Replace OwningPtr<T> with std::unique_ptr<T>.
[oota-llvm.git] / lib / ExecutionEngine / RuntimeDyld / RuntimeDyld.cpp
index f0bd4e34a866cb3dea7f8c0b43f8035b155913e9..d45b47218ae7a2543289c1f8825b5c3d89337618 100644 (file)
 
 #define DEBUG_TYPE "dyld"
 #include "llvm/ExecutionEngine/RuntimeDyld.h"
+#include "JITRegistrar.h"
 #include "ObjectImageCommon.h"
 #include "RuntimeDyldELF.h"
 #include "RuntimeDyldImpl.h"
 #include "RuntimeDyldMachO.h"
-#include "llvm/Support/FileSystem.h"
-#include "llvm/Support/MathExtras.h"
 #include "llvm/Object/ELF.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/MutexGuard.h"
 
 using namespace llvm;
 using namespace llvm::object;
@@ -27,30 +28,44 @@ using namespace llvm::object;
 // Empty out-of-line virtual destructor as the key function.
 RuntimeDyldImpl::~RuntimeDyldImpl() {}
 
+// Pin the JITRegistrar's and ObjectImage*'s vtables to this file.
+void JITRegistrar::anchor() {}
+void ObjectImage::anchor() {}
+void ObjectImageCommon::anchor() {}
+
 namespace llvm {
 
-StringRef RuntimeDyldImpl::getEHFrameSection() {
-  return StringRef();
+void RuntimeDyldImpl::registerEHFrames() {
+}
+
+void RuntimeDyldImpl::deregisterEHFrames() {
 }
 
 // Resolve the relocations for all symbols we currently know about.
 void RuntimeDyldImpl::resolveRelocations() {
+  MutexGuard locked(lock);
+
   // First, resolve relocations associated with external symbols.
   resolveExternalSymbols();
 
   // Just iterate over the sections we have and resolve all the relocations
   // in them. Gross overkill, but it gets the job done.
   for (int i = 0, e = Sections.size(); i != e; ++i) {
+    // The Section here (Sections[i]) refers to the section in which the
+    // symbol for the relocation is located.  The SectionID in the relocation
+    // entry provides the section to which the relocation will be applied.
     uint64_t Addr = Sections[i].LoadAddress;
     DEBUG(dbgs() << "Resolving relocations Section #" << i
             << "\t" << format("%p", (uint8_t *)Addr)
             << "\n");
     resolveRelocationList(Relocations[i], Addr);
+    Relocations.erase(i);
   }
 }
 
 void RuntimeDyldImpl::mapSectionAddress(const void *LocalAddress,
                                         uint64_t TargetAddress) {
+  MutexGuard locked(lock);
   for (unsigned i = 0, e = Sections.size(); i != e; ++i) {
     if (Sections[i].Address == LocalAddress) {
       reassignSectionAddress(i, TargetAddress);
@@ -66,13 +81,37 @@ ObjectImage *RuntimeDyldImpl::createObjectImage(ObjectBuffer *InputBuffer) {
   return new ObjectImageCommon(InputBuffer);
 }
 
-ObjectImage *RuntimeDyldImpl::loadObject(ObjectBuffer *InputBuffer) {
-  OwningPtr<ObjectImage> obj(createObjectImage(InputBuffer));
-  if (!obj)
-    report_fatal_error("Unable to create object image from memory buffer!");
+ObjectImage *RuntimeDyldImpl::createObjectImageFromFile(ObjectFile *InputObject) {
+  return new ObjectImageCommon(InputObject);
+}
 
-  Arch = (Triple::ArchType)obj->getArch();
+ObjectImage *RuntimeDyldImpl::loadObject(ObjectFile *InputObject) {
+  return loadObject(createObjectImageFromFile(InputObject));
+}
 
