Convert getFileOffset to getOffset and move it to its only user.
[oota-llvm.git] / lib / ExecutionEngine / RuntimeDyld / RuntimeDyld.cpp
index 49f8dc378e3774c54205624c854ca40eef1b4c1a..f9a81db4df0aa73a2e751068619d7524a7d81bed 100644 (file)
 
 #define DEBUG_TYPE "dyld"
 #include "llvm/ExecutionEngine/RuntimeDyld.h"
+#include "JITRegistrar.h"
 #include "ObjectImageCommon.h"
 #include "RuntimeDyldELF.h"
 #include "RuntimeDyldImpl.h"
 #include "RuntimeDyldMachO.h"
-#include "llvm/Support/FileSystem.h"
-#include "llvm/Support/MathExtras.h"
 #include "llvm/Object/ELF.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/MutexGuard.h"
 
 using namespace llvm;
 using namespace llvm::object;
@@ -27,16 +28,21 @@ using namespace llvm::object;
 // Empty out-of-line virtual destructor as the key function.
 RuntimeDyldImpl::~RuntimeDyldImpl() {}
 
+// Pin the JITRegistrar's and ObjectImage*'s vtables to this file.
+void JITRegistrar::anchor() {}
+void ObjectImage::anchor() {}
+void ObjectImageCommon::anchor() {}
+
 namespace llvm {
 
-void RuntimeDyldImpl::registerEHFrames() {
-}
+void RuntimeDyldImpl::registerEHFrames() {}
 
-void RuntimeDyldImpl::deregisterEHFrames() {
-}
+void RuntimeDyldImpl::deregisterEHFrames() {}
 
 // Resolve the relocations for all symbols we currently know about.
 void RuntimeDyldImpl::resolveRelocations() {
+  MutexGuard locked(lock);
+
   // First, resolve relocations associated with external symbols.
   resolveExternalSymbols();
 
@@ -47,9 +53,8 @@ void RuntimeDyldImpl::resolveRelocations() {
     // symbol for the relocation is located.  The SectionID in the relocation
     // entry provides the section to which the relocation will be applied.
     uint64_t Addr = Sections[i].LoadAddress;
-    DEBUG(dbgs() << "Resolving relocations Section #" << i
-            << "\t" << format("%p", (uint8_t *)Addr)
-            << "\n");
+    DEBUG(dbgs() << "Resolving relocations Section #" << i << "\t"
+                 << format("%p", (uint8_t *)Addr) << "\n");
     resolveRelocationList(Relocations[i], Addr);
     Relocations.erase(i);
   }
@@ -57,6 +62,7 @@ void RuntimeDyldImpl::resolveRelocations() {
 
 void RuntimeDyldImpl::mapSectionAddress(const void *LocalAddress,
                                         uint64_t TargetAddress) {
+  MutexGuard locked(lock);
   for (unsigned i = 0, e = Sections.size(); i != e; ++i) {
     if (Sections[i].Address == LocalAddress) {
       reassignSectionAddress(i, TargetAddress);
@@ -66,20 +72,52 @@ void RuntimeDyldImpl::mapSectionAddress(const void *LocalAddress,
   llvm_unreachable("Attempting to remap address of unknown section!");
 }
 
-// Subclasses can implement this method to create specialized image instances.
-// The caller owns the pointer that is returned.
-ObjectImage *RuntimeDyldImpl::createObjectImage(ObjectBuffer *InputBuffer) {
-  return new ObjectImageCommon(InputBuffer);
+static error_code getOffset(const SymbolRef &Sym, uint64_t &Result) {
+  uint64_t Address;
+  if (error_code EC = Sym.getAddress(Address))
+    return EC;
+
+  if (Address == UnknownAddressOrSize) {
+    Result = UnknownAddressOrSize;
+    return object_error::success;
+  }
+
+  const ObjectFile *Obj = Sym.getObject();
+  section_iterator SecI(Obj->section_begin());
+  if (error_code EC = Sym.getSection(SecI))
+    return EC;
+
+ if (SecI == Obj->section_end()) {
+   Result = UnknownAddressOrSize;
+   return object_error::success;
+ }
+
+  uint64_t SectionAddress;
+  if (error_code EC = SecI->getAddress(SectionAddress))
+    return EC;
+
+  Result = Address - SectionAddress;
+  return object_error::success;
 }
 
-ObjectImage *RuntimeDyldImpl::loadObject(ObjectBuffer *InputBuffer) {
-  OwningPtr<ObjectImage> obj(createObjectImage(InputBuffer));
-  if (!obj)
-    report_fatal_error("Unable to create object image from memory buffer!");
+ObjectImage *RuntimeDyldImpl::loadObject(ObjectImage *InputObject) {
+  MutexGuard locked(lock);
+
+  std::unique_ptr<ObjectImage> Obj(InputObject);
+  if (!Obj)
+    return NULL;
 
