[SEH] Add llvm.eh.exceptioncode intrinsic
[oota-llvm.git] / lib / CodeGen / WinEHPrepare.cpp
index 1325821d498e71dc96158c74aa5faf64af124c82..86b511cfb6708f31a5822023955e7e702b5acc6d 100644 (file)
@@ -8,9 +8,11 @@
 //===----------------------------------------------------------------------===//
 //
 // This pass lowers LLVM IR exception handling into something closer to what the
-// backend wants. It snifs the personality function to see which kind of
-// preparation is necessary. If the personality function uses the Itanium LSDA,
-// this pass delegates to the DWARF EH preparation pass.
+// backend wants for functions using a personality function from a runtime
+// provided by MSVC. Functions with other personality functions are left alone
+// and may be prepared by other passes. In particular, all supported MSVC
+// personality functions require cleanup code to be outlined, and the C++
+// personality requires catch handler code to be outlined.
 //
 //===----------------------------------------------------------------------===//
 
 #include "llvm/ADT/STLExtras.h"
 #include "llvm/ADT/SmallSet.h"
 #include "llvm/ADT/SetVector.h"
+#include "llvm/ADT/Triple.h"
 #include "llvm/ADT/TinyPtrVector.h"
+#include "llvm/Analysis/CFG.h"
 #include "llvm/Analysis/LibCallSemantics.h"
+#include "llvm/Analysis/TargetLibraryInfo.h"
 #include "llvm/CodeGen/WinEHFuncInfo.h"
 #include "llvm/IR/Dominators.h"
 #include "llvm/IR/Function.h"
 #include "llvm/IR/IntrinsicInst.h"
 #include "llvm/IR/Module.h"
 #include "llvm/IR/PatternMatch.h"
+#include "llvm/MC/MCSymbol.h"
 #include "llvm/Pass.h"
-#include "llvm/Support/CommandLine.h"
 #include "llvm/Support/Debug.h"
 #include "llvm/Support/raw_ostream.h"
 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
 #include "llvm/Transforms/Utils/Cloning.h"
 #include "llvm/Transforms/Utils/Local.h"
 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
+#include "llvm/Transforms/Utils/SSAUpdater.h"
 #include <memory>
 
 using namespace llvm;
@@ -44,6 +50,17 @@ using namespace llvm::PatternMatch;
 
 #define DEBUG_TYPE "winehprepare"
 
+static cl::opt<bool> DisableDemotion(
+    "disable-demotion", cl::Hidden,
+    cl::desc(
+        "Clone multicolor basic blocks but do not demote cross funclet values"),
+    cl::init(false));
+
+static cl::opt<bool> DisableCleanups(
+    "disable-cleanups", cl::Hidden,
+    cl::desc("Do not remove implausible terminators or other similar cleanups"),
+    cl::init(false));
+
 namespace {
 
 // This map is used to model frame variable usage during outlining, to
@@ -71,7 +88,10 @@ class WinEHPrepare : public FunctionPass {
 public:
   static char ID; // Pass identification, replacement for typeid.
   WinEHPrepare(const TargetMachine *TM = nullptr)
-      : FunctionPass(ID), DT(nullptr), SEHExceptionCodeSlot(nullptr) {}
+      : FunctionPass(ID) {
+    if (TM)
+      TheTriple = TM->getTargetTriple();
+  }
 
   bool runOnFunction(Function &Fn) override;
 
@@ -86,17 +106,26 @@ public:
 private:
   bool prepareExceptionHandlers(Function &F,
                                 SmallVectorImpl<LandingPadInst *> &LPads);
+  void identifyEHBlocks(Function &F, SmallVectorImpl<LandingPadInst *> &LPads);
   void promoteLandingPadValues(LandingPadInst *LPad);
   void demoteValuesLiveAcrossHandlers(Function &F,
                                       SmallVectorImpl<LandingPadInst *> &LPads);
+  void findSEHEHReturnPoints(Function &F,
+                             SetVector<BasicBlock *> &EHReturnBlocks);
+  void findCXXEHReturnPoints(Function &F,
+                             SetVector<BasicBlock *> &EHReturnBlocks);
+  void getPossibleReturnTargets(Function *ParentF, Function *HandlerF,
+                                SetVector<BasicBlock*> &Targets);
   void completeNestedLandingPad(Function *ParentFn,
                                 LandingPadInst *OutlinedLPad,
                                 const LandingPadInst *OriginalLPad,
                                 FrameVarInfoMap &VarInfo);
+  Function *createHandlerFunc(Function *ParentFn, Type *RetTy,
+                              const Twine &Name, Module *M, Value *&ParentFP);
   bool outlineHandler(ActionHandler *Action, Function *SrcFn,
                       LandingPadInst *LPad, BasicBlock *StartBB,
                       FrameVarInfoMap &VarInfo);
-  void addStubInvokeToHandlerIfNeeded(Function *Handler, Value *PersonalityFn);
+  void addStubInvokeToHandlerIfNeeded(Function *Handler);
 