+ObjectImage *RuntimeDyldImpl::loadObject(ObjectBuffer *InputBuffer) {
+  return loadObject(createObjectImage(InputBuffer));
+} 
+
+ObjectImage *RuntimeDyldImpl::loadObject(ObjectImage *InputObject) {
+  MutexGuard locked(lock);
+
+  std::unique_ptr<ObjectImage> Obj(InputObject);
+  if (!Obj)
+    return NULL;
+
+  // Save information about our target
+  Arch = (Triple::ArchType)Obj->getArch();
+  IsTargetLittleEndian = Obj->getObjectFile()->isLittleEndian();
+  // Compute the memory size required to load all sections to be loaded
+  // and pass this information to the memory manager
+  if (MemMgr->needsToReserveAllocationSpace()) {
+    uint64_t CodeSize = 0, DataSizeRO = 0, DataSizeRW = 0;
+    computeTotalAllocSize(*Obj, CodeSize, DataSizeRO, DataSizeRW);
+    MemMgr->reserveAllocationSpace(CodeSize, DataSizeRO, DataSizeRW);
+  }
+  
   // Symbols found in this object
   StringMap<SymbolLoc> LocalSymbols;
   // Used sections from the object file
@@ -83,29 +122,26 @@ ObjectImage *RuntimeDyldImpl::loadObject(ObjectBuffer *InputBuffer) {
   // Maximum required total memory to allocate all common symbols
   uint64_t CommonSize = 0;
 
-  error_code err;
   // Parse symbols
   DEBUG(dbgs() << "Parse symbols:\n");
-  for (symbol_iterator i = obj->begin_symbols(), e = obj->end_symbols();
-       i != e; i.increment(err)) {
-    Check(err);
+  for (symbol_iterator I = Obj->begin_symbols(), E = Obj->end_symbols(); I != E;
+       ++I) {
     object::SymbolRef::Type SymType;
     StringRef Name;
-    Check(i->getType(SymType));
-    Check(i->getName(Name));
+    Check(I->getType(SymType));
+    Check(I->getName(Name));
 
-    uint32_t flags;
-    Check(i->getFlags(flags));
+    uint32_t Flags = I->getFlags();
 
-    bool isCommon = flags & SymbolRef::SF_Common;
-    if (isCommon) {
+    bool IsCommon = Flags & SymbolRef::SF_Common;
+    if (IsCommon) {
       // Add the common symbols to a list.  We'll allocate them all below.
       uint32_t Align;
-      Check(i->getAlignment(Align));
+      Check(I->getAlignment(Align));
       uint64_t Size = 0;
-      Check(i->getSize(Size));
+      Check(I->getSize(Size));
       CommonSize += Size + Align;
-      CommonSymbols[*i] = CommonSymbolInfo(Size, Align);
+      CommonSymbols[*I] = CommonSymbolInfo(Size, Align);
     } else {
       if (SymType == object::SymbolRef::ST_Function ||
           SymType == object::SymbolRef::ST_Data ||
@@ -113,20 +149,20 @@ ObjectImage *RuntimeDyldImpl::loadObject(ObjectBuffer *InputBuffer) {
         uint64_t FileOffset;
         StringRef SectionData;
         bool IsCode;
-        section_iterator si = obj->end_sections();
-        Check(i->getFileOffset(FileOffset));
-        Check(i->getSection(si));
-        if (si == obj->end_sections()) continue;
-        Check(si->getContents(SectionData));
-        Check(si->isText(IsCode));
-        const uint8_t* SymPtr = (const uint8_t*)InputBuffer->getBufferStart() +
+        section_iterator SI = Obj->end_sections();
+        Check(I->getFileOffset(FileOffset));
+        Check(I->getSection(SI));
+        if (SI == Obj->end_sections()) continue;
+        Check(SI->getContents(SectionData));
+        Check(SI->isText(IsCode));
+        const uint8_t* SymPtr = (const uint8_t*)InputObject->getData().data() +
                                 (uintptr_t)FileOffset;
         uintptr_t SectOffset = (uintptr_t)(SymPtr -
                                            (const uint8_t*)SectionData.begin());
-        unsigned SectionID = findOrEmitSection(*obj, *si, IsCode, LocalSections);
+        unsigned SectionID = findOrEmitSection(*Obj, *SI, IsCode, LocalSections);
         LocalSymbols[Name.data()] = SymbolLoc(SectionID, SectOffset);
         DEBUG(dbgs() << "\tFileOffset: " << format("%p", (uintptr_t)FileOffset)
-                     << " flags: " << flags
+                     << " flags: " << Flags
                      << " SID: " << SectionID
                      << " Offset: " << format("%p", SectOffset));
         GlobalSymbolTable[Name] = SymbolLoc(SectionID, SectOffset);
@@ -137,36 +173,177 @@ ObjectImage *RuntimeDyldImpl::loadObject(ObjectBuffer *InputBuffer) {
 
