+  default: break;
+  case CmpInst::FCMP_FALSE: {
+    ResultReg = createResultReg(&X86::GR32RegClass);
+    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV32r0),
+            ResultReg);
+    ResultReg = fastEmitInst_extractsubreg(MVT::i8, ResultReg, /*Kill=*/true,
+                                           X86::sub_8bit);
+    if (!ResultReg)
+      return false;
+    break;
+  }
+  case CmpInst::FCMP_TRUE: {
+    ResultReg = createResultReg(&X86::GR8RegClass);
+    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV8ri),
+            ResultReg).addImm(1);
+    break;
+  }
+  }
+
+  if (ResultReg) {
+    updateValueMap(I, ResultReg);
+    return true;
+  }
+
+  const Value *LHS = CI->getOperand(0);
+  const Value *RHS = CI->getOperand(1);
+
+  // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 0.0.
+  // We don't have to materialize a zero constant for this case and can just use
+  // %x again on the RHS.
+  if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) {
+    const auto *RHSC = dyn_cast<ConstantFP>(RHS);
+    if (RHSC && RHSC->isNullValue())
+      RHS = LHS;
+  }
+
+  // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction.
+  static unsigned SETFOpcTable[2][3] = {
+    { X86::SETEr,  X86::SETNPr, X86::AND8rr },
+    { X86::SETNEr, X86::SETPr,  X86::OR8rr  }
+  };
+  unsigned *SETFOpc = nullptr;
+  switch (Predicate) {
+  default: break;
+  case CmpInst::FCMP_OEQ: SETFOpc = &SETFOpcTable[0][0]; break;
+  case CmpInst::FCMP_UNE: SETFOpc = &SETFOpcTable[1][0]; break;
+  }
+
+  ResultReg = createResultReg(&X86::GR8RegClass);
+  if (SETFOpc) {
+    if (!X86FastEmitCompare(LHS, RHS, VT, I->getDebugLoc()))
+      return false;
+
+    unsigned FlagReg1 = createResultReg(&X86::GR8RegClass);
+    unsigned FlagReg2 = createResultReg(&X86::GR8RegClass);
+    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[0]),
+            FlagReg1);
+    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[1]),
+            FlagReg2);
+    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[2]),
+            ResultReg).addReg(FlagReg1).addReg(FlagReg2);
+    updateValueMap(I, ResultReg);
+    return true;
+  }
+
+  X86::CondCode CC;
+  bool SwapArgs;
+  std::tie(CC, SwapArgs) = getX86ConditionCode(Predicate);
+  assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code.");
+  unsigned Opc = X86::getSETFromCond(CC);
+
+  if (SwapArgs)
+    std::swap(LHS, RHS);
+
+  // Emit a compare of LHS/RHS.
+  if (!X86FastEmitCompare(LHS, RHS, VT, I->getDebugLoc()))
+    return false;
+
+  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg);
+  updateValueMap(I, ResultReg);
+  return true;
+}
+
+bool X86FastISel::X86SelectZExt(const Instruction *I) {
+  EVT DstVT = TLI.getValueType(DL, I->getType());
+  if (!TLI.isTypeLegal(DstVT))
+    return false;
+
+  unsigned ResultReg = getRegForValue(I->getOperand(0));
+  if (ResultReg == 0)
+    return false;
+
+  // Handle zero-extension from i1 to i8, which is common.
+  MVT SrcVT = TLI.getSimpleValueType(DL, I->getOperand(0)->getType());
+  if (SrcVT.SimpleTy == MVT::i1) {
+    // Set the high bits to zero.
+    ResultReg = fastEmitZExtFromI1(MVT::i8, ResultReg, /*TODO: Kill=*/false);
+    SrcVT = MVT::i8;
+
+    if (ResultReg == 0)
+      return false;
+  }
+
+  if (DstVT == MVT::i64) {
+    // Handle extension to 64-bits via sub-register shenanigans.
+    unsigned MovInst;
+
+    switch (SrcVT.SimpleTy) {
+    case MVT::i8:  MovInst = X86::MOVZX32rr8;  break;
+    case MVT::i16: MovInst = X86::MOVZX32rr16; break;
+    case MVT::i32: MovInst = X86::MOV32rr;     break;
+    default: llvm_unreachable("Unexpected zext to i64 source type");
+    }
+
+    unsigned Result32 = createResultReg(&X86::GR32RegClass);
+    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovInst), Result32)
+      .addReg(ResultReg);
+
+    ResultReg = createResultReg(&X86::GR64RegClass);
+    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::SUBREG_TO_REG),
+            ResultReg)
+      .addImm(0).addReg(Result32).addImm(X86::sub_32bit);
+  } else if (DstVT != MVT::i8) {
+    ResultReg = fastEmit_r(MVT::i8, DstVT.getSimpleVT(), ISD::ZERO_EXTEND,
+                           ResultReg, /*Kill=*/true);
+    if (ResultReg == 0)
+      return false;
+  }
+
+  updateValueMap(I, ResultReg);
+  return true;
+}
+
+bool X86FastISel::X86SelectBranch(const Instruction *I) {
+  // Unconditional branches are selected by tablegen-generated code.
+  // Handle a conditional branch.
+  const BranchInst *BI = cast<BranchInst>(I);
+  MachineBasicBlock *TrueMBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
+  MachineBasicBlock *FalseMBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
+
+  // Fold the common case of a conditional branch with a comparison
+  // in the same block (values defined on other blocks may not have
+  // initialized registers).
+  X86::CondCode CC;
+  if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
+    if (CI->hasOneUse() && CI->getParent() == I->getParent()) {
+      EVT VT = TLI.getValueType(DL, CI->getOperand(0)->getType());
+
+      // Try to optimize or fold the cmp.
+      CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
+      switch (Predicate) {
+      default: break;
+      case CmpInst::FCMP_FALSE: fastEmitBranch(FalseMBB, DbgLoc); return true;
+      case CmpInst::FCMP_TRUE:  fastEmitBranch(TrueMBB, DbgLoc); return true;
+      }
+
+      const Value *CmpLHS = CI->getOperand(0);
+      const Value *CmpRHS = CI->getOperand(1);
+
+      // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x,
+      // 0.0.
+      // We don't have to materialize a zero constant for this case and can just
+      // use %x again on the RHS.
+      if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) {
+        const auto *CmpRHSC = dyn_cast<ConstantFP>(CmpRHS);
+        if (CmpRHSC && CmpRHSC->isNullValue())
+          CmpRHS = CmpLHS;
+      }
+
+      // Try to take advantage of fallthrough opportunities.
+      if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) {
+        std::swap(TrueMBB, FalseMBB);
+        Predicate = CmpInst::getInversePredicate(Predicate);
+      }
+
+      // FCMP_OEQ and FCMP_UNE cannot be expressed with a single flag/condition
+      // code check. Instead two branch instructions are required to check all
+      // the flags. First we change the predicate to a supported condition code,
+      // which will be the first branch. Later one we will emit the second
+      // branch.
+      bool NeedExtraBranch = false;
+      switch (Predicate) {
+      default: break;
+      case CmpInst::FCMP_OEQ:
+        std::swap(TrueMBB, FalseMBB); // fall-through
+      case CmpInst::FCMP_UNE:
+        NeedExtraBranch = true;
+        Predicate = CmpInst::FCMP_ONE;
+        break;
+      }
+
+      bool SwapArgs;
+      unsigned BranchOpc;
+      std::tie(CC, SwapArgs) = getX86ConditionCode(Predicate);
+      assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code.");
+
+      BranchOpc = X86::GetCondBranchFromCond(CC);
+      if (SwapArgs)
+        std::swap(CmpLHS, CmpRHS);
+
+      // Emit a compare of the LHS and RHS, setting the flags.
+      if (!X86FastEmitCompare(CmpLHS, CmpRHS, VT, CI->getDebugLoc()))
+        return false;
+
+      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BranchOpc))
+        .addMBB(TrueMBB);
+
+      // X86 requires a second branch to handle UNE (and OEQ, which is mapped
+      // to UNE above).
+      if (NeedExtraBranch) {
+        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JP_1))
+          .addMBB(TrueMBB);
+      }
+
+      finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
+      return true;
+    }
+  } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) {
+    // Handle things like "%cond = trunc i32 %X to i1 / br i1 %cond", which
+    // typically happen for _Bool and C++ bools.
+    MVT SourceVT;
+    if (TI->hasOneUse() && TI->getParent() == I->getParent() &&
+        isTypeLegal(TI->getOperand(0)->getType(), SourceVT)) {
+      unsigned TestOpc = 0;
+      switch (SourceVT.SimpleTy) {
+      default: break;
+      case MVT::i8:  TestOpc = X86::TEST8ri; break;
+      case MVT::i16: TestOpc = X86::TEST16ri; break;
+      case MVT::i32: TestOpc = X86::TEST32ri; break;
+      case MVT::i64: TestOpc = X86::TEST64ri32; break;
+      }
+      if (TestOpc) {
+        unsigned OpReg = getRegForValue(TI->getOperand(0));
+        if (OpReg == 0) return false;
+        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TestOpc))
+          .addReg(OpReg).addImm(1);
+
+        unsigned JmpOpc = X86::JNE_1;
+        if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) {
+          std::swap(TrueMBB, FalseMBB);
+          JmpOpc = X86::JE_1;
+        }
+
+        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(JmpOpc))
+          .addMBB(TrueMBB);
+
+        finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
+        return true;
+      }
+    }
+  } else if (foldX86XALUIntrinsic(CC, BI, BI->getCondition())) {
+    // Fake request the condition, otherwise the intrinsic might be completely
+    // optimized away.
+    unsigned TmpReg = getRegForValue(BI->getCondition());
+    if (TmpReg == 0)
+      return false;
+
+    unsigned BranchOpc = X86::GetCondBranchFromCond(CC);
+
+    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BranchOpc))
+      .addMBB(TrueMBB);
+    finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
+    return true;
+  }
+
+  // Otherwise do a clumsy setcc and re-test it.
+  // Note that i1 essentially gets ANY_EXTEND'ed to i8 where it isn't used
+  // in an explicit cast, so make sure to handle that correctly.
+  unsigned OpReg = getRegForValue(BI->getCondition());
+  if (OpReg == 0) return false;
+
+  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri))
+    .addReg(OpReg).addImm(1);
+  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JNE_1))
+    .addMBB(TrueMBB);
+  finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
+  return true;
+}
+
+bool X86FastISel::X86SelectShift(const Instruction *I) {
+  unsigned CReg = 0, OpReg = 0;
+  const TargetRegisterClass *RC = nullptr;
+  if (I->getType()->isIntegerTy(8)) {
+    CReg = X86::CL;
+    RC = &X86::GR8RegClass;
+    switch (I->getOpcode()) {
+    case Instruction::LShr: OpReg = X86::SHR8rCL; break;
+    case Instruction::AShr: OpReg = X86::SAR8rCL; break;
+    case Instruction::Shl:  OpReg = X86::SHL8rCL; break;
+    default: return false;
+    }
+  } else if (I->getType()->isIntegerTy(16)) {
+    CReg = X86::CX;
+    RC = &X86::GR16RegClass;
+    switch (I->getOpcode()) {
+    case Instruction::LShr: OpReg = X86::SHR16rCL; break;
+    case Instruction::AShr: OpReg = X86::SAR16rCL; break;
+    case Instruction::Shl:  OpReg = X86::SHL16rCL; break;
+    default: return false;
+    }
+  } else if (I->getType()->isIntegerTy(32)) {
+    CReg = X86::ECX;
+    RC = &X86::GR32RegClass;
+    switch (I->getOpcode()) {
+    case Instruction::LShr: OpReg = X86::SHR32rCL; break;
+    case Instruction::AShr: OpReg = X86::SAR32rCL; break;
+    case Instruction::Shl:  OpReg = X86::SHL32rCL; break;
+    default: return false;
+    }
+  } else if (I->getType()->isIntegerTy(64)) {
+    CReg = X86::RCX;
+    RC = &X86::GR64RegClass;
+    switch (I->getOpcode()) {
+    case Instruction::LShr: OpReg = X86::SHR64rCL; break;
+    case Instruction::AShr: OpReg = X86::SAR64rCL; break;
+    case Instruction::Shl:  OpReg = X86::SHL64rCL; break;
+    default: return false;
+    }
+  } else {
+    return false;
+  }
+
+  MVT VT;
+  if (!isTypeLegal(I->getType(), VT))
+    return false;
+
+  unsigned Op0Reg = getRegForValue(I->getOperand(0));
+  if (Op0Reg == 0) return false;
+
+  unsigned Op1Reg = getRegForValue(I->getOperand(1));
+  if (Op1Reg == 0) return false;
+  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY),
+          CReg).addReg(Op1Reg);
+
+  // The shift instruction uses X86::CL. If we defined a super-register
+  // of X86::CL, emit a subreg KILL to precisely describe what we're doing here.