   void mapLandingPadBlocks(LandingPadInst *LPad, LandingPadActions &Actions);
   CatchHandler *findCatchHandler(BasicBlock *BB, BasicBlock *&NextBB,
@@ -105,13 +134,40 @@ private:
                            BasicBlock *EndBB);
 
   void processSEHCatchHandler(CatchHandler *Handler, BasicBlock *StartBB);
+  void insertPHIStores(PHINode *OriginalPHI, AllocaInst *SpillSlot);
+  void
+  insertPHIStore(BasicBlock *PredBlock, Value *PredVal, AllocaInst *SpillSlot,
+                 SmallVectorImpl<std::pair<BasicBlock *, Value *>> &Worklist);
+  AllocaInst *insertPHILoads(PHINode *PN, Function &F);
+  void replaceUseWithLoad(Value *V, Use &U, AllocaInst *&SpillSlot,
+                          DenseMap<BasicBlock *, Value *> &Loads, Function &F);
+  void demoteNonlocalUses(Value *V, std::set<BasicBlock *> &ColorsForBB,
+                          Function &F);
+  bool prepareExplicitEH(Function &F,
+                         SmallVectorImpl<BasicBlock *> &EntryBlocks);
+  void replaceTerminatePadWithCleanup(Function &F);
+  void colorFunclets(Function &F, SmallVectorImpl<BasicBlock *> &EntryBlocks);
+  void demotePHIsOnFunclets(Function &F);
+  void demoteUsesBetweenFunclets(Function &F);
+  void demoteArgumentUses(Function &F);
+  void cloneCommonBlocks(Function &F,
+                         SmallVectorImpl<BasicBlock *> &EntryBlocks);
+  void removeImplausibleTerminators(Function &F);
+  void cleanupPreparedFunclets(Function &F);
+  void verifyPreparedFunclets(Function &F);
+
+  Triple TheTriple;
 
   // All fields are reset by runOnFunction.
-  DominatorTree *DT;
-  EHPersonality Personality;
+  DominatorTree *DT = nullptr;
+  const TargetLibraryInfo *LibInfo = nullptr;
+  EHPersonality Personality = EHPersonality::Unknown;
   CatchHandlerMapTy CatchHandlerMap;
   CleanupHandlerMapTy CleanupHandlerMap;
   DenseMap<const LandingPadInst *, LandingPadMap> LPadMaps;
+  SmallPtrSet<BasicBlock *, 4> NormalBlocks;
+  SmallPtrSet<BasicBlock *, 4> EHBlocks;
+  SetVector<BasicBlock *> EHReturnBlocks;
 
   // This maps landing pad instructions found in outlined handlers to
   // the landing pad instruction in the parent function from which they
@@ -134,12 +190,20 @@ private:
   // outlined but before the outlined code is pruned from the parent function.
   DenseMap<const BasicBlock *, BasicBlock *> LPadTargetBlocks;
 
-  AllocaInst *SEHExceptionCodeSlot;
+  // Map from outlined handler to call to parent local address. Only used for
+  // 32-bit EH.
+  DenseMap<Function *, Value *> HandlerToParentFP;
+
+  AllocaInst *SEHExceptionCodeSlot = nullptr;
+
+  std::map<BasicBlock *, std::set<BasicBlock *>> BlockColors;
+  std::map<BasicBlock *, std::set<BasicBlock *>> FuncletBlocks;
+  std::map<BasicBlock *, std::set<BasicBlock *>> FuncletChildren;
 };
 
 class WinEHFrameVariableMaterializer : public ValueMaterializer {
 public:
-  WinEHFrameVariableMaterializer(Function *OutlinedFn,
+  WinEHFrameVariableMaterializer(Function *OutlinedFn, Value *ParentFP,
                                  FrameVarInfoMap &FrameVarInfo);
   ~WinEHFrameVariableMaterializer() override {}
 
@@ -175,16 +239,12 @@ private:
 
 class WinEHCloningDirectorBase : public CloningDirector {
 public:
-  WinEHCloningDirectorBase(Function *HandlerFn, FrameVarInfoMap &VarInfo,
-                           LandingPadMap &LPadMap)
-      : Materializer(HandlerFn, VarInfo),
+  WinEHCloningDirectorBase(Function *HandlerFn, Value *ParentFP,
+                           FrameVarInfoMap &VarInfo, LandingPadMap &LPadMap)
+      : Materializer(HandlerFn, ParentFP, VarInfo),
         SelectorIDType(Type::getInt32Ty(HandlerFn->getContext())),
         Int8PtrType(Type::getInt8PtrTy(HandlerFn->getContext())),
-        LPadMap(LPadMap) {
-    auto AI = HandlerFn->getArgumentList().begin();
-    ++AI;
-    EstablisherFrame = AI;
-  }
+        LPadMap(LPadMap), ParentFP(ParentFP) {}
 
