[weak vtables] Remove a bunch of weak vtables
[oota-llvm.git] / lib / ExecutionEngine / ExecutionEngine.cpp
index 480f2c997053567d70c9761885b007aca967e153..2a610d5b7e5bafa38ac8cf0a0f83ed88811f4333 100644 (file)
 
 #define DEBUG_TYPE "jit"
 #include "llvm/ExecutionEngine/ExecutionEngine.h"
-
-#include "llvm/Constants.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Instructions.h"
-#include "llvm/Module.h"
-#include "llvm/ExecutionEngine/GenericValue.h"
+#include "llvm/ExecutionEngine/JITMemoryManager.h"
+#include "llvm/ExecutionEngine/ObjectCache.h"
 #include "llvm/ADT/SmallString.h"
 #include "llvm/ADT/Statistic.h"
+#include "llvm/ExecutionEngine/GenericValue.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Operator.h"
 #include "llvm/Support/Debug.h"
+#include "llvm/Support/DynamicLibrary.h"
 #include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/Host.h"
 #include "llvm/Support/MutexGuard.h"
+#include "llvm/Support/TargetRegistry.h"
 #include "llvm/Support/ValueHandle.h"
 #include "llvm/Support/raw_ostream.h"
-#include "llvm/Support/DynamicLibrary.h"
-#include "llvm/Support/Host.h"
-#include "llvm/Support/TargetRegistry.h"
-#include "llvm/DataLayout.h"
 #include "llvm/Target/TargetMachine.h"
 #include <cmath>
 #include <cstring>
@@ -39,6 +40,11 @@ using namespace llvm;
 STATISTIC(NumInitBytes, "Number of bytes of global vars initialized");
 STATISTIC(NumGlobals  , "Number of global vars initialized");
 
+// Pin the vtable to this file.
+void ObjectCache::anchor() {}
+void ObjectBuffer::anchor() {}
+void ObjectBufferStream::anchor() {}
+
 ExecutionEngine *(*ExecutionEngine::JITCtor)(
   Module *M,
   std::string *ErrorStr,
@@ -48,7 +54,7 @@ ExecutionEngine *(*ExecutionEngine::JITCtor)(
 ExecutionEngine *(*ExecutionEngine::MCJITCtor)(
   Module *M,
   std::string *ErrorStr,
-  JITMemoryManager *JMM,
+  RTDyldMemoryManager *MCJMM,
   bool GVsWithCode,
   TargetMachine *TM) = 0;
 ExecutionEngine *(*ExecutionEngine::InterpCtor)(Module *M,
@@ -56,9 +62,7 @@ ExecutionEngine *(*ExecutionEngine::InterpCtor)(Module *M,
 
 ExecutionEngine::ExecutionEngine(Module *M)
   : EEState(*this),
-    LazyFunctionCreator(0),
-    ExceptionTableRegister(0),
-    ExceptionTableDeregister(0) {
+    LazyFunctionCreator(0) {
   CompilingLazily         = false;
   GVCompilationDisabled   = false;
   SymbolSearchingDisabled = false;
@@ -72,16 +76,6 @@ ExecutionEngine::~ExecutionEngine() {
     delete Modules[i];
 }
 
-void ExecutionEngine::DeregisterAllTables() {
-  if (ExceptionTableDeregister) {
-    DenseMap<const Function*, void*>::iterator it = AllExceptionTables.begin();
-    DenseMap<const Function*, void*>::iterator ite = AllExceptionTables.end();
-    for (; it != ite; ++it)
-      ExceptionTableDeregister(it->second);
-    AllExceptionTables.clear();
-  }
-}
-
 namespace {
 /// \brief Helper class which uses a value handler to automatically deletes the
 /// memory block when the GlobalVariable is destroyed.
@@ -118,7 +112,7 @@ char *ExecutionEngine::getMemoryForGV(const GlobalVariable *GV) {
 }
 
 bool ExecutionEngine::removeModule(Module *M) {
-  for(SmallVector<Module *, 1>::iterator I = Modules.begin(),
+  for(SmallVectorImpl<Module *>::iterator I = Modules.begin(),
         E = Modules.end(); I != E; ++I) {
     Module *Found = *I;
     if (Found == M) {
@@ -268,7 +262,7 @@ public:
 void *ArgvArray::reset(LLVMContext &C, ExecutionEngine *EE,
                        const std::vector<std::string> &InputArgv) {
   clear();  // Free the old contents.
-  unsigned PtrSize = EE->getDataLayout()->getPointerSize(0);
+  unsigned PtrSize = EE->getDataLayout()->getPointerSize();
   Array = new char[(InputArgv.size()+1)*PtrSize];
 