+  if (CReg != X86::CL)
+    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+            TII.get(TargetOpcode::KILL), X86::CL)
+      .addReg(CReg, RegState::Kill);
+
+  unsigned ResultReg = createResultReg(RC);
+  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(OpReg), ResultReg)
+    .addReg(Op0Reg);
+  updateValueMap(I, ResultReg);
+  return true;
+}
+
+bool X86FastISel::X86SelectDivRem(const Instruction *I) {
+  const static unsigned NumTypes = 4; // i8, i16, i32, i64
+  const static unsigned NumOps   = 4; // SDiv, SRem, UDiv, URem
+  const static bool S = true;  // IsSigned
+  const static bool U = false; // !IsSigned
+  const static unsigned Copy = TargetOpcode::COPY;
+  // For the X86 DIV/IDIV instruction, in most cases the dividend
+  // (numerator) must be in a specific register pair highreg:lowreg,
+  // producing the quotient in lowreg and the remainder in highreg.
+  // For most data types, to set up the instruction, the dividend is
+  // copied into lowreg, and lowreg is sign-extended or zero-extended
+  // into highreg.  The exception is i8, where the dividend is defined
+  // as a single register rather than a register pair, and we
+  // therefore directly sign-extend or zero-extend the dividend into
+  // lowreg, instead of copying, and ignore the highreg.
+  const static struct DivRemEntry {
+    // The following portion depends only on the data type.
+    const TargetRegisterClass *RC;
+    unsigned LowInReg;  // low part of the register pair
+    unsigned HighInReg; // high part of the register pair
+    // The following portion depends on both the data type and the operation.
+    struct DivRemResult {
+    unsigned OpDivRem;        // The specific DIV/IDIV opcode to use.
+    unsigned OpSignExtend;    // Opcode for sign-extending lowreg into
+                              // highreg, or copying a zero into highreg.
+    unsigned OpCopy;          // Opcode for copying dividend into lowreg, or
+                              // zero/sign-extending into lowreg for i8.
+    unsigned DivRemResultReg; // Register containing the desired result.
+    bool IsOpSigned;          // Whether to use signed or unsigned form.
+    } ResultTable[NumOps];
+  } OpTable[NumTypes] = {
+    { &X86::GR8RegClass,  X86::AX,  0, {
+        { X86::IDIV8r,  0,            X86::MOVSX16rr8, X86::AL,  S }, // SDiv
+        { X86::IDIV8r,  0,            X86::MOVSX16rr8, X86::AH,  S }, // SRem
+        { X86::DIV8r,   0,            X86::MOVZX16rr8, X86::AL,  U }, // UDiv
+        { X86::DIV8r,   0,            X86::MOVZX16rr8, X86::AH,  U }, // URem
+      }
+    }, // i8
+    { &X86::GR16RegClass, X86::AX,  X86::DX, {
+        { X86::IDIV16r, X86::CWD,     Copy,            X86::AX,  S }, // SDiv
+        { X86::IDIV16r, X86::CWD,     Copy,            X86::DX,  S }, // SRem
+        { X86::DIV16r,  X86::MOV32r0, Copy,            X86::AX,  U }, // UDiv
+        { X86::DIV16r,  X86::MOV32r0, Copy,            X86::DX,  U }, // URem
+      }
+    }, // i16
+    { &X86::GR32RegClass, X86::EAX, X86::EDX, {
+        { X86::IDIV32r, X86::CDQ,     Copy,            X86::EAX, S }, // SDiv
+        { X86::IDIV32r, X86::CDQ,     Copy,            X86::EDX, S }, // SRem
+        { X86::DIV32r,  X86::MOV32r0, Copy,            X86::EAX, U }, // UDiv
+        { X86::DIV32r,  X86::MOV32r0, Copy,            X86::EDX, U }, // URem
+      }
+    }, // i32
+    { &X86::GR64RegClass, X86::RAX, X86::RDX, {
+        { X86::IDIV64r, X86::CQO,     Copy,            X86::RAX, S }, // SDiv
+        { X86::IDIV64r, X86::CQO,     Copy,            X86::RDX, S }, // SRem
+        { X86::DIV64r,  X86::MOV32r0, Copy,            X86::RAX, U }, // UDiv
+        { X86::DIV64r,  X86::MOV32r0, Copy,            X86::RDX, U }, // URem
+      }
+    }, // i64
+  };
+
+  MVT VT;
+  if (!isTypeLegal(I->getType(), VT))
+    return false;
+
+  unsigned TypeIndex, OpIndex;
+  switch (VT.SimpleTy) {
+  default: return false;
+  case MVT::i8:  TypeIndex = 0; break;
+  case MVT::i16: TypeIndex = 1; break;
+  case MVT::i32: TypeIndex = 2; break;
+  case MVT::i64: TypeIndex = 3;
+    if (!Subtarget->is64Bit())
+      return false;
+    break;
+  }
+
+  switch (I->getOpcode()) {
+  default: llvm_unreachable("Unexpected div/rem opcode");
+  case Instruction::SDiv: OpIndex = 0; break;
+  case Instruction::SRem: OpIndex = 1; break;
+  case Instruction::UDiv: OpIndex = 2; break;
+  case Instruction::URem: OpIndex = 3; break;
+  }
+
+  const DivRemEntry &TypeEntry = OpTable[TypeIndex];
+  const DivRemEntry::DivRemResult &OpEntry = TypeEntry.ResultTable[OpIndex];
+  unsigned Op0Reg = getRegForValue(I->getOperand(0));
+  if (Op0Reg == 0)
+    return false;
+  unsigned Op1Reg = getRegForValue(I->getOperand(1));
+  if (Op1Reg == 0)
+    return false;
+
+  // Move op0 into low-order input register.
+  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+          TII.get(OpEntry.OpCopy), TypeEntry.LowInReg).addReg(Op0Reg);
+  // Zero-extend or sign-extend into high-order input register.
+  if (OpEntry.OpSignExtend) {
+    if (OpEntry.IsOpSigned)
+      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+              TII.get(OpEntry.OpSignExtend));
+    else {
+      unsigned Zero32 = createResultReg(&X86::GR32RegClass);
+      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+              TII.get(X86::MOV32r0), Zero32);
+
+      // Copy the zero into the appropriate sub/super/identical physical
+      // register. Unfortunately the operations needed are not uniform enough
+      // to fit neatly into the table above.
+      if (VT.SimpleTy == MVT::i16) {
+        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+                TII.get(Copy), TypeEntry.HighInReg)
+          .addReg(Zero32, 0, X86::sub_16bit);
+      } else if (VT.SimpleTy == MVT::i32) {
+        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+                TII.get(Copy), TypeEntry.HighInReg)
+            .addReg(Zero32);
+      } else if (VT.SimpleTy == MVT::i64) {
+        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+                TII.get(TargetOpcode::SUBREG_TO_REG), TypeEntry.HighInReg)
+            .addImm(0).addReg(Zero32).addImm(X86::sub_32bit);
+      }
+    }
+  }
+  // Generate the DIV/IDIV instruction.
+  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+          TII.get(OpEntry.OpDivRem)).addReg(Op1Reg);
+  // For i8 remainder, we can't reference AH directly, as we'll end
+  // up with bogus copies like %R9B = COPY %AH. Reference AX
+  // instead to prevent AH references in a REX instruction.
+  //
+  // The current assumption of the fast register allocator is that isel
+  // won't generate explicit references to the GPR8_NOREX registers. If
+  // the allocator and/or the backend get enhanced to be more robust in
+  // that regard, this can be, and should be, removed.
+  unsigned ResultReg = 0;
+  if ((I->getOpcode() == Instruction::SRem ||
+       I->getOpcode() == Instruction::URem) &&
+      OpEntry.DivRemResultReg == X86::AH && Subtarget->is64Bit()) {
+    unsigned SourceSuperReg = createResultReg(&X86::GR16RegClass);
+    unsigned ResultSuperReg = createResultReg(&X86::GR16RegClass);
+    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+            TII.get(Copy), SourceSuperReg).addReg(X86::AX);
+
+    // Shift AX right by 8 bits instead of using AH.
+    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SHR16ri),
+            ResultSuperReg).addReg(SourceSuperReg).addImm(8);
+
+    // Now reference the 8-bit subreg of the result.
+    ResultReg = fastEmitInst_extractsubreg(MVT::i8, ResultSuperReg,
+                                           /*Kill=*/true, X86::sub_8bit);
+  }
+  // Copy the result out of the physreg if we haven't already.
+  if (!ResultReg) {
+    ResultReg = createResultReg(TypeEntry.RC);
+    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Copy), ResultReg)
+        .addReg(OpEntry.DivRemResultReg);
+  }
+  updateValueMap(I, ResultReg);
+
+  return true;
+}
+
+/// \brief Emit a conditional move instruction (if the are supported) to lower
+/// the select.
+bool X86FastISel::X86FastEmitCMoveSelect(MVT RetVT, const Instruction *I) {
+  // Check if the subtarget supports these instructions.
+  if (!Subtarget->hasCMov())
+    return false;
+
+  // FIXME: Add support for i8.
+  if (RetVT < MVT::i16 || RetVT > MVT::i64)
+    return false;
+
+  const Value *Cond = I->getOperand(0);
+  const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
+  bool NeedTest = true;
+  X86::CondCode CC = X86::COND_NE;
+
+  // Optimize conditions coming from a compare if both instructions are in the
+  // same basic block (values defined in other basic blocks may not have
+  // initialized registers).
+  const auto *CI = dyn_cast<CmpInst>(Cond);
+  if (CI && (CI->getParent() == I->getParent())) {
+    CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
+
+    // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction.
+    static unsigned SETFOpcTable[2][3] = {
+      { X86::SETNPr, X86::SETEr , X86::TEST8rr },
+      { X86::SETPr,  X86::SETNEr, X86::OR8rr   }
+    };
+    unsigned *SETFOpc = nullptr;
+    switch (Predicate) {
+    default: break;
+    case CmpInst::FCMP_OEQ:
+      SETFOpc = &SETFOpcTable[0][0];
+      Predicate = CmpInst::ICMP_NE;
+      break;
+    case CmpInst::FCMP_UNE:
+      SETFOpc = &SETFOpcTable[1][0];
+      Predicate = CmpInst::ICMP_NE;
+      break;
+    }
+
+    bool NeedSwap;
+    std::tie(CC, NeedSwap) = getX86ConditionCode(Predicate);
+    assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code.");
+
+    const Value *CmpLHS = CI->getOperand(0);
+    const Value *CmpRHS = CI->getOperand(1);
+    if (NeedSwap)
+      std::swap(CmpLHS, CmpRHS);
+
+    EVT CmpVT = TLI.getValueType(DL, CmpLHS->getType());
+    // Emit a compare of the LHS and RHS, setting the flags.