   CloningAction handleInstruction(ValueToValueMapTy &VMap,
                                   const Instruction *Inst,
@@ -199,6 +259,9 @@ public:
   virtual CloningAction handleTypeIdFor(ValueToValueMapTy &VMap,
                                         const Instruction *Inst,
                                         BasicBlock *NewBB) = 0;
+  virtual CloningAction handleIndirectBr(ValueToValueMapTy &VMap,
+                                         const IndirectBrInst *IBr,
+                                         BasicBlock *NewBB) = 0;
   virtual CloningAction handleInvoke(ValueToValueMapTy &VMap,
                                      const InvokeInst *Invoke,
                                      BasicBlock *NewBB) = 0;
@@ -221,18 +284,20 @@ protected:
   LandingPadMap &LPadMap;
 
   /// The value representing the parent frame pointer.
-  Value *EstablisherFrame;
+  Value *ParentFP;
 };
 
 class WinEHCatchDirector : public WinEHCloningDirectorBase {
 public:
   WinEHCatchDirector(
-      Function *CatchFn, Value *Selector, FrameVarInfoMap &VarInfo,
-      LandingPadMap &LPadMap,
-      DenseMap<LandingPadInst *, const LandingPadInst *> &NestedLPads)
-      : WinEHCloningDirectorBase(CatchFn, VarInfo, LPadMap),
+      Function *CatchFn, Value *ParentFP, Value *Selector,
+      FrameVarInfoMap &VarInfo, LandingPadMap &LPadMap,
+      DenseMap<LandingPadInst *, const LandingPadInst *> &NestedLPads,
+      DominatorTree *DT, SmallPtrSetImpl<BasicBlock *> &EHBlocks)
+      : WinEHCloningDirectorBase(CatchFn, ParentFP, VarInfo, LPadMap),
         CurrentSelector(Selector->stripPointerCasts()),
-        ExceptionObjectVar(nullptr), NestedLPtoOriginalLP(NestedLPads) {}
+        ExceptionObjectVar(nullptr), NestedLPtoOriginalLP(NestedLPads),
+        DT(DT), EHBlocks(EHBlocks) {}
 
   CloningAction handleBeginCatch(ValueToValueMapTy &VMap,
                                  const Instruction *Inst,
@@ -242,12 +307,15 @@ public:
   CloningAction handleTypeIdFor(ValueToValueMapTy &VMap,
                                 const Instruction *Inst,
                                 BasicBlock *NewBB) override;
+  CloningAction handleIndirectBr(ValueToValueMapTy &VMap,
+                                 const IndirectBrInst *IBr,
+                                 BasicBlock *NewBB) override;
   CloningAction handleInvoke(ValueToValueMapTy &VMap, const InvokeInst *Invoke,
                              BasicBlock *NewBB) override;
   CloningAction handleResume(ValueToValueMapTy &VMap, const ResumeInst *Resume,
                              BasicBlock *NewBB) override;
-  CloningAction handleCompare(ValueToValueMapTy &VMap,
-                              const CmpInst *Compare, BasicBlock *NewBB) override;
+  CloningAction handleCompare(ValueToValueMapTy &VMap, const CmpInst *Compare,
+                              BasicBlock *NewBB) override;
   CloningAction handleLandingPad(ValueToValueMapTy &VMap,
                                  const LandingPadInst *LPad,
                                  BasicBlock *NewBB) override;
@@ -264,13 +332,16 @@ private:
   // This will be a reference to the field of the same name in the WinEHPrepare
   // object which instantiates this WinEHCatchDirector object.
   DenseMap<LandingPadInst *, const LandingPadInst *> &NestedLPtoOriginalLP;
+  DominatorTree *DT;
+  SmallPtrSetImpl<BasicBlock *> &EHBlocks;
 };
 
 class WinEHCleanupDirector : public WinEHCloningDirectorBase {
 public:
-  WinEHCleanupDirector(Function *CleanupFn, FrameVarInfoMap &VarInfo,
-                       LandingPadMap &LPadMap)
-      : WinEHCloningDirectorBase(CleanupFn, VarInfo, LPadMap) {}
+  WinEHCleanupDirector(Function *CleanupFn, Value *ParentFP,
+                       FrameVarInfoMap &VarInfo, LandingPadMap &LPadMap)
+      : WinEHCloningDirectorBase(CleanupFn, ParentFP, VarInfo,
+                                 LPadMap) {}
 
   CloningAction handleBeginCatch(ValueToValueMapTy &VMap,
                                  const Instruction *Inst,
@@ -280,12 +351,15 @@ public:
   CloningAction handleTypeIdFor(ValueToValueMapTy &VMap,
                                 const Instruction *Inst,
                                 BasicBlock *NewBB) override;
+  CloningAction handleIndirectBr(ValueToValueMapTy &VMap,
+                                 const IndirectBrInst *IBr,
+                                 BasicBlock *NewBB) override;
   CloningAction handleInvoke(ValueToValueMapTy &VMap, const InvokeInst *Invoke,
                              BasicBlock *NewBB) override;
   CloningAction handleResume(ValueToValueMapTy &VMap, const ResumeInst *Resume,
                              BasicBlock *NewBB) override;
-  CloningAction handleCompare(ValueToValueMapTy &VMap,
-                              const CmpInst *Compare, BasicBlock *NewBB) override;
+  CloningAction handleCompare(ValueToValueMapTy &VMap, const CmpInst *Compare,
+                              BasicBlock *NewBB) override;
   CloningAction handleLandingPad(ValueToValueMapTy &VMap,
                                  const LandingPadInst *LPad,
                                  BasicBlock *NewBB) override;
@@ -325,32 +399,59 @@ FunctionPass *llvm::createWinEHPass(const TargetMachine *TM) {
   return new WinEHPrepare(TM);
 }
 
