[MCJIT] More endianness fixes for RuntimeDyldMachO.
[oota-llvm.git] / lib / ExecutionEngine / RuntimeDyld / RuntimeDyldMachO.cpp
index 36235f1bc171e3a558ae1c542f092313ad1cde81..9e4d3ac82afb3d21cd86cf60a244d572fc580b34 100644 (file)
@@ -1,4 +1,4 @@
-//===-- RuntimeDyldMachO.cpp - Run-time dynamic linker for MC-JIT ------*- C++ -*-===//
+//===-- RuntimeDyldMachO.cpp - Run-time dynamic linker for MC-JIT -*- C++ -*-=//
 //
 //                     The LLVM Compiler Infrastructure
 //
 //
 //===----------------------------------------------------------------------===//
 
-#define DEBUG_TYPE "dyld"
-#include "llvm/ADT/OwningPtr.h"
-#include "llvm/ADT/StringRef.h"
+#include "RuntimeDyldMachO.h"
 #include "llvm/ADT/STLExtras.h"
-#include "RuntimeDyldImpl.h"
+#include "llvm/ADT/StringRef.h"
+
+#include "Targets/RuntimeDyldMachOARM.h"
+#include "Targets/RuntimeDyldMachOAArch64.h"
+#include "Targets/RuntimeDyldMachOI386.h"
+#include "Targets/RuntimeDyldMachOX86_64.h"
+
 using namespace llvm;
 using namespace llvm::object;
 
+#define DEBUG_TYPE "dyld"
+
 namespace llvm {
 
-bool RuntimeDyldMachO::
-resolveRelocation(uint8_t *Address, uint8_t *Value, bool isPCRel,
-                  unsigned Type, unsigned Size) {
-  // This just dispatches to the proper target specific routine.
-  switch (CPUType) {
-  default: assert(0 && "Unsupported CPU type!");
-  case mach::CTM_x86_64:
-    return resolveX86_64Relocation((uintptr_t)Address, (uintptr_t)Value,
-                                   isPCRel, Type, Size);
-  case mach::CTM_ARM:
-    return resolveARMRelocation((uintptr_t)Address, (uintptr_t)Value,
-                                isPCRel, Type, Size);
+int64_t RuntimeDyldMachO::memcpyAddend(const RelocationEntry &RE) const {
+  const SectionEntry &Section = Sections[RE.SectionID];
+  unsigned NumBytes = 1 << RE.Size;
+  int64_t Addend = 0;
+  uint8_t *LocalAddress = Section.Address + RE.Offset;
+  uint8_t *Dst = reinterpret_cast<uint8_t*>(&Addend);
+
+  if (IsTargetLittleEndian == sys::IsLittleEndianHost) {
+    if (!sys::IsLittleEndianHost)
+      Dst += sizeof(Addend) - NumBytes;
+    memcpy(Dst, LocalAddress, NumBytes);
+  } else {
+    Dst += NumBytes - 1;
+    for (unsigned i = 0; i < NumBytes; ++i)
+      *Dst-- = *LocalAddress++;
   }
-  llvm_unreachable("");
+
+  return Addend;
 }
 