+    if (!X86FastEmitCompare(CmpLHS, CmpRHS, CmpVT, CI->getDebugLoc()))
+      return false;
+
+    if (SETFOpc) {
+      unsigned FlagReg1 = createResultReg(&X86::GR8RegClass);
+      unsigned FlagReg2 = createResultReg(&X86::GR8RegClass);
+      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[0]),
+              FlagReg1);
+      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[1]),
+              FlagReg2);
+      auto const &II = TII.get(SETFOpc[2]);
+      if (II.getNumDefs()) {
+        unsigned TmpReg = createResultReg(&X86::GR8RegClass);
+        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, TmpReg)
+          .addReg(FlagReg2).addReg(FlagReg1);
+      } else {
+        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
+          .addReg(FlagReg2).addReg(FlagReg1);
+      }
+    }
+    NeedTest = false;
+  } else if (foldX86XALUIntrinsic(CC, I, Cond)) {
+    // Fake request the condition, otherwise the intrinsic might be completely
+    // optimized away.
+    unsigned TmpReg = getRegForValue(Cond);
+    if (TmpReg == 0)
+      return false;
+
+    NeedTest = false;
+  }
+
+  if (NeedTest) {
+    // Selects operate on i1, however, CondReg is 8 bits width and may contain
+    // garbage. Indeed, only the less significant bit is supposed to be
+    // accurate. If we read more than the lsb, we may see non-zero values
+    // whereas lsb is zero. Therefore, we have to truncate Op0Reg to i1 for
+    // the select. This is achieved by performing TEST against 1.
+    unsigned CondReg = getRegForValue(Cond);
+    if (CondReg == 0)
+      return false;
+    bool CondIsKill = hasTrivialKill(Cond);
+
+    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri))
+      .addReg(CondReg, getKillRegState(CondIsKill)).addImm(1);
+  }
+
+  const Value *LHS = I->getOperand(1);
+  const Value *RHS = I->getOperand(2);
+
+  unsigned RHSReg = getRegForValue(RHS);
+  bool RHSIsKill = hasTrivialKill(RHS);
+
+  unsigned LHSReg = getRegForValue(LHS);
+  bool LHSIsKill = hasTrivialKill(LHS);
+
+  if (!LHSReg || !RHSReg)
+    return false;
+
+  unsigned Opc = X86::getCMovFromCond(CC, RC->getSize());
+  unsigned ResultReg = fastEmitInst_rr(Opc, RC, RHSReg, RHSIsKill,
+                                       LHSReg, LHSIsKill);
+  updateValueMap(I, ResultReg);
+  return true;
+}
+
+/// \brief Emit SSE or AVX instructions to lower the select.
+///
+/// Try to use SSE1/SSE2 instructions to simulate a select without branches.
+/// This lowers fp selects into a CMP/AND/ANDN/OR sequence when the necessary
+/// SSE instructions are available. If AVX is available, try to use a VBLENDV.
+bool X86FastISel::X86FastEmitSSESelect(MVT RetVT, const Instruction *I) {
+  // Optimize conditions coming from a compare if both instructions are in the
+  // same basic block (values defined in other basic blocks may not have
+  // initialized registers).
+  const auto *CI = dyn_cast<FCmpInst>(I->getOperand(0));
+  if (!CI || (CI->getParent() != I->getParent()))
+    return false;
+
+  if (I->getType() != CI->getOperand(0)->getType() ||
+      !((Subtarget->hasSSE1() && RetVT == MVT::f32) ||
+        (Subtarget->hasSSE2() && RetVT == MVT::f64)))
+    return false;
+
+  const Value *CmpLHS = CI->getOperand(0);
+  const Value *CmpRHS = CI->getOperand(1);
+  CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
+
+  // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 0.0.
+  // We don't have to materialize a zero constant for this case and can just use
+  // %x again on the RHS.
+  if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) {
+    const auto *CmpRHSC = dyn_cast<ConstantFP>(CmpRHS);
+    if (CmpRHSC && CmpRHSC->isNullValue())
+      CmpRHS = CmpLHS;
+  }
+
+  unsigned CC;
+  bool NeedSwap;
+  std::tie(CC, NeedSwap) = getX86SSEConditionCode(Predicate);
+  if (CC > 7)
+    return false;
+
+  if (NeedSwap)
+    std::swap(CmpLHS, CmpRHS);
+
+  // Choose the SSE instruction sequence based on data type (float or double).
+  static unsigned OpcTable[2][4] = {
+    { X86::CMPSSrr,  X86::FsANDPSrr,  X86::FsANDNPSrr,  X86::FsORPSrr  },
+    { X86::CMPSDrr,  X86::FsANDPDrr,  X86::FsANDNPDrr,  X86::FsORPDrr  }
+  };
+
+  unsigned *Opc = nullptr;
+  switch (RetVT.SimpleTy) {
+  default: return false;
+  case MVT::f32: Opc = &OpcTable[0][0]; break;
+  case MVT::f64: Opc = &OpcTable[1][0]; break;
+  }
+
+  const Value *LHS = I->getOperand(1);
+  const Value *RHS = I->getOperand(2);
+
+  unsigned LHSReg = getRegForValue(LHS);
+  bool LHSIsKill = hasTrivialKill(LHS);
+
+  unsigned RHSReg = getRegForValue(RHS);
+  bool RHSIsKill = hasTrivialKill(RHS);
+
+  unsigned CmpLHSReg = getRegForValue(CmpLHS);
+  bool CmpLHSIsKill = hasTrivialKill(CmpLHS);
+
+  unsigned CmpRHSReg = getRegForValue(CmpRHS);
+  bool CmpRHSIsKill = hasTrivialKill(CmpRHS);
+
+  if (!LHSReg || !RHSReg || !CmpLHS || !CmpRHS)
+    return false;
+
+  const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
+  unsigned ResultReg;
+  
+  if (Subtarget->hasAVX()) {
+    const TargetRegisterClass *FR32 = &X86::FR32RegClass;
+    const TargetRegisterClass *VR128 = &X86::VR128RegClass;
+
+    // If we have AVX, create 1 blendv instead of 3 logic instructions.
+    // Blendv was introduced with SSE 4.1, but the 2 register form implicitly
+    // uses XMM0 as the selection register. That may need just as many
+    // instructions as the AND/ANDN/OR sequence due to register moves, so
+    // don't bother.
+    unsigned CmpOpcode =
+      (RetVT.SimpleTy == MVT::f32) ? X86::VCMPSSrr : X86::VCMPSDrr;
+    unsigned BlendOpcode =
+      (RetVT.SimpleTy == MVT::f32) ? X86::VBLENDVPSrr : X86::VBLENDVPDrr;
+    
+    unsigned CmpReg = fastEmitInst_rri(CmpOpcode, FR32, CmpLHSReg, CmpLHSIsKill,
+                                       CmpRHSReg, CmpRHSIsKill, CC);
+    unsigned VBlendReg = fastEmitInst_rrr(BlendOpcode, VR128, RHSReg, RHSIsKill,
+                                          LHSReg, LHSIsKill, CmpReg, true);
+    ResultReg = createResultReg(RC);
+    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+            TII.get(TargetOpcode::COPY), ResultReg).addReg(VBlendReg);
+  } else {
+    unsigned CmpReg = fastEmitInst_rri(Opc[0], RC, CmpLHSReg, CmpLHSIsKill,
+                                       CmpRHSReg, CmpRHSIsKill, CC);
+    unsigned AndReg = fastEmitInst_rr(Opc[1], RC, CmpReg, /*IsKill=*/false,
+                                      LHSReg, LHSIsKill);
+    unsigned AndNReg = fastEmitInst_rr(Opc[2], RC, CmpReg, /*IsKill=*/true,
+                                       RHSReg, RHSIsKill);
+    ResultReg = fastEmitInst_rr(Opc[3], RC, AndNReg, /*IsKill=*/true,
+                                         AndReg, /*IsKill=*/true);
+  }
+  updateValueMap(I, ResultReg);
+  return true;
+}
+
+bool X86FastISel::X86FastEmitPseudoSelect(MVT RetVT, const Instruction *I) {
+  // These are pseudo CMOV instructions and will be later expanded into control-
+  // flow.
+  unsigned Opc;
+  switch (RetVT.SimpleTy) {
+  default: return false;
+  case MVT::i8:  Opc = X86::CMOV_GR8;  break;
+  case MVT::i16: Opc = X86::CMOV_GR16; break;
+  case MVT::i32: Opc = X86::CMOV_GR32; break;
+  case MVT::f32: Opc = X86::CMOV_FR32; break;
+  case MVT::f64: Opc = X86::CMOV_FR64; break;
+  }
+
+  const Value *Cond = I->getOperand(0);
+  X86::CondCode CC = X86::COND_NE;
+
+  // Optimize conditions coming from a compare if both instructions are in the
+  // same basic block (values defined in other basic blocks may not have
+  // initialized registers).
+  const auto *CI = dyn_cast<CmpInst>(Cond);
+  if (CI && (CI->getParent() == I->getParent())) {
+    bool NeedSwap;
+    std::tie(CC, NeedSwap) = getX86ConditionCode(CI->getPredicate());
+    if (CC > X86::LAST_VALID_COND)
+      return false;
+
+    const Value *CmpLHS = CI->getOperand(0);
+    const Value *CmpRHS = CI->getOperand(1);
+
+    if (NeedSwap)
+      std::swap(CmpLHS, CmpRHS);
+
+    EVT CmpVT = TLI.getValueType(DL, CmpLHS->getType());
+    if (!X86FastEmitCompare(CmpLHS, CmpRHS, CmpVT, CI->getDebugLoc()))
+      return false;
+  } else {
+    unsigned CondReg = getRegForValue(Cond);
+    if (CondReg == 0)
+      return false;
+    bool CondIsKill = hasTrivialKill(Cond);
+    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri))
+      .addReg(CondReg, getKillRegState(CondIsKill)).addImm(1);
+  }
+
+  const Value *LHS = I->getOperand(1);
+  const Value *RHS = I->getOperand(2);
+
+  unsigned LHSReg = getRegForValue(LHS);
+  bool LHSIsKill = hasTrivialKill(LHS);
+
+  unsigned RHSReg = getRegForValue(RHS);
+  bool RHSIsKill = hasTrivialKill(RHS);
+
+  if (!LHSReg || !RHSReg)
+    return false;
+
+  const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
+
+  unsigned ResultReg =
+    fastEmitInst_rri(Opc, RC, RHSReg, RHSIsKill, LHSReg, LHSIsKill, CC);
+  updateValueMap(I, ResultReg);
+  return true;
+}
+
+bool X86FastISel::X86SelectSelect(const Instruction *I) {
+  MVT RetVT;
+  if (!isTypeLegal(I->getType(), RetVT))
+    return false;
+
+  // Check if we can fold the select.
+  if (const auto *CI = dyn_cast<CmpInst>(I->getOperand(0))) {
+    CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
+    const Value *Opnd = nullptr;
+    switch (Predicate) {
+    default:                              break;
+    case CmpInst::FCMP_FALSE: Opnd = I->getOperand(2); break;
+    case CmpInst::FCMP_TRUE:  Opnd = I->getOperand(1); break;
+    }
+    // No need for a select anymore - this is an unconditional move.
+    if (Opnd) {
+      unsigned OpReg = getRegForValue(Opnd);
+      if (OpReg == 0)
+        return false;
+      bool OpIsKill = hasTrivialKill(Opnd);
+      const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
+      unsigned ResultReg = createResultReg(RC);
+      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+              TII.get(TargetOpcode::COPY), ResultReg)
+        .addReg(OpReg, getKillRegState(OpIsKill));
+      updateValueMap(I, ResultReg);
+      return true;
+    }
+  }
+
+  // First try to use real conditional move instructions.
+  if (X86FastEmitCMoveSelect(RetVT, I))
+    return true;
+
+  // Try to use a sequence of SSE instructions to simulate a conditional move.
+  if (X86FastEmitSSESelect(RetVT, I))
+    return true;
+
+  // Fall-back to pseudo conditional move instructions, which will be later
+  // converted to control-flow.
+  if (X86FastEmitPseudoSelect(RetVT, I))
+    return true;
+
+  return false;
+}
+
+bool X86FastISel::X86SelectSIToFP(const Instruction *I) {
+  // The target-independent selection algorithm in FastISel already knows how
+  // to select a SINT_TO_FP if the target is SSE but not AVX.