   // Allocate common symbols
   if (CommonSize != 0)
-    emitCommonSymbols(*obj, CommonSymbols, CommonSize, LocalSymbols);
+    emitCommonSymbols(*Obj, CommonSymbols, CommonSize, LocalSymbols);
 
   // Parse and process relocations
   DEBUG(dbgs() << "Parse relocations:\n");
-  for (section_iterator si = obj->begin_sections(),
-       se = obj->end_sections(); si != se; si.increment(err)) {
-    Check(err);
-    bool isFirstRelocation = true;
+  for (section_iterator SI = Obj->begin_sections(), SE = Obj->end_sections();
+       SI != SE; ++SI) {
+    bool IsFirstRelocation = true;
     unsigned SectionID = 0;
     StubMap Stubs;
-    section_iterator RelocatedSection = si->getRelocatedSection();
-
-    for (relocation_iterator i = si->begin_relocations(),
-         e = si->end_relocations(); i != e; i.increment(err)) {
-      Check(err);
+    section_iterator RelocatedSection = SI->getRelocatedSection();
 
+    for (relocation_iterator I = SI->relocation_begin(),
+                             E = SI->relocation_end();
+         I != E; ++I) {
       // If it's the first relocation in this section, find its SectionID
-      if (isFirstRelocation) {
+      if (IsFirstRelocation) {
+        bool IsCode = false;
+        Check(RelocatedSection->isText(IsCode));
         SectionID =
-            findOrEmitSection(*obj, *RelocatedSection, true, LocalSections);
+            findOrEmitSection(*Obj, *RelocatedSection, IsCode, LocalSections);
         DEBUG(dbgs() << "\tSectionID: " << SectionID << "\n");
-        isFirstRelocation = false;
+        IsFirstRelocation = false;
       }
 
-      processRelocationRef(SectionID, *i, *obj, LocalSections, LocalSymbols,
-                          Stubs);
+      processRelocationRef(SectionID, *I, *Obj, LocalSections, LocalSymbols,
+                           Stubs);
     }
   }
 
