[C++] Use 'nullptr'.
[oota-llvm.git] / lib / ExecutionEngine / RuntimeDyld / RuntimeDyldELF.cpp
index c3736691c28f369e4d2a51bc7eb511ed45b196e0..abe8b6c388c922e45a4fb28bcf44ff609f3d7427 100644 (file)
 //
 //===----------------------------------------------------------------------===//
 
-#define DEBUG_TYPE "dyld"
 #include "RuntimeDyldELF.h"
 #include "JITRegistrar.h"
 #include "ObjectImageCommon.h"
 #include "llvm/ADT/IntervalMap.h"
-#include "llvm/ADT/OwningPtr.h"
 #include "llvm/ADT/STLExtras.h"
 #include "llvm/ADT/StringRef.h"
 #include "llvm/ADT/Triple.h"
 using namespace llvm;
 using namespace llvm::object;
 
+#define DEBUG_TYPE "dyld"
+
 namespace {
 
-static inline
-error_code check(error_code Err) {
+static inline error_code check(error_code Err) {
   if (Err) {
     report_fatal_error(Err.message());
   }
   return Err;
 }
 
-template<class ELFT>
-class DyldELFObject
-  : public ELFObjectFile<ELFT> {
+template <class ELFT> class DyldELFObject : public ELFObjectFile<ELFT> {
   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
 
   typedef Elf_Shdr_Impl<ELFT> Elf_Shdr;
   typedef Elf_Sym_Impl<ELFT> Elf_Sym;
-  typedef
-    Elf_Rel_Impl<ELFT, false> Elf_Rel;
-  typedef
-    Elf_Rel_Impl<ELFT, true> Elf_Rela;
+  typedef Elf_Rel_Impl<ELFT, false> Elf_Rel;
+  typedef Elf_Rel_Impl<ELFT, true> Elf_Rela;
 
   typedef Elf_Ehdr_Impl<ELFT> Elf_Ehdr;
 
-  typedef typename ELFDataTypeTypedefHelper<
-          ELFT>::value_type addr_type;
+  typedef typename ELFDataTypeTypedefHelper<ELFT>::value_type addr_type;
 
 public:
   DyldELFObject(MemoryBuffer *Wrapper, error_code &ec);
@@ -65,84 +59,74 @@ public:
 
   // Methods for type inquiry through isa, cast and dyn_cast
   static inline bool classof(const Binary *v) {
-    return (isa<ELFObjectFile<ELFT> >(v)
-            && classof(cast<ELFObjectFile
-                <ELFT> >(v)));
+    return (isa<ELFObjectFile<ELFT>>(v) &&
+            classof(cast<ELFObjectFile<ELFT>>(v)));
   }
-  static inline bool classof(
-      const ELFObjectFile<ELFT> *v) {
+  static inline bool classof(const ELFObjectFile<ELFT> *v) {
     return v->isDyldType();
   }
 };
 
-template<class ELFT>
-class ELFObjectImage : public ObjectImageCommon {
-  protected:
-    DyldELFObject<ELFT> *DyldObj;
-    bool Registered;
-
-  public:
-    ELFObjectImage(ObjectBuffer *Input,
-                 DyldELFObject<ELFT> *Obj)
-    : ObjectImageCommon(Input, Obj),
-      DyldObj(Obj),
-      Registered(false) {}
-
-    virtual ~ELFObjectImage() {
-      if (Registered)
-        deregisterWithDebugger();
-    }
+template <class ELFT> class ELFObjectImage : public ObjectImageCommon {
+protected:
+  DyldELFObject<ELFT> *DyldObj;
+  bool Registered;
 
-    // Subclasses can override these methods to update the image with loaded
-    // addresses for sections and common symbols
-    virtual void updateSectionAddress(const SectionRef &Sec, uint64_t Addr)
-    {
-      DyldObj->updateSectionAddress(Sec, Addr);
-    }
+public:
+  ELFObjectImage(ObjectBuffer *Input, DyldELFObject<ELFT> *Obj)
+      : ObjectImageCommon(Input, Obj), DyldObj(Obj), Registered(false) {}
 
-    virtual void updateSymbolAddress(const SymbolRef &Sym, uint64_t Addr)
-    {
-      DyldObj->updateSymbolAddress(Sym, Addr);
-    }
+  virtual ~ELFObjectImage() {
+    if (Registered)
+      deregisterWithDebugger();
+  }
 
-    virtual void registerWithDebugger()
-    {
-      JITRegistrar::getGDBRegistrar().registerObject(*Buffer);
-      Registered = true;
-    }
-    virtual void deregisterWithDebugger()
-    {
-      JITRegistrar::getGDBRegistrar().deregisterObject(*Buffer);
-    }
+  // Subclasses can override these methods to update the image with loaded
+  // addresses for sections and common symbols
+  void updateSectionAddress(const SectionRef &Sec, uint64_t Addr) override {
+    DyldObj->updateSectionAddress(Sec, Addr);
+  }
+
+  void updateSymbolAddress(const SymbolRef &Sym, uint64_t Addr) override {
+    DyldObj->updateSymbolAddress(Sym, Addr);
+  }
+
+  void registerWithDebugger() override {
+    JITRegistrar::getGDBRegistrar().registerObject(*Buffer);
+    Registered = true;
+  }
+  void deregisterWithDebugger() override {
+    JITRegistrar::getGDBRegistrar().deregisterObject(*Buffer);
+  }
 };
 
 // The MemoryBuffer passed into this constructor is just a wrapper around the
 // actual memory.  Ultimately, the Binary parent class will take ownership of
 // this MemoryBuffer object but not the underlying memory.
-template<class ELFT>
+template <class ELFT>
 DyldELFObject<ELFT>::DyldELFObject(MemoryBuffer *Wrapper, error_code &ec)
-  : ELFObjectFile<ELFT>(Wrapper, ec) {
+    : ELFObjectFile<ELFT>(Wrapper, ec) {
   this->isDyldELFObject = true;
 }
 
-template<class ELFT>
+template <class ELFT>
 void DyldELFObject<ELFT>::updateSectionAddress(const SectionRef &Sec,
                                                uint64_t Addr) {
   DataRefImpl ShdrRef = Sec.getRawDataRefImpl();
-  Elf_Shdr *shdr = const_cast<Elf_Shdr*>(
-                          reinterpret_cast<const Elf_Shdr *>(ShdrRef.p));
+  Elf_Shdr *shdr =
+      const_cast<Elf_Shdr *>(reinterpret_cast<const Elf_Shdr *>(ShdrRef.p));
 
   // This assumes the address passed in matches the target address bitness
   // The template-based type cast handles everything else.
   shdr->sh_addr = static_cast<addr_type>(Addr);
 }
 
-template<class ELFT>
+template <class ELFT>
 void DyldELFObject<ELFT>::updateSymbolAddress(const SymbolRef &SymRef,
                                               uint64_t Addr) {
 
-  Elf_Sym *sym = const_cast<Elf_Sym*>(
-    ELFObjectFile<ELFT>::getSymbol(SymRef.getRawDataRefImpl()));
+  Elf_Sym *sym = const_cast<Elf_Sym *>(
+      ELFObjectFile<ELFT>::getSymbol(SymRef.getRawDataRefImpl()));
 
   // This assumes the address passed in matches the target address bitness
   // The template-based type cast handles everything else.
@@ -180,93 +164,85 @@ void RuntimeDyldELF::deregisterEHFrames() {
   RegisteredEHFrameSections.clear();
 }
 