-bool WinEHPrepare::runOnFunction(Function &Fn) {
-  // No need to prepare outlined handlers.
-  if (Fn.hasFnAttribute("wineh-parent"))
-    return false;
-
-  SmallVector<LandingPadInst *, 4> LPads;
-  SmallVector<ResumeInst *, 4> Resumes;
+static bool
+findExceptionalConstructs(Function &Fn,
+                          SmallVectorImpl<LandingPadInst *> &LPads,
+                          SmallVectorImpl<ResumeInst *> &Resumes,
+                          SmallVectorImpl<BasicBlock *> &EntryBlocks) {
+  bool ForExplicitEH = false;
   for (BasicBlock &BB : Fn) {
-    if (auto *LP = BB.getLandingPadInst())
+    Instruction *First = BB.getFirstNonPHI();
+    if (auto *LP = dyn_cast<LandingPadInst>(First)) {
       LPads.push_back(LP);
+    } else if (First->isEHPad()) {
+      if (!ForExplicitEH)
+        EntryBlocks.push_back(&Fn.getEntryBlock());
+      if (!isa<CatchEndPadInst>(First) && !isa<CleanupEndPadInst>(First))
+        EntryBlocks.push_back(&BB);
+      ForExplicitEH = true;
+    }
     if (auto *Resume = dyn_cast<ResumeInst>(BB.getTerminator()))
       Resumes.push_back(Resume);
   }
+  return ForExplicitEH;
+}
 
-  // No need to prepare functions that lack landing pads.
-  if (LPads.empty())
+bool WinEHPrepare::runOnFunction(Function &Fn) {
+  if (!Fn.hasPersonalityFn())
+    return false;
+
+  // No need to prepare outlined handlers.
+  if (Fn.hasFnAttribute("wineh-parent"))
     return false;
 
   // Classify the personality to see what kind of preparation we need.
-  Personality = classifyEHPersonality(LPads.back()->getPersonalityFn());
+  Personality = classifyEHPersonality(Fn.getPersonalityFn());
 
-  // Do nothing if this is not an MSVC personality.
-  if (!isMSVCEHPersonality(Personality))
+  // Do nothing if this is not a funclet-based personality.
+  if (!isFuncletEHPersonality(Personality))
+    return false;
+
+  SmallVector<LandingPadInst *, 4> LPads;
+  SmallVector<ResumeInst *, 4> Resumes;
+  SmallVector<BasicBlock *, 4> EntryBlocks;
+  bool ForExplicitEH =
+      findExceptionalConstructs(Fn, LPads, Resumes, EntryBlocks);
+
+  if (ForExplicitEH)
+    return prepareExplicitEH(Fn, EntryBlocks);
+
+  // No need to prepare functions that lack landing pads.
+  if (LPads.empty())
     return false;
 
   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
+  LibInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
 
   // If there were any landing pads, prepareExceptionHandlers will make changes.
   prepareExceptionHandlers(Fn, LPads);
@@ -361,6 +462,7 @@ bool WinEHPrepare::doFinalization(Module &M) { return false; }
 
 void WinEHPrepare::getAnalysisUsage(AnalysisUsage &AU) const {
   AU.addRequired<DominatorTreeWrapperPass>();
+  AU.addRequired<TargetLibraryInfoWrapperPass>();
 }
 
 static bool isSelectorDispatch(BasicBlock *BB, BasicBlock *&CatchHandler,
@@ -392,13 +494,62 @@ static void findReachableBlocks(SmallPtrSetImpl<BasicBlock *> &ReachableBBs,
   }
 }
 