   // Save information about our target
-  Arch = (Triple::ArchType)obj->getArch();
-  IsTargetLittleEndian = obj->getObjectFile()->isLittleEndian();
+  Arch = (Triple::ArchType)Obj->getArch();
+  IsTargetLittleEndian = Obj->getObjectFile()->isLittleEndian();
+
+  // Compute the memory size required to load all sections to be loaded
+  // and pass this information to the memory manager
+  if (MemMgr->needsToReserveAllocationSpace()) {
+    uint64_t CodeSize = 0, DataSizeRO = 0, DataSizeRW = 0;
+    computeTotalAllocSize(*Obj, CodeSize, DataSizeRO, DataSizeRW);
+    MemMgr->reserveAllocationSpace(CodeSize, DataSizeRO, DataSizeRW);
+  }
 
   // Symbols found in this object
   StringMap<SymbolLoc> LocalSymbols;
@@ -91,52 +129,45 @@ ObjectImage *RuntimeDyldImpl::loadObject(ObjectBuffer *InputBuffer) {
   // Maximum required total memory to allocate all common symbols
   uint64_t CommonSize = 0;
 
-  error_code err;
   // Parse symbols
   DEBUG(dbgs() << "Parse symbols:\n");
-  for (symbol_iterator i = obj->begin_symbols(), e = obj->end_symbols();
-       i != e; i.increment(err)) {
-    Check(err);
+  for (symbol_iterator I = Obj->begin_symbols(), E = Obj->end_symbols(); I != E;
+       ++I) {
     object::SymbolRef::Type SymType;
     StringRef Name;
-    Check(i->getType(SymType));
-    Check(i->getName(Name));
+    Check(I->getType(SymType));
+    Check(I->getName(Name));
 
-    uint32_t flags;
-    Check(i->getFlags(flags));
+    uint32_t Flags = I->getFlags();
 
-    bool isCommon = flags & SymbolRef::SF_Common;
-    if (isCommon) {
+    bool IsCommon = Flags & SymbolRef::SF_Common;
+    if (IsCommon) {
       // Add the common symbols to a list.  We'll allocate them all below.
       uint32_t Align;
-      Check(i->getAlignment(Align));
+      Check(I->getAlignment(Align));
       uint64_t Size = 0;
-      Check(i->getSize(Size));
+      Check(I->getSize(Size));
       CommonSize += Size + Align;
-      CommonSymbols[*i] = CommonSymbolInfo(Size, Align);
+      CommonSymbols[*I] = CommonSymbolInfo(Size, Align);
     } else {
       if (SymType == object::SymbolRef::ST_Function ||
           SymType == object::SymbolRef::ST_Data ||
           SymType == object::SymbolRef::ST_Unknown) {
-        uint64_t FileOffset;
+        uint64_t SectOffset;
         StringRef SectionData;
         bool IsCode;
-        section_iterator si = obj->end_sections();
-        Check(i->getFileOffset(FileOffset));
-        Check(i->getSection(si));
-        if (si == obj->end_sections()) continue;
-        Check(si->getContents(SectionData));
-        Check(si->isText(IsCode));
-        const uint8_t* SymPtr = (const uint8_t*)InputBuffer->getBufferStart() +
-                                (uintptr_t)FileOffset;
-        uintptr_t SectOffset = (uintptr_t)(SymPtr -
-                                           (const uint8_t*)SectionData.begin());
-        unsigned SectionID = findOrEmitSection(*obj, *si, IsCode, LocalSections);
+        section_iterator SI = Obj->end_sections();
+        Check(getOffset(*I, SectOffset));
+        Check(I->getSection(SI));
+        if (SI == Obj->end_sections())
+          continue;
+        Check(SI->getContents(SectionData));
+        Check(SI->isText(IsCode));
+        unsigned SectionID =
+            findOrEmitSection(*Obj, *SI, IsCode, LocalSections);
         LocalSymbols[Name.data()] = SymbolLoc(SectionID, SectOffset);
-        DEBUG(dbgs() << "\tFileOffset: " << format("%p", (uintptr_t)FileOffset)
-                     << " flags: " << flags
-                     << " SID: " << SectionID
-                     << " Offset: " << format("%p", SectOffset));
+        DEBUG(dbgs() << "\tOffset: " << format("%p", (uintptr_t)SectOffset)
+                     << " flags: " << Flags << " SID: " << SectionID);
         GlobalSymbolTable[Name] = SymbolLoc(SectionID, SectOffset);
       }
     }
@@ -145,39 +176,179 @@ ObjectImage *RuntimeDyldImpl::loadObject(ObjectBuffer *InputBuffer) {
 
   // Allocate common symbols
   if (CommonSize != 0)
-    emitCommonSymbols(*obj, CommonSymbols, CommonSize, LocalSymbols);
+    emitCommonSymbols(*Obj, CommonSymbols, CommonSize, LocalSymbols);
 