+  // Early exit if the subtarget doesn't have AVX.
+  if (!Subtarget->hasAVX())
+    return false;
+
+  if (!I->getOperand(0)->getType()->isIntegerTy(32))
+    return false;
+
+  // Select integer to float/double conversion.
+  unsigned OpReg = getRegForValue(I->getOperand(0));
+  if (OpReg == 0)
+    return false;
+
+  const TargetRegisterClass *RC = nullptr;
+  unsigned Opcode;
+
+  if (I->getType()->isDoubleTy()) {
+    // sitofp int -> double
+    Opcode = X86::VCVTSI2SDrr;
+    RC = &X86::FR64RegClass;
+  } else if (I->getType()->isFloatTy()) {
+    // sitofp int -> float
+    Opcode = X86::VCVTSI2SSrr;
+    RC = &X86::FR32RegClass;
+  } else
+    return false;
+
+  unsigned ImplicitDefReg = createResultReg(RC);
+  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+          TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg);
+  unsigned ResultReg =
+      fastEmitInst_rr(Opcode, RC, ImplicitDefReg, true, OpReg, false);
+  updateValueMap(I, ResultReg);
+  return true;
+}
+
+// Helper method used by X86SelectFPExt and X86SelectFPTrunc.
+bool X86FastISel::X86SelectFPExtOrFPTrunc(const Instruction *I,
+                                          unsigned TargetOpc,
+                                          const TargetRegisterClass *RC) {
+  assert((I->getOpcode() == Instruction::FPExt ||
+          I->getOpcode() == Instruction::FPTrunc) &&
+         "Instruction must be an FPExt or FPTrunc!");
+
+  unsigned OpReg = getRegForValue(I->getOperand(0));
+  if (OpReg == 0)
+    return false;
+
+  unsigned ResultReg = createResultReg(RC);
+  MachineInstrBuilder MIB;
+  MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpc),
+                ResultReg);
+  if (Subtarget->hasAVX())
+    MIB.addReg(OpReg);
+  MIB.addReg(OpReg);
+  updateValueMap(I, ResultReg);
+  return true;
+}
+
+bool X86FastISel::X86SelectFPExt(const Instruction *I) {
+  if (X86ScalarSSEf64 && I->getType()->isDoubleTy() &&
+      I->getOperand(0)->getType()->isFloatTy()) {
+    // fpext from float to double.
+    unsigned Opc = Subtarget->hasAVX() ? X86::VCVTSS2SDrr : X86::CVTSS2SDrr;
+    return X86SelectFPExtOrFPTrunc(I, Opc, &X86::FR64RegClass);
+  }
+
+  return false;
+}
+
+bool X86FastISel::X86SelectFPTrunc(const Instruction *I) {
+  if (X86ScalarSSEf64 && I->getType()->isFloatTy() &&
+      I->getOperand(0)->getType()->isDoubleTy()) {
+    // fptrunc from double to float.
+    unsigned Opc = Subtarget->hasAVX() ? X86::VCVTSD2SSrr : X86::CVTSD2SSrr;
+    return X86SelectFPExtOrFPTrunc(I, Opc, &X86::FR32RegClass);
+  }
+
+  return false;
+}
+
+bool X86FastISel::X86SelectTrunc(const Instruction *I) {
+  EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
+  EVT DstVT = TLI.getValueType(DL, I->getType());
+
+  // This code only handles truncation to byte.
+  if (DstVT != MVT::i8 && DstVT != MVT::i1)
+    return false;
+  if (!TLI.isTypeLegal(SrcVT))
+    return false;
+
+  unsigned InputReg = getRegForValue(I->getOperand(0));
+  if (!InputReg)
+    // Unhandled operand.  Halt "fast" selection and bail.
+    return false;
+
+  if (SrcVT == MVT::i8) {
+    // Truncate from i8 to i1; no code needed.
+    updateValueMap(I, InputReg);
+    return true;
+  }
+
+  bool KillInputReg = false;
+  if (!Subtarget->is64Bit()) {
+    // If we're on x86-32; we can't extract an i8 from a general register.
+    // First issue a copy to GR16_ABCD or GR32_ABCD.
+    const TargetRegisterClass *CopyRC =
+      (SrcVT == MVT::i16) ? &X86::GR16_ABCDRegClass : &X86::GR32_ABCDRegClass;
+    unsigned CopyReg = createResultReg(CopyRC);
+    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+            TII.get(TargetOpcode::COPY), CopyReg).addReg(InputReg);
+    InputReg = CopyReg;
+    KillInputReg = true;
+  }
+
+  // Issue an extract_subreg.
+  unsigned ResultReg = fastEmitInst_extractsubreg(MVT::i8,
+                                                  InputReg, KillInputReg,
+                                                  X86::sub_8bit);
+  if (!ResultReg)
+    return false;
+
+  updateValueMap(I, ResultReg);
+  return true;
+}
+
+bool X86FastISel::IsMemcpySmall(uint64_t Len) {
+  return Len <= (Subtarget->is64Bit() ? 32 : 16);
+}
+
+bool X86FastISel::TryEmitSmallMemcpy(X86AddressMode DestAM,
+                                     X86AddressMode SrcAM, uint64_t Len) {
+
+  // Make sure we don't bloat code by inlining very large memcpy's.
+  if (!IsMemcpySmall(Len))
+    return false;
+
+  bool i64Legal = Subtarget->is64Bit();
+
+  // We don't care about alignment here since we just emit integer accesses.
+  while (Len) {
+    MVT VT;
+    if (Len >= 8 && i64Legal)
+      VT = MVT::i64;
+    else if (Len >= 4)
+      VT = MVT::i32;
+    else if (Len >= 2)
+      VT = MVT::i16;
+    else
+      VT = MVT::i8;
+
+    unsigned Reg;
+    bool RV = X86FastEmitLoad(VT, SrcAM, nullptr, Reg);
+    RV &= X86FastEmitStore(VT, Reg, /*Kill=*/true, DestAM);
+    assert(RV && "Failed to emit load or store??");
+
+    unsigned Size = VT.getSizeInBits()/8;
+    Len -= Size;
+    DestAM.Disp += Size;
+    SrcAM.Disp += Size;
+  }
+
+  return true;
+}
+
+bool X86FastISel::fastLowerIntrinsicCall(const IntrinsicInst *II) {
+  // FIXME: Handle more intrinsics.
+  switch (II->getIntrinsicID()) {
+  default: return false;
+  case Intrinsic::convert_from_fp16:
+  case Intrinsic::convert_to_fp16: {
+    if (Subtarget->useSoftFloat() || !Subtarget->hasF16C())
+      return false;
+
+    const Value *Op = II->getArgOperand(0);
+    unsigned InputReg = getRegForValue(Op);
+    if (InputReg == 0)
+      return false;
+
+    // F16C only allows converting from float to half and from half to float.
+    bool IsFloatToHalf = II->getIntrinsicID() == Intrinsic::convert_to_fp16;
+    if (IsFloatToHalf) {
+      if (!Op->getType()->isFloatTy())
+        return false;
+    } else {
+      if (!II->getType()->isFloatTy())
+        return false;
+    }
+
+    unsigned ResultReg = 0;
+    const TargetRegisterClass *RC = TLI.getRegClassFor(MVT::v8i16);
+    if (IsFloatToHalf) {
+      // 'InputReg' is implicitly promoted from register class FR32 to
+      // register class VR128 by method 'constrainOperandRegClass' which is
+      // directly called by 'fastEmitInst_ri'.
+      // Instruction VCVTPS2PHrr takes an extra immediate operand which is
+      // used to provide rounding control.
+      InputReg = fastEmitInst_ri(X86::VCVTPS2PHrr, RC, InputReg, false, 0);
+
+      // Move the lower 32-bits of ResultReg to another register of class GR32.
+      ResultReg = createResultReg(&X86::GR32RegClass);
+      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+              TII.get(X86::VMOVPDI2DIrr), ResultReg)
+          .addReg(InputReg, RegState::Kill);
+      
+      // The result value is in the lower 16-bits of ResultReg.
+      unsigned RegIdx = X86::sub_16bit;
+      ResultReg = fastEmitInst_extractsubreg(MVT::i16, ResultReg, true, RegIdx);
+    } else {
+      assert(Op->getType()->isIntegerTy(16) && "Expected a 16-bit integer!");
+      // Explicitly sign-extend the input to 32-bit.
+      InputReg = fastEmit_r(MVT::i16, MVT::i32, ISD::SIGN_EXTEND, InputReg,
+                            /*Kill=*/false);
+
+      // The following SCALAR_TO_VECTOR will be expanded into a VMOVDI2PDIrr.
+      InputReg = fastEmit_r(MVT::i32, MVT::v4i32, ISD::SCALAR_TO_VECTOR,
+                            InputReg, /*Kill=*/true);
+
+      InputReg = fastEmitInst_r(X86::VCVTPH2PSrr, RC, InputReg, /*Kill=*/true);
+
+      // The result value is in the lower 32-bits of ResultReg.
+      // Emit an explicit copy from register class VR128 to register class FR32.
+      ResultReg = createResultReg(&X86::FR32RegClass);
+      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+              TII.get(TargetOpcode::COPY), ResultReg)
+          .addReg(InputReg, RegState::Kill);
+    }
+
+    updateValueMap(II, ResultReg);
+    return true;
+  }
+  case Intrinsic::frameaddress: {
+    MachineFunction *MF = FuncInfo.MF;
+    if (MF->getTarget().getMCAsmInfo()->usesWindowsCFI())
+      return false;
+
+    Type *RetTy = II->getCalledFunction()->getReturnType();
+
+    MVT VT;
+    if (!isTypeLegal(RetTy, VT))
+      return false;
+
+    unsigned Opc;
+    const TargetRegisterClass *RC = nullptr;
+
+    switch (VT.SimpleTy) {
+    default: llvm_unreachable("Invalid result type for frameaddress.");
+    case MVT::i32: Opc = X86::MOV32rm; RC = &X86::GR32RegClass; break;
+    case MVT::i64: Opc = X86::MOV64rm; RC = &X86::GR64RegClass; break;
+    }
+
+    // This needs to be set before we call getPtrSizedFrameRegister, otherwise
+    // we get the wrong frame register.
+    MachineFrameInfo *MFI = MF->getFrameInfo();
+    MFI->setFrameAddressIsTaken(true);
+
+    const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
+    unsigned FrameReg = RegInfo->getPtrSizedFrameRegister(*MF);
+    assert(((FrameReg == X86::RBP && VT == MVT::i64) ||
+            (FrameReg == X86::EBP && VT == MVT::i32)) &&
+           "Invalid Frame Register!");
+
+    // Always make a copy of the frame register to to a vreg first, so that we
+    // never directly reference the frame register (the TwoAddressInstruction-
+    // Pass doesn't like that).
+    unsigned SrcReg = createResultReg(RC);
+    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+            TII.get(TargetOpcode::COPY), SrcReg).addReg(FrameReg);
+
+    // Now recursively load from the frame address.
+    // movq (%rbp), %rax
+    // movq (%rax), %rax
+    // movq (%rax), %rax
+    // ...
+    unsigned DestReg;
+    unsigned Depth = cast<ConstantInt>(II->getOperand(0))->getZExtValue();
+    while (Depth--) {
+      DestReg = createResultReg(RC);
+      addDirectMem(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+                           TII.get(Opc), DestReg), SrcReg);
+      SrcReg = DestReg;
+    }
+
+    updateValueMap(II, SrcReg);
+    return true;
+  }
+  case Intrinsic::memcpy: {
+    const MemCpyInst *MCI = cast<MemCpyInst>(II);
+    // Don't handle volatile or variable length memcpys.
+    if (MCI->isVolatile())
+      return false;
+
+    if (isa<ConstantInt>(MCI->getLength())) {
+      // Small memcpy's are common enough that we want to do them
+      // without a call if possible.