-ObjectImage *RuntimeDyldELF::createObjectImageFromFile(object::ObjectFile *ObjFile) {
+ObjectImage *
+RuntimeDyldELF::createObjectImageFromFile(object::ObjectFile *ObjFile) {
   if (!ObjFile)
-    return NULL;
+    return nullptr;
 
   error_code ec;
-  MemoryBuffer* Buffer = MemoryBuffer::getMemBuffer(ObjFile->getData(), 
-                                                    "", 
-                                                    false);
+  MemoryBuffer *Buffer =
+      MemoryBuffer::getMemBuffer(ObjFile->getData(), "", false);
 
   if (ObjFile->getBytesInAddress() == 4 && ObjFile->isLittleEndian()) {
-    DyldELFObject<ELFType<support::little, 2, false> > *Obj =
-      new DyldELFObject<ELFType<support::little, 2, false> >(Buffer, ec);
-    return new ELFObjectImage<ELFType<support::little, 2, false> >(NULL, Obj);
-  }
-  else if (ObjFile->getBytesInAddress() == 4 && !ObjFile->isLittleEndian()) {
-    DyldELFObject<ELFType<support::big, 2, false> > *Obj =
-      new DyldELFObject<ELFType<support::big, 2, false> >(Buffer, ec);
-    return new ELFObjectImage<ELFType<support::big, 2, false> >(NULL, Obj);
-  }
-  else if (ObjFile->getBytesInAddress() == 8 && !ObjFile->isLittleEndian()) {
-    DyldELFObject<ELFType<support::big, 2, true> > *Obj =
-      new DyldELFObject<ELFType<support::big, 2, true> >(Buffer, ec);
-    return new ELFObjectImage<ELFType<support::big, 2, true> >(NULL, Obj);
-  }
-  else if (ObjFile->getBytesInAddress() == 8 && ObjFile->isLittleEndian()) {
-    DyldELFObject<ELFType<support::little, 2, true> > *Obj =
-      new DyldELFObject<ELFType<support::little, 2, true> >(Buffer, ec);
-    return new ELFObjectImage<ELFType<support::little, 2, true> >(NULL, Obj);
-  }
-  else
+    DyldELFObject<ELFType<support::little, 2, false>> *Obj =
+        new DyldELFObject<ELFType<support::little, 2, false>>(Buffer, ec);
+    return new ELFObjectImage<ELFType<support::little, 2, false>>(nullptr, Obj);
+  } else if (ObjFile->getBytesInAddress() == 4 && !ObjFile->isLittleEndian()) {
+    DyldELFObject<ELFType<support::big, 2, false>> *Obj =
+        new DyldELFObject<ELFType<support::big, 2, false>>(Buffer, ec);
+    return new ELFObjectImage<ELFType<support::big, 2, false>>(nullptr, Obj);
+  } else if (ObjFile->getBytesInAddress() == 8 && !ObjFile->isLittleEndian()) {
+    DyldELFObject<ELFType<support::big, 2, true>> *Obj =
+        new DyldELFObject<ELFType<support::big, 2, true>>(Buffer, ec);
+    return new ELFObjectImage<ELFType<support::big, 2, true>>(nullptr, Obj);
+  } else if (ObjFile->getBytesInAddress() == 8 && ObjFile->isLittleEndian()) {
+    DyldELFObject<ELFType<support::little, 2, true>> *Obj =
+        new DyldELFObject<ELFType<support::little, 2, true>>(Buffer, ec);
+    return new ELFObjectImage<ELFType<support::little, 2, true>>(nullptr, Obj);
+  } else
     llvm_unreachable("Unexpected ELF format");
 }
 
 ObjectImage *RuntimeDyldELF::createObjectImage(ObjectBuffer *Buffer) {
   if (Buffer->getBufferSize() < ELF::EI_NIDENT)
     llvm_unreachable("Unexpected ELF object size");
-  std::pair<unsigned char, unsigned char> Ident = std::make_pair(
-                         (uint8_t)Buffer->getBufferStart()[ELF::EI_CLASS],
-                         (uint8_t)Buffer->getBufferStart()[ELF::EI_DATA]);
+  std::pair<unsigned char, unsigned char> Ident =
+      std::make_pair((uint8_t)Buffer->getBufferStart()[ELF::EI_CLASS],
+                     (uint8_t)Buffer->getBufferStart()[ELF::EI_DATA]);
   error_code ec;
 
   if (Ident.first == ELF::ELFCLASS32 && Ident.second == ELF::ELFDATA2LSB) {
-    DyldELFObject<ELFType<support::little, 4, false> > *Obj =
-      new DyldELFObject<ELFType<support::little, 4, false> >(
-        Buffer->getMemBuffer(), ec);
-    return new ELFObjectImage<ELFType<support::little, 4, false> >(Buffer, Obj);
-  }
-  else if (Ident.first == ELF::ELFCLASS32 && Ident.second == ELF::ELFDATA2MSB) {
-    DyldELFObject<ELFType<support::big, 4, false> > *Obj =
-      new DyldELFObject<ELFType<support::big, 4, false> >(
-        Buffer->getMemBuffer(), ec);
-    return new ELFObjectImage<ELFType<support::big, 4, false> >(Buffer, Obj);
-  }
-  else if (Ident.first == ELF::ELFCLASS64 && Ident.second == ELF::ELFDATA2MSB) {
-    DyldELFObject<ELFType<support::big, 8, true> > *Obj =
-      new DyldELFObject<ELFType<support::big, 8, true> >(
-        Buffer->getMemBuffer(), ec);
-    return new ELFObjectImage<ELFType<support::big, 8, true> >(Buffer, Obj);
-  }
-  else if (Ident.first == ELF::ELFCLASS64 && Ident.second == ELF::ELFDATA2LSB) {
-    DyldELFObject<ELFType<support::little, 8, true> > *Obj =
-      new DyldELFObject<ELFType<support::little, 8, true> >(
-        Buffer->getMemBuffer(), ec);
-    return new ELFObjectImage<ELFType<support::little, 8, true> >(Buffer, Obj);
-  }
-  else
+    DyldELFObject<ELFType<support::little, 4, false>> *Obj =
+        new DyldELFObject<ELFType<support::little, 4, false>>(
+            Buffer->getMemBuffer(), ec);
+    return new ELFObjectImage<ELFType<support::little, 4, false>>(Buffer, Obj);
+  } else if (Ident.first == ELF::ELFCLASS32 &&
+             Ident.second == ELF::ELFDATA2MSB) {
+    DyldELFObject<ELFType<support::big, 4, false>> *Obj =
+        new DyldELFObject<ELFType<support::big, 4, false>>(
+            Buffer->getMemBuffer(), ec);
+    return new ELFObjectImage<ELFType<support::big, 4, false>>(Buffer, Obj);
+  } else if (Ident.first == ELF::ELFCLASS64 &&
+             Ident.second == ELF::ELFDATA2MSB) {
+    DyldELFObject<ELFType<support::big, 8, true>> *Obj =
+        new DyldELFObject<ELFType<support::big, 8, true>>(
+            Buffer->getMemBuffer(), ec);
+    return new ELFObjectImage<ELFType<support::big, 8, true>>(Buffer, Obj);
+  } else if (Ident.first == ELF::ELFCLASS64 &&
+             Ident.second == ELF::ELFDATA2LSB) {
+    DyldELFObject<ELFType<support::little, 8, true>> *Obj =
+        new DyldELFObject<ELFType<support::little, 8, true>>(
+            Buffer->getMemBuffer(), ec);
+    return new ELFObjectImage<ELFType<support::little, 8, true>>(Buffer, Obj);
+  } else
     llvm_unreachable("Unexpected ELF format");
 }
 