+// Attempt to find an instruction where a block can be split before
+// a call to llvm.eh.begincatch and its operands.  If the block
+// begins with the begincatch call or one of its adjacent operands
+// the block will not be split.
+static Instruction *findBeginCatchSplitPoint(BasicBlock *BB,
+                                             IntrinsicInst *II) {
+  // If the begincatch call is already the first instruction in the block,
+  // don't split.
+  Instruction *FirstNonPHI = BB->getFirstNonPHI();
+  if (II == FirstNonPHI)
+    return nullptr;
+
+  // If either operand is in the same basic block as the instruction and
+  // isn't used by another instruction before the begincatch call, include it
+  // in the split block.
+  auto *Op0 = dyn_cast<Instruction>(II->getOperand(0));
+  auto *Op1 = dyn_cast<Instruction>(II->getOperand(1));
+
+  Instruction *I = II->getPrevNode();
+  Instruction *LastI = II;
+
+  while (I == Op0 || I == Op1) {
+    // If the block begins with one of the operands and there are no other
+    // instructions between the operand and the begincatch call, don't split.
+    if (I == FirstNonPHI)
+      return nullptr;
+
+    LastI = I;
+    I = I->getPrevNode();
+  }
+
+  // If there is at least one instruction in the block before the begincatch
+  // call and its operands, split the block at either the begincatch or
+  // its operand.
+  return LastI;
+}
+
 /// Find all points where exceptional control rejoins normal control flow via
 /// llvm.eh.endcatch. Add them to the normal bb reachability worklist.
-static void findCXXEHReturnPoints(Function &F,
-                                  SetVector<BasicBlock *> &EHReturnBlocks) {
+void WinEHPrepare::findCXXEHReturnPoints(
+    Function &F, SetVector<BasicBlock *> &EHReturnBlocks) {
   for (auto BBI = F.begin(), BBE = F.end(); BBI != BBE; ++BBI) {
     BasicBlock *BB = BBI;
     for (Instruction &I : *BB) {
+      if (match(&I, m_Intrinsic<Intrinsic::eh_begincatch>())) {
+        Instruction *SplitPt =
+            findBeginCatchSplitPoint(BB, cast<IntrinsicInst>(&I));
+        if (SplitPt) {
+          // Split the block before the llvm.eh.begincatch call to allow
+          // cleanup and catch code to be distinguished later.
+          // Do not update BBI because we still need to process the
+          // portion of the block that we are splitting off.
+          SplitBlock(BB, SplitPt, DT);
+          break;
+        }
+      }
       if (match(&I, m_Intrinsic<Intrinsic::eh_endcatch>())) {
         // Split the block after the call to llvm.eh.endcatch if there is
         // anything other than an unconditional branch, or if the successor
@@ -408,7 +559,7 @@ static void findCXXEHReturnPoints(Function &F,
             isa<PHINode>(Br->getSuccessor(0)->begin())) {
           DEBUG(dbgs() << "splitting block " << BB->getName()
                        << " with llvm.eh.endcatch\n");
-          BBI = BB->splitBasicBlock(I.getNextNode(), "ehreturn");
+          BBI = SplitBlock(BB, I.getNextNode(), DT);
         }
         // The next BB is normal control flow.
         EHReturnBlocks.insert(BB->getTerminator()->getSuccessor(0));
@@ -429,8 +580,8 @@ static bool isCatchAllLandingPad(const BasicBlock *BB) {
 
 /// Find all points where exceptions control rejoins normal control flow via
 /// selector dispatch.
-static void findSEHEHReturnPoints(Function &F,
-                                  SetVector<BasicBlock *> &EHReturnBlocks) {
+void WinEHPrepare::findSEHEHReturnPoints(
+    Function &F, SetVector<BasicBlock *> &EHReturnBlocks) {
   for (auto BBI = F.begin(), BBE = F.end(); BBI != BBE; ++BBI) {
     BasicBlock *BB = BBI;
     // If the landingpad is a catch-all, treat the whole lpad as if it is
@@ -447,9 +598,9 @@ static void findSEHEHReturnPoints(Function &F,
     BasicBlock *NextBB;
     Constant *Selector;
     if (isSelectorDispatch(BB, CatchHandler, Selector, NextBB)) {
-      // Split the edge if there is a phi node. Returning from EH to a phi node
-      // is just as impossible as having a phi after an indirectbr.
-      if (isa<PHINode>(CatchHandler->begin())) {
+      // Split the edge if there are multiple predecessors. This creates a place
+      // where we can insert EH recovery code.
+      if (!CatchHandler->getSinglePredecessor()) {
         DEBUG(dbgs() << "splitting EH return edge from " << BB->getName()
                      << " to " << CatchHandler->getName() << '\n');
         BBI = CatchHandler = SplitCriticalEdge(
@@ -460,13 +611,8 @@ static void findSEHEHReturnPoints(Function &F,
   }
 }
 
-/// Ensure that all values live into and out of exception handlers are stored
-/// in memory.
-/// FIXME: This falls down when values are defined in one handler and live into
-/// another handler. For example, a cleanup defines a value used only by a
-/// catch handler.
-void WinEHPrepare::demoteValuesLiveAcrossHandlers(
-    Function &F, SmallVectorImpl<LandingPadInst *> &LPads) {
+void WinEHPrepare::identifyEHBlocks(Function &F, 
+                                    SmallVectorImpl<LandingPadInst *> &LPads) {
   DEBUG(dbgs() << "Demoting values live across exception handlers in function "
                << F.getName() << '\n');
 
@@ -476,10 +622,6 @@ void WinEHPrepare::demoteValuesLiveAcrossHandlers(
   // - Exceptional blocks are blocks reachable from landingpads. Analysis does
   //   not follow llvm.eh.endcatch blocks, which mark a transition from
   //   exceptional to normal control.
-  SmallPtrSet<BasicBlock *, 4> NormalBlocks;
-  SmallPtrSet<BasicBlock *, 4> EHBlocks;
-  SetVector<BasicBlock *> EHReturnBlocks;
-  SetVector<BasicBlock *> Worklist;
 
   if (Personality == EHPersonality::MSVC_CXX)
     findCXXEHReturnPoints(F, EHReturnBlocks);
@@ -492,8 +634,8 @@ void WinEHPrepare::demoteValuesLiveAcrossHandlers(
       dbgs() << "  " << BB->getName() << '\n';
   });
 