   // Parse and process relocations
   DEBUG(dbgs() << "Parse relocations:\n");
-  for (section_iterator si = obj->begin_sections(),
-       se = obj->end_sections(); si != se; si.increment(err)) {
-    Check(err);
-    bool isFirstRelocation = true;
+  for (section_iterator SI = Obj->begin_sections(), SE = Obj->end_sections();
+       SI != SE; ++SI) {
     unsigned SectionID = 0;
     StubMap Stubs;
-    section_iterator RelocatedSection = si->getRelocatedSection();
-
-    for (relocation_iterator i = si->begin_relocations(),
-         e = si->end_relocations(); i != e; i.increment(err)) {
-      Check(err);
-
-      // If it's the first relocation in this section, find its SectionID
-      if (isFirstRelocation) {
-        SectionID =
-            findOrEmitSection(*obj, *RelocatedSection, true, LocalSections);
-        DEBUG(dbgs() << "\tSectionID: " << SectionID << "\n");
-        isFirstRelocation = false;
-      }
+    section_iterator RelocatedSection = SI->getRelocatedSection();
 
-      processRelocationRef(SectionID, *i, *obj, LocalSections, LocalSymbols,
-                          Stubs);
-    }
+    relocation_iterator I = SI->relocation_begin();
+    relocation_iterator E = SI->relocation_end();
+
+    if (I == E && !ProcessAllSections)
+      continue;
+
+    bool IsCode = false;
+    Check(RelocatedSection->isText(IsCode));
+    SectionID =
+        findOrEmitSection(*Obj, *RelocatedSection, IsCode, LocalSections);
+    DEBUG(dbgs() << "\tSectionID: " << SectionID << "\n");
+
+    for (; I != E;)
+      I = processRelocationRef(SectionID, I, *Obj, LocalSections, LocalSymbols,
+                               Stubs);
   }
 
   // Give the subclasses a chance to tie-up any loose ends.
   finalizeLoad(LocalSections);
 