-RuntimeDyldELF::~RuntimeDyldELF() {
-}
+RuntimeDyldELF::~RuntimeDyldELF() {}
 
 void RuntimeDyldELF::resolveX86_64Relocation(const SectionEntry &Section,
-                                             uint64_t Offset,
-                                             uint64_t Value,
-                                             uint32_t Type,
-                                             int64_t  Addend,
+                                             uint64_t Offset, uint64_t Value,
+                                             uint32_t Type, int64_t Addend,
                                              uint64_t SymOffset) {
   switch (Type) {
   default:
     llvm_unreachable("Relocation type not implemented yet!");
-  break;
+    break;
   case ELF::R_X86_64_64: {
-    uint64_t *Target = reinterpret_cast<uint64_t*>(Section.Address + Offset);
+    uint64_t *Target = reinterpret_cast<uint64_t *>(Section.Address + Offset);
     *Target = Value + Addend;
-    DEBUG(dbgs() << "Writing " << format("%p", (Value + Addend))
-                 << " at " << format("%p\n",Target));
+    DEBUG(dbgs() << "Writing " << format("%p", (Value + Addend)) << " at "
+                 << format("%p\n", Target));
     break;
   }
   case ELF::R_X86_64_32:
@@ -274,20 +250,20 @@ void RuntimeDyldELF::resolveX86_64Relocation(const SectionEntry &Section,
     Value += Addend;
     assert((Type == ELF::R_X86_64_32 && (Value <= UINT32_MAX)) ||
            (Type == ELF::R_X86_64_32S &&
-             ((int64_t)Value <= INT32_MAX && (int64_t)Value >= INT32_MIN)));
+            ((int64_t)Value <= INT32_MAX && (int64_t)Value >= INT32_MIN)));
     uint32_t TruncatedAddr = (Value & 0xFFFFFFFF);
-    uint32_t *Target = reinterpret_cast<uint32_t*>(Section.Address + Offset);
+    uint32_t *Target = reinterpret_cast<uint32_t *>(Section.Address + Offset);
     *Target = TruncatedAddr;
-    DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr)
-                 << " at " << format("%p\n",Target));
+    DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr) << " at "
+                 << format("%p\n", Target));
     break;
   }
   case ELF::R_X86_64_GOTPCREL: {
     // findGOTEntry returns the 'G + GOT' part of the relocation calculation
     // based on the load/target address of the GOT (not the current/local addr).
     uint64_t GOTAddr = findGOTEntry(Value, SymOffset);
-    uint32_t *Target = reinterpret_cast<uint32_t*>(Section.Address + Offset);
-    uint64_t  FinalAddress = Section.LoadAddress + Offset;
+    uint32_t *Target = reinterpret_cast<uint32_t *>(Section.Address + Offset);
+    uint64_t FinalAddress = Section.LoadAddress + Offset;
     // The processRelocationRef method combines the symbol offset and the addend
     // and in most cases that's what we want.  For this relocation type, we need
     // the raw addend, so we subtract the symbol offset to get it.
@@ -300,10 +276,10 @@ void RuntimeDyldELF::resolveX86_64Relocation(const SectionEntry &Section,
   case ELF::R_X86_64_PC32: {
     // Get the placeholder value from the generated object since
     // a previous relocation attempt may have overwritten the loaded version
-    uint32_t *Placeholder = reinterpret_cast<uint32_t*>(Section.ObjAddress
-                                                                   + Offset);
-    uint32_t *Target = reinterpret_cast<uint32_t*>(Section.Address + Offset);
-    uint64_t  FinalAddress = Section.LoadAddress + Offset;
+    uint32_t *Placeholder =
+        reinterpret_cast<uint32_t *>(Section.ObjAddress + Offset);
+    uint32_t *Target = reinterpret_cast<uint32_t *>(Section.Address + Offset);
+    uint64_t FinalAddress = Section.LoadAddress + Offset;
     int64_t RealOffset = *Placeholder + Value + Addend - FinalAddress;
     assert(RealOffset <= INT32_MAX && RealOffset >= INT32_MIN);
     int32_t TruncOffset = (RealOffset & 0xFFFFFFFF);
@@ -313,10 +289,10 @@ void RuntimeDyldELF::resolveX86_64Relocation(const SectionEntry &Section,
   case ELF::R_X86_64_PC64: {
     // Get the placeholder value from the generated object since
     // a previous relocation attempt may have overwritten the loaded version
-    uint64_t *Placeholder = reinterpret_cast<uint64_t*>(Section.ObjAddress
-                                                                   + Offset);
-    uint64_t *Target = reinterpret_cast<uint64_t*>(Section.Address + Offset);
-    uint64_t  FinalAddress = Section.LoadAddress + Offset;
+    uint64_t *Placeholder =
+        reinterpret_cast<uint64_t *>(Section.ObjAddress + Offset);
+    uint64_t *Target = reinterpret_cast<uint64_t *>(Section.Address + Offset);
+    uint64_t FinalAddress = Section.LoadAddress + Offset;
     *Target = *Placeholder + Value + Addend - FinalAddress;
     break;
   }
@@ -324,53 +300,48 @@ void RuntimeDyldELF::resolveX86_64Relocation(const SectionEntry &Section,
 }
 
 void RuntimeDyldELF::resolveX86Relocation(const SectionEntry &Section,
-                                          uint64_t Offset,
-                                          uint32_t Value,
-                                          uint32_t Type,
-                                          int32_t Addend) {
+                                          uint64_t Offset, uint32_t Value,
+                                          uint32_t Type, int32_t Addend) {
   switch (Type) {
   case ELF::R_386_32: {
     // Get the placeholder value from the generated object since
     // a previous relocation attempt may have overwritten the loaded version
-    uint32_t *Placeholder = reinterpret_cast<uint32_t*>(Section.ObjAddress
-                                                                   + Offset);
-    uint32_t *Target = reinterpret_cast<uint32_t*>(Section.Address + Offset);
+    uint32_t *Placeholder =
+        reinterpret_cast<uint32_t *>(Section.ObjAddress + Offset);
+    uint32_t *Target = reinterpret_cast<uint32_t *>(Section.Address + Offset);
     *Target = *Placeholder + Value + Addend;
     break;
   }
   case ELF::R_386_PC32: {
     // Get the placeholder value from the generated object since
     // a previous relocation attempt may have overwritten the loaded version
-    uint32_t *Placeholder = reinterpret_cast<uint32_t*>(Section.ObjAddress
-                                                                   + Offset);
-    uint32_t *Target = reinterpret_cast<uint32_t*>(Section.Address + Offset);
-    uint32_t  FinalAddress = ((Section.LoadAddress + Offset) & 0xFFFFFFFF);
+    uint32_t *Placeholder =
+        reinterpret_cast<uint32_t *>(Section.ObjAddress + Offset);
+    uint32_t *Target = reinterpret_cast<uint32_t *>(Section.Address + Offset);
+    uint32_t FinalAddress = ((Section.LoadAddress + Offset) & 0xFFFFFFFF);
     uint32_t RealOffset = *Placeholder + Value + Addend - FinalAddress;
     *Target = RealOffset;
     break;
-    }
-    default:
-      // There are other relocation types, but it appears these are the
-      // only ones currently used by the LLVM ELF object writer
-      llvm_unreachable("Relocation type not implemented yet!");
-      break;
+  }
+  default:
+    // There are other relocation types, but it appears these are the
+    // only ones currently used by the LLVM ELF object writer
+    llvm_unreachable("Relocation type not implemented yet!");
+    break;
   }
 }
 
 void RuntimeDyldELF::resolveAArch64Relocation(const SectionEntry &Section,
-                                              uint64_t Offset,
-                                              uint64_t Value,
-                                              uint32_t Type,
-                                              int64_t Addend) {
-  uint32_t *TargetPtr = reinterpret_cast<uint32_t*>(Section.Address + Offset);
+                                              uint64_t Offset, uint64_t Value,
+                                              uint32_t Type, int64_t Addend) {
+  uint32_t *TargetPtr = reinterpret_cast<uint32_t *>(Section.Address + Offset);
   uint64_t FinalAddress = Section.LoadAddress + Offset;
 
   DEBUG(dbgs() << "resolveAArch64Relocation, LocalAddress: 0x"
                << format("%llx", Section.Address + Offset)
-               << " FinalAddress: 0x" << format("%llx",FinalAddress)
-               << " Value: 0x" << format("%llx",Value)
-               << " Type: 0x" << format("%x",Type)
-               << " Addend: 0x" << format("%llx",Addend)
+               << " FinalAddress: 0x" << format("%llx", FinalAddress)
+               << " Value: 0x" << format("%llx", Value) << " Type: 0x"
+               << format("%x", Type) << " Addend: 0x" << format("%llx", Addend)
                << "\n");
 
   switch (Type) {
@@ -378,7 +349,8 @@ void RuntimeDyldELF::resolveAArch64Relocation(const SectionEntry &Section,
     llvm_unreachable("Relocation type not implemented yet!");
     break;
   case ELF::R_AARCH64_ABS64: {
-    uint64_t *TargetPtr = reinterpret_cast<uint64_t*>(Section.Address + Offset);
+    uint64_t *TargetPtr =
+        reinterpret_cast<uint64_t *>(Section.Address + Offset);
     *TargetPtr = Value + Addend;
     break;
   }
@@ -456,7 +428,8 @@ void RuntimeDyldELF::resolveAArch64Relocation(const SectionEntry &Section,
   }
   case ELF::R_AARCH64_ADR_PREL_PG_HI21: {
     // Operation: Page(S+A) - Page(P)
-    uint64_t Result = ((Value + Addend) & ~0xfffULL) - (FinalAddress & ~0xfffULL);
+    uint64_t Result =
+        ((Value + Addend) & ~0xfffULL) - (FinalAddress & ~0xfffULL);
 