-bool RuntimeDyldMachO::
-resolveX86_64Relocation(uintptr_t Address, uintptr_t Value,
-                        bool isPCRel, unsigned Type,
-                        unsigned Size) {
-  // If the relocation is PC-relative, the value to be encoded is the
-  // pointer difference.
-  if (isPCRel)
-    // FIXME: It seems this value needs to be adjusted by 4 for an effective PC
-    // address. Is that expected? Only for branches, perhaps?
-    Value -= Address + 4;
-
-  switch(Type) {
-  default:
-    llvm_unreachable("Invalid relocation type!");
-  case macho::RIT_X86_64_Unsigned:
-  case macho::RIT_X86_64_Branch: {
-    // Mask in the target value a byte at a time (we don't have an alignment
-    // guarantee for the target address, so this is safest).
-    uint8_t *p = (uint8_t*)Address;
-    for (unsigned i = 0; i < Size; ++i) {
-      *p++ = (uint8_t)Value;
-      Value >>= 8;
+RelocationValueRef RuntimeDyldMachO::getRelocationValueRef(
+    ObjectImage &ObjImg, const relocation_iterator &RI,
+    const RelocationEntry &RE, ObjSectionToIDMap &ObjSectionToID,
+    const SymbolTableMap &Symbols) {
+
+  const MachOObjectFile &Obj =
+      static_cast<const MachOObjectFile &>(*ObjImg.getObjectFile());
+  MachO::any_relocation_info RelInfo =
+      Obj.getRelocation(RI->getRawDataRefImpl());
+  RelocationValueRef Value;
+
+  bool IsExternal = Obj.getPlainRelocationExternal(RelInfo);
+  if (IsExternal) {
+    symbol_iterator Symbol = RI->getSymbol();
+    StringRef TargetName;
+    Symbol->getName(TargetName);
+    SymbolTableMap::const_iterator SI = Symbols.find(TargetName.data());
+    if (SI != Symbols.end()) {
+      Value.SectionID = SI->second.first;
+      Value.Addend = SI->second.second + RE.Addend;
+    } else {
+      SI = GlobalSymbolTable.find(TargetName.data());
+      if (SI != GlobalSymbolTable.end()) {
+        Value.SectionID = SI->second.first;
+        Value.Addend = SI->second.second + RE.Addend;
+      } else {
+        Value.SymbolName = TargetName.data();
+        Value.Addend = RE.Addend;
+      }
     }
-    return false;
-  }
-  case macho::RIT_X86_64_Signed:
-  case macho::RIT_X86_64_GOTLoad:
-  case macho::RIT_X86_64_GOT:
-  case macho::RIT_X86_64_Subtractor:
-  case macho::RIT_X86_64_Signed1:
-  case macho::RIT_X86_64_Signed2:
-  case macho::RIT_X86_64_Signed4:
-  case macho::RIT_X86_64_TLV:
-    return Error("Relocation type not implemented yet!");
+  } else {
+    SectionRef Sec = Obj.getRelocationSection(RelInfo);
+    bool IsCode = false;
+    Sec.isText(IsCode);
+    Value.SectionID = findOrEmitSection(ObjImg, Sec, IsCode, ObjSectionToID);
+    uint64_t Addr;
+    Sec.getAddress(Addr);
+    Value.Addend = RE.Addend - Addr;
   }
-  return false;
-}
 
-bool RuntimeDyldMachO::resolveARMRelocation(uintptr_t Address, uintptr_t Value,
-                                         bool isPCRel, unsigned Type,
-                                         unsigned Size) {
-  // If the relocation is PC-relative, the value to be encoded is the
-  // pointer difference.
-  if (isPCRel) {
-    Value -= Address;
-    // ARM PCRel relocations have an effective-PC offset of two instructions
-    // (four bytes in Thumb mode, 8 bytes in ARM mode).
-    // FIXME: For now, assume ARM mode.
-    Value -= 8;
-  }
+  return Value;
+}
 
-  switch(Type) {
-  default:
-    llvm_unreachable("Invalid relocation type!");
-  case macho::RIT_Vanilla: {
-    llvm_unreachable("Invalid relocation type!");
-    // Mask in the target value a byte at a time (we don't have an alignment
-    // guarantee for the target address, so this is safest).
-    uint8_t *p = (uint8_t*)Address;
-    for (unsigned i = 0; i < Size; ++i) {
-      *p++ = (uint8_t)Value;
-      Value >>= 8;
-    }
-    break;
+void RuntimeDyldMachO::makeValueAddendPCRel(RelocationValueRef &Value,
+                                            ObjectImage &ObjImg,
+                                            const relocation_iterator &RI,
+                                            unsigned OffsetToNextPC) {
+  const MachOObjectFile &Obj =
+      static_cast<const MachOObjectFile &>(*ObjImg.getObjectFile());
+  MachO::any_relocation_info RelInfo =
+      Obj.getRelocation(RI->getRawDataRefImpl());
+
+  bool IsPCRel = Obj.getAnyRelocationPCRel(RelInfo);
+  if (IsPCRel) {
+    uint64_t RelocAddr = 0;
+    RI->getAddress(RelocAddr);
+    Value.Addend += RelocAddr + OffsetToNextPC;
   }
-  case macho::RIT_ARM_Branch24Bit: {
-    // Mask the value into the target address. We know instructions are
-    // 32-bit aligned, so we can do it all at once.
-    uint32_t *p = (uint32_t*)Address;
-    // The low two bits of the value are not encoded.
-    Value >>= 2;
-    // Mask the value to 24 bits.
-    Value &= 0xffffff;
-    // FIXME: If the destination is a Thumb function (and the instruction
-    // is a non-predicated BL instruction), we need to change it to a BLX
-    // instruction instead.
-
-    // Insert the value into the instruction.
-    *p = (*p & ~0xffffff) | Value;
-    break;
-  }
-  case macho::RIT_ARM_ThumbBranch22Bit:
-  case macho::RIT_ARM_ThumbBranch32Bit:
-  case macho::RIT_ARM_Half:
-  case macho::RIT_ARM_HalfDifference:
-  case macho::RIT_Pair:
-  case macho::RIT_Difference:
-  case macho::RIT_ARM_LocalDifference:
-  case macho::RIT_ARM_PreboundLazyPointer:
-    return Error("Relocation type not implemented yet!");
-  }
-  return false;
 }
 