-  return obj.take();
+  return Obj.release();
+}
+
+// A helper method for computeTotalAllocSize.
+// Computes the memory size required to allocate sections with the given sizes,
+// assuming that all sections are allocated with the given alignment
+static uint64_t
+computeAllocationSizeForSections(std::vector<uint64_t> &SectionSizes,
+                                 uint64_t Alignment) {
+  uint64_t TotalSize = 0;
+  for (size_t Idx = 0, Cnt = SectionSizes.size(); Idx < Cnt; Idx++) {
+    uint64_t AlignedSize =
+        (SectionSizes[Idx] + Alignment - 1) / Alignment * Alignment;
+    TotalSize += AlignedSize;
+  }
+  return TotalSize;
+}
+
+// Compute an upper bound of the memory size that is required to load all
+// sections
+void RuntimeDyldImpl::computeTotalAllocSize(ObjectImage &Obj,
+                                            uint64_t &CodeSize,
+                                            uint64_t &DataSizeRO,
+                                            uint64_t &DataSizeRW) {
+  // Compute the size of all sections required for execution
+  std::vector<uint64_t> CodeSectionSizes;
+  std::vector<uint64_t> ROSectionSizes;
+  std::vector<uint64_t> RWSectionSizes;
+  uint64_t MaxAlignment = sizeof(void *);
+
+  // Collect sizes of all sections to be loaded;
+  // also determine the max alignment of all sections
+  for (section_iterator SI = Obj.begin_sections(), SE = Obj.end_sections();
+       SI != SE; ++SI) {
+    const SectionRef &Section = *SI;
+
+    bool IsRequired;
+    Check(Section.isRequiredForExecution(IsRequired));
+
+    // Consider only the sections that are required to be loaded for execution
+    if (IsRequired) {
+      uint64_t DataSize = 0;
+      uint64_t Alignment64 = 0;
+      bool IsCode = false;
+      bool IsReadOnly = false;
+      StringRef Name;
+      Check(Section.getSize(DataSize));
+      Check(Section.getAlignment(Alignment64));
+      Check(Section.isText(IsCode));
+      Check(Section.isReadOnlyData(IsReadOnly));
+      Check(Section.getName(Name));
+      unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
+
+      uint64_t StubBufSize = computeSectionStubBufSize(Obj, Section);
+      uint64_t SectionSize = DataSize + StubBufSize;
+
+      // The .eh_frame section (at least on Linux) needs an extra four bytes
+      // padded
+      // with zeroes added at the end.  For MachO objects, this section has a
+      // slightly different name, so this won't have any effect for MachO
+      // objects.
+      if (Name == ".eh_frame")
+        SectionSize += 4;
+
+      if (SectionSize > 0) {
+        // save the total size of the section
+        if (IsCode) {
+          CodeSectionSizes.push_back(SectionSize);
+        } else if (IsReadOnly) {
+          ROSectionSizes.push_back(SectionSize);
+        } else {
+          RWSectionSizes.push_back(SectionSize);
+        }
+        // update the max alignment
+        if (Alignment > MaxAlignment) {
+          MaxAlignment = Alignment;
+        }
+      }
+    }
+  }
+
+  // Compute the size of all common symbols
+  uint64_t CommonSize = 0;
+  for (symbol_iterator I = Obj.begin_symbols(), E = Obj.end_symbols(); I != E;
+       ++I) {
+    uint32_t Flags = I->getFlags();
+    if (Flags & SymbolRef::SF_Common) {
+      // Add the common symbols to a list.  We'll allocate them all below.
+      uint64_t Size = 0;
+      Check(I->getSize(Size));
+      CommonSize += Size;
+    }
+  }
+  if (CommonSize != 0) {
+    RWSectionSizes.push_back(CommonSize);
+  }
+
+  // Compute the required allocation space for each different type of sections
+  // (code, read-only data, read-write data) assuming that all sections are
+  // allocated with the max alignment. Note that we cannot compute with the
+  // individual alignments of the sections, because then the required size
+  // depends on the order, in which the sections are allocated.
+  CodeSize = computeAllocationSizeForSections(CodeSectionSizes, MaxAlignment);
+  DataSizeRO = computeAllocationSizeForSections(ROSectionSizes, MaxAlignment);
+  DataSizeRW = computeAllocationSizeForSections(RWSectionSizes, MaxAlignment);
+}
+
+// compute stub buffer size for the given section
+unsigned RuntimeDyldImpl::computeSectionStubBufSize(ObjectImage &Obj,
+                                                    const SectionRef &Section) {
+  unsigned StubSize = getMaxStubSize();
+  if (StubSize == 0) {
+    return 0;
+  }
+  // FIXME: this is an inefficient way to handle this. We should computed the
+  // necessary section allocation size in loadObject by walking all the sections
+  // once.
+  unsigned StubBufSize = 0;
+  for (section_iterator SI = Obj.begin_sections(), SE = Obj.end_sections();
+       SI != SE; ++SI) {
+    section_iterator RelSecI = SI->getRelocatedSection();
+    if (!(RelSecI == Section))
+      continue;
+
+    for (const RelocationRef &Reloc : SI->relocations()) {
+      (void)Reloc;
+      StubBufSize += StubSize;
+    }
+  }
+
+  // Get section data size and alignment
+  uint64_t Alignment64;
+  uint64_t DataSize;
+  Check(Section.getSize(DataSize));
+  Check(Section.getAlignment(Alignment64));
+
+  // Add stubbuf size alignment
+  unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
+  unsigned StubAlignment = getStubAlignment();
+  unsigned EndAlignment = (DataSize | Alignment) & -(DataSize | Alignment);
+  if (StubAlignment > EndAlignment)
+    StubBufSize += StubAlignment - EndAlignment;
+  return StubBufSize;
 }
 
 void RuntimeDyldImpl::emitCommonSymbols(ObjectImage &Obj,
@@ -186,22 +357,20 @@ void RuntimeDyldImpl::emitCommonSymbols(ObjectImage &Obj,
                                         SymbolTableMap &SymbolTable) {
   // Allocate memory for the section
   unsigned SectionID = Sections.size();
-  uint8_t *Addr = MemMgr->allocateDataSection(
-    TotalSize, sizeof(void*), SectionID, StringRef(), false);
+  uint8_t *Addr = MemMgr->allocateDataSection(TotalSize, sizeof(void *),
+                                              SectionID, StringRef(), false);
   if (!Addr)
     report_fatal_error("Unable to allocate memory for common symbols!");
   uint64_t Offset = 0;
   Sections.push_back(SectionEntry(StringRef(), Addr, TotalSize, 0));
   memset(Addr, 0, TotalSize);
 
-  DEBUG(dbgs() << "emitCommonSection SectionID: " << SectionID
-               << " new addr: " << format("%p", Addr)
-               << " DataSize: " << TotalSize
-               << "\n");
+  DEBUG(dbgs() << "emitCommonSection SectionID: " << SectionID << " new addr: "
+               << format("%p", Addr) << " DataSize: " << TotalSize << "\n");
 