     // Check that -2^32 <= X < 2^32
     assert(static_cast<int64_t>(Result) >= (-1LL << 32) &&
@@ -500,26 +473,22 @@ void RuntimeDyldELF::resolveAArch64Relocation(const SectionEntry &Section,
 }
 
 void RuntimeDyldELF::resolveARMRelocation(const SectionEntry &Section,
-                                          uint64_t Offset,
-                                          uint32_t Value,
-                                          uint32_t Type,
-                                          int32_t Addend) {
+                                          uint64_t Offset, uint32_t Value,
+                                          uint32_t Type, int32_t Addend) {
   // TODO: Add Thumb relocations.
-  uint32_t *Placeholder = reinterpret_cast<uint32_t*>(Section.ObjAddress +
-                                                      Offset);
-  uint32_t* TargetPtr = (uint32_t*)(Section.Address + Offset);
+  uint32_t *Placeholder =
+      reinterpret_cast<uint32_t *>(Section.ObjAddress + Offset);
+  uint32_t *TargetPtr = (uint32_t *)(Section.Address + Offset);
   uint32_t FinalAddress = ((Section.LoadAddress + Offset) & 0xFFFFFFFF);
   Value += Addend;
 
   DEBUG(dbgs() << "resolveARMRelocation, LocalAddress: "
                << Section.Address + Offset
-               << " FinalAddress: " << format("%p",FinalAddress)
-               << " Value: " << format("%x",Value)
-               << " Type: " << format("%x",Type)
-               << " Addend: " << format("%x",Addend)
-               << "\n");
+               << " FinalAddress: " << format("%p", FinalAddress) << " Value: "
+               << format("%x", Value) << " Type: " << format("%x", Type)
+               << " Addend: " << format("%x", Addend) << "\n");
 
-  switch(Type) {
+  switch (Type) {
   default:
     llvm_unreachable("Not implemented relocation type!");
 
@@ -555,8 +524,8 @@ void RuntimeDyldELF::resolveARMRelocation(const SectionEntry &Section,
     *TargetPtr |= ((Value >> 12) & 0xF) << 16;
     break;
   // Write 24 bit relative value to the branch instruction.
-  case ELF::R_ARM_PC24 :    // Fall through.
-  case ELF::R_ARM_CALL :    // Fall through.
+  case ELF::R_ARM_PC24: // Fall through.
+  case ELF::R_ARM_CALL: // Fall through.
   case ELF::R_ARM_JUMP24: {
     int32_t RelValue = static_cast<int32_t>(Value - FinalAddress - 8);
     RelValue = (RelValue & 0x03FFFFFC) >> 2;
@@ -576,25 +545,20 @@ void RuntimeDyldELF::resolveARMRelocation(const SectionEntry &Section,
 }
 
 void RuntimeDyldELF::resolveMIPSRelocation(const SectionEntry &Section,
-                                           uint64_t Offset,
-                                           uint32_t Value,
-                                           uint32_t Type,
-                                           int32_t Addend) {
-  uint32_t *Placeholder = reinterpret_cast<uint32_t*>(Section.ObjAddress +
-                                                      Offset);
-  uint32_t* TargetPtr = (uint32_t*)(Section.Address + Offset);
+                                           uint64_t Offset, uint32_t Value,
+                                           uint32_t Type, int32_t Addend) {
+  uint32_t *Placeholder =
+      reinterpret_cast<uint32_t *>(Section.ObjAddress + Offset);
+  uint32_t *TargetPtr = (uint32_t *)(Section.Address + Offset);
   Value += Addend;
 
   DEBUG(dbgs() << "resolveMipselocation, LocalAddress: "
-               << Section.Address + Offset
-               << " FinalAddress: "
-               << format("%p",Section.LoadAddress + Offset)
-               << " Value: " << format("%x",Value)
-               << " Type: " << format("%x",Type)
-               << " Addend: " << format("%x",Addend)
-               << "\n");
+               << Section.Address + Offset << " FinalAddress: "
+               << format("%p", Section.LoadAddress + Offset) << " Value: "
+               << format("%x", Value) << " Type: " << format("%x", Type)
+               << " Addend: " << format("%x", Addend) << "\n");
 
-  switch(Type) {
+  switch (Type) {
   default:
     llvm_unreachable("Not implemented relocation type!");
     break;
@@ -602,13 +566,13 @@ void RuntimeDyldELF::resolveMIPSRelocation(const SectionEntry &Section,
     *TargetPtr = Value + (*Placeholder);
     break;
   case ELF::R_MIPS_26:
-    *TargetPtr = ((*Placeholder) & 0xfc000000) | (( Value & 0x0fffffff) >> 2);
+    *TargetPtr = ((*Placeholder) & 0xfc000000) | ((Value & 0x0fffffff) >> 2);
     break;
   case ELF::R_MIPS_HI16:
     // Get the higher 16-bits. Also add 1 if bit 15 is 1.
     Value += ((*Placeholder) & 0x0000ffff) << 16;
-    *TargetPtr = ((*Placeholder) & 0xffff0000) |
-                 (((Value + 0x8000) >> 16) & 0xffff);
+    *TargetPtr =
+        ((*Placeholder) & 0xffff0000) | (((Value + 0x8000) >> 16) & 0xffff);
     break;
   case ELF::R_MIPS_LO16:
     Value += ((*Placeholder) & 0x0000ffff);
@@ -619,13 +583,13 @@ void RuntimeDyldELF::resolveMIPSRelocation(const SectionEntry &Section,
     // are used for internal JIT purpose. These relocations are similar to
     // R_MIPS_HI16 and R_MIPS_LO16, but they do not take any addend into
     // account.
-    *TargetPtr = ((*TargetPtr) & 0xffff0000) |
-                 (((Value + 0x8000) >> 16) & 0xffff);
+    *TargetPtr =
+        ((*TargetPtr) & 0xffff0000) | (((Value + 0x8000) >> 16) & 0xffff);
     break;
   case ELF::R_MIPS_UNUSED2:
     *TargetPtr = ((*TargetPtr) & 0xffff0000) | (Value & 0xffff);
     break;
-   }
+  }
 }
 
 // Return the .TOC. section address to R_PPC64_TOC relocations.
@@ -635,9 +599,7 @@ uint64_t RuntimeDyldELF::findPPC64TOC() const {
   SectionList::const_iterator it = Sections.begin();
   SectionList::const_iterator ite = Sections.end();
   for (; it != ite; ++it) {
-    if (it->Name == ".got" ||
-        it->Name == ".toc" ||
-        it->Name == ".tocbss" ||
+    if (it->Name == ".got" || it->Name == ".toc" || it->Name == ".tocbss" ||
         it->Name == ".plt")
       break;
   }
@@ -650,7 +612,7 @@ uint64_t RuntimeDyldELF::findPPC64TOC() const {
     // directly.
     it = Sections.begin();
   }
-  assert (it != ite);
+  assert(it != ite);
   // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000
   // thus permitting a full 64 Kbytes segment.
   return it->LoadAddress + 0x8000;
@@ -675,7 +637,8 @@ void RuntimeDyldELF::findOPDEntrySection(ObjectImage &Obj,
       continue;
 
     for (relocation_iterator i = si->relocation_begin(),
-         e = si->relocation_end(); i != e;) {
+                             e = si->relocation_end();
+         i != e;) {
       // The R_PPC64_ADDR64 relocation indicates the first field
       // of a .opd entry
       uint64_t TypeFunc;
@@ -723,65 +686,53 @@ void RuntimeDyldELF::findOPDEntrySection(ObjectImage &Obj,
 // and #highest(value) macros defined in section 4.5.1. Relocation Types
 // in PPC-elf64abi document.
 //
-static inline
-uint16_t applyPPClo (uint64_t value)
-{
-  return value & 0xffff;
-}
+static inline uint16_t applyPPClo(uint64_t value) { return value & 0xffff; }
 
-static inline
-uint16_t applyPPChi (uint64_t value)
-{
+static inline uint16_t applyPPChi(uint64_t value) {
   return (value >> 16) & 0xffff;
 }
 
-static inline
-uint16_t applyPPChigher (uint64_t value)
-{
+static inline uint16_t applyPPChigher(uint64_t value) {
   return (value >> 32) & 0xffff;
 }
 