+      uint64_t Len = cast<ConstantInt>(MCI->getLength())->getZExtValue();
+      if (IsMemcpySmall(Len)) {
+        X86AddressMode DestAM, SrcAM;
+        if (!X86SelectAddress(MCI->getRawDest(), DestAM) ||
+            !X86SelectAddress(MCI->getRawSource(), SrcAM))
+          return false;
+        TryEmitSmallMemcpy(DestAM, SrcAM, Len);
+        return true;
+      }
+    }
+
+    unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32;
+    if (!MCI->getLength()->getType()->isIntegerTy(SizeWidth))
+      return false;
+
+    if (MCI->getSourceAddressSpace() > 255 || MCI->getDestAddressSpace() > 255)
+      return false;
+
+    return lowerCallTo(II, "memcpy", II->getNumArgOperands() - 2);
+  }
+  case Intrinsic::memset: {
+    const MemSetInst *MSI = cast<MemSetInst>(II);
+
+    if (MSI->isVolatile())
+      return false;
+
+    unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32;
+    if (!MSI->getLength()->getType()->isIntegerTy(SizeWidth))
+      return false;
+
+    if (MSI->getDestAddressSpace() > 255)
+      return false;
+
+    return lowerCallTo(II, "memset", II->getNumArgOperands() - 2);
+  }
+  case Intrinsic::stackprotector: {
+    // Emit code to store the stack guard onto the stack.
+    EVT PtrTy = TLI.getPointerTy(DL);
+
+    const Value *Op1 = II->getArgOperand(0); // The guard's value.
+    const AllocaInst *Slot = cast<AllocaInst>(II->getArgOperand(1));
+
+    MFI.setStackProtectorIndex(FuncInfo.StaticAllocaMap[Slot]);
+
+    // Grab the frame index.
+    X86AddressMode AM;
+    if (!X86SelectAddress(Slot, AM)) return false;
+    if (!X86FastEmitStore(PtrTy, Op1, AM)) return false;
+    return true;
+  }
+  case Intrinsic::dbg_declare: {
+    const DbgDeclareInst *DI = cast<DbgDeclareInst>(II);
+    X86AddressMode AM;
+    assert(DI->getAddress() && "Null address should be checked earlier!");
+    if (!X86SelectAddress(DI->getAddress(), AM))
+      return false;
+    const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
+    // FIXME may need to add RegState::Debug to any registers produced,
+    // although ESP/EBP should be the only ones at the moment.
+    assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) &&
+           "Expected inlined-at fields to agree");
+    addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II), AM)
+        .addImm(0)
+        .addMetadata(DI->getVariable())
+        .addMetadata(DI->getExpression());
+    return true;
+  }
+  case Intrinsic::trap: {
+    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TRAP));
+    return true;
+  }
+  case Intrinsic::sqrt: {
+    if (!Subtarget->hasSSE1())
+      return false;
+
+    Type *RetTy = II->getCalledFunction()->getReturnType();
+
+    MVT VT;
+    if (!isTypeLegal(RetTy, VT))
+      return false;
+
+    // Unfortunately we can't use fastEmit_r, because the AVX version of FSQRT
+    // is not generated by FastISel yet.
+    // FIXME: Update this code once tablegen can handle it.
+    static const unsigned SqrtOpc[2][2] = {
+      {X86::SQRTSSr, X86::VSQRTSSr},
+      {X86::SQRTSDr, X86::VSQRTSDr}
+    };
+    bool HasAVX = Subtarget->hasAVX();
+    unsigned Opc;
+    const TargetRegisterClass *RC;
+    switch (VT.SimpleTy) {
+    default: return false;
+    case MVT::f32: Opc = SqrtOpc[0][HasAVX]; RC = &X86::FR32RegClass; break;
+    case MVT::f64: Opc = SqrtOpc[1][HasAVX]; RC = &X86::FR64RegClass; break;
+    }
+
+    const Value *SrcVal = II->getArgOperand(0);
+    unsigned SrcReg = getRegForValue(SrcVal);
+
+    if (SrcReg == 0)
+      return false;
+
+    unsigned ImplicitDefReg = 0;
+    if (HasAVX) {
+      ImplicitDefReg = createResultReg(RC);
+      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+              TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg);
+    }
+
+    unsigned ResultReg = createResultReg(RC);
+    MachineInstrBuilder MIB;
+    MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc),
+                  ResultReg);
+
+    if (ImplicitDefReg)
+      MIB.addReg(ImplicitDefReg);
+
+    MIB.addReg(SrcReg);
+
+    updateValueMap(II, ResultReg);
+    return true;
+  }
+  case Intrinsic::sadd_with_overflow:
+  case Intrinsic::uadd_with_overflow:
+  case Intrinsic::ssub_with_overflow:
+  case Intrinsic::usub_with_overflow:
+  case Intrinsic::smul_with_overflow:
+  case Intrinsic::umul_with_overflow: {
+    // This implements the basic lowering of the xalu with overflow intrinsics
+    // into add/sub/mul followed by either seto or setb.
+    const Function *Callee = II->getCalledFunction();
+    auto *Ty = cast<StructType>(Callee->getReturnType());
+    Type *RetTy = Ty->getTypeAtIndex(0U);
+    Type *CondTy = Ty->getTypeAtIndex(1);
+
+    MVT VT;
+    if (!isTypeLegal(RetTy, VT))
+      return false;
+
+    if (VT < MVT::i8 || VT > MVT::i64)
+      return false;
+
+    const Value *LHS = II->getArgOperand(0);
+    const Value *RHS = II->getArgOperand(1);
+
+    // Canonicalize immediate to the RHS.
+    if (isa<ConstantInt>(LHS) && !isa<ConstantInt>(RHS) &&
+        isCommutativeIntrinsic(II))
+      std::swap(LHS, RHS);
+
+    bool UseIncDec = false;
+    if (isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isOne())
+      UseIncDec = true;
+
+    unsigned BaseOpc, CondOpc;
+    switch (II->getIntrinsicID()) {
+    default: llvm_unreachable("Unexpected intrinsic!");
+    case Intrinsic::sadd_with_overflow:
+      BaseOpc = UseIncDec ? unsigned(X86ISD::INC) : unsigned(ISD::ADD);
+      CondOpc = X86::SETOr;
+      break;
+    case Intrinsic::uadd_with_overflow:
+      BaseOpc = ISD::ADD; CondOpc = X86::SETBr; break;
+    case Intrinsic::ssub_with_overflow:
+      BaseOpc = UseIncDec ? unsigned(X86ISD::DEC) : unsigned(ISD::SUB);
+      CondOpc = X86::SETOr;
+      break;
+    case Intrinsic::usub_with_overflow:
+      BaseOpc = ISD::SUB; CondOpc = X86::SETBr; break;
+    case Intrinsic::smul_with_overflow:
+      BaseOpc = X86ISD::SMUL; CondOpc = X86::SETOr; break;
+    case Intrinsic::umul_with_overflow:
+      BaseOpc = X86ISD::UMUL; CondOpc = X86::SETOr; break;
+    }
+
+    unsigned LHSReg = getRegForValue(LHS);
+    if (LHSReg == 0)
+      return false;
+    bool LHSIsKill = hasTrivialKill(LHS);
+
+    unsigned ResultReg = 0;
+    // Check if we have an immediate version.
+    if (const auto *CI = dyn_cast<ConstantInt>(RHS)) {
+      static const unsigned Opc[2][4] = {
+        { X86::INC8r, X86::INC16r, X86::INC32r, X86::INC64r },
+        { X86::DEC8r, X86::DEC16r, X86::DEC32r, X86::DEC64r }
+      };
+
+      if (BaseOpc == X86ISD::INC || BaseOpc == X86ISD::DEC) {
+        ResultReg = createResultReg(TLI.getRegClassFor(VT));
+        bool IsDec = BaseOpc == X86ISD::DEC;
+        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+                TII.get(Opc[IsDec][VT.SimpleTy-MVT::i8]), ResultReg)
+          .addReg(LHSReg, getKillRegState(LHSIsKill));
+      } else
+        ResultReg = fastEmit_ri(VT, VT, BaseOpc, LHSReg, LHSIsKill,
+                                CI->getZExtValue());
+    }
+
+    unsigned RHSReg;
+    bool RHSIsKill;
+    if (!ResultReg) {
+      RHSReg = getRegForValue(RHS);
+      if (RHSReg == 0)
+        return false;
+      RHSIsKill = hasTrivialKill(RHS);
+      ResultReg = fastEmit_rr(VT, VT, BaseOpc, LHSReg, LHSIsKill, RHSReg,
+                              RHSIsKill);
+    }
+
+    // FastISel doesn't have a pattern for all X86::MUL*r and X86::IMUL*r. Emit
+    // it manually.
+    if (BaseOpc == X86ISD::UMUL && !ResultReg) {
+      static const unsigned MULOpc[] =
+        { X86::MUL8r, X86::MUL16r, X86::MUL32r, X86::MUL64r };
+      static const unsigned Reg[] = { X86::AL, X86::AX, X86::EAX, X86::RAX };
+      // First copy the first operand into RAX, which is an implicit input to
+      // the X86::MUL*r instruction.
+      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+              TII.get(TargetOpcode::COPY), Reg[VT.SimpleTy-MVT::i8])
+        .addReg(LHSReg, getKillRegState(LHSIsKill));
+      ResultReg = fastEmitInst_r(MULOpc[VT.SimpleTy-MVT::i8],
+                                 TLI.getRegClassFor(VT), RHSReg, RHSIsKill);
+    } else if (BaseOpc == X86ISD::SMUL && !ResultReg) {
+      static const unsigned MULOpc[] =
+        { X86::IMUL8r, X86::IMUL16rr, X86::IMUL32rr, X86::IMUL64rr };
+      if (VT == MVT::i8) {
+        // Copy the first operand into AL, which is an implicit input to the
+        // X86::IMUL8r instruction.
+        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+               TII.get(TargetOpcode::COPY), X86::AL)
+          .addReg(LHSReg, getKillRegState(LHSIsKill));
+        ResultReg = fastEmitInst_r(MULOpc[0], TLI.getRegClassFor(VT), RHSReg,
+                                   RHSIsKill);
+      } else
+        ResultReg = fastEmitInst_rr(MULOpc[VT.SimpleTy-MVT::i8],
+                                    TLI.getRegClassFor(VT), LHSReg, LHSIsKill,
+                                    RHSReg, RHSIsKill);
+    }
+
+    if (!ResultReg)
+      return false;
+
+    unsigned ResultReg2 = FuncInfo.CreateRegs(CondTy);
+    assert((ResultReg+1) == ResultReg2 && "Nonconsecutive result registers.");
+    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CondOpc),
+            ResultReg2);
+
+    updateValueMap(II, ResultReg, 2);
+    return true;
+  }
+  case Intrinsic::x86_sse_cvttss2si:
+  case Intrinsic::x86_sse_cvttss2si64:
+  case Intrinsic::x86_sse2_cvttsd2si:
+  case Intrinsic::x86_sse2_cvttsd2si64: {
+    bool IsInputDouble;
+    switch (II->getIntrinsicID()) {
+    default: llvm_unreachable("Unexpected intrinsic.");
+    case Intrinsic::x86_sse_cvttss2si:
+    case Intrinsic::x86_sse_cvttss2si64:
+      if (!Subtarget->hasSSE1())
+        return false;
+      IsInputDouble = false;
+      break;
+    case Intrinsic::x86_sse2_cvttsd2si:
+    case Intrinsic::x86_sse2_cvttsd2si64:
+      if (!Subtarget->hasSSE2())
+        return false;
+      IsInputDouble = true;
+      break;
+    }
+
+    Type *RetTy = II->getCalledFunction()->getReturnType();
+    MVT VT;
+    if (!isTypeLegal(RetTy, VT))
+      return false;
+
+    static const unsigned CvtOpc[2][2][2] = {
+      { { X86::CVTTSS2SIrr,   X86::VCVTTSS2SIrr   },
+        { X86::CVTTSS2SI64rr, X86::VCVTTSS2SI64rr }  },
+      { { X86::CVTTSD2SIrr,   X86::VCVTTSD2SIrr   },
+        { X86::CVTTSD2SI64rr, X86::VCVTTSD2SI64rr }  }
+    };
+    bool HasAVX = Subtarget->hasAVX();
+    unsigned Opc;
+    switch (VT.SimpleTy) {
+    default: llvm_unreachable("Unexpected result type.");
+    case MVT::i32: Opc = CvtOpc[IsInputDouble][0][HasAVX]; break;
+    case MVT::i64: Opc = CvtOpc[IsInputDouble][1][HasAVX]; break;
+    }
+
+    // Check if we can fold insertelement instructions into the convert.