   // Assign the address of each symbol
   for (CommonSymbolMap::const_iterator it = CommonSymbols.begin(),
-       itEnd = CommonSymbols.end(); it != itEnd; it++) {
+       itEnd = CommonSymbols.end(); it != itEnd; ++it) {
     uint64_t Size = it->second.first;
     uint64_t Align = it->second.second;
     StringRef Name;
@@ -211,8 +380,8 @@ void RuntimeDyldImpl::emitCommonSymbols(ObjectImage &Obj,
       uint64_t AlignOffset = OffsetToAlignment((uint64_t)Addr, Align);
       Addr += AlignOffset;
       Offset += AlignOffset;
-      DEBUG(dbgs() << "Allocating common symbol " << Name << " address " <<
-                      format("%p\n", Addr));
+      DEBUG(dbgs() << "Allocating common symbol " << Name << " address "
+                   << format("%p\n", Addr));
     }
     Obj.updateSymbolAddress(it->first, (uint64_t)Addr);
     SymbolTable[Name.data()] = SymbolLoc(SectionID, Offset);
@@ -222,30 +391,7 @@ void RuntimeDyldImpl::emitCommonSymbols(ObjectImage &Obj,
 }
 
 unsigned RuntimeDyldImpl::emitSection(ObjectImage &Obj,
-                                      const SectionRef &Section,
-                                      bool IsCode) {
-
-  unsigned StubBufSize = 0,
-           StubSize = getMaxStubSize();
-  error_code err;
-  const ObjectFile *ObjFile = Obj.getObjectFile();
-  // FIXME: this is an inefficient way to handle this. We should computed the
-  // necessary section allocation size in loadObject by walking all the sections
-  // once.
-  if (StubSize > 0) {
-    for (section_iterator SI = ObjFile->begin_sections(),
-           SE = ObjFile->end_sections();
-         SI != SE; SI.increment(err), Check(err)) {
-      section_iterator RelSecI = SI->getRelocatedSection();
-      if (!(RelSecI == Section))
-        continue;
-
-      for (relocation_iterator I = SI->begin_relocations(),
-             E = SI->end_relocations(); I != E; I.increment(err), Check(err)) {
-        StubBufSize += StubSize;
-      }
-    }
-  }
+                                      const SectionRef &Section, bool IsCode) {
 
   StringRef data;
   uint64_t Alignment64;
@@ -258,6 +404,8 @@ unsigned RuntimeDyldImpl::emitSection(ObjectImage &Obj,
   bool IsZeroInit;
   bool IsReadOnly;
   uint64_t DataSize;
+  unsigned PaddingSize = 0;
+  unsigned StubBufSize = 0;
   StringRef Name;
   Check(Section.isRequiredForExecution(IsRequired));
   Check(Section.isVirtual(IsVirtual));
@@ -265,14 +413,16 @@ unsigned RuntimeDyldImpl::emitSection(ObjectImage &Obj,
   Check(Section.isReadOnlyData(IsReadOnly));
   Check(Section.getSize(DataSize));
   Check(Section.getName(Name));
-  if (StubSize > 0) {
-    unsigned StubAlignment = getStubAlignment();
-    unsigned EndAlignment = (DataSize | Alignment) & -(DataSize | Alignment);
-    if (StubAlignment > EndAlignment)
-      StubBufSize += StubAlignment - EndAlignment;
-  }
 
-  unsigned Allocate;
+  StubBufSize = computeSectionStubBufSize(Obj, Section);
+
+  // The .eh_frame section (at least on Linux) needs an extra four bytes padded
+  // with zeroes added at the end.  For MachO objects, this section has a
+  // slightly different name, so this won't have any effect for MachO objects.
+  if (Name == ".eh_frame")
+    PaddingSize = 4;
+
+  uintptr_t Allocate;
   unsigned SectionID = Sections.size();
   uint8_t *Addr;
   const char *pData = 0;
@@ -280,11 +430,11 @@ unsigned RuntimeDyldImpl::emitSection(ObjectImage &Obj,
   // Some sections, such as debug info, don't need to be loaded for execution.
   // Leave those where they are.
   if (IsRequired) {
-    Allocate = DataSize + StubBufSize;
-    Addr = IsCode
-      ? MemMgr->allocateCodeSection(Allocate, Alignment, SectionID, Name)
-      : MemMgr->allocateDataSection(Allocate, Alignment, SectionID, Name,
-                                    IsReadOnly);
+    Allocate = DataSize + PaddingSize + StubBufSize;
+    Addr = IsCode ? MemMgr->allocateCodeSection(Allocate, Alignment, SectionID,
+                                                Name)
+                  : MemMgr->allocateDataSection(Allocate, Alignment, SectionID,
+                                                Name, IsReadOnly);
     if (!Addr)
       report_fatal_error("Unable to allocate section memory!");
 
@@ -298,30 +448,29 @@ unsigned RuntimeDyldImpl::emitSection(ObjectImage &Obj,
     else
       memcpy(Addr, pData, DataSize);
 