   DEBUG(dbgs() << "JIT: ARGV = " << (void*)Array << "\n");
@@ -343,7 +337,7 @@ void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) {
 #ifndef NDEBUG
 /// isTargetNullPtr - Return whether the target pointer stored at Loc is null.
 static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) {
-  unsigned PtrSize = EE->getDataLayout()->getPointerSize(0);
+  unsigned PtrSize = EE->getDataLayout()->getPointerSize();
   for (unsigned i = 0; i < PtrSize; ++i)
     if (*(i + (uint8_t*)Loc))
       return false;
@@ -456,10 +450,12 @@ ExecutionEngine *EngineBuilder::create(TargetMachine *TM) {
   if (sys::DynamicLibrary::LoadLibraryPermanently(0, ErrorStr))
     return 0;
 
+  assert(!(JMM && MCJMM));
+  
   // If the user specified a memory manager but didn't specify which engine to
   // create, we assume they only want the JIT, and we fail if they only want
   // the interpreter.
-  if (JMM) {
+  if (JMM || MCJMM) {
     if (WhichEngine & EngineKind::JIT)
       WhichEngine = EngineKind::JIT;
     else {
@@ -468,6 +464,14 @@ ExecutionEngine *EngineBuilder::create(TargetMachine *TM) {
       return 0;
     }
   }
+  
+  if (MCJMM && ! UseMCJIT) {
+    if (ErrorStr)
+      *ErrorStr =
+        "Cannot create a legacy JIT with a runtime dyld memory "
+        "manager.";
+    return 0;
+  }
 
   // Unless the interpreter was explicitly selected or the JIT is not linked,
   // try making a JIT.
@@ -481,7 +485,7 @@ ExecutionEngine *EngineBuilder::create(TargetMachine *TM) {
 
     if (UseMCJIT && ExecutionEngine::MCJITCtor) {
       ExecutionEngine *EE =
-        ExecutionEngine::MCJITCtor(M, ErrorStr, JMM,
+        ExecutionEngine::MCJITCtor(M, ErrorStr, MCJMM ? MCJMM : JMM,
                                    AllocateGVsWithCode, TheTM.take());
       if (EE) return EE;
     } else if (ExecutionEngine::JITCtor) {
@@ -536,6 +540,8 @@ GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
   if (isa<UndefValue>(C)) {
     GenericValue Result;
     switch (C->getType()->getTypeID()) {
+    default:
+      break;
     case Type::IntegerTyID:
     case Type::X86_FP80TyID:
     case Type::FP128TyID:
@@ -544,7 +550,34 @@ GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
       // with the correct bit width.
       Result.IntVal = APInt(C->getType()->getPrimitiveSizeInBits(), 0);
       break;
-    default:
+    case Type::StructTyID: {
+      // if the whole struct is 'undef' just reserve memory for the value.
+      if(StructType *STy = dyn_cast<StructType>(C->getType())) {
+        unsigned int elemNum = STy->getNumElements();
+        Result.AggregateVal.resize(elemNum);
+        for (unsigned int i = 0; i < elemNum; ++i) {
+          Type *ElemTy = STy->getElementType(i);
+          if (ElemTy->isIntegerTy())
+            Result.AggregateVal[i].IntVal = 
+              APInt(ElemTy->getPrimitiveSizeInBits(), 0);
+          else if (ElemTy->isAggregateType()) {
+              const Constant *ElemUndef = UndefValue::get(ElemTy);
+              Result.AggregateVal[i] = getConstantValue(ElemUndef);
+            }
+          }
+        }
+      }
+      break;
+    case Type::VectorTyID:
+      // if the whole vector is 'undef' just reserve memory for the value.
+      const VectorType* VTy = dyn_cast<VectorType>(C->getType());
+      const Type *ElemTy = VTy->getElementType();
+      unsigned int elemNum = VTy->getNumElements();
+      Result.AggregateVal.resize(elemNum);
+      if (ElemTy->isIntegerTy())
+        for (unsigned int i = 0; i < elemNum; ++i)
+          Result.AggregateVal[i].IntVal =
+            APInt(ElemTy->getPrimitiveSizeInBits(), 0);
       break;
     }
     return Result;
@@ -557,11 +590,11 @@ GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
     case Instruction::GetElementPtr: {
       // Compute the index
       GenericValue Result = getConstantValue(Op0);
-      SmallVector<Value*, 8> Indices(CE->op_begin()+1, CE->op_end());
-      uint64_t Offset = TD->getIndexedOffset(Op0->getType(), Indices);
+      APInt Offset(TD->getPointerSizeInBits(), 0);
+      cast<GEPOperator>(CE)->accumulateConstantOffset(*TD, Offset);
 