-bool RuntimeDyldMachO::
-loadSegment32(const MachOObject *Obj,
-              const MachOObject::LoadCommandInfo *SegmentLCI,
-              const InMemoryStruct<macho::SymtabLoadCommand> &SymtabLC) {
-  InMemoryStruct<macho::SegmentLoadCommand> SegmentLC;
-  Obj->ReadSegmentLoadCommand(*SegmentLCI, SegmentLC);
-  if (!SegmentLC)
-    return Error("unable to load segment load command");
-
-  for (unsigned SectNum = 0; SectNum != SegmentLC->NumSections; ++SectNum) {
-    InMemoryStruct<macho::Section> Sect;
-    Obj->ReadSection(*SegmentLCI, SectNum, Sect);
-    if (!Sect)
-      return Error("unable to load section: '" + Twine(SectNum) + "'");
-
-    // FIXME: For the time being, we're only loading text segments.
-    if (Sect->Flags != 0x80000400)
-      continue;
-
-    // Address and names of symbols in the section.
-    typedef std::pair<uint64_t, StringRef> SymbolEntry;
-    SmallVector<SymbolEntry, 64> Symbols;
-    // Index of all the names, in this section or not. Used when we're
-    // dealing with relocation entries.
-    SmallVector<StringRef, 64> SymbolNames;
-    for (unsigned i = 0; i != SymtabLC->NumSymbolTableEntries; ++i) {
-      InMemoryStruct<macho::SymbolTableEntry> STE;
-      Obj->ReadSymbolTableEntry(SymtabLC->SymbolTableOffset, i, STE);
-      if (!STE)
-        return Error("unable to read symbol: '" + Twine(i) + "'");
-      if (STE->SectionIndex > SegmentLC->NumSections)
-        return Error("invalid section index for symbol: '" + Twine(i) + "'");
-      // Get the symbol name.
-      StringRef Name = Obj->getStringAtIndex(STE->StringIndex);
-      SymbolNames.push_back(Name);
-
-      // Just skip symbols not defined in this section.
-      if ((unsigned)STE->SectionIndex - 1 != SectNum)
-        continue;
-
-      // FIXME: Check the symbol type and flags.
-      if (STE->Type != 0xF)  // external, defined in this section.
-        continue;
-      // Flags == 0x8 marks a thumb function for ARM, which is fine as it
-      // doesn't require any special handling here.
-      // Flags in the upper nibble we don't care about.
-      if ((STE->Flags & 0xf) != 0x0 && STE->Flags != 0x8)
-        continue;
-
-      // Remember the symbol.
-      Symbols.push_back(SymbolEntry(STE->Value, Name));
-
-      DEBUG(dbgs() << "Function sym: '" << Name << "' @ " <<
-            (Sect->Address + STE->Value) << "\n");
-    }
-    // Sort the symbols by address, just in case they didn't come in that way.
-    array_pod_sort(Symbols.begin(), Symbols.end());
+void RuntimeDyldMachO::dumpRelocationToResolve(const RelocationEntry &RE,
+                                               uint64_t Value) const {
+  const SectionEntry &Section = Sections[RE.SectionID];
+  uint8_t *LocalAddress = Section.Address + RE.Offset;
+  uint64_t FinalAddress = Section.LoadAddress + RE.Offset;
+
+  dbgs() << "resolveRelocation Section: " << RE.SectionID
+         << " LocalAddress: " << format("%p", LocalAddress)
+         << " FinalAddress: " << format("0x%x", FinalAddress)
+         << " Value: " << format("0x%x", Value) << " Addend: " << RE.Addend
+         << " isPCRel: " << RE.IsPCRel << " MachoType: " << RE.RelType
+         << " Size: " << (1 << RE.Size) << "\n";
+}
 