-  return obj.take();
+  // Give the subclasses a chance to tie-up any loose ends.
+  finalizeLoad(LocalSections);
+
+  return Obj.release();
+}
+
+// A helper method for computeTotalAllocSize.
+// Computes the memory size required to allocate sections with the given sizes, 
+// assuming that all sections are allocated with the given alignment
+static uint64_t computeAllocationSizeForSections(std::vector<uint64_t>& SectionSizes, 
+                                                 uint64_t Alignment) {
+  uint64_t TotalSize = 0;
+  for (size_t Idx = 0, Cnt = SectionSizes.size(); Idx < Cnt; Idx++) {
+    uint64_t AlignedSize = (SectionSizes[Idx] + Alignment - 1) / 
+                           Alignment * Alignment;
+    TotalSize += AlignedSize;
+  }
+  return TotalSize;
+}
+
+// Compute an upper bound of the memory size that is required to load all sections
+void RuntimeDyldImpl::computeTotalAllocSize(ObjectImage &Obj, 
+    uint64_t& CodeSize, uint64_t& DataSizeRO, uint64_t& DataSizeRW) {
+  // Compute the size of all sections required for execution
+  std::vector<uint64_t> CodeSectionSizes;
+  std::vector<uint64_t> ROSectionSizes;
+  std::vector<uint64_t> RWSectionSizes;
+  uint64_t MaxAlignment = sizeof(void*);
+
+  // Collect sizes of all sections to be loaded; 
+  // also determine the max alignment of all sections
+  for (section_iterator SI = Obj.begin_sections(), SE = Obj.end_sections(); 
+       SI != SE; ++SI) {
+    const SectionRef &Section = *SI;
+
+    bool IsRequired;
+    Check(Section.isRequiredForExecution(IsRequired));
+    
+    // Consider only the sections that are required to be loaded for execution
+    if (IsRequired) {
+      uint64_t DataSize = 0;
+      uint64_t Alignment64 = 0;
+      bool IsCode = false;
+      bool IsReadOnly = false;
+      StringRef Name;
+      Check(Section.getSize(DataSize));
+      Check(Section.getAlignment(Alignment64));
+      Check(Section.isText(IsCode));
+      Check(Section.isReadOnlyData(IsReadOnly));
+      Check(Section.getName(Name));
+      unsigned Alignment = (unsigned) Alignment64 & 0xffffffffL;
+      
+      uint64_t StubBufSize = computeSectionStubBufSize(Obj, Section);
+      uint64_t SectionSize = DataSize + StubBufSize;
+      
+      // The .eh_frame section (at least on Linux) needs an extra four bytes padded
+      // with zeroes added at the end.  For MachO objects, this section has a
+      // slightly different name, so this won't have any effect for MachO objects.
+      if (Name == ".eh_frame")
+        SectionSize += 4;
+        
+      if (SectionSize > 0) {
+        // save the total size of the section
+        if (IsCode) {
+          CodeSectionSizes.push_back(SectionSize);
+        } else if (IsReadOnly) {
+          ROSectionSizes.push_back(SectionSize);
+        } else {
+          RWSectionSizes.push_back(SectionSize);
+        }
+        // update the max alignment
+        if (Alignment > MaxAlignment) {
+          MaxAlignment = Alignment;
+        }
+      }      
+    }
+  }
+
+  // Compute the size of all common symbols
+  uint64_t CommonSize = 0;
+  for (symbol_iterator I = Obj.begin_symbols(), E = Obj.end_symbols();
+       I != E; ++I) {
+    uint32_t Flags = I->getFlags();
+    if (Flags & SymbolRef::SF_Common) {
+      // Add the common symbols to a list.  We'll allocate them all below.
+      uint64_t Size = 0;
+      Check(I->getSize(Size));
+      CommonSize += Size;
+    }
+  }
+  if (CommonSize != 0) {
+    RWSectionSizes.push_back(CommonSize);
+  }
+
+  // Compute the required allocation space for each different type of sections 
+  // (code, read-only data, read-write data) assuming that all sections are 
+  // allocated with the max alignment. Note that we cannot compute with the
+  // individual alignments of the sections, because then the required size 
+  // depends on the order, in which the sections are allocated.
+  CodeSize = computeAllocationSizeForSections(CodeSectionSizes, MaxAlignment);
+  DataSizeRO = computeAllocationSizeForSections(ROSectionSizes, MaxAlignment);
+  DataSizeRW = computeAllocationSizeForSections(RWSectionSizes, MaxAlignment);   
+}
+
+// compute stub buffer size for the given section
+unsigned RuntimeDyldImpl::computeSectionStubBufSize(ObjectImage &Obj, 
+                                                    const SectionRef &Section) {
+  unsigned StubSize = getMaxStubSize();
+  if (StubSize == 0) {
+     return 0;
+  }
+  // FIXME: this is an inefficient way to handle this. We should computed the
+  // necessary section allocation size in loadObject by walking all the sections
+  // once.
+  unsigned StubBufSize = 0;
+  for (section_iterator SI = Obj.begin_sections(),
+                        SE = Obj.end_sections();
+       SI != SE; ++SI) {
+    section_iterator RelSecI = SI->getRelocatedSection();
+    if (!(RelSecI == Section))
+      continue;
+
+    for (relocation_iterator I = SI->relocation_begin(),
+                             E = SI->relocation_end();
+         I != E; ++I) {
+      StubBufSize += StubSize;
+    }
+  }
+  
+  // Get section data size and alignment
+  uint64_t Alignment64;
+  uint64_t DataSize;
+  Check(Section.getSize(DataSize));
+  Check(Section.getAlignment(Alignment64));
+
+  // Add stubbuf size alignment
+  unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
+  unsigned StubAlignment = getStubAlignment();
+  unsigned EndAlignment = (DataSize | Alignment) & -(DataSize | Alignment);
+  if (StubAlignment > EndAlignment)
+     StubBufSize += StubAlignment - EndAlignment;
+  return StubBufSize;
 }
 