+    const Value *Op = II->getArgOperand(0);
+    while (auto *IE = dyn_cast<InsertElementInst>(Op)) {
+      const Value *Index = IE->getOperand(2);
+      if (!isa<ConstantInt>(Index))
+        break;
+      unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
+
+      if (Idx == 0) {
+        Op = IE->getOperand(1);
+        break;
+      }
+      Op = IE->getOperand(0);
+    }
+
+    unsigned Reg = getRegForValue(Op);
+    if (Reg == 0)
+      return false;
+
+    unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
+    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
+      .addReg(Reg);
+
+    updateValueMap(II, ResultReg);
+    return true;
+  }
+  }
+}
+
+bool X86FastISel::fastLowerArguments() {
+  if (!FuncInfo.CanLowerReturn)
+    return false;
+
+  const Function *F = FuncInfo.Fn;
+  if (F->isVarArg())
+    return false;
+
+  CallingConv::ID CC = F->getCallingConv();
+  if (CC != CallingConv::C)
+    return false;
+
+  if (Subtarget->isCallingConvWin64(CC))
+    return false;
+
+  if (!Subtarget->is64Bit())
+    return false;
+
+  // Only handle simple cases. i.e. Up to 6 i32/i64 scalar arguments.
+  unsigned GPRCnt = 0;
+  unsigned FPRCnt = 0;
+  unsigned Idx = 0;
+  for (auto const &Arg : F->args()) {
+    // The first argument is at index 1.
+    ++Idx;
+    if (F->getAttributes().hasAttribute(Idx, Attribute::ByVal) ||
+        F->getAttributes().hasAttribute(Idx, Attribute::InReg) ||
+        F->getAttributes().hasAttribute(Idx, Attribute::StructRet) ||
+        F->getAttributes().hasAttribute(Idx, Attribute::Nest))
+      return false;
+
+    Type *ArgTy = Arg.getType();
+    if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy())
+      return false;
+
+    EVT ArgVT = TLI.getValueType(DL, ArgTy);
+    if (!ArgVT.isSimple()) return false;
+    switch (ArgVT.getSimpleVT().SimpleTy) {
+    default: return false;
+    case MVT::i32:
+    case MVT::i64:
+      ++GPRCnt;
+      break;
+    case MVT::f32:
+    case MVT::f64:
+      if (!Subtarget->hasSSE1())
+        return false;
+      ++FPRCnt;
+      break;
+    }
+
+    if (GPRCnt > 6)
+      return false;
+
+    if (FPRCnt > 8)
+      return false;
+  }
+
+  static const MCPhysReg GPR32ArgRegs[] = {
+    X86::EDI, X86::ESI, X86::EDX, X86::ECX, X86::R8D, X86::R9D
+  };
+  static const MCPhysReg GPR64ArgRegs[] = {
+    X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8 , X86::R9
+  };
+  static const MCPhysReg XMMArgRegs[] = {
+    X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
+    X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
+  };
+
+  unsigned GPRIdx = 0;
+  unsigned FPRIdx = 0;
+  for (auto const &Arg : F->args()) {
+    MVT VT = TLI.getSimpleValueType(DL, Arg.getType());
+    const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
+    unsigned SrcReg;
+    switch (VT.SimpleTy) {
+    default: llvm_unreachable("Unexpected value type.");
+    case MVT::i32: SrcReg = GPR32ArgRegs[GPRIdx++]; break;
+    case MVT::i64: SrcReg = GPR64ArgRegs[GPRIdx++]; break;
+    case MVT::f32: // fall-through
+    case MVT::f64: SrcReg = XMMArgRegs[FPRIdx++]; break;
+    }
+    unsigned DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC);
+    // FIXME: Unfortunately it's necessary to emit a copy from the livein copy.
+    // Without this, EmitLiveInCopies may eliminate the livein if its only
+    // use is a bitcast (which isn't turned into an instruction).
+    unsigned ResultReg = createResultReg(RC);
+    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+            TII.get(TargetOpcode::COPY), ResultReg)
+      .addReg(DstReg, getKillRegState(true));
+    updateValueMap(&Arg, ResultReg);
+  }
+  return true;
+}
+
+static unsigned computeBytesPoppedByCallee(const X86Subtarget *Subtarget,
+                                           CallingConv::ID CC,
+                                           ImmutableCallSite *CS) {
+  if (Subtarget->is64Bit())
+    return 0;
+  if (Subtarget->getTargetTriple().isOSMSVCRT())
+    return 0;
+  if (CC == CallingConv::Fast || CC == CallingConv::GHC ||
+      CC == CallingConv::HiPE)
+    return 0;
+  if (CS && !CS->paramHasAttr(1, Attribute::StructRet))
+    return 0;
+  if (CS && CS->paramHasAttr(1, Attribute::InReg))
+    return 0;
+  return 4;
+}
+
+bool X86FastISel::fastLowerCall(CallLoweringInfo &CLI) {
+  auto &OutVals       = CLI.OutVals;
+  auto &OutFlags      = CLI.OutFlags;
+  auto &OutRegs       = CLI.OutRegs;
+  auto &Ins           = CLI.Ins;
+  auto &InRegs        = CLI.InRegs;
+  CallingConv::ID CC  = CLI.CallConv;
+  bool &IsTailCall    = CLI.IsTailCall;
+  bool IsVarArg       = CLI.IsVarArg;
+  const Value *Callee = CLI.Callee;
+  MCSymbol *Symbol = CLI.Symbol;
+
+  bool Is64Bit        = Subtarget->is64Bit();
+  bool IsWin64        = Subtarget->isCallingConvWin64(CC);
+
+  // Handle only C, fastcc, and webkit_js calling conventions for now.
+  switch (CC) {
+  default: return false;
+  case CallingConv::C:
+  case CallingConv::Fast:
+  case CallingConv::WebKit_JS:
+  case CallingConv::X86_FastCall:
+  case CallingConv::X86_64_Win64:
+  case CallingConv::X86_64_SysV:
+    break;
+  }
+
+  // Allow SelectionDAG isel to handle tail calls.
+  if (IsTailCall)
+    return false;
+
+  // fastcc with -tailcallopt is intended to provide a guaranteed
+  // tail call optimization. Fastisel doesn't know how to do that.
+  if (CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt)
+    return false;
+
+  // Don't know how to handle Win64 varargs yet.  Nothing special needed for
+  // x86-32. Special handling for x86-64 is implemented.
+  if (IsVarArg && IsWin64)
+    return false;
+
+  // Don't know about inalloca yet.
+  if (CLI.CS && CLI.CS->hasInAllocaArgument())
+    return false;
+
+  // Fast-isel doesn't know about callee-pop yet.
+  if (X86::isCalleePop(CC, Subtarget->is64Bit(), IsVarArg,
+                       TM.Options.GuaranteedTailCallOpt))
+    return false;
+
+  SmallVector<MVT, 16> OutVTs;
+  SmallVector<unsigned, 16> ArgRegs;
+
+  // If this is a constant i1/i8/i16 argument, promote to i32 to avoid an extra
+  // instruction. This is safe because it is common to all FastISel supported
+  // calling conventions on x86.
+  for (int i = 0, e = OutVals.size(); i != e; ++i) {
+    Value *&Val = OutVals[i];
+    ISD::ArgFlagsTy Flags = OutFlags[i];
+    if (auto *CI = dyn_cast<ConstantInt>(Val)) {
+      if (CI->getBitWidth() < 32) {
+        if (Flags.isSExt())
+          Val = ConstantExpr::getSExt(CI, Type::getInt32Ty(CI->getContext()));
+        else
+          Val = ConstantExpr::getZExt(CI, Type::getInt32Ty(CI->getContext()));
+      }
+    }
+
+    // Passing bools around ends up doing a trunc to i1 and passing it.
+    // Codegen this as an argument + "and 1".
+    MVT VT;
+    auto *TI = dyn_cast<TruncInst>(Val);
+    unsigned ResultReg;
+    if (TI && TI->getType()->isIntegerTy(1) && CLI.CS &&
+              (TI->getParent() == CLI.CS->getInstruction()->getParent()) &&
+              TI->hasOneUse()) {
+      Value *PrevVal = TI->getOperand(0);
+      ResultReg = getRegForValue(PrevVal);
+
+      if (!ResultReg)
+        return false;
+
+      if (!isTypeLegal(PrevVal->getType(), VT))
+        return false;
+
+      ResultReg =
+        fastEmit_ri(VT, VT, ISD::AND, ResultReg, hasTrivialKill(PrevVal), 1);
+    } else {
+      if (!isTypeLegal(Val->getType(), VT))
+        return false;
+      ResultReg = getRegForValue(Val);
+    }
+
+    if (!ResultReg)
+      return false;
+
+    ArgRegs.push_back(ResultReg);
+    OutVTs.push_back(VT);
+  }
+
+  // Analyze operands of the call, assigning locations to each operand.
+  SmallVector<CCValAssign, 16> ArgLocs;
+  CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, ArgLocs, CLI.RetTy->getContext());
+
+  // Allocate shadow area for Win64
+  if (IsWin64)
+    CCInfo.AllocateStack(32, 8);
+
+  CCInfo.AnalyzeCallOperands(OutVTs, OutFlags, CC_X86);
+
+  // Get a count of how many bytes are to be pushed on the stack.
+  unsigned NumBytes = CCInfo.getAlignedCallFrameSize();
+
+  // Issue CALLSEQ_START
+  unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
+  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown))
+    .addImm(NumBytes).addImm(0);
+
+  // Walk the register/memloc assignments, inserting copies/loads.
+  const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
+  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
+    CCValAssign const &VA = ArgLocs[i];
+    const Value *ArgVal = OutVals[VA.getValNo()];
+    MVT ArgVT = OutVTs[VA.getValNo()];
+
+    if (ArgVT == MVT::x86mmx)
+      return false;
+
+    unsigned ArgReg = ArgRegs[VA.getValNo()];
+
+    // Promote the value if needed.
+    switch (VA.getLocInfo()) {
+    case CCValAssign::Full: break;
+    case CCValAssign::SExt: {
+      assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
+             "Unexpected extend");
+      bool Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), ArgReg,
+                                       ArgVT, ArgReg);
+      assert(Emitted && "Failed to emit a sext!"); (void)Emitted;
+      ArgVT = VA.getLocVT();
+      break;
+    }
+    case CCValAssign::ZExt: {
+      assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
+             "Unexpected extend");
+      bool Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), ArgReg,
+                                       ArgVT, ArgReg);
+      assert(Emitted && "Failed to emit a zext!"); (void)Emitted;
+      ArgVT = VA.getLocVT();
+      break;
+    }
+    case CCValAssign::AExt: {
+      assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
+             "Unexpected extend");
+      bool Emitted = X86FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(), ArgReg,
+                                       ArgVT, ArgReg);
+      if (!Emitted)
+        Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), ArgReg,
+                                    ArgVT, ArgReg);
+      if (!Emitted)
+        Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), ArgReg,
+                                    ArgVT, ArgReg);
+
+      assert(Emitted && "Failed to emit a aext!"); (void)Emitted;
+      ArgVT = VA.getLocVT();
+      break;
+    }
+    case CCValAssign::BCvt: {
+      ArgReg = fastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, ArgReg,
+                          /*TODO: Kill=*/false);
+      assert(ArgReg && "Failed to emit a bitcast!");
+      ArgVT = VA.getLocVT();
+      break;
+    }
+    case CCValAssign::VExt:
+      // VExt has not been implemented, so this should be impossible to reach
+      // for now.  However, fallback to Selection DAG isel once implemented.