-  // Join points should not have phis at this point, unless they are a
-  // landingpad, in which case we will demote their phis later.
+// Join points should not have phis at this point, unless they are a
+// landingpad, in which case we will demote their phis later.
 #ifndef NDEBUG
   for (BasicBlock *BB : EHReturnBlocks)
     assert((BB->isLandingPad() || !isa<PHINode>(BB->begin())) &&
@@ -502,6 +644,7 @@ void WinEHPrepare::demoteValuesLiveAcrossHandlers(
 
   // Normal blocks are the blocks reachable from the entry block and all EH
   // return points.
+  SetVector<BasicBlock *> Worklist;
   Worklist = EHReturnBlocks;
   Worklist.insert(&F.getEntryBlock());
   findReachableBlocks(NormalBlocks, Worklist, nullptr);
@@ -523,6 +666,41 @@ void WinEHPrepare::demoteValuesLiveAcrossHandlers(
       dbgs() << "  " << BB->getName() << '\n';
   });
 
+}
+
+/// Ensure that all values live into and out of exception handlers are stored
+/// in memory.
+/// FIXME: This falls down when values are defined in one handler and live into
+/// another handler. For example, a cleanup defines a value used only by a
+/// catch handler.
+void WinEHPrepare::demoteValuesLiveAcrossHandlers(
+    Function &F, SmallVectorImpl<LandingPadInst *> &LPads) {
+  DEBUG(dbgs() << "Demoting values live across exception handlers in function "
+               << F.getName() << '\n');
+
+  // identifyEHBlocks() should have been called before this function.
+  assert(!NormalBlocks.empty());
+
+  // Try to avoid demoting EH pointer and selector values. They get in the way
+  // of our pattern matching.
+  SmallPtrSet<Instruction *, 10> EHVals;
+  for (BasicBlock &BB : F) {
+    LandingPadInst *LP = BB.getLandingPadInst();
+    if (!LP)
+      continue;
+    EHVals.insert(LP);
+    for (User *U : LP->users()) {
+      auto *EI = dyn_cast<ExtractValueInst>(U);
+      if (!EI)
+        continue;
+      EHVals.insert(EI);
+      for (User *U2 : EI->users()) {
+        if (auto *PN = dyn_cast<PHINode>(U2))
+          EHVals.insert(PN);
+      }
+    }
+  }
+
   SetVector<Argument *> ArgsToDemote;
   SetVector<Instruction *> InstrsToDemote;
   for (BasicBlock &BB : F) {
@@ -548,7 +726,11 @@ void WinEHPrepare::demoteValuesLiveAcrossHandlers(
           continue;
         }
 
+        // Don't demote EH values.
         auto *OpI = cast<Instruction>(Op);
+        if (EHVals.count(OpI))
+          continue;
+
         BasicBlock *OpBB = OpI->getParent();
         // If a value is produced and consumed in the same BB, we don't need to
         // demote it.
@@ -613,6 +795,7 @@ bool WinEHPrepare::prepareExceptionHandlers(
         return false;
   }
 
+  identifyEHBlocks(F, LPads);
   demoteValuesLiveAcrossHandlers(F, LPads);
 
   // These containers are used to re-map frame variables that are used in
@@ -637,6 +820,24 @@ bool WinEHPrepare::prepareExceptionHandlers(
                        F.getEntryBlock().getFirstInsertionPt());
   }
 
+  // In order to handle the case where one outlined catch handler returns
+  // to a block within another outlined catch handler that would otherwise
+  // be unreachable, we need to outline the nested landing pad before we
+  // outline the landing pad which encloses it.
+  if (!isAsynchronousEHPersonality(Personality))
+    std::sort(LPads.begin(), LPads.end(),
+              [this](LandingPadInst *const &L, LandingPadInst *const &R) {
+                return DT->properlyDominates(R->getParent(), L->getParent());
+              });
+
+  // This container stores the llvm.eh.recover and IndirectBr instructions
+  // that make up the body of each landing pad after it has been outlined.
+  // We need to defer the population of the target list for the indirectbr
+  // until all landing pads have been outlined so that we can handle the
+  // case of blocks in the target that are reached only from nested
+  // landing pads.
+  SmallVector<std::pair<CallInst*, IndirectBrInst *>, 4> LPadImpls;
+
   for (LandingPadInst *LPad : LPads) {
     // Look for evidence that this landingpad has already been processed.
     bool LPadHasActionList = false;
@@ -682,8 +883,7 @@ bool WinEHPrepare::prepareExceptionHandlers(
     // Split the block after the landingpad instruction so that it is just a
     // call to llvm.eh.actions followed by indirectbr.
     assert(!isa<PHINode>(LPadBB->begin()) && "lpad phi not removed");
-    LPadBB->splitBasicBlock(LPad->getNextNode(),
-                            LPadBB->getName() + ".prepsplit");
+    SplitBlock(LPadBB, LPad->getNextNode(), DT);
     // Erase the branch inserted by the split so we can insert indirectbr.
     LPadBB->getTerminator()->eraseFromParent();
 