-static inline
-uint16_t applyPPChighest (uint64_t value)
-{
+static inline uint16_t applyPPChighest(uint64_t value) {
   return (value >> 48) & 0xffff;
 }
 
 void RuntimeDyldELF::resolvePPC64Relocation(const SectionEntry &Section,
-                                            uint64_t Offset,
-                                            uint64_t Value,
-                                            uint32_t Type,
-                                            int64_t Addend) {
-  uint8_t* LocalAddress = Section.Address + Offset;
+                                            uint64_t Offset, uint64_t Value,
+                                            uint32_t Type, int64_t Addend) {
+  uint8_t *LocalAddress = Section.Address + Offset;
   switch (Type) {
   default:
     llvm_unreachable("Relocation type not implemented yet!");
-  break;
-  case ELF::R_PPC64_ADDR16_LO :
-    writeInt16BE(LocalAddress, applyPPClo (Value + Addend));
     break;
-  case ELF::R_PPC64_ADDR16_HI :
-    writeInt16BE(LocalAddress, applyPPChi (Value + Addend));
+  case ELF::R_PPC64_ADDR16_LO:
+    writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
     break;
-  case ELF::R_PPC64_ADDR16_HIGHER :
-    writeInt16BE(LocalAddress, applyPPChigher (Value + Addend));
+  case ELF::R_PPC64_ADDR16_HI:
+    writeInt16BE(LocalAddress, applyPPChi(Value + Addend));
     break;
-  case ELF::R_PPC64_ADDR16_HIGHEST :
-    writeInt16BE(LocalAddress, applyPPChighest (Value + Addend));
+  case ELF::R_PPC64_ADDR16_HIGHER:
+    writeInt16BE(LocalAddress, applyPPChigher(Value + Addend));
     break;
-  case ELF::R_PPC64_ADDR14 : {
+  case ELF::R_PPC64_ADDR16_HIGHEST:
+    writeInt16BE(LocalAddress, applyPPChighest(Value + Addend));
+    break;
+  case ELF::R_PPC64_ADDR14: {
     assert(((Value + Addend) & 3) == 0);
     // Preserve the AA/LK bits in the branch instruction
-    uint8_t aalk = *(LocalAddress+3);
+    uint8_t aalk = *(LocalAddress + 3);
     writeInt16BE(LocalAddress + 2, (aalk & 3) | ((Value + Addend) & 0xfffc));
   } break;
-  case ELF::R_PPC64_ADDR32 : {
+  case ELF::R_PPC64_ADDR32: {
     int32_t Result = static_cast<int32_t>(Value + Addend);
     if (SignExtend32<32>(Result) != Result)
       llvm_unreachable("Relocation R_PPC64_ADDR32 overflow");
     writeInt32BE(LocalAddress, Result);
   } break;
-  case ELF::R_PPC64_REL24 : {
+  case ELF::R_PPC64_REL24: {
     uint64_t FinalAddress = (Section.LoadAddress + Offset);
     int32_t delta = static_cast<int32_t>(Value - FinalAddress + Addend);
     if (SignExtend32<24>(delta) != delta)
@@ -789,7 +740,7 @@ void RuntimeDyldELF::resolvePPC64Relocation(const SectionEntry &Section,
     // Generates a 'bl <address>' instruction
     writeInt32BE(LocalAddress, 0x48000001 | (delta & 0x03FFFFFC));
   } break;
-  case ELF::R_PPC64_REL32 : {
+  case ELF::R_PPC64_REL32: {
     uint64_t FinalAddress = (Section.LoadAddress + Offset);
     int32_t delta = static_cast<int32_t>(Value - FinalAddress + Addend);
     if (SignExtend32<32>(delta) != delta)
@@ -801,18 +752,18 @@ void RuntimeDyldELF::resolvePPC64Relocation(const SectionEntry &Section,
     uint64_t Delta = Value - FinalAddress + Addend;
     writeInt64BE(LocalAddress, Delta);
   } break;
-  case ELF::R_PPC64_ADDR64 :
+  case ELF::R_PPC64_ADDR64:
     writeInt64BE(LocalAddress, Value + Addend);
     break;
-  case ELF::R_PPC64_TOC :
+  case ELF::R_PPC64_TOC:
     writeInt64BE(LocalAddress, findPPC64TOC());
     break;
-  case ELF::R_PPC64_TOC16 : {
+  case ELF::R_PPC64_TOC16: {
     uint64_t TOCStart = findPPC64TOC();
     Value = applyPPClo((Value + Addend) - TOCStart);
     writeInt16BE(LocalAddress, applyPPClo(Value));
   } break;
-  case ELF::R_PPC64_TOC16_DS : {
+  case ELF::R_PPC64_TOC16_DS: {
     uint64_t TOCStart = findPPC64TOC();
     Value = ((Value + Addend) - TOCStart);
     writeInt16BE(LocalAddress, applyPPClo(Value));
@@ -821,10 +772,8 @@ void RuntimeDyldELF::resolvePPC64Relocation(const SectionEntry &Section,
 }
 
 void RuntimeDyldELF::resolveSystemZRelocation(const SectionEntry &Section,
-                                              uint64_t Offset,
-                                              uint64_t Value,
-                                              uint32_t Type,
-                                              int64_t Addend) {
+                                              uint64_t Offset, uint64_t Value,
+                                              uint32_t Type, int64_t Addend) {
   uint8_t *LocalAddress = Section.Address + Offset;
   switch (Type) {
   default:
@@ -884,66 +833,61 @@ void RuntimeDyldELF::resolveRelocation(const RelocationEntry &RE,
 }
 
 void RuntimeDyldELF::resolveRelocation(const SectionEntry &Section,
-                                       uint64_t Offset,
-                                       uint64_t Value,
-                                       uint32_t Type,
-                                       int64_t  Addend,
+                                       uint64_t Offset, uint64_t Value,
+                                       uint32_t Type, int64_t Addend,
                                        uint64_t SymOffset) {
   switch (Arch) {
   case Triple::x86_64:
     resolveX86_64Relocation(Section, Offset, Value, Type, Addend, SymOffset);
     break;
   case Triple::x86:
-    resolveX86Relocation(Section, Offset,
-                         (uint32_t)(Value & 0xffffffffL), Type,
+    resolveX86Relocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type,
                          (uint32_t)(Addend & 0xffffffffL));
     break;
   case Triple::aarch64:
+  case Triple::aarch64_be:
     resolveAArch64Relocation(Section, Offset, Value, Type, Addend);
     break;
-  case Triple::arm:    // Fall through.
+  case Triple::arm: // Fall through.
+  case Triple::armeb:
   case Triple::thumb:
-    resolveARMRelocation(Section, Offset,
-                         (uint32_t)(Value & 0xffffffffL), Type,
+  case Triple::thumbeb:
+    resolveARMRelocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type,
                          (uint32_t)(Addend & 0xffffffffL));
     break;
-  case Triple::mips:    // Fall through.
+  case Triple::mips: // Fall through.
   case Triple::mipsel:
-    resolveMIPSRelocation(Section, Offset,
-                          (uint32_t)(Value & 0xffffffffL), Type,
-                          (uint32_t)(Addend & 0xffffffffL));
+    resolveMIPSRelocation(Section, Offset, (uint32_t)(Value & 0xffffffffL),
+                          Type, (uint32_t)(Addend & 0xffffffffL));
     break;
-  case Triple::ppc64:   // Fall through.
+  case Triple::ppc64: // Fall through.
   case Triple::ppc64le:
     resolvePPC64Relocation(Section, Offset, Value, Type, Addend);
     break;
   case Triple::systemz:
     resolveSystemZRelocation(Section, Offset, Value, Type, Addend);
     break;
-  default: llvm_unreachable("Unsupported CPU type!");
+  default:
+    llvm_unreachable("Unsupported CPU type!");
   }
 }
 