-    DEBUG(dbgs() << "emitSection SectionID: " << SectionID
-                 << " Name: " << Name
+    // Fill in any extra bytes we allocated for padding
+    if (PaddingSize != 0) {
+      memset(Addr + DataSize, 0, PaddingSize);
+      // Update the DataSize variable so that the stub offset is set correctly.
+      DataSize += PaddingSize;
+    }
+
+    DEBUG(dbgs() << "emitSection SectionID: " << SectionID << " Name: " << Name
                  << " obj addr: " << format("%p", pData)
                  << " new addr: " << format("%p", Addr)
-                 << " DataSize: " << DataSize
-                 << " StubBufSize: " << StubBufSize
-                 << " Allocate: " << Allocate
-                 << "\n");
+                 << " DataSize: " << DataSize << " StubBufSize: " << StubBufSize
+                 << " Allocate: " << Allocate << "\n");
     Obj.updateSectionAddress(Section, (uint64_t)Addr);
-  }
-  else {
+  } else {
     // Even if we didn't load the section, we need to record an entry for it
     // to handle later processing (and by 'handle' I mean don't do anything
     // with these sections).
     Allocate = 0;
     Addr = 0;
-    DEBUG(dbgs() << "emitSection SectionID: " << SectionID
-                 << " Name: " << Name
-                 << " obj addr: " << format("%p", data.data())
-                 << " new addr: 0"
-                 << " DataSize: " << DataSize
-                 << " StubBufSize: " << StubBufSize
-                 << " Allocate: " << Allocate
-                 << "\n");
+    DEBUG(dbgs() << "emitSection SectionID: " << SectionID << " Name: " << Name
+                 << " obj addr: " << format("%p", data.data()) << " new addr: 0"
+                 << " DataSize: " << DataSize << " StubBufSize: " << StubBufSize
+                 << " Allocate: " << Allocate << "\n");
   }
 
   Sections.push_back(SectionEntry(Name, Addr, DataSize, (uintptr_t)pData));
@@ -354,8 +503,7 @@ void RuntimeDyldImpl::addRelocationForSymbol(const RelocationEntry &RE,
   // Relocation by symbol.  If the symbol is found in the global symbol table,
   // create an appropriate section relocation.  Otherwise, add it to
   // ExternalSymbolRelocations.
-  SymbolTableMap::const_iterator Loc =
-      GlobalSymbolTable.find(SymbolName);
+  SymbolTableMap::const_iterator Loc = GlobalSymbolTable.find(SymbolName);
   if (Loc == GlobalSymbolTable.end()) {
     ExternalSymbolRelocations[SymbolName].push_back(RE);
   } else {
@@ -367,11 +515,11 @@ void RuntimeDyldImpl::addRelocationForSymbol(const RelocationEntry &RE,
 }
 
 uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr) {
-  if (Arch == Triple::aarch64) {
+  if (Arch == Triple::aarch64 || Arch == Triple::aarch64_be) {
     // This stub has to be able to access the full address space,
     // since symbol lookup won't necessarily find a handy, in-range,
     // PLT stub for functions which could be anywhere.
-    uint32_t *StubAddr = (uint32_t*)Addr;
+    uint32_t *StubAddr = (uint32_t *)Addr;
 
     // Stub can use ip0 (== x16) to calculate address
     *StubAddr = 0xd2e00010; // movz ip0, #:abs_g3:<addr>
@@ -385,14 +533,14 @@ uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr) {
     *StubAddr = 0xd61f0200; // br ip0
 
     return Addr;
-  } else if (Arch == Triple::arm) {
+  } else if (Arch == Triple::arm || Arch == Triple::armeb) {
     // TODO: There is only ARM far stub now. We should add the Thumb stub,
     // and stubs for branches Thumb - ARM and ARM - Thumb.
-    uint32_t *StubAddr = (uint32_t*)Addr;
+    uint32_t *StubAddr = (uint32_t *)Addr;
     *StubAddr = 0xe51ff004; // ldr pc,<label>
-    return (uint8_t*)++StubAddr;
+    return (uint8_t *)++StubAddr;
   } else if (Arch == Triple::mipsel || Arch == Triple::mips) {
-    uint32_t *StubAddr = (uint32_t*)Addr;
+    uint32_t *StubAddr = (uint32_t *)Addr;
     // 0:   3c190000        lui     t9,%hi(addr).
     // 4:   27390000        addiu   t9,t9,%lo(addr).
     // 8:   03200008        jr      t9.
@@ -470,46 +618,55 @@ void RuntimeDyldImpl::resolveRelocationList(const RelocationList &Relocs,
 }
 
 void RuntimeDyldImpl::resolveExternalSymbols() {
-  while(!ExternalSymbolRelocations.empty()) {
+  while (!ExternalSymbolRelocations.empty()) {
     StringMap<RelocationList>::iterator i = ExternalSymbolRelocations.begin();
 