-    // If there weren't any functions (odd, but just in case...)
-    if (!Symbols.size())
-      continue;
+bool RuntimeDyldMachO::writeBytesUnaligned(uint8_t *Dst, uint64_t Value,
+                                           unsigned Size) {
 
-    // Extract the function data.
-    uint8_t *Base = (uint8_t*)Obj->getData(SegmentLC->FileOffset,
-                                           SegmentLC->FileSize).data();
-    for (unsigned i = 0, e = Symbols.size() - 1; i != e; ++i) {
-      uint64_t StartOffset = Sect->Address + Symbols[i].first;
-      uint64_t EndOffset = Symbols[i + 1].first - 1;
-      DEBUG(dbgs() << "Extracting function: " << Symbols[i].second
-                   << " from [" << StartOffset << ", " << EndOffset << "]\n");
-      extractFunction(Symbols[i].second, Base + StartOffset, Base + EndOffset);
-    }
-    // The last symbol we do after since the end address is calculated
-    // differently because there is no next symbol to reference.
-    uint64_t StartOffset = Symbols[Symbols.size() - 1].first;
-    uint64_t EndOffset = Sect->Size - 1;
-    DEBUG(dbgs() << "Extracting function: " << Symbols[Symbols.size()-1].second
-                 << " from [" << StartOffset << ", " << EndOffset << "]\n");
-    extractFunction(Symbols[Symbols.size()-1].second,
-                    Base + StartOffset, Base + EndOffset);
-
-    // Now extract the relocation information for each function and process it.
-    for (unsigned j = 0; j != Sect->NumRelocationTableEntries; ++j) {
-      InMemoryStruct<macho::RelocationEntry> RE;
-      Obj->ReadRelocationEntry(Sect->RelocationTableOffset, j, RE);
-      if (RE->Word0 & macho::RF_Scattered)
-        return Error("NOT YET IMPLEMENTED: scattered relocations.");
-      // Word0 of the relocation is the offset into the section where the
-      // relocation should be applied. We need to translate that into an
-      // offset into a function since that's our atom.
-      uint32_t Offset = RE->Word0;
-      // Look for the function containing the address. This is used for JIT
-      // code, so the number of functions in section is almost always going
-      // to be very small (usually just one), so until we have use cases
-      // where that's not true, just use a trivial linear search.
-      unsigned SymbolNum;
-      unsigned NumSymbols = Symbols.size();
-      assert(NumSymbols > 0 && Symbols[0].first <= Offset &&
-             "No symbol containing relocation!");
-      for (SymbolNum = 0; SymbolNum < NumSymbols - 1; ++SymbolNum)
-        if (Symbols[SymbolNum + 1].first > Offset)
-          break;
-      // Adjust the offset to be relative to the symbol.
-      Offset -= Symbols[SymbolNum].first;
-      // Get the name of the symbol containing the relocation.
-      StringRef TargetName = SymbolNames[SymbolNum];
-
-      bool isExtern = (RE->Word1 >> 27) & 1;
-      // Figure out the source symbol of the relocation. If isExtern is true,
-      // this relocation references the symbol table, otherwise it references
-      // a section in the same object, numbered from 1 through NumSections
-      // (SectionBases is [0, NumSections-1]).
-      // FIXME: Some targets (ARM) use internal relocations even for
-      // externally visible symbols, if the definition is in the same
-      // file as the reference. We need to convert those back to by-name
-      // references. We can resolve the address based on the section
-      // offset and see if we have a symbol at that address. If we do,
-      // use that; otherwise, puke.
-      if (!isExtern)
-        return Error("Internal relocations not supported.");
-      uint32_t SourceNum = RE->Word1 & 0xffffff; // 24-bit value
-      StringRef SourceName = SymbolNames[SourceNum];
-
-      // FIXME: Get the relocation addend from the target address.
-
-      // Now store the relocation information. Associate it with the source
-      // symbol.
-      Relocations[SourceName].push_back(RelocationEntry(TargetName,
-                                                        Offset,
-                                                        RE->Word1,
-                                                        0 /*Addend*/));
-      DEBUG(dbgs() << "Relocation at '" << TargetName << "' + " << Offset
-                   << " from '" << SourceName << "(Word1: "
-                   << format("0x%x", RE->Word1) << ")\n");
-    }
+  uint8_t *Src = reinterpret_cast<uint8_t*>(&Value);
+  // If host and target endianness match use memcpy, otherwise copy in reverse
+  // order.
+  if (IsTargetLittleEndian == sys::IsLittleEndianHost) {
+    if (!sys::IsLittleEndianHost)
+      Src += sizeof(Value) - Size;
+    memcpy(Dst, Src, Size);
+  } else {
+    Src += Size - 1;
+    for (unsigned i = 0; i < Size; ++i)
+      *Dst++ = *Src--;
   }
+
   return false;
 }
 