-void RuntimeDyldELF::processRelocationRef(unsigned SectionID,
-                                          RelocationRef RelI,
-                                          ObjectImage &Obj,
-                                          ObjSectionToIDMap &ObjSectionToID,
-                                          const SymbolTableMap &Symbols,
-                                          StubMap &Stubs) {
+relocation_iterator RuntimeDyldELF::processRelocationRef(
+    unsigned SectionID, relocation_iterator RelI, ObjectImage &Obj,
+    ObjSectionToIDMap &ObjSectionToID, const SymbolTableMap &Symbols,
+    StubMap &Stubs) {
   uint64_t RelType;
-  Check(RelI.getType(RelType));
+  Check(RelI->getType(RelType));
   int64_t Addend;
-  Check(getELFRelocationAddend(RelI, Addend));
-  symbol_iterator Symbol = RelI.getSymbol();
+  Check(getELFRelocationAddend(*RelI, Addend));
+  symbol_iterator Symbol = RelI->getSymbol();
 
   // Obtain the symbol name which is referenced in the relocation
   StringRef TargetName;
   if (Symbol != Obj.end_symbols())
     Symbol->getName(TargetName);
-  DEBUG(dbgs() << "\t\tRelType: " << RelType
-               << " Addend: " << Addend
-               << " TargetName: " << TargetName
-               << "\n");
+  DEBUG(dbgs() << "\t\tRelType: " << RelType << " Addend: " << Addend
+               << " TargetName: " << TargetName << "\n");
   RelocationValueRef Value;
   // First search for the symbol in the local symbol table
   SymbolTableMap::const_iterator lsi = Symbols.end();
@@ -967,53 +911,48 @@ void RuntimeDyldELF::processRelocationRef(unsigned SectionID,
       Value.Addend = gsi->second.second + Addend;
     } else {
       switch (SymType) {
-        case SymbolRef::ST_Debug: {
-          // TODO: Now ELF SymbolRef::ST_Debug = STT_SECTION, it's not obviously
-          // and can be changed by another developers. Maybe best way is add
-          // a new symbol type ST_Section to SymbolRef and use it.
-          section_iterator si(Obj.end_sections());
-          Symbol->getSection(si);
-          if (si == Obj.end_sections())
-            llvm_unreachable("Symbol section not found, bad object file format!");
-          DEBUG(dbgs() << "\t\tThis is section symbol\n");
-          // Default to 'true' in case isText fails (though it never does).
-          bool isCode = true;
-          si->isText(isCode);
-          Value.SectionID = findOrEmitSection(Obj,
-                                              (*si),
-                                              isCode,
-                                              ObjSectionToID);
-          Value.Addend = Addend;
-          break;
-        }
-        case SymbolRef::ST_Data:
-        case SymbolRef::ST_Unknown: {
-          Value.SymbolName = TargetName.data();
-          Value.Addend = Addend;
-
-          // Absolute relocations will have a zero symbol ID (STN_UNDEF), which
-          // will manifest here as a NULL symbol name.
-          // We can set this as a valid (but empty) symbol name, and rely
-          // on addRelocationForSymbol to handle this.
-          if (!Value.SymbolName)
-              Value.SymbolName = "";
-          break;
-        }
-        default:
-          llvm_unreachable("Unresolved symbol type!");
-          break;
+      case SymbolRef::ST_Debug: {
+        // TODO: Now ELF SymbolRef::ST_Debug = STT_SECTION, it's not obviously
+        // and can be changed by another developers. Maybe best way is add
+        // a new symbol type ST_Section to SymbolRef and use it.
+        section_iterator si(Obj.end_sections());
+        Symbol->getSection(si);
+        if (si == Obj.end_sections())
+          llvm_unreachable("Symbol section not found, bad object file format!");
+        DEBUG(dbgs() << "\t\tThis is section symbol\n");
+        // Default to 'true' in case isText fails (though it never does).
+        bool isCode = true;
+        si->isText(isCode);
+        Value.SectionID = findOrEmitSection(Obj, (*si), isCode, ObjSectionToID);
+        Value.Addend = Addend;
+        break;
+      }
+      case SymbolRef::ST_Data:
+      case SymbolRef::ST_Unknown: {
+        Value.SymbolName = TargetName.data();
+        Value.Addend = Addend;
+
+        // Absolute relocations will have a zero symbol ID (STN_UNDEF), which
+        // will manifest here as a NULL symbol name.
+        // We can set this as a valid (but empty) symbol name, and rely
+        // on addRelocationForSymbol to handle this.
+        if (!Value.SymbolName)
+          Value.SymbolName = "";
+        break;
+      }
+      default:
+        llvm_unreachable("Unresolved symbol type!");
+        break;
       }
     }
   }
   uint64_t Offset;
-  Check(RelI.getOffset(Offset));
+  Check(RelI->getOffset(Offset));
 
-  DEBUG(dbgs() << "\t\tSectionID: " << SectionID
-               << " Offset: " << Offset
+  DEBUG(dbgs() << "\t\tSectionID: " << SectionID << " Offset: " << Offset
                << "\n");
   if (Arch == Triple::aarch64 &&
-      (RelType == ELF::R_AARCH64_CALL26 ||
-       RelType == ELF::R_AARCH64_JUMP26)) {
+      (RelType == ELF::R_AARCH64_CALL26 || RelType == ELF::R_AARCH64_JUMP26)) {
     // This is an AArch64 branch relocation, need to use a stub function.
     DEBUG(dbgs() << "\t\tThis is an AArch64 branch relocation.");
     SectionEntry &Section = Sections[SectionID];
@@ -1021,24 +960,21 @@ void RuntimeDyldELF::processRelocationRef(unsigned SectionID,
     // Look for an existing stub.
     StubMap::const_iterator i = Stubs.find(Value);
     if (i != Stubs.end()) {
-        resolveRelocation(Section, Offset,
-                          (uint64_t)Section.Address + i->second, RelType, 0);
+      resolveRelocation(Section, Offset, (uint64_t)Section.Address + i->second,
+                        RelType, 0);
       DEBUG(dbgs() << " Stub function found\n");
     } else {
       // Create a new stub function.
       DEBUG(dbgs() << " Create a new stub function\n");
       Stubs[Value] = Section.StubOffset;
-      uint8_t *StubTargetAddr = createStubFunction(Section.Address +
-                                                   Section.StubOffset);
+      uint8_t *StubTargetAddr =
+          createStubFunction(Section.Address + Section.StubOffset);
 
-      RelocationEntry REmovz_g3(SectionID,
-                                StubTargetAddr - Section.Address,
+      RelocationEntry REmovz_g3(SectionID, StubTargetAddr - Section.Address,
                                 ELF::R_AARCH64_MOVW_UABS_G3, Value.Addend);
-      RelocationEntry REmovk_g2(SectionID,
-                                StubTargetAddr - Section.Address + 4,
+      RelocationEntry REmovk_g2(SectionID, StubTargetAddr - Section.Address + 4,
                                 ELF::R_AARCH64_MOVW_UABS_G2_NC, Value.Addend);
-      RelocationEntry REmovk_g1(SectionID,
-                                StubTargetAddr - Section.Address + 8,
+      RelocationEntry REmovk_g1(SectionID, StubTargetAddr - Section.Address + 8,
                                 ELF::R_AARCH64_MOVW_UABS_G1_NC, Value.Addend);
       RelocationEntry REmovk_g0(SectionID,
                                 StubTargetAddr - Section.Address + 12,
@@ -1056,14 +992,13 @@ void RuntimeDyldELF::processRelocationRef(unsigned SectionID,
         addRelocationForSection(REmovk_g0, Value.SectionID);
       }
       resolveRelocation(Section, Offset,
-                        (uint64_t)Section.Address + Section.StubOffset,
-                        RelType, 0);
+                        (uint64_t)Section.Address + Section.StubOffset, RelType,
+                        0);
       Section.StubOffset += getMaxStubSize();
     }
   } else if (Arch == Triple::arm &&
-      (RelType == ELF::R_ARM_PC24 ||
-       RelType == ELF::R_ARM_CALL ||
-       RelType == ELF::R_ARM_JUMP24)) {
+             (RelType == ELF::R_ARM_PC24 || RelType == ELF::R_ARM_CALL ||
+              RelType == ELF::R_ARM_JUMP24)) {
     // This is an ARM branch relocation, need to use a stub function.
     DEBUG(dbgs() << "\t\tThis is an ARM branch relocation.");
     SectionEntry &Section = Sections[SectionID];
@@ -1071,15 +1006,15 @@ void RuntimeDyldELF::processRelocationRef(unsigned SectionID,
     // Look for an existing stub.
     StubMap::const_iterator i = Stubs.find(Value);
     if (i != Stubs.end()) {
-        resolveRelocation(Section, Offset,
-                          (uint64_t)Section.Address + i->second, RelType, 0);
+      resolveRelocation(Section, Offset, (uint64_t)Section.Address + i->second,
+                        RelType, 0);
       DEBUG(dbgs() << " Stub function found\n");
     } else {
       // Create a new stub function.
       DEBUG(dbgs() << " Create a new stub function\n");
       Stubs[Value] = Section.StubOffset;
-      uint8_t *StubTargetAddr = createStubFunction(Section.Address +
-                                                   Section.StubOffset);
+      uint8_t *StubTargetAddr =
+          createStubFunction(Section.Address + Section.StubOffset);
       RelocationEntry RE(SectionID, StubTargetAddr - Section.Address,
                          ELF::R_ARM_PRIVATE_0, Value.Addend);
       if (Value.SymbolName)
@@ -1088,8 +1023,8 @@ void RuntimeDyldELF::processRelocationRef(unsigned SectionID,
         addRelocationForSection(RE, Value.SectionID);
 