       char* tmp = (char*) Result.PointerVal;
-      Result = PTOGV(tmp + Offset);
+      Result = PTOGV(tmp + Offset.getSExtValue());
       return Result;
     }
     case Instruction::Trunc: {
@@ -633,7 +666,7 @@ GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
       else if (Op0->getType()->isDoubleTy())
         GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth);
       else if (Op0->getType()->isX86_FP80Ty()) {
-        APFloat apf = APFloat(GV.IntVal);
+        APFloat apf = APFloat(APFloat::x87DoubleExtended, GV.IntVal);
         uint64_t v;
         bool ignored;
         (void)apf.convertToInteger(&v, BitWidth,
@@ -645,17 +678,17 @@ GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
     }
     case Instruction::PtrToInt: {
       GenericValue GV = getConstantValue(Op0);
-      unsigned AS = cast<PtrToIntInst>(CE)->getPointerAddressSpace();
-      uint32_t PtrWidth = TD->getPointerSizeInBits(AS);
+      uint32_t PtrWidth = TD->getTypeSizeInBits(Op0->getType());
+      assert(PtrWidth <= 64 && "Bad pointer width");
       GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal));
+      uint32_t IntWidth = TD->getTypeSizeInBits(CE->getType());
+      GV.IntVal = GV.IntVal.zextOrTrunc(IntWidth);
       return GV;
     }
     case Instruction::IntToPtr: {
       GenericValue GV = getConstantValue(Op0);
-      unsigned AS = cast<IntToPtrInst>(CE)->getAddressSpace();
-      uint32_t PtrWidth = TD->getPointerSizeInBits(AS);
-      if (PtrWidth != GV.IntVal.getBitWidth())
-        GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth);
+      uint32_t PtrWidth = TD->getTypeSizeInBits(CE->getType());
+      GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth);
       assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width");
       GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue()));
       return GV;
@@ -752,27 +785,32 @@ GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
       case Type::X86_FP80TyID:
       case Type::PPC_FP128TyID:
       case Type::FP128TyID: {
-        APFloat apfLHS = APFloat(LHS.IntVal);
+        const fltSemantics &Sem = CE->getOperand(0)->getType()->getFltSemantics();
+        APFloat apfLHS = APFloat(Sem, LHS.IntVal);
         switch (CE->getOpcode()) {
           default: llvm_unreachable("Invalid long double opcode");
           case Instruction::FAdd:
-            apfLHS.add(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
+            apfLHS.add(APFloat(Sem, RHS.IntVal), APFloat::rmNearestTiesToEven);
             GV.IntVal = apfLHS.bitcastToAPInt();
             break;
           case Instruction::FSub:
-            apfLHS.subtract(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
+            apfLHS.subtract(APFloat(Sem, RHS.IntVal),
+                            APFloat::rmNearestTiesToEven);
             GV.IntVal = apfLHS.bitcastToAPInt();
             break;
           case Instruction::FMul:
-            apfLHS.multiply(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
+            apfLHS.multiply(APFloat(Sem, RHS.IntVal),
+                            APFloat::rmNearestTiesToEven);
             GV.IntVal = apfLHS.bitcastToAPInt();
             break;
           case Instruction::FDiv:
-            apfLHS.divide(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
+            apfLHS.divide(APFloat(Sem, RHS.IntVal),
+                          APFloat::rmNearestTiesToEven);
             GV.IntVal = apfLHS.bitcastToAPInt();
             break;
           case Instruction::FRem:
-            apfLHS.mod(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
+            apfLHS.mod(APFloat(Sem, RHS.IntVal),
+                       APFloat::rmNearestTiesToEven);