-
-bool RuntimeDyldMachO::
-loadSegment64(const MachOObject *Obj,
-              const MachOObject::LoadCommandInfo *SegmentLCI,
-              const InMemoryStruct<macho::SymtabLoadCommand> &SymtabLC) {
-  InMemoryStruct<macho::Segment64LoadCommand> Segment64LC;
-  Obj->ReadSegment64LoadCommand(*SegmentLCI, Segment64LC);
-  if (!Segment64LC)
-    return Error("unable to load segment load command");
-
-  for (unsigned SectNum = 0; SectNum != Segment64LC->NumSections; ++SectNum) {
-    InMemoryStruct<macho::Section64> Sect;
-    Obj->ReadSection64(*SegmentLCI, SectNum, Sect);
-    if (!Sect)
-      return Error("unable to load section: '" + Twine(SectNum) + "'");
-
-    // FIXME: For the time being, we're only loading text segments.
-    if (Sect->Flags != 0x80000400)
-      continue;
-
-    // Address and names of symbols in the section.
-    typedef std::pair<uint64_t, StringRef> SymbolEntry;
-    SmallVector<SymbolEntry, 64> Symbols;
-    // Index of all the names, in this section or not. Used when we're
-    // dealing with relocation entries.
-    SmallVector<StringRef, 64> SymbolNames;
-    for (unsigned i = 0; i != SymtabLC->NumSymbolTableEntries; ++i) {
-      InMemoryStruct<macho::Symbol64TableEntry> STE;
-      Obj->ReadSymbol64TableEntry(SymtabLC->SymbolTableOffset, i, STE);
-      if (!STE)
-        return Error("unable to read symbol: '" + Twine(i) + "'");
-      if (STE->SectionIndex > Segment64LC->NumSections)
-        return Error("invalid section index for symbol: '" + Twine(i) + "'");
-      // Get the symbol name.
-      StringRef Name = Obj->getStringAtIndex(STE->StringIndex);
-      SymbolNames.push_back(Name);
-
-      // Just skip symbols not defined in this section.
-      if ((unsigned)STE->SectionIndex - 1 != SectNum)
-        continue;
-
-      // FIXME: Check the symbol type and flags.
-      if (STE->Type != 0xF)  // external, defined in this section.
-        continue;
-      // Flags in the upper nibble we don't care about.
-      if ((STE->Flags & 0xf) != 0x0)
-        continue;
-
-      // Remember the symbol.
-      Symbols.push_back(SymbolEntry(STE->Value, Name));
-
-      DEBUG(dbgs() << "Function sym: '" << Name << "' @ " <<
-            (Sect->Address + STE->Value) << "\n");
-    }
-    // Sort the symbols by address, just in case they didn't come in that way.
-    array_pod_sort(Symbols.begin(), Symbols.end());
-
-    // If there weren't any functions (odd, but just in case...)
-    if (!Symbols.size())
-      continue;
-
-    // Extract the function data.
-    uint8_t *Base = (uint8_t*)Obj->getData(Segment64LC->FileOffset,
-                                           Segment64LC->FileSize).data();
-    for (unsigned i = 0, e = Symbols.size() - 1; i != e; ++i) {
-      uint64_t StartOffset = Sect->Address + Symbols[i].first;
-      uint64_t EndOffset = Symbols[i + 1].first - 1;
-      DEBUG(dbgs() << "Extracting function: " << Symbols[i].second
-                   << " from [" << StartOffset << ", " << EndOffset << "]\n");
-      extractFunction(Symbols[i].second, Base + StartOffset, Base + EndOffset);
-    }
-    // The last symbol we do after since the end address is calculated
-    // differently because there is no next symbol to reference.
-    uint64_t StartOffset = Symbols[Symbols.size() - 1].first;
-    uint64_t EndOffset = Sect->Size - 1;
-    DEBUG(dbgs() << "Extracting function: " << Symbols[Symbols.size()-1].second
-                 << " from [" << StartOffset << ", " << EndOffset << "]\n");
-    extractFunction(Symbols[Symbols.size()-1].second,
-                    Base + StartOffset, Base + EndOffset);
-
-    // Now extract the relocation information for each function and process it.
-    for (unsigned j = 0; j != Sect->NumRelocationTableEntries; ++j) {
-      InMemoryStruct<macho::RelocationEntry> RE;
-      Obj->ReadRelocationEntry(Sect->RelocationTableOffset, j, RE);
-      if (RE->Word0 & macho::RF_Scattered)
-        return Error("NOT YET IMPLEMENTED: scattered relocations.");
-      // Word0 of the relocation is the offset into the section where the
-      // relocation should be applied. We need to translate that into an
-      // offset into a function since that's our atom.
-      uint32_t Offset = RE->Word0;
-      // Look for the function containing the address. This is used for JIT
-      // code, so the number of functions in section is almost always going
-      // to be very small (usually just one), so until we have use cases
-      // where that's not true, just use a trivial linear search.
-      unsigned SymbolNum;
-      unsigned NumSymbols = Symbols.size();
-      assert(NumSymbols > 0 && Symbols[0].first <= Offset &&
-             "No symbol containing relocation!");
-      for (SymbolNum = 0; SymbolNum < NumSymbols - 1; ++SymbolNum)
-        if (Symbols[SymbolNum + 1].first > Offset)
-          break;
-      // Adjust the offset to be relative to the symbol.
-      Offset -= Symbols[SymbolNum].first;
-      // Get the name of the symbol containing the relocation.
-      StringRef TargetName = SymbolNames[SymbolNum];
-
-      bool isExtern = (RE->Word1 >> 27) & 1;
-      // Figure out the source symbol of the relocation. If isExtern is true,
-      // this relocation references the symbol table, otherwise it references
-      // a section in the same object, numbered from 1 through NumSections
-      // (SectionBases is [0, NumSections-1]).
-      if (!isExtern)
-        return Error("Internal relocations not supported.");
-      uint32_t SourceNum = RE->Word1 & 0xffffff; // 24-bit value
-      StringRef SourceName = SymbolNames[SourceNum];
-
-      // FIXME: Get the relocation addend from the target address.
-
-      // Now store the relocation information. Associate it with the source
-      // symbol.
-      Relocations[SourceName].push_back(RelocationEntry(TargetName,
-                                                        Offset,
-                                                        RE->Word1,
-                                                        0 /*Addend*/));
-      DEBUG(dbgs() << "Relocation at '" << TargetName << "' + " << Offset
-                   << " from '" << SourceName << "(Word1: "
-                   << format("0x%x", RE->Word1) << ")\n");
-    }
-  }
+bool
+RuntimeDyldMachO::isCompatibleFormat(const ObjectBuffer *InputBuffer) const {
+  if (InputBuffer->getBufferSize() < 4)
+    return false;
+  StringRef Magic(InputBuffer->getBufferStart(), 4);
+  if (Magic == "\xFE\xED\xFA\xCE")
+    return true;
+  if (Magic == "\xCE\xFA\xED\xFE")
+    return true;
+  if (Magic == "\xFE\xED\xFA\xCF")
+    return true;
+  if (Magic == "\xCF\xFA\xED\xFE")
+    return true;
   return false;
 }
 