+      return false;
+    case CCValAssign::AExtUpper:
+    case CCValAssign::SExtUpper:
+    case CCValAssign::ZExtUpper:
+    case CCValAssign::FPExt:
+      llvm_unreachable("Unexpected loc info!");
+    case CCValAssign::Indirect:
+      // FIXME: Indirect doesn't need extending, but fast-isel doesn't fully
+      // support this.
+      return false;
+    }
+
+    if (VA.isRegLoc()) {
+      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+              TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(ArgReg);
+      OutRegs.push_back(VA.getLocReg());
+    } else {
+      assert(VA.isMemLoc());
+
+      // Don't emit stores for undef values.
+      if (isa<UndefValue>(ArgVal))
+        continue;
+
+      unsigned LocMemOffset = VA.getLocMemOffset();
+      X86AddressMode AM;
+      AM.Base.Reg = RegInfo->getStackRegister();
+      AM.Disp = LocMemOffset;
+      ISD::ArgFlagsTy Flags = OutFlags[VA.getValNo()];
+      unsigned Alignment = DL.getABITypeAlignment(ArgVal->getType());
+      MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
+          MachinePointerInfo::getStack(*FuncInfo.MF, LocMemOffset),
+          MachineMemOperand::MOStore, ArgVT.getStoreSize(), Alignment);
+      if (Flags.isByVal()) {
+        X86AddressMode SrcAM;
+        SrcAM.Base.Reg = ArgReg;
+        if (!TryEmitSmallMemcpy(AM, SrcAM, Flags.getByValSize()))
+          return false;
+      } else if (isa<ConstantInt>(ArgVal) || isa<ConstantPointerNull>(ArgVal)) {
+        // If this is a really simple value, emit this with the Value* version
+        // of X86FastEmitStore.  If it isn't simple, we don't want to do this,
+        // as it can cause us to reevaluate the argument.
+        if (!X86FastEmitStore(ArgVT, ArgVal, AM, MMO))
+          return false;
+      } else {
+        bool ValIsKill = hasTrivialKill(ArgVal);
+        if (!X86FastEmitStore(ArgVT, ArgReg, ValIsKill, AM, MMO))
+          return false;
+      }
+    }
+  }
+
+  // ELF / PIC requires GOT in the EBX register before function calls via PLT
+  // GOT pointer.
+  if (Subtarget->isPICStyleGOT()) {
+    unsigned Base = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
+    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+            TII.get(TargetOpcode::COPY), X86::EBX).addReg(Base);
+  }
+
+  if (Is64Bit && IsVarArg && !IsWin64) {
+    // From AMD64 ABI document:
+    // For calls that may call functions that use varargs or stdargs
+    // (prototype-less calls or calls to functions containing ellipsis (...) in
+    // the declaration) %al is used as hidden argument to specify the number
+    // of SSE registers used. The contents of %al do not need to match exactly
+    // the number of registers, but must be an ubound on the number of SSE
+    // registers used and is in the range 0 - 8 inclusive.
+
+    // Count the number of XMM registers allocated.
+    static const MCPhysReg XMMArgRegs[] = {
+      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
+      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
+    };
+    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs);
+    assert((Subtarget->hasSSE1() || !NumXMMRegs)
+           && "SSE registers cannot be used when SSE is disabled");
+    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV8ri),
+            X86::AL).addImm(NumXMMRegs);
+  }
+
+  // Materialize callee address in a register. FIXME: GV address can be
+  // handled with a CALLpcrel32 instead.
+  X86AddressMode CalleeAM;
+  if (!X86SelectCallAddress(Callee, CalleeAM))
+    return false;
+
+  unsigned CalleeOp = 0;
+  const GlobalValue *GV = nullptr;
+  if (CalleeAM.GV != nullptr) {
+    GV = CalleeAM.GV;
+  } else if (CalleeAM.Base.Reg != 0) {
+    CalleeOp = CalleeAM.Base.Reg;
+  } else
+    return false;
+
+  // Issue the call.
+  MachineInstrBuilder MIB;
+  if (CalleeOp) {
+    // Register-indirect call.
+    unsigned CallOpc = Is64Bit ? X86::CALL64r : X86::CALL32r;
+    MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CallOpc))
+      .addReg(CalleeOp);
+  } else {
+    // Direct call.
+    assert(GV && "Not a direct call");
+    unsigned CallOpc = Is64Bit ? X86::CALL64pcrel32 : X86::CALLpcrel32;
+
+    // See if we need any target-specific flags on the GV operand.
+    unsigned char OpFlags = 0;
+
+    // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
+    // external symbols most go through the PLT in PIC mode.  If the symbol
+    // has hidden or protected visibility, or if it is static or local, then
+    // we don't need to use the PLT - we can directly call it.
+    if (Subtarget->isTargetELF() &&
+        TM.getRelocationModel() == Reloc::PIC_ &&
+        GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
+      OpFlags = X86II::MO_PLT;
+    } else if (Subtarget->isPICStyleStubAny() &&
+               !GV->isStrongDefinitionForLinker() &&
+               (!Subtarget->getTargetTriple().isMacOSX() ||
+                Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
+      // PC-relative references to external symbols should go through $stub,
+      // unless we're building with the leopard linker or later, which
+      // automatically synthesizes these stubs.
+      OpFlags = X86II::MO_DARWIN_STUB;
+    }
+
+    MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CallOpc));
+    if (Symbol)
+      MIB.addSym(Symbol, OpFlags);
+    else
+      MIB.addGlobalAddress(GV, 0, OpFlags);
+  }
+
+  // Add a register mask operand representing the call-preserved registers.
+  // Proper defs for return values will be added by setPhysRegsDeadExcept().
+  MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));
+
+  // Add an implicit use GOT pointer in EBX.
+  if (Subtarget->isPICStyleGOT())
+    MIB.addReg(X86::EBX, RegState::Implicit);
+
+  if (Is64Bit && IsVarArg && !IsWin64)
+    MIB.addReg(X86::AL, RegState::Implicit);
+
+  // Add implicit physical register uses to the call.
+  for (auto Reg : OutRegs)
+    MIB.addReg(Reg, RegState::Implicit);
+
+  // Issue CALLSEQ_END
+  unsigned NumBytesForCalleeToPop =
+    computeBytesPoppedByCallee(Subtarget, CC, CLI.CS);
+  unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
+  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp))
+    .addImm(NumBytes).addImm(NumBytesForCalleeToPop);
+
+  // Now handle call return values.
+  SmallVector<CCValAssign, 16> RVLocs;
+  CCState CCRetInfo(CC, IsVarArg, *FuncInfo.MF, RVLocs,
+                    CLI.RetTy->getContext());
+  CCRetInfo.AnalyzeCallResult(Ins, RetCC_X86);
+
+  // Copy all of the result registers out of their specified physreg.
+  unsigned ResultReg = FuncInfo.CreateRegs(CLI.RetTy);
+  for (unsigned i = 0; i != RVLocs.size(); ++i) {
+    CCValAssign &VA = RVLocs[i];
+    EVT CopyVT = VA.getValVT();
+    unsigned CopyReg = ResultReg + i;
+
+    // If this is x86-64, and we disabled SSE, we can't return FP values
+    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
+        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
+      report_fatal_error("SSE register return with SSE disabled");
+    }
+
+    // If we prefer to use the value in xmm registers, copy it out as f80 and
+    // use a truncate to move it from fp stack reg to xmm reg.
+    if ((VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1) &&
+        isScalarFPTypeInSSEReg(VA.getValVT())) {
+      CopyVT = MVT::f80;
+      CopyReg = createResultReg(&X86::RFP80RegClass);
+    }
+
+    // Copy out the result.
+    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+            TII.get(TargetOpcode::COPY), CopyReg).addReg(VA.getLocReg());
+    InRegs.push_back(VA.getLocReg());
+
+    // Round the f80 to the right size, which also moves it to the appropriate
+    // xmm register. This is accomplished by storing the f80 value in memory
+    // and then loading it back.
+    if (CopyVT != VA.getValVT()) {
+      EVT ResVT = VA.getValVT();
+      unsigned Opc = ResVT == MVT::f32 ? X86::ST_Fp80m32 : X86::ST_Fp80m64;
+      unsigned MemSize = ResVT.getSizeInBits()/8;
+      int FI = MFI.CreateStackObject(MemSize, MemSize, false);
+      addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+                                TII.get(Opc)), FI)
+        .addReg(CopyReg);
+      Opc = ResVT == MVT::f32 ? X86::MOVSSrm : X86::MOVSDrm;
+      addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+                                TII.get(Opc), ResultReg + i), FI);
+    }
+  }
+
+  CLI.ResultReg = ResultReg;
+  CLI.NumResultRegs = RVLocs.size();
+  CLI.Call = MIB;
+
+  return true;
+}
+
+bool
+X86FastISel::fastSelectInstruction(const Instruction *I)  {
+  switch (I->getOpcode()) {
+  default: break;
+  case Instruction::Load:
+    return X86SelectLoad(I);
+  case Instruction::Store:
+    return X86SelectStore(I);
+  case Instruction::Ret:
+    return X86SelectRet(I);
+  case Instruction::ICmp:
+  case Instruction::FCmp:
+    return X86SelectCmp(I);
+  case Instruction::ZExt:
+    return X86SelectZExt(I);
+  case Instruction::Br:
+    return X86SelectBranch(I);
+  case Instruction::LShr:
+  case Instruction::AShr:
+  case Instruction::Shl:
+    return X86SelectShift(I);
+  case Instruction::SDiv:
+  case Instruction::UDiv:
+  case Instruction::SRem:
+  case Instruction::URem:
+    return X86SelectDivRem(I);
+  case Instruction::Select:
+    return X86SelectSelect(I);
+  case Instruction::Trunc:
+    return X86SelectTrunc(I);
+  case Instruction::FPExt:
+    return X86SelectFPExt(I);
+  case Instruction::FPTrunc:
+    return X86SelectFPTrunc(I);
+  case Instruction::SIToFP:
+    return X86SelectSIToFP(I);
+  case Instruction::IntToPtr: // Deliberate fall-through.
+  case Instruction::PtrToInt: {
+    EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
+    EVT DstVT = TLI.getValueType(DL, I->getType());
+    if (DstVT.bitsGT(SrcVT))
+      return X86SelectZExt(I);
+    if (DstVT.bitsLT(SrcVT))
+      return X86SelectTrunc(I);
+    unsigned Reg = getRegForValue(I->getOperand(0));
+    if (Reg == 0) return false;
+    updateValueMap(I, Reg);
+    return true;
+  }
+  case Instruction::BitCast: {
+    // Select SSE2/AVX bitcasts between 128/256 bit vector types.
+    if (!Subtarget->hasSSE2())
+      return false;
+
+    EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
+    EVT DstVT = TLI.getValueType(DL, I->getType());
+
+    if (!SrcVT.isSimple() || !DstVT.isSimple())
+      return false;
+
+    if (!SrcVT.is128BitVector() &&
+        !(Subtarget->hasAVX() && SrcVT.is256BitVector()))
+      return false;
+
+    unsigned Reg = getRegForValue(I->getOperand(0));
+    if (Reg == 0)
+      return false;
+      
+    // No instruction is needed for conversion. Reuse the register used by
+    // the fist operand.