             GV.IntVal = apfLHS.bitcastToAPInt();
             break;
           }
@@ -821,6 +859,101 @@ GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
     else
       llvm_unreachable("Unknown constant pointer type!");
     break;
+  case Type::VectorTyID: {
+    unsigned elemNum;
+    Type* ElemTy;
+    const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(C);
+    const ConstantVector *CV = dyn_cast<ConstantVector>(C);
+    const ConstantAggregateZero *CAZ = dyn_cast<ConstantAggregateZero>(C);
+
+    if (CDV) {
+        elemNum = CDV->getNumElements();
+        ElemTy = CDV->getElementType();
+    } else if (CV || CAZ) {
+        VectorType* VTy = dyn_cast<VectorType>(C->getType());
+        elemNum = VTy->getNumElements();
+        ElemTy = VTy->getElementType();
+    } else {
+        llvm_unreachable("Unknown constant vector type!");
+    }
+
+    Result.AggregateVal.resize(elemNum);
+    // Check if vector holds floats.
+    if(ElemTy->isFloatTy()) {
+      if (CAZ) {
+        GenericValue floatZero;
+        floatZero.FloatVal = 0.f;
+        std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(),
+                  floatZero);
+        break;
+      }
+      if(CV) {
+        for (unsigned i = 0; i < elemNum; ++i)
+          if (!isa<UndefValue>(CV->getOperand(i)))
+            Result.AggregateVal[i].FloatVal = cast<ConstantFP>(
+              CV->getOperand(i))->getValueAPF().convertToFloat();
+        break;
+      }
+      if(CDV)
+        for (unsigned i = 0; i < elemNum; ++i)
+          Result.AggregateVal[i].FloatVal = CDV->getElementAsFloat(i);
+
+      break;
+    }
+    // Check if vector holds doubles.
+    if (ElemTy->isDoubleTy()) {
+      if (CAZ) {
+        GenericValue doubleZero;
+        doubleZero.DoubleVal = 0.0;
+        std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(),
+                  doubleZero);
+        break;
+      }
+      if(CV) {
+        for (unsigned i = 0; i < elemNum; ++i)
+          if (!isa<UndefValue>(CV->getOperand(i)))
+            Result.AggregateVal[i].DoubleVal = cast<ConstantFP>(
+              CV->getOperand(i))->getValueAPF().convertToDouble();
+        break;
+      }
+      if(CDV)
+        for (unsigned i = 0; i < elemNum; ++i)
+          Result.AggregateVal[i].DoubleVal = CDV->getElementAsDouble(i);
+
+      break;
+    }
+    // Check if vector holds integers.
+    if (ElemTy->isIntegerTy()) {
+      if (CAZ) {
+        GenericValue intZero;     
+        intZero.IntVal = APInt(ElemTy->getScalarSizeInBits(), 0ull);
+        std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(),
+                  intZero);
+        break;
+      }
+      if(CV) {
+        for (unsigned i = 0; i < elemNum; ++i)
+          if (!isa<UndefValue>(CV->getOperand(i)))
+            Result.AggregateVal[i].IntVal = cast<ConstantInt>(
+                                            CV->getOperand(i))->getValue();
+          else {
+            Result.AggregateVal[i].IntVal =
+              APInt(CV->getOperand(i)->getType()->getPrimitiveSizeInBits(), 0);
+          }
+        break;
+      }
+      if(CDV)
+        for (unsigned i = 0; i < elemNum; ++i)
+          Result.AggregateVal[i].IntVal = APInt(
+            CDV->getElementType()->getPrimitiveSizeInBits(),
+            CDV->getElementAsInteger(i));
+
+      break;
+    }
+    llvm_unreachable("Unknown constant pointer type!");
+  }
+  break;
+
   default:
     SmallString<256> Msg;
     raw_svector_ostream OS(Msg);
@@ -838,7 +971,7 @@ static void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst,
   assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!");
   const uint8_t *Src = (const uint8_t *)IntVal.getRawData();
 