     StringRef Name = i->first();
-    RelocationList &Relocs = i->second;
     if (Name.size() == 0) {
       // This is an absolute symbol, use an address of zero.
-      DEBUG(dbgs() << "Resolving absolute relocations." << "\n");
+      DEBUG(dbgs() << "Resolving absolute relocations."
+                   << "\n");
+      RelocationList &Relocs = i->second;
       resolveRelocationList(Relocs, 0);
     } else {
       uint64_t Addr = 0;
       SymbolTableMap::const_iterator Loc = GlobalSymbolTable.find(Name);
       if (Loc == GlobalSymbolTable.end()) {
-          // This is an external symbol, try to get its address from
-          // MemoryManager.
-          Addr = MemMgr->getSymbolAddress(Name.data());
+        // This is an external symbol, try to get its address from
+        // MemoryManager.
+        Addr = MemMgr->getSymbolAddress(Name.data());
+        // The call to getSymbolAddress may have caused additional modules to
+        // be loaded, which may have added new entries to the
+        // ExternalSymbolRelocations map.  Consquently, we need to update our
+        // iterator.  This is also why retrieval of the relocation list
+        // associated with this symbol is deferred until below this point.
+        // New entries may have been added to the relocation list.
+        i = ExternalSymbolRelocations.find(Name);
       } else {
         // We found the symbol in our global table.  It was probably in a
         // Module that we loaded previously.
-        SymbolLoc SymLoc = GlobalSymbolTable.lookup(Name);
+        SymbolLoc SymLoc = Loc->second;
         Addr = getSectionLoadAddress(SymLoc.first) + SymLoc.second;
       }
 
       // FIXME: Implement error handling that doesn't kill the host program!
       if (!Addr)
         report_fatal_error("Program used external function '" + Name +
-                          "' which could not be resolved!");
+                           "' which could not be resolved!");
 
       updateGOTEntries(Name, Addr);
-      DEBUG(dbgs() << "Resolving relocations Name: " << Name
-              << "\t" << format("0x%lx", Addr)
-              << "\n");
+      DEBUG(dbgs() << "Resolving relocations Name: " << Name << "\t"
+                   << format("0x%lx", Addr) << "\n");
+      // This list may have been updated when we called getSymbolAddress, so
+      // don't change this code to get the list earlier.
+      RelocationList &Relocs = i->second;
       resolveRelocationList(Relocs, Addr);
     }
 
-    ExternalSymbolRelocations.erase(i->first());
+    ExternalSymbolRelocations.erase(i);
   }
 }
 
-
 //===----------------------------------------------------------------------===//
 // RuntimeDyld class implementation
 RuntimeDyld::RuntimeDyld(RTDyldMemoryManager *mm) {
@@ -521,50 +678,89 @@ RuntimeDyld::RuntimeDyld(RTDyldMemoryManager *mm) {
   // permissions are applied.
   Dyld = 0;
   MM = mm;
+  ProcessAllSections = false;
+}
+
+RuntimeDyld::~RuntimeDyld() { delete Dyld; }
+
+static std::unique_ptr<RuntimeDyldELF>
+createRuntimeDyldELF(RTDyldMemoryManager *MM, bool ProcessAllSections) {
+  std::unique_ptr<RuntimeDyldELF> Dyld(new RuntimeDyldELF(MM));
+  Dyld->setProcessAllSections(ProcessAllSections);
+  return Dyld;
 }
 
-RuntimeDyld::~RuntimeDyld() {
-  delete Dyld;
+static std::unique_ptr<RuntimeDyldMachO>
+createRuntimeDyldMachO(RTDyldMemoryManager *MM, bool ProcessAllSections) {
+  std::unique_ptr<RuntimeDyldMachO> Dyld(new RuntimeDyldMachO(MM));
+  Dyld->setProcessAllSections(ProcessAllSections);
+  return Dyld;
+}
+
+ObjectImage *RuntimeDyld::loadObject(ObjectFile *InputObject) {
+  std::unique_ptr<ObjectImage> InputImage;
+
+  if (InputObject->isELF()) {
+    InputImage.reset(RuntimeDyldELF::createObjectImageFromFile(InputObject));
+    if (!Dyld)
+      Dyld = createRuntimeDyldELF(MM, ProcessAllSections).release();
+  } else if (InputObject->isMachO()) {
+    InputImage.reset(RuntimeDyldMachO::createObjectImageFromFile(InputObject));
+    if (!Dyld)
+      Dyld = createRuntimeDyldMachO(MM, ProcessAllSections).release();
+  } else
+    report_fatal_error("Incompatible object format!");
+
+  if (!Dyld->isCompatibleFile(InputObject))
+    report_fatal_error("Incompatible object format!");
+
+  Dyld->loadObject(InputImage.get());
+  return InputImage.release();
 }
 