@@ -711,7 +911,8 @@ bool WinEHPrepare::prepareExceptionHandlers(
     LPad->replaceAllUsesWith(UndefValue::get(LPad->getType()));
 
     // Rewrite uses of the exception pointer to loads of an alloca.
-    for (Instruction *E : SEHCodeUses) {
+    while (!SEHCodeUses.empty()) {
+      Instruction *E = SEHCodeUses.pop_back_val();
       SmallVector<Use *, 4> Uses;
       for (Use &U : E->uses())
         Uses.push_back(&U);
@@ -719,13 +920,10 @@ bool WinEHPrepare::prepareExceptionHandlers(
         auto *I = cast<Instruction>(U->getUser());
         if (isa<ResumeInst>(I))
           continue;
-        LoadInst *LI;
         if (auto *Phi = dyn_cast<PHINode>(I))
-          LI = new LoadInst(SEHExceptionCodeSlot, "sehcode", false,
-                            Phi->getIncomingBlock(*U));
+          SEHCodeUses.push_back(Phi);
         else
-          LI = new LoadInst(SEHExceptionCodeSlot, "sehcode", false, I);
-        U->set(LI);
+          U->set(new LoadInst(SEHExceptionCodeSlot, "sehcode", false, I));
       }
       E->replaceAllUsesWith(UndefValue::get(E->getType()));
       E->eraseFromParent();
@@ -757,7 +955,6 @@ bool WinEHPrepare::prepareExceptionHandlers(
     CallInst *Recover =
         CallInst::Create(ActionIntrin, ActionArgs, "recover", LPadBB);
 
-    // Add an indirect branch listing possible successors of the catch handlers.
     SetVector<BasicBlock *> ReturnTargets;
     for (ActionHandler *Action : Actions) {
       if (auto *CatchAction = dyn_cast<CatchHandler>(Action)) {
@@ -769,6 +966,13 @@ bool WinEHPrepare::prepareExceptionHandlers(
         IndirectBrInst::Create(Recover, ReturnTargets.size(), LPadBB);
     for (BasicBlock *Target : ReturnTargets)
       Branch->addDestination(Target);
+
+    if (!isAsynchronousEHPersonality(Personality)) {
+      // C++ EH must repopulate the targets later to handle the case of
+      // targets that are reached indirectly through nested landing pads.
+      LPadImpls.push_back(std::make_pair(Recover, Branch));
+    }
+
   } // End for each landingpad
 
   // If nothing got outlined, there is no more processing to be done.
@@ -782,6 +986,50 @@ bool WinEHPrepare::prepareExceptionHandlers(
     completeNestedLandingPad(&F, LPadPair.first, LPadPair.second, FrameVarInfo);
   NestedLPtoOriginalLP.clear();
 
+  // Update the indirectbr instructions' target lists if necessary.
+  SetVector<BasicBlock*> CheckedTargets;
+  SmallVector<std::unique_ptr<ActionHandler>, 4> ActionList;
+  for (auto &LPadImplPair : LPadImpls) {
+    IntrinsicInst *Recover = cast<IntrinsicInst>(LPadImplPair.first);
+    IndirectBrInst *Branch = LPadImplPair.second;
+
+    // Get a list of handlers called by 
+    parseEHActions(Recover, ActionList);
+
+    // Add an indirect branch listing possible successors of the catch handlers.
+    SetVector<BasicBlock *> ReturnTargets;
+    for (const auto &Action : ActionList) {
+      if (auto *CA = dyn_cast<CatchHandler>(Action.get())) {
+        Function *Handler = cast<Function>(CA->getHandlerBlockOrFunc());
+        getPossibleReturnTargets(&F, Handler, ReturnTargets);
+      }
+    }
+    ActionList.clear();
+    // Clear any targets we already knew about.
+    for (unsigned int I = 0, E = Branch->getNumDestinations(); I < E; ++I) {
+      BasicBlock *KnownTarget = Branch->getDestination(I);
+      if (ReturnTargets.count(KnownTarget))
+        ReturnTargets.remove(KnownTarget);
+    }
+    for (BasicBlock *Target : ReturnTargets) {
+      Branch->addDestination(Target);
+      // The target may be a block that we excepted to get pruned.
+      // If it is, it may contain a call to llvm.eh.endcatch.
+      if (CheckedTargets.insert(Target)) {
+        // Earlier preparations guarantee that all calls to llvm.eh.endcatch
+        // will be followed by an unconditional branch.
+        auto *Br = dyn_cast<BranchInst>(Target->getTerminator());
+        if (Br && Br->isUnconditional() &&
+            Br != Target->getFirstNonPHIOrDbgOrLifetime()) {
+          Instruction *Prev = Br->getPrevNode();
+          if (match(cast<Value>(Prev), m_Intrinsic<Intrinsic::eh_endcatch>()))
+            Prev->eraseFromParent();
+        }
+      }
+    }
+  }
+  LPadImpls.clear();
+
   F.addFnAttr("wineh-parent", F.getName());
 