 void RuntimeDyldImpl::emitCommonSymbols(ObjectImage &Obj,
@@ -175,8 +352,8 @@ void RuntimeDyldImpl::emitCommonSymbols(ObjectImage &Obj,
                                         SymbolTableMap &SymbolTable) {
   // Allocate memory for the section
   unsigned SectionID = Sections.size();
-  uint8_t *Addr = MemMgr->allocateDataSection(TotalSize, sizeof(void*),
-                                              SectionID, false);
+  uint8_t *Addr = MemMgr->allocateDataSection(
+    TotalSize, sizeof(void*), SectionID, StringRef(), false);
   if (!Addr)
     report_fatal_error("Unable to allocate memory for common symbols!");
   uint64_t Offset = 0;
@@ -214,28 +391,6 @@ unsigned RuntimeDyldImpl::emitSection(ObjectImage &Obj,
                                       const SectionRef &Section,
                                       bool IsCode) {
 
-  unsigned StubBufSize = 0,
-           StubSize = getMaxStubSize();
-  error_code err;
-  const ObjectFile *ObjFile = Obj.getObjectFile();
-  // FIXME: this is an inefficient way to handle this. We should computed the
-  // necessary section allocation size in loadObject by walking all the sections
-  // once.
-  if (StubSize > 0) {
-    for (section_iterator SI = ObjFile->begin_sections(),
-           SE = ObjFile->end_sections();
-         SI != SE; SI.increment(err), Check(err)) {
-      section_iterator RelSecI = SI->getRelocatedSection();
-      if (!(RelSecI == Section))
-        continue;
-
-      for (relocation_iterator I = SI->begin_relocations(),
-             E = SI->end_relocations(); I != E; I.increment(err), Check(err)) {
-        StubBufSize += StubSize;
-      }
-    }
-  }
-
   StringRef data;
   uint64_t Alignment64;
   Check(Section.getContents(data));
@@ -247,6 +402,8 @@ unsigned RuntimeDyldImpl::emitSection(ObjectImage &Obj,
   bool IsZeroInit;
   bool IsReadOnly;
   uint64_t DataSize;
+  unsigned PaddingSize = 0;
+  unsigned StubBufSize = 0;
   StringRef Name;
   Check(Section.isRequiredForExecution(IsRequired));
   Check(Section.isVirtual(IsVirtual));
@@ -254,14 +411,16 @@ unsigned RuntimeDyldImpl::emitSection(ObjectImage &Obj,
   Check(Section.isReadOnlyData(IsReadOnly));
   Check(Section.getSize(DataSize));
   Check(Section.getName(Name));
-  if (StubSize > 0) {
-    unsigned StubAlignment = getStubAlignment();
-    unsigned EndAlignment = (DataSize | Alignment) & -(DataSize | Alignment);
-    if (StubAlignment > EndAlignment)
-      StubBufSize += StubAlignment - EndAlignment;
-  }
+    
+  StubBufSize = computeSectionStubBufSize(Obj, Section); 
+
+  // The .eh_frame section (at least on Linux) needs an extra four bytes padded
+  // with zeroes added at the end.  For MachO objects, this section has a
+  // slightly different name, so this won't have any effect for MachO objects.
+  if (Name == ".eh_frame")
+    PaddingSize = 4;
 