+    updateValueMap(I, Reg);
+    return true;
+  }
+  }
+
+  return false;
+}
+
+unsigned X86FastISel::X86MaterializeInt(const ConstantInt *CI, MVT VT) {
+  if (VT > MVT::i64)
+    return 0;
+
+  uint64_t Imm = CI->getZExtValue();
+  if (Imm == 0) {
+    unsigned SrcReg = fastEmitInst_(X86::MOV32r0, &X86::GR32RegClass);
+    switch (VT.SimpleTy) {
+    default: llvm_unreachable("Unexpected value type");
+    case MVT::i1:
+    case MVT::i8:
+      return fastEmitInst_extractsubreg(MVT::i8, SrcReg, /*Kill=*/true,
+                                        X86::sub_8bit);
+    case MVT::i16:
+      return fastEmitInst_extractsubreg(MVT::i16, SrcReg, /*Kill=*/true,
+                                        X86::sub_16bit);
+    case MVT::i32:
+      return SrcReg;
+    case MVT::i64: {
+      unsigned ResultReg = createResultReg(&X86::GR64RegClass);
+      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+              TII.get(TargetOpcode::SUBREG_TO_REG), ResultReg)
+        .addImm(0).addReg(SrcReg).addImm(X86::sub_32bit);
+      return ResultReg;
+    }
+    }
+  }
+
+  unsigned Opc = 0;
+  switch (VT.SimpleTy) {
+  default: llvm_unreachable("Unexpected value type");
+  case MVT::i1:  VT = MVT::i8; // fall-through
+  case MVT::i8:  Opc = X86::MOV8ri;  break;
+  case MVT::i16: Opc = X86::MOV16ri; break;
+  case MVT::i32: Opc = X86::MOV32ri; break;
+  case MVT::i64: {
+    if (isUInt<32>(Imm))
+      Opc = X86::MOV32ri;
+    else if (isInt<32>(Imm))
+      Opc = X86::MOV64ri32;
+    else
+      Opc = X86::MOV64ri;
+    break;
+  }
+  }
+  if (VT == MVT::i64 && Opc == X86::MOV32ri) {
+    unsigned SrcReg = fastEmitInst_i(Opc, &X86::GR32RegClass, Imm);
+    unsigned ResultReg = createResultReg(&X86::GR64RegClass);
+    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+            TII.get(TargetOpcode::SUBREG_TO_REG), ResultReg)
+      .addImm(0).addReg(SrcReg).addImm(X86::sub_32bit);
+    return ResultReg;
+  }
+  return fastEmitInst_i(Opc, TLI.getRegClassFor(VT), Imm);
+}
+
+unsigned X86FastISel::X86MaterializeFP(const ConstantFP *CFP, MVT VT) {
+  if (CFP->isNullValue())
+    return fastMaterializeFloatZero(CFP);
+
+  // Can't handle alternate code models yet.
+  CodeModel::Model CM = TM.getCodeModel();
+  if (CM != CodeModel::Small && CM != CodeModel::Large)
+    return 0;
+
+  // Get opcode and regclass of the output for the given load instruction.
+  unsigned Opc = 0;
+  const TargetRegisterClass *RC = nullptr;
+  switch (VT.SimpleTy) {
+  default: return 0;
+  case MVT::f32:
+    if (X86ScalarSSEf32) {
+      Opc = Subtarget->hasAVX() ? X86::VMOVSSrm : X86::MOVSSrm;
+      RC  = &X86::FR32RegClass;
+    } else {
+      Opc = X86::LD_Fp32m;
+      RC  = &X86::RFP32RegClass;
+    }
+    break;
+  case MVT::f64:
+    if (X86ScalarSSEf64) {
+      Opc = Subtarget->hasAVX() ? X86::VMOVSDrm : X86::MOVSDrm;
+      RC  = &X86::FR64RegClass;
+    } else {
+      Opc = X86::LD_Fp64m;
+      RC  = &X86::RFP64RegClass;
+    }
+    break;
+  case MVT::f80:
+    // No f80 support yet.
+    return 0;
+  }
+
+  // MachineConstantPool wants an explicit alignment.
+  unsigned Align = DL.getPrefTypeAlignment(CFP->getType());
+  if (Align == 0) {
+    // Alignment of vector types. FIXME!
+    Align = DL.getTypeAllocSize(CFP->getType());
+  }
+
+  // x86-32 PIC requires a PIC base register for constant pools.
+  unsigned PICBase = 0;
+  unsigned char OpFlag = 0;
+  if (Subtarget->isPICStyleStubPIC()) { // Not dynamic-no-pic
+    OpFlag = X86II::MO_PIC_BASE_OFFSET;
+    PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
+  } else if (Subtarget->isPICStyleGOT()) {
+    OpFlag = X86II::MO_GOTOFF;
+    PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
+  } else if (Subtarget->isPICStyleRIPRel() &&
+             TM.getCodeModel() == CodeModel::Small) {
+    PICBase = X86::RIP;
+  }
+
+  // Create the load from the constant pool.
+  unsigned CPI = MCP.getConstantPoolIndex(CFP, Align);
+  unsigned ResultReg = createResultReg(RC);
+
+  if (CM == CodeModel::Large) {
+    unsigned AddrReg = createResultReg(&X86::GR64RegClass);
+    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV64ri),
+            AddrReg)
+      .addConstantPoolIndex(CPI, 0, OpFlag);
+    MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+                                      TII.get(Opc), ResultReg);
+    addDirectMem(MIB, AddrReg);
+    MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
+        MachinePointerInfo::getConstantPool(*FuncInfo.MF),
+        MachineMemOperand::MOLoad, DL.getPointerSize(), Align);
+    MIB->addMemOperand(*FuncInfo.MF, MMO);
+    return ResultReg;
+  }
+
+  addConstantPoolReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+                                   TII.get(Opc), ResultReg),
+                           CPI, PICBase, OpFlag);
+  return ResultReg;
+}
+
+unsigned X86FastISel::X86MaterializeGV(const GlobalValue *GV, MVT VT) {
+  // Can't handle alternate code models yet.
+  if (TM.getCodeModel() != CodeModel::Small)
+    return 0;
+
+  // Materialize addresses with LEA/MOV instructions.
+  X86AddressMode AM;
+  if (X86SelectAddress(GV, AM)) {
+    // If the expression is just a basereg, then we're done, otherwise we need
+    // to emit an LEA.
+    if (AM.BaseType == X86AddressMode::RegBase &&
+        AM.IndexReg == 0 && AM.Disp == 0 && AM.GV == nullptr)
+      return AM.Base.Reg;
+
+    unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
+    if (TM.getRelocationModel() == Reloc::Static &&
+        TLI.getPointerTy(DL) == MVT::i64) {
+      // The displacement code could be more than 32 bits away so we need to use
+      // an instruction with a 64 bit immediate
+      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV64ri),
+              ResultReg)
+        .addGlobalAddress(GV);
+    } else {
+      unsigned Opc =
+          TLI.getPointerTy(DL) == MVT::i32
+              ? (Subtarget->isTarget64BitILP32() ? X86::LEA64_32r : X86::LEA32r)
+              : X86::LEA64r;
+      addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+                             TII.get(Opc), ResultReg), AM);
+    }
+    return ResultReg;
+  }
+  return 0;
+}
+
+unsigned X86FastISel::fastMaterializeConstant(const Constant *C) {
+  EVT CEVT = TLI.getValueType(DL, C->getType(), true);
+
+  // Only handle simple types.
+  if (!CEVT.isSimple())
+    return 0;
+  MVT VT = CEVT.getSimpleVT();
+
+  if (const auto *CI = dyn_cast<ConstantInt>(C))
+    return X86MaterializeInt(CI, VT);
+  else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
+    return X86MaterializeFP(CFP, VT);
+  else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
+    return X86MaterializeGV(GV, VT);
+
+  return 0;
+}
+
+unsigned X86FastISel::fastMaterializeAlloca(const AllocaInst *C) {
+  // Fail on dynamic allocas. At this point, getRegForValue has already
+  // checked its CSE maps, so if we're here trying to handle a dynamic
+  // alloca, we're not going to succeed. X86SelectAddress has a
+  // check for dynamic allocas, because it's called directly from
+  // various places, but targetMaterializeAlloca also needs a check
+  // in order to avoid recursion between getRegForValue,
+  // X86SelectAddrss, and targetMaterializeAlloca.
+  if (!FuncInfo.StaticAllocaMap.count(C))
+    return 0;
+  assert(C->isStaticAlloca() && "dynamic alloca in the static alloca map?");
+
+  X86AddressMode AM;
+  if (!X86SelectAddress(C, AM))
+    return 0;
+  unsigned Opc =
+      TLI.getPointerTy(DL) == MVT::i32
+          ? (Subtarget->isTarget64BitILP32() ? X86::LEA64_32r : X86::LEA32r)
+          : X86::LEA64r;
+  const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy(DL));
+  unsigned ResultReg = createResultReg(RC);
+  addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+                         TII.get(Opc), ResultReg), AM);
+  return ResultReg;
+}
+
+unsigned X86FastISel::fastMaterializeFloatZero(const ConstantFP *CF) {
+  MVT VT;
+  if (!isTypeLegal(CF->getType(), VT))
+    return 0;
+
+  // Get opcode and regclass for the given zero.
+  unsigned Opc = 0;
+  const TargetRegisterClass *RC = nullptr;
+  switch (VT.SimpleTy) {
+  default: return 0;
+  case MVT::f32:
+    if (X86ScalarSSEf32) {
+      Opc = X86::FsFLD0SS;
+      RC  = &X86::FR32RegClass;
+    } else {
+      Opc = X86::LD_Fp032;
+      RC  = &X86::RFP32RegClass;
+    }
+    break;
+  case MVT::f64:
+    if (X86ScalarSSEf64) {
+      Opc = X86::FsFLD0SD;
+      RC  = &X86::FR64RegClass;
+    } else {
+      Opc = X86::LD_Fp064;
+      RC  = &X86::RFP64RegClass;
+    }
+    break;
+  case MVT::f80:
+    // No f80 support yet.
+    return 0;
+  }
+
+  unsigned ResultReg = createResultReg(RC);
+  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg);
+  return ResultReg;
+}
+
+
+bool X86FastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
+                                      const LoadInst *LI) {
+  const Value *Ptr = LI->getPointerOperand();
+  X86AddressMode AM;
+  if (!X86SelectAddress(Ptr, AM))
+    return false;
+
+  const X86InstrInfo &XII = (const X86InstrInfo &)TII;
+
+  unsigned Size = DL.getTypeAllocSize(LI->getType());
+  unsigned Alignment = LI->getAlignment();
+
+  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
+    Alignment = DL.getABITypeAlignment(LI->getType());
+
+  SmallVector<MachineOperand, 8> AddrOps;
+  AM.getFullAddress(AddrOps);
+
+  MachineInstr *Result = XII.foldMemoryOperandImpl(
+      *FuncInfo.MF, MI, OpNo, AddrOps, FuncInfo.InsertPt, Size, Alignment,
+      /*AllowCommute=*/true);
+  if (!Result)
+    return false;
+
+  // The index register could be in the wrong register class.  Unfortunately,
+  // foldMemoryOperandImpl could have commuted the instruction so its not enough
+  // to just look at OpNo + the offset to the index reg.  We actually need to
+  // scan the instruction to find the index reg and see if its the correct reg
+  // class.
+  unsigned OperandNo = 0;
+  for (MachineInstr::mop_iterator I = Result->operands_begin(),
+       E = Result->operands_end(); I != E; ++I, ++OperandNo) {
+    MachineOperand &MO = *I;
+    if (!MO.isReg() || MO.isDef() || MO.getReg() != AM.IndexReg)
+      continue;
+    // Found the index reg, now try to rewrite it.
+    unsigned IndexReg = constrainOperandRegClass(Result->getDesc(),
+                                                 MO.getReg(), OperandNo);
+    if (IndexReg == MO.getReg())
+      continue;
+    MO.setReg(IndexReg);
+  }
+
+  Result->addMemOperand(*FuncInfo.MF, createMachineMemOperandFor(LI));
+  MI->eraseFromParent();
+  return true;
+}
+
+
+namespace llvm {
+  FastISel *X86::createFastISel(FunctionLoweringInfo &funcInfo,
+                                const TargetLibraryInfo *libInfo) {
+    return new X86FastISel(funcInfo, libInfo);
+  }
+}