       resolveRelocation(Section, Offset,
-                        (uint64_t)Section.Address + Section.StubOffset,
-                        RelType, 0);
+                        (uint64_t)Section.Address + Section.StubOffset, RelType,
+                        0);
       Section.StubOffset += getMaxStubSize();
     }
   } else if ((Arch == Triple::mipsel || Arch == Triple::mips) &&
@@ -1115,15 +1050,13 @@ void RuntimeDyldELF::processRelocationRef(unsigned SectionID,
       // Create a new stub function.
       DEBUG(dbgs() << " Create a new stub function\n");
       Stubs[Value] = Section.StubOffset;
-      uint8_t *StubTargetAddr = createStubFunction(Section.Address +
-                                                   Section.StubOffset);
+      uint8_t *StubTargetAddr =
+          createStubFunction(Section.Address + Section.StubOffset);
 
       // Creating Hi and Lo relocations for the filled stub instructions.
-      RelocationEntry REHi(SectionID,
-                           StubTargetAddr - Section.Address,
+      RelocationEntry REHi(SectionID, StubTargetAddr - Section.Address,
                            ELF::R_MIPS_UNUSED1, Value.Addend);
-      RelocationEntry RELo(SectionID,
-                           StubTargetAddr - Section.Address + 4,
+      RelocationEntry RELo(SectionID, StubTargetAddr - Section.Address + 4,
                            ELF::R_MIPS_UNUSED2, Value.Addend);
 
       if (Value.SymbolName) {
@@ -1147,7 +1080,8 @@ void RuntimeDyldELF::processRelocationRef(unsigned SectionID,
       uint8_t *Target = Section.Address + Offset;
       bool RangeOverflow = false;
       if (SymType != SymbolRef::ST_Unknown) {
-        // A function call may points to the .opd entry, so the final symbol value
+        // A function call may points to the .opd entry, so the final symbol
+        // value
         // in calculated based in the relocation values in .opd section.
         findOPDEntrySection(Obj, ObjSectionToID, Value);
         uint8_t *RelocTarget = Sections[Value.SectionID].Address + Value.Addend;
@@ -1176,53 +1110,49 @@ void RuntimeDyldELF::processRelocationRef(unsigned SectionID,
           // Create a new stub function.
           DEBUG(dbgs() << " Create a new stub function\n");
           Stubs[Value] = Section.StubOffset;
-          uint8_t *StubTargetAddr = createStubFunction(Section.Address +
-                                                       Section.StubOffset);
+          uint8_t *StubTargetAddr =
+              createStubFunction(Section.Address + Section.StubOffset);
           RelocationEntry RE(SectionID, StubTargetAddr - Section.Address,
                              ELF::R_PPC64_ADDR64, Value.Addend);
 
           // Generates the 64-bits address loads as exemplified in section
           // 4.5.1 in PPC64 ELF ABI.
-          RelocationEntry REhst(SectionID,
-                                StubTargetAddr - Section.Address + 2,
+          RelocationEntry REhst(SectionID, StubTargetAddr - Section.Address + 2,
                                 ELF::R_PPC64_ADDR16_HIGHEST, Value.Addend);
-          RelocationEntry REhr(SectionID,
-                               StubTargetAddr - Section.Address + 6,
+          RelocationEntry REhr(SectionID, StubTargetAddr - Section.Address + 6,
                                ELF::R_PPC64_ADDR16_HIGHER, Value.Addend);
-          RelocationEntry REh(SectionID,
-                              StubTargetAddr - Section.Address + 14,
+          RelocationEntry REh(SectionID, StubTargetAddr - Section.Address + 14,
                               ELF::R_PPC64_ADDR16_HI, Value.Addend);
-          RelocationEntry REl(SectionID,
-                              StubTargetAddr - Section.Address + 18,
+          RelocationEntry REl(SectionID, StubTargetAddr - Section.Address + 18,
                               ELF::R_PPC64_ADDR16_LO, Value.Addend);
 
           if (Value.SymbolName) {
             addRelocationForSymbol(REhst, Value.SymbolName);
-            addRelocationForSymbol(REhr,  Value.SymbolName);
-            addRelocationForSymbol(REh,   Value.SymbolName);
-            addRelocationForSymbol(REl,   Value.SymbolName);
+            addRelocationForSymbol(REhr, Value.SymbolName);
+            addRelocationForSymbol(REh, Value.SymbolName);
+            addRelocationForSymbol(REl, Value.SymbolName);
           } else {
             addRelocationForSection(REhst, Value.SectionID);
-            addRelocationForSection(REhr,  Value.SectionID);
-            addRelocationForSection(REh,   Value.SectionID);
-            addRelocationForSection(REl,   Value.SectionID);
+            addRelocationForSection(REhr, Value.SectionID);
+            addRelocationForSection(REh, Value.SectionID);
+            addRelocationForSection(REl, Value.SectionID);
           }
 
           resolveRelocation(Section, Offset,
                             (uint64_t)Section.Address + Section.StubOffset,
                             RelType, 0);
-          if (SymType == SymbolRef::ST_Unknown)
-            // Restore the TOC for external calls
-            writeInt32BE(Target+4, 0xE8410028); // ld r2,40(r1)
           Section.StubOffset += getMaxStubSize();
         }
+        if (SymType == SymbolRef::ST_Unknown)
+          // Restore the TOC for external calls
+          writeInt32BE(Target + 4, 0xE8410028); // ld r2,40(r1)
       }
     } else {
       RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
       // Extra check to avoid relocation againt empty symbols (usually
       // the R_PPC64_TOC).
       if (SymType != SymbolRef::ST_Unknown && TargetName.empty())
-        Value.SymbolName = NULL;
+        Value.SymbolName = nullptr;
 
       if (Value.SymbolName)
         addRelocationForSymbol(RE, Value.SymbolName);
@@ -1230,8 +1160,7 @@ void RuntimeDyldELF::processRelocationRef(unsigned SectionID,
         addRelocationForSection(RE, Value.SectionID);
     }
   } else if (Arch == Triple::systemz &&
-             (RelType == ELF::R_390_PLT32DBL ||
-              RelType == ELF::R_390_GOTENT)) {
+             (RelType == ELF::R_390_PLT32DBL || RelType == ELF::R_390_GOTENT)) {
     // Create function stubs for both PLT and GOT references, regardless of
     // whether the GOT reference is to data or code.  The stub contains the
     // full address of the symbol, as needed by GOT references, and the
@@ -1256,14 +1185,14 @@ void RuntimeDyldELF::processRelocationRef(unsigned SectionID,
 
       uintptr_t BaseAddress = uintptr_t(Section.Address);
       uintptr_t StubAlignment = getStubAlignment();
-      StubAddress = (BaseAddress + Section.StubOffset +
-                     StubAlignment - 1) & -StubAlignment;
+      StubAddress = (BaseAddress + Section.StubOffset + StubAlignment - 1) &
+                    -StubAlignment;
       unsigned StubOffset = StubAddress - BaseAddress;
 