-bool RuntimeDyldMachO::loadObject(MemoryBuffer *InputBuffer) {
-  // If the linker is in an error state, don't do anything.
-  if (hasError())
-    return true;
-  // Load the Mach-O wrapper object.
-  std::string ErrorStr;
-  OwningPtr<MachOObject> Obj(
-    MachOObject::LoadFromBuffer(InputBuffer, &ErrorStr));
-  if (!Obj)
-    return Error("unable to load object: '" + ErrorStr + "'");
-
-  // Get the CPU type information from the header.
-  const macho::Header &Header = Obj->getHeader();
-
-  // FIXME: Error checking that the loaded object is compatible with
-  //        the system we're running on.
-  CPUType = Header.CPUType;
-  CPUSubtype = Header.CPUSubtype;
-
-  // Validate that the load commands match what we expect.
-  const MachOObject::LoadCommandInfo *SegmentLCI = 0, *SymtabLCI = 0,
-    *DysymtabLCI = 0;
-  for (unsigned i = 0; i != Header.NumLoadCommands; ++i) {
-    const MachOObject::LoadCommandInfo &LCI = Obj->getLoadCommandInfo(i);
-    switch (LCI.Command.Type) {
-    case macho::LCT_Segment:
-    case macho::LCT_Segment64:
-      if (SegmentLCI)
-        return Error("unexpected input object (multiple segments)");
-      SegmentLCI = &LCI;
-      break;
-    case macho::LCT_Symtab:
-      if (SymtabLCI)
-        return Error("unexpected input object (multiple symbol tables)");
-      SymtabLCI = &LCI;
-      break;
-    case macho::LCT_Dysymtab:
-      if (DysymtabLCI)
-        return Error("unexpected input object (multiple symbol tables)");
-      DysymtabLCI = &LCI;
-      break;
-    default:
-      return Error("unexpected input object (unexpected load command");
-    }
-  }
+bool RuntimeDyldMachO::isCompatibleFile(const object::ObjectFile *Obj) const {
+  return Obj->isMachO();
+}
 