 ObjectImage *RuntimeDyld::loadObject(ObjectBuffer *InputBuffer) {
-  if (!Dyld) {
-    sys::fs::file_magic Type =
-        sys::fs::identify_magic(InputBuffer->getBuffer());
-    switch (Type) {
-    case sys::fs::file_magic::elf_relocatable:
-    case sys::fs::file_magic::elf_executable:
-    case sys::fs::file_magic::elf_shared_object:
-    case sys::fs::file_magic::elf_core:
-      Dyld = new RuntimeDyldELF(MM);
-      break;
-    case sys::fs::file_magic::macho_object:
-    case sys::fs::file_magic::macho_executable:
-    case sys::fs::file_magic::macho_fixed_virtual_memory_shared_lib:
-    case sys::fs::file_magic::macho_core:
-    case sys::fs::file_magic::macho_preload_executable:
-    case sys::fs::file_magic::macho_dynamically_linked_shared_lib:
-    case sys::fs::file_magic::macho_dynamic_linker:
-    case sys::fs::file_magic::macho_bundle:
-    case sys::fs::file_magic::macho_dynamically_linked_shared_lib_stub:
-    case sys::fs::file_magic::macho_dsym_companion:
-      Dyld = new RuntimeDyldMachO(MM);
-      break;
-    case sys::fs::file_magic::unknown:
-    case sys::fs::file_magic::bitcode:
-    case sys::fs::file_magic::archive:
-    case sys::fs::file_magic::coff_object:
-    case sys::fs::file_magic::pecoff_executable:
-    case sys::fs::file_magic::macho_universal_binary:
-    case sys::fs::file_magic::windows_resource:
-      report_fatal_error("Incompatible object format!");
-    }
-  } else {
-    if (!Dyld->isCompatibleFormat(InputBuffer))
-      report_fatal_error("Incompatible object format!");
+  std::unique_ptr<ObjectImage> InputImage;
+  sys::fs::file_magic Type = sys::fs::identify_magic(InputBuffer->getBuffer());
+
+  switch (Type) {
+  case sys::fs::file_magic::elf_relocatable:
+  case sys::fs::file_magic::elf_executable:
+  case sys::fs::file_magic::elf_shared_object:
+  case sys::fs::file_magic::elf_core:
+    InputImage.reset(RuntimeDyldELF::createObjectImage(InputBuffer));
+    if (!Dyld)
+      Dyld = createRuntimeDyldELF(MM, ProcessAllSections).release();
+    break;
+  case sys::fs::file_magic::macho_object:
+  case sys::fs::file_magic::macho_executable:
+  case sys::fs::file_magic::macho_fixed_virtual_memory_shared_lib:
+  case sys::fs::file_magic::macho_core:
+  case sys::fs::file_magic::macho_preload_executable:
+  case sys::fs::file_magic::macho_dynamically_linked_shared_lib:
+  case sys::fs::file_magic::macho_dynamic_linker:
+  case sys::fs::file_magic::macho_bundle:
+  case sys::fs::file_magic::macho_dynamically_linked_shared_lib_stub:
+  case sys::fs::file_magic::macho_dsym_companion:
+    InputImage.reset(RuntimeDyldMachO::createObjectImage(InputBuffer));
+    if (!Dyld)
+      Dyld = createRuntimeDyldMachO(MM, ProcessAllSections).release();
+    break;
+  case sys::fs::file_magic::unknown:
+  case sys::fs::file_magic::bitcode:
+  case sys::fs::file_magic::archive:
+  case sys::fs::file_magic::coff_object:
+  case sys::fs::file_magic::coff_import_library:
+  case sys::fs::file_magic::pecoff_executable:
+  case sys::fs::file_magic::macho_universal_binary:
+  case sys::fs::file_magic::windows_resource:
+    report_fatal_error("Incompatible object format!");
   }
 
-  return Dyld->loadObject(InputBuffer);
+  if (!Dyld->isCompatibleFormat(InputBuffer))
+    report_fatal_error("Incompatible object format!");
+
+  Dyld->loadObject(InputImage.get());
+  return InputImage.release();
 }
 
 void *RuntimeDyld::getSymbolAddress(StringRef Name) {
@@ -579,12 +775,9 @@ uint64_t RuntimeDyld::getSymbolLoadAddress(StringRef Name) {
   return Dyld->getSymbolLoadAddress(Name);
 }
 
-void RuntimeDyld::resolveRelocations() {
-  Dyld->resolveRelocations();
-}
+void RuntimeDyld::resolveRelocations() { Dyld->resolveRelocations(); }
 
-void RuntimeDyld::reassignSectionAddress(unsigned SectionID,
-                                         uint64_t Addr) {
+void RuntimeDyld::reassignSectionAddress(unsigned SectionID, uint64_t Addr) {
   Dyld->reassignSectionAddress(SectionID, Addr);
 }
 
@@ -593,9 +786,9 @@ void RuntimeDyld::mapSectionAddress(const void *LocalAddress,
   Dyld->mapSectionAddress(LocalAddress, TargetAddress);
 }
 
-StringRef RuntimeDyld::getErrorString() {
-  return Dyld->getErrorString();
-}
+bool RuntimeDyld::hasError() { return Dyld->hasError(); }
+
+StringRef RuntimeDyld::getErrorString() { return Dyld->getErrorString(); }
 
 void RuntimeDyld::registerEHFrames() {
   if (Dyld)