-  if (sys::isLittleEndianHost()) {
+  if (sys::IsLittleEndianHost) {
     // Little-endian host - the source is ordered from LSB to MSB.  Order the
     // destination from LSB to MSB: Do a straight copy.
     memcpy(Dst, Src, StoreBytes);
@@ -862,6 +995,9 @@ void ExecutionEngine::StoreValueToMemory(const GenericValue &Val,
   const unsigned StoreBytes = getDataLayout()->getTypeStoreSize(Ty);
 
   switch (Ty->getTypeID()) {
+  default:
+    dbgs() << "Cannot store value of type " << *Ty << "!\n";
+    break;
   case Type::IntegerTyID:
     StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes);
     break;
@@ -881,11 +1017,22 @@ void ExecutionEngine::StoreValueToMemory(const GenericValue &Val,
 
     *((PointerTy*)Ptr) = Val.PointerVal;
     break;
-  default:
-    dbgs() << "Cannot store value of type " << *Ty << "!\n";
+  case Type::VectorTyID:
+    for (unsigned i = 0; i < Val.AggregateVal.size(); ++i) {
+      if (cast<VectorType>(Ty)->getElementType()->isDoubleTy())
+        *(((double*)Ptr)+i) = Val.AggregateVal[i].DoubleVal;
+      if (cast<VectorType>(Ty)->getElementType()->isFloatTy())
+        *(((float*)Ptr)+i) = Val.AggregateVal[i].FloatVal;
+      if (cast<VectorType>(Ty)->getElementType()->isIntegerTy()) {
+        unsigned numOfBytes =(Val.AggregateVal[i].IntVal.getBitWidth()+7)/8;
+        StoreIntToMemory(Val.AggregateVal[i].IntVal, 
+          (uint8_t*)Ptr + numOfBytes*i, numOfBytes);
+      }
+    }
+    break;
   }
 
-  if (sys::isLittleEndianHost() != getDataLayout()->isLittleEndian())
+  if (sys::IsLittleEndianHost != getDataLayout()->isLittleEndian())
     // Host and target are different endian - reverse the stored bytes.
     std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr);
 }
@@ -894,9 +1041,10 @@ void ExecutionEngine::StoreValueToMemory(const GenericValue &Val,
 /// from Src into IntVal, which is assumed to be wide enough and to hold zero.
 static void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes) {
   assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!");
-  uint8_t *Dst = (uint8_t *)IntVal.getRawData();
+  uint8_t *Dst = reinterpret_cast<uint8_t *>(
+                   const_cast<uint64_t *>(IntVal.getRawData()));
 
-  if (sys::isLittleEndianHost())
+  if (sys::IsLittleEndianHost)
     // Little-endian host - the destination must be ordered from LSB to MSB.
     // The source is ordered from LSB to MSB: Do a straight copy.
     memcpy(Dst, Src, LoadBytes);
@@ -946,6 +1094,31 @@ void ExecutionEngine::LoadValueFromMemory(GenericValue &Result,
     Result.IntVal = APInt(80, y);
     break;
   }
+  case Type::VectorTyID: {
+    const VectorType *VT = cast<VectorType>(Ty);
+    const Type *ElemT = VT->getElementType();
+    const unsigned numElems = VT->getNumElements();
+    if (ElemT->isFloatTy()) {
+      Result.AggregateVal.resize(numElems);
+      for (unsigned i = 0; i < numElems; ++i)
+        Result.AggregateVal[i].FloatVal = *((float*)Ptr+i);
+    }
+    if (ElemT->isDoubleTy()) {
+      Result.AggregateVal.resize(numElems);
+      for (unsigned i = 0; i < numElems; ++i)
+        Result.AggregateVal[i].DoubleVal = *((double*)Ptr+i);
+    }
+    if (ElemT->isIntegerTy()) {
+      GenericValue intZero;
+      const unsigned elemBitWidth = cast<IntegerType>(ElemT)->getBitWidth();
+      intZero.IntVal = APInt(elemBitWidth, 0);
+      Result.AggregateVal.resize(numElems, intZero);
+      for (unsigned i = 0; i < numElems; ++i)
+        LoadIntFromMemory(Result.AggregateVal[i].IntVal,
+          (uint8_t*)Ptr+((elemBitWidth+7)/8)*i, (elemBitWidth+7)/8);
+    }
+  break;
+  }
   default:
     SmallString<256> Msg;
     raw_svector_ostream OS(Msg);
@@ -1122,6 +1295,10 @@ void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) {
   if (GA == 0) {
     // If it's not already specified, allocate memory for the global.
     GA = getMemoryForGV(GV);
+
+    // If we failed to allocate memory for this global, return.
+    if (GA == 0) return;
+
     addGlobalMapping(GV, GA);
   }