-  unsigned Allocate;
+  uintptr_t Allocate;
   unsigned SectionID = Sections.size();
   uint8_t *Addr;
   const char *pData = 0;
@@ -269,10 +428,11 @@ unsigned RuntimeDyldImpl::emitSection(ObjectImage &Obj,
   // Some sections, such as debug info, don't need to be loaded for execution.
   // Leave those where they are.
   if (IsRequired) {
-    Allocate = DataSize + StubBufSize;
+    Allocate = DataSize + PaddingSize + StubBufSize;
     Addr = IsCode
-      ? MemMgr->allocateCodeSection(Allocate, Alignment, SectionID)
-      : MemMgr->allocateDataSection(Allocate, Alignment, SectionID, IsReadOnly);
+      ? MemMgr->allocateCodeSection(Allocate, Alignment, SectionID, Name)
+      : MemMgr->allocateDataSection(Allocate, Alignment, SectionID, Name,
+                                    IsReadOnly);
     if (!Addr)
       report_fatal_error("Unable to allocate section memory!");
 
@@ -286,6 +446,13 @@ unsigned RuntimeDyldImpl::emitSection(ObjectImage &Obj,
     else
       memcpy(Addr, pData, DataSize);
 
+    // Fill in any extra bytes we allocated for padding
+    if (PaddingSize != 0) {
+      memset(Addr + DataSize, 0, PaddingSize);
+      // Update the DataSize variable so that the stub offset is set correctly.
+      DataSize += PaddingSize;
+    }
+
     DEBUG(dbgs() << "emitSection SectionID: " << SectionID
                  << " Name: " << Name
                  << " obj addr: " << format("%p", pData)
@@ -396,7 +563,7 @@ uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr) {
     StubAddr++;
     *StubAddr = NopInstr;
     return Addr;
-  } else if (Arch == Triple::ppc64) {
+  } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) {
     // PowerPC64 stub: the address points to a function descriptor
     // instead of the function itself. Load the function address
     // on r11 and sets it to control register. Also loads the function
@@ -421,6 +588,10 @@ uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr) {
     writeInt16BE(Addr+6,  0x07F1);     // brc 15,%r1
     // 8-byte address stored at Addr + 8
     return Addr;
+  } else if (Arch == Triple::x86_64) {
+    *Addr      = 0xFF; // jmp
+    *(Addr+1)  = 0x25; // rip
+    // 32-bit PC-relative address of the GOT entry will be stored at Addr+2
   }
   return Addr;
 }
@@ -454,30 +625,52 @@ void RuntimeDyldImpl::resolveRelocationList(const RelocationList &Relocs,
 }
 
 void RuntimeDyldImpl::resolveExternalSymbols() {
-  StringMap<RelocationList>::iterator i = ExternalSymbolRelocations.begin(),
-                                      e = ExternalSymbolRelocations.end();
-  for (; i != e; i++) {
+  while(!ExternalSymbolRelocations.empty()) {
+    StringMap<RelocationList>::iterator i = ExternalSymbolRelocations.begin();
+
     StringRef Name = i->first();
-    RelocationList &Relocs = i->second;
-    SymbolTableMap::const_iterator Loc = GlobalSymbolTable.find(Name);
-    if (Loc == GlobalSymbolTable.end()) {
-      if (Name.size() == 0) {
-        // This is an absolute symbol, use an address of zero.
-        DEBUG(dbgs() << "Resolving absolute relocations." << "\n");
-        resolveRelocationList(Relocs, 0);
+    if (Name.size() == 0) {
+      // This is an absolute symbol, use an address of zero.
+      DEBUG(dbgs() << "Resolving absolute relocations." << "\n");
+      RelocationList &Relocs = i->second;
+      resolveRelocationList(Relocs, 0);
+    } else {
+      uint64_t Addr = 0;
+      SymbolTableMap::const_iterator Loc = GlobalSymbolTable.find(Name);
+      if (Loc == GlobalSymbolTable.end()) {
+          // This is an external symbol, try to get its address from
+          // MemoryManager.
+          Addr = MemMgr->getSymbolAddress(Name.data());
+          // The call to getSymbolAddress may have caused additional modules to
+          // be loaded, which may have added new entries to the
+          // ExternalSymbolRelocations map.  Consquently, we need to update our
+          // iterator.  This is also why retrieval of the relocation list
+          // associated with this symbol is deferred until below this point.
+          // New entries may have been added to the relocation list.
+          i = ExternalSymbolRelocations.find(Name);
       } else {
-        // This is an external symbol, try to get its address from
-        // MemoryManager.
-        uint8_t *Addr = (uint8_t*) MemMgr->getPointerToNamedFunction(Name.data(),
-                                                                   true);
-        DEBUG(dbgs() << "Resolving relocations Name: " << Name
-                << "\t" << format("%p", Addr)
-                << "\n");
-        resolveRelocationList(Relocs, (uintptr_t)Addr);
+        // We found the symbol in our global table.  It was probably in a
+        // Module that we loaded previously.
+        SymbolLoc SymLoc = Loc->second;
+        Addr = getSectionLoadAddress(SymLoc.first) + SymLoc.second;
       }
-    } else {
-      report_fatal_error("Expected external symbol");
+
+      // FIXME: Implement error handling that doesn't kill the host program!
+      if (!Addr)
+        report_fatal_error("Program used external function '" + Name +
+                          "' which could not be resolved!");
+
+      updateGOTEntries(Name, Addr);
+      DEBUG(dbgs() << "Resolving relocations Name: " << Name
+              << "\t" << format("0x%lx", Addr)
+              << "\n");
+      // This list may have been updated when we called getSymbolAddress, so
+      // don't change this code to get the list earlier.
+      RelocationList &Relocs = i->second;
+      resolveRelocationList(Relocs, Addr);
     }
+
+    ExternalSymbolRelocations.erase(i);
   }
 }
 