       Stubs[Value] = StubOffset;
       createStubFunction((uint8_t *)StubAddress);
-      RelocationEntry RE(SectionID, StubOffset + 8,
-                         ELF::R_390_64, Value.Addend - Addend);
+      RelocationEntry RE(SectionID, StubOffset + 8, ELF::R_390_64,
+                         Value.Addend - Addend);
       if (Value.SymbolName)
         addRelocationForSymbol(RE, Value.SymbolName);
       else
@@ -1272,15 +1201,17 @@ void RuntimeDyldELF::processRelocationRef(unsigned SectionID,
     }
 
     if (RelType == ELF::R_390_GOTENT)
-      resolveRelocation(Section, Offset, StubAddress + 8,
-                        ELF::R_390_PC32DBL, Addend);
+      resolveRelocation(Section, Offset, StubAddress + 8, ELF::R_390_PC32DBL,
+                        Addend);
     else
       resolveRelocation(Section, Offset, StubAddress, RelType, Addend);
   } else if (Arch == Triple::x86_64 && RelType == ELF::R_X86_64_PLT32) {
-    // The way the PLT relocations normally work is that the linker allocates the
+    // The way the PLT relocations normally work is that the linker allocates
+    // the
     // PLT and this relocation makes a PC-relative call into the PLT.  The PLT
-    // entry will then jump to an address provided by the GOT.  On first call, the
-    // GOT address will point back into PLT code that resolves the symbol.  After
+    // entry will then jump to an address provided by the GOT.  On first call,
+    // the
+    // GOT address will point back into PLT code that resolves the symbol. After
     // the first call, the GOT entry points to the actual function.
     //
     // For local functions we're ignoring all of that here and just replacing
@@ -1306,8 +1237,8 @@ void RuntimeDyldELF::processRelocationRef(unsigned SectionID,
 
         uintptr_t BaseAddress = uintptr_t(Section.Address);
         uintptr_t StubAlignment = getStubAlignment();
-        StubAddress = (BaseAddress + Section.StubOffset +
-                      StubAlignment - 1) & -StubAlignment;
+        StubAddress = (BaseAddress + Section.StubOffset + StubAlignment - 1) &
+                      -StubAlignment;
         unsigned StubOffset = StubAddress - BaseAddress;
         Stubs[Value] = StubOffset;
         createStubFunction((uint8_t *)StubAddress);
@@ -1316,8 +1247,8 @@ void RuntimeDyldELF::processRelocationRef(unsigned SectionID,
         GOTEntries.push_back(Value);
 
         // Make our stub function a relative call to the GOT entry.
-        RelocationEntry RE(SectionID, StubOffset + 2,
-                           ELF::R_X86_64_GOTPCREL, -4);
+        RelocationEntry RE(SectionID, StubOffset + 2, ELF::R_X86_64_GOTPCREL,
+                           -4);
         addRelocationForSymbol(RE, Value.SymbolName);
 
         // Bump our stub offset counter
@@ -1325,8 +1256,8 @@ void RuntimeDyldELF::processRelocationRef(unsigned SectionID,
       }
 
       // Make the target call a call into the stub table.
-      resolveRelocation(Section, Offset, StubAddress,
-                      ELF::R_X86_64_PC32, Addend);
+      resolveRelocation(Section, Offset, StubAddress, ELF::R_X86_64_PC32,
+                        Addend);
     } else {
       RelocationEntry RE(SectionID, Offset, ELF::R_X86_64_PC32, Value.Addend,
                          Value.Offset);
@@ -1342,17 +1273,19 @@ void RuntimeDyldELF::processRelocationRef(unsigned SectionID,
     else
       addRelocationForSection(RE, Value.SectionID);
   }
+  return ++RelI;
 }
 
 void RuntimeDyldELF::updateGOTEntries(StringRef Name, uint64_t Addr) {
 
-  SmallVectorImpl<std::pair<SID, GOTRelocations> >::iterator it;
-  SmallVectorImpl<std::pair<SID, GOTRelocations> >::iterator end = GOTs.end();
+  SmallVectorImpl<std::pair<SID, GOTRelocations>>::iterator it;
+  SmallVectorImpl<std::pair<SID, GOTRelocations>>::iterator end = GOTs.end();
 
   for (it = GOTs.begin(); it != end; ++it) {
     GOTRelocations &GOTEntries = it->second;
     for (int i = 0, e = GOTEntries.size(); i != e; ++i) {
-      if (GOTEntries[i].SymbolName != 0 && GOTEntries[i].SymbolName == Name) {
+      if (GOTEntries[i].SymbolName != nullptr &&
+          GOTEntries[i].SymbolName == Name) {
         GOTEntries[i].Offset = Addr;
       }
     }
@@ -1378,18 +1311,19 @@ size_t RuntimeDyldELF::getGOTEntrySize() {
   case Triple::mipsel:
     Result = sizeof(uint32_t);
     break;
-  default: llvm_unreachable("Unsupported CPU type!");
+  default:
+    llvm_unreachable("Unsupported CPU type!");
   }
   return Result;
 }
 
-uint64_t RuntimeDyldELF::findGOTEntry(uint64_t LoadAddress,
-                                      uint64_t Offset) {
+uint64_t RuntimeDyldELF::findGOTEntry(uint64_t LoadAddress, uint64_t Offset) {
 
   const size_t GOTEntrySize = getGOTEntrySize();
 
-  SmallVectorImpl<std::pair<SID, GOTRelocations> >::const_iterator it;
-  SmallVectorImpl<std::pair<SID, GOTRelocations> >::const_iterator end = GOTs.end();
+  SmallVectorImpl<std::pair<SID, GOTRelocations>>::const_iterator it;
+  SmallVectorImpl<std::pair<SID, GOTRelocations>>::const_iterator end =
+      GOTs.end();
 
   int GOTIndex = -1;
   for (it = GOTs.begin(); it != end; ++it) {
@@ -1399,7 +1333,7 @@ uint64_t RuntimeDyldELF::findGOTEntry(uint64_t LoadAddress,
     // Find the matching entry in our vector.
     uint64_t SymbolOffset = 0;
     for (int i = 0, e = GOTEntries.size(); i != e; ++i) {
-      if (GOTEntries[i].SymbolName == 0) {
+      if (!GOTEntries[i].SymbolName) {
         if (getSectionLoadAddress(GOTEntries[i].SectionID) == LoadAddress &&
             GOTEntries[i].Offset == Offset) {
           GOTIndex = i;
@@ -1419,11 +1353,11 @@ uint64_t RuntimeDyldELF::findGOTEntry(uint64_t LoadAddress,
 
     if (GOTIndex != -1) {
       if (GOTEntrySize == sizeof(uint64_t)) {
-        uint64_t *LocalGOTAddr = (uint64_t*)getSectionAddress(GOTSectionID);
+        uint64_t *LocalGOTAddr = (uint64_t *)getSectionAddress(GOTSectionID);
         // Fill in this entry with the address of the symbol being referenced.
         LocalGOTAddr[GOTIndex] = LoadAddress + SymbolOffset;
       } else {
-        uint32_t *LocalGOTAddr = (uint32_t*)getSectionAddress(GOTSectionID);
+        uint32_t *LocalGOTAddr = (uint32_t *)getSectionAddress(GOTSectionID);
         // Fill in this entry with the address of the symbol being referenced.
         LocalGOTAddr[GOTIndex] = (uint32_t)(LoadAddress + SymbolOffset);
       }
@@ -1457,8 +1391,7 @@ void RuntimeDyldELF::finalizeLoad(ObjSectionToIDMap &SectionMap) {
       // needed when GOT-based relocations are applied.
       memset(Addr, 0, TotalSize);
     }
-  }
-  else {
+  } else {
     report_fatal_error("Unable to allocate memory for GOT!");
   }
 
@@ -1478,7 +1411,8 @@ void RuntimeDyldELF::finalizeLoad(ObjSectionToIDMap &SectionMap) {
 bool RuntimeDyldELF::isCompatibleFormat(const ObjectBuffer *Buffer) const {
   if (Buffer->getBufferSize() < strlen(ELF::ElfMagic))
     return false;
-  return (memcmp(Buffer->getBufferStart(), ELF::ElfMagic, strlen(ELF::ElfMagic))) == 0;
+  return (memcmp(Buffer->getBufferStart(), ELF::ElfMagic,
+                 strlen(ELF::ElfMagic))) == 0;
 }
 
 bool RuntimeDyldELF::isCompatibleFile(const object::ObjectFile *Obj) const {