-  if (!SymtabLCI)
-    return Error("no symbol table found in object");
-  if (!SegmentLCI)
-    return Error("no segments found in object");
-
-  // Read and register the symbol table data.
-  InMemoryStruct<macho::SymtabLoadCommand> SymtabLC;
-  Obj->ReadSymtabLoadCommand(*SymtabLCI, SymtabLC);
-  if (!SymtabLC)
-    return Error("unable to load symbol table load command");
-  Obj->RegisterStringTable(*SymtabLC);
-
-  // Read the dynamic link-edit information, if present (not present in static
-  // objects).
-  if (DysymtabLCI) {
-    InMemoryStruct<macho::DysymtabLoadCommand> DysymtabLC;
-    Obj->ReadDysymtabLoadCommand(*DysymtabLCI, DysymtabLC);
-    if (!DysymtabLC)
-      return Error("unable to load dynamic link-exit load command");
-
-    // FIXME: We don't support anything interesting yet.
-//    if (DysymtabLC->LocalSymbolsIndex != 0)
-//      return Error("NOT YET IMPLEMENTED: local symbol entries");
-//    if (DysymtabLC->ExternalSymbolsIndex != 0)
-//      return Error("NOT YET IMPLEMENTED: non-external symbol entries");
-//    if (DysymtabLC->UndefinedSymbolsIndex != SymtabLC->NumSymbolTableEntries)
-//      return Error("NOT YET IMPLEMENTED: undefined symbol entries");
+static unsigned char *processFDE(unsigned char *P, intptr_t DeltaForText,
+                                 intptr_t DeltaForEH) {
+  DEBUG(dbgs() << "Processing FDE: Delta for text: " << DeltaForText
+               << ", Delta for EH: " << DeltaForEH << "\n");
+  uint32_t Length = *((uint32_t *)P);
+  P += 4;
+  unsigned char *Ret = P + Length;
+  uint32_t Offset = *((uint32_t *)P);
+  if (Offset == 0) // is a CIE
+    return Ret;
+
+  P += 4;
+  intptr_t FDELocation = *((intptr_t *)P);
+  intptr_t NewLocation = FDELocation - DeltaForText;
+  *((intptr_t *)P) = NewLocation;
+  P += sizeof(intptr_t);
+
+  // Skip the FDE address range
+  P += sizeof(intptr_t);
+
+  uint8_t Augmentationsize = *P;
+  P += 1;
+  if (Augmentationsize != 0) {
+    intptr_t LSDA = *((intptr_t *)P);
+    intptr_t NewLSDA = LSDA - DeltaForEH;
+    *((intptr_t *)P) = NewLSDA;
   }
 
-  // Load the segment load command.
-  if (SegmentLCI->Command.Type == macho::LCT_Segment) {
-    if (loadSegment32(Obj.get(), SegmentLCI, SymtabLC))
-      return true;
-  } else {
-    if (loadSegment64(Obj.get(), SegmentLCI, SymtabLC))
-      return true;
-  }
+  return Ret;
+}
 