@@ -499,6 +692,22 @@ RuntimeDyld::~RuntimeDyld() {
   delete Dyld;
 }
 
+ObjectImage *RuntimeDyld::loadObject(ObjectFile *InputObject) {
+  if (!Dyld) {
+    if (InputObject->isELF())
+      Dyld = new RuntimeDyldELF(MM);
+    else if (InputObject->isMachO())
+      Dyld = new RuntimeDyldMachO(MM);
+    else
+      report_fatal_error("Incompatible object format!");
+  } else {
+    if (!Dyld->isCompatibleFile(InputObject))
+      report_fatal_error("Incompatible object format!");
+  }
+
+  return Dyld->loadObject(InputObject);
+}
+
 ObjectImage *RuntimeDyld::loadObject(ObjectBuffer *InputBuffer) {
   if (!Dyld) {
     sys::fs::file_magic Type =
@@ -526,7 +735,10 @@ ObjectImage *RuntimeDyld::loadObject(ObjectBuffer *InputBuffer) {
     case sys::fs::file_magic::bitcode:
     case sys::fs::file_magic::archive:
     case sys::fs::file_magic::coff_object:
+    case sys::fs::file_magic::coff_import_library:
     case sys::fs::file_magic::pecoff_executable:
+    case sys::fs::file_magic::macho_universal_binary:
+    case sys::fs::file_magic::windows_resource:
       report_fatal_error("Incompatible object format!");
     }
   } else {
@@ -538,10 +750,14 @@ ObjectImage *RuntimeDyld::loadObject(ObjectBuffer *InputBuffer) {
 }
 
 void *RuntimeDyld::getSymbolAddress(StringRef Name) {
+  if (!Dyld)
+    return NULL;
   return Dyld->getSymbolAddress(Name);
 }
 
 uint64_t RuntimeDyld::getSymbolLoadAddress(StringRef Name) {
+  if (!Dyld)
+    return 0;
   return Dyld->getSymbolLoadAddress(Name);
 }
 
@@ -563,8 +779,14 @@ StringRef RuntimeDyld::getErrorString() {
   return Dyld->getErrorString();
 }
 
-StringRef RuntimeDyld::getEHFrameSection() {
-  return Dyld->getEHFrameSection();
+void RuntimeDyld::registerEHFrames() {
+  if (Dyld)
+    Dyld->registerEHFrames();
+}
+
+void RuntimeDyld::deregisterEHFrames() {
+  if (Dyld)
+    Dyld->deregisterEHFrames();
 }
 
 } // end namespace llvm