-  return false;
+static intptr_t computeDelta(SectionEntry *A, SectionEntry *B) {
+  intptr_t ObjDistance = A->ObjAddress - B->ObjAddress;
+  intptr_t MemDistance = A->LoadAddress - B->LoadAddress;
+  return ObjDistance - MemDistance;
 }
 
-// Assign an address to a symbol name and resolve all the relocations
-// associated with it.
-void RuntimeDyldMachO::reassignSymbolAddress(StringRef Name, uint8_t *Addr) {
-  // Assign the address in our symbol table.
-  SymbolTable[Name] = Addr;
-
-  RelocationList &Relocs = Relocations[Name];
-  for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
-    RelocationEntry &RE = Relocs[i];
-    uint8_t *Target = SymbolTable[RE.Target] + RE.Offset;
-    bool isPCRel = (RE.Data >> 24) & 1;
-    unsigned Type = (RE.Data >> 28) & 0xf;
-    unsigned Size = 1 << ((RE.Data >> 25) & 3);
-
-    DEBUG(dbgs() << "Resolving relocation at '" << RE.Target
-          << "' + " << RE.Offset << " (" << format("%p", Target) << ")"
-          << " from '" << Name << " (" << format("%p", Addr) << ")"
-          << "(" << (isPCRel ? "pcrel" : "absolute")
-          << ", type: " << Type << ", Size: " << Size << ").\n");
-
-    resolveRelocation(Target, Addr, isPCRel, Type, Size);
-    RE.isResolved = true;
+void RuntimeDyldMachO::registerEHFrames() {
+
+  if (!MemMgr)
+    return;
+  for (int i = 0, e = UnregisteredEHFrameSections.size(); i != e; ++i) {
+    EHFrameRelatedSections &SectionInfo = UnregisteredEHFrameSections[i];
+    if (SectionInfo.EHFrameSID == RTDYLD_INVALID_SECTION_ID ||
+        SectionInfo.TextSID == RTDYLD_INVALID_SECTION_ID)
+      continue;
+    SectionEntry *Text = &Sections[SectionInfo.TextSID];
+    SectionEntry *EHFrame = &Sections[SectionInfo.EHFrameSID];
+    SectionEntry *ExceptTab = nullptr;
+    if (SectionInfo.ExceptTabSID != RTDYLD_INVALID_SECTION_ID)
+      ExceptTab = &Sections[SectionInfo.ExceptTabSID];
+
+    intptr_t DeltaForText = computeDelta(Text, EHFrame);
+    intptr_t DeltaForEH = 0;
+    if (ExceptTab)
+      DeltaForEH = computeDelta(ExceptTab, EHFrame);
+
+    unsigned char *P = EHFrame->Address;
+    unsigned char *End = P + EHFrame->Size;
+    do {
+      P = processFDE(P, DeltaForText, DeltaForEH);
+    } while (P != End);
+
+    MemMgr->registerEHFrames(EHFrame->Address, EHFrame->LoadAddress,
+                             EHFrame->Size);
   }
+  UnregisteredEHFrameSections.clear();
 }
 
-bool RuntimeDyldMachO::isKnownFormat(const MemoryBuffer *InputBuffer) {
-  StringRef Magic = InputBuffer->getBuffer().slice(0, 4);
-  if (Magic == "\xFE\xED\xFA\xCE") return true;
-  if (Magic == "\xCE\xFA\xED\xFE") return true;
-  if (Magic == "\xFE\xED\xFA\xCF") return true;
-  if (Magic == "\xCF\xFA\xED\xFE") return true;
-  return false;
+std::unique_ptr<RuntimeDyldMachO>
+llvm::RuntimeDyldMachO::create(Triple::ArchType Arch, RTDyldMemoryManager *MM) {
+  switch (Arch) {
+  default:
+    llvm_unreachable("Unsupported target for RuntimeDyldMachO.");
+    break;
+  case Triple::arm: return make_unique<RuntimeDyldMachOARM>(MM);
+  case Triple::aarch64: return make_unique<RuntimeDyldMachOAArch64>(MM);
+  case Triple::x86: return make_unique<RuntimeDyldMachOI386>(MM);
+  case Triple::x86_64: return make_unique<RuntimeDyldMachOX86_64>(MM);
+  }
 }
 
 } // end namespace llvm