   // Delete any blocks that were only used by handlers that were outlined above.
@@ -792,16 +1040,16 @@ bool WinEHPrepare::prepareExceptionHandlers(
   Builder.SetInsertPoint(Entry->getFirstInsertionPt());
 
   Function *FrameEscapeFn =
-      Intrinsic::getDeclaration(M, Intrinsic::frameescape);
+      Intrinsic::getDeclaration(M, Intrinsic::localescape);
   Function *RecoverFrameFn =
-      Intrinsic::getDeclaration(M, Intrinsic::framerecover);
+      Intrinsic::getDeclaration(M, Intrinsic::localrecover);
   SmallVector<Value *, 8> AllocasToEscape;
 
-  // Scan the entry block for an existing call to llvm.frameescape. We need to
+  // Scan the entry block for an existing call to llvm.localescape. We need to
   // keep escaping those objects.
   for (Instruction &I : F.front()) {
     auto *II = dyn_cast<IntrinsicInst>(&I);
-    if (II && II->getIntrinsicID() == Intrinsic::frameescape) {
+    if (II && II->getIntrinsicID() == Intrinsic::localescape) {
       auto Args = II->arg_operands();
       AllocasToEscape.append(Args.begin(), Args.end());
       II->eraseFromParent();
@@ -810,7 +1058,7 @@ bool WinEHPrepare::prepareExceptionHandlers(
   }
 
   // Finally, replace all of the temporary allocas for frame variables used in
-  // the outlined handlers with calls to llvm.framerecover.
+  // the outlined handlers with calls to llvm.localrecover.
   for (auto &VarInfoEntry : FrameVarInfo) {
     Value *ParentVal = VarInfoEntry.first;
     TinyPtrVector<AllocaInst *> &Allocas = VarInfoEntry.second;
@@ -828,19 +1076,23 @@ bool WinEHPrepare::prepareExceptionHandlers(
       if (TempAlloca == getCatchObjectSentinel())
         continue; // Skip catch parameter sentinels.
       Function *HandlerFn = TempAlloca->getParent()->getParent();
-      // FIXME: Sink this GEP into the blocks where it is used.
+      llvm::Value *FP = HandlerToParentFP[HandlerFn];
+      assert(FP);
+
+      // FIXME: Sink this localrecover into the blocks where it is used.
       Builder.SetInsertPoint(TempAlloca);
       Builder.SetCurrentDebugLocation(TempAlloca->getDebugLoc());
       Value *RecoverArgs[] = {
-          Builder.CreateBitCast(&F, Int8PtrType, ""),
-          &(HandlerFn->getArgumentList().back()),
+          Builder.CreateBitCast(&F, Int8PtrType, ""), FP,
           llvm::ConstantInt::get(Int32Type, AllocasToEscape.size() - 1)};
-      Value *RecoveredAlloca = Builder.CreateCall(RecoverFrameFn, RecoverArgs);
+      Instruction *RecoveredAlloca =
+          Builder.CreateCall(RecoverFrameFn, RecoverArgs);
+
       // Add a pointer bitcast if the alloca wasn't an i8.
       if (RecoveredAlloca->getType() != TempAlloca->getType()) {
         RecoveredAlloca->setName(Twine(TempAlloca->getName()) + ".i8");
-        RecoveredAlloca =
-            Builder.CreateBitCast(RecoveredAlloca, TempAlloca->getType());
+        RecoveredAlloca = cast<Instruction>(
+            Builder.CreateBitCast(RecoveredAlloca, TempAlloca->getType()));
       }
       TempAlloca->replaceAllUsesWith(RecoveredAlloca);
       TempAlloca->removeFromParent();
@@ -849,16 +1101,23 @@ bool WinEHPrepare::prepareExceptionHandlers(
     }
   } // End for each FrameVarInfo entry.
 
-  // Insert 'call void (...)* @llvm.frameescape(...)' at the end of the entry
+  // Insert 'call void (...)* @llvm.localescape(...)' at the end of the entry
   // block.
   Builder.SetInsertPoint(&F.getEntryBlock().back());
   Builder.CreateCall(FrameEscapeFn, AllocasToEscape);
 
   if (SEHExceptionCodeSlot) {
-    if (SEHExceptionCodeSlot->hasNUses(0))
-      SEHExceptionCodeSlot->eraseFromParent();
-    else
+    if (isAllocaPromotable(SEHExceptionCodeSlot)) {
+      SmallPtrSet<BasicBlock *, 4> UserBlocks;
+      for (User *U : SEHExceptionCodeSlot->users()) {
+        if (auto *Inst = dyn_cast<Instruction>(U))
+          UserBlocks.insert(Inst->getParent());
+      }
       PromoteMemToReg(SEHExceptionCodeSlot, *DT);
+      // After the promotion, kill off dead instructions.
+      for (BasicBlock *BB : UserBlocks)
+        SimplifyInstructionsInBlock(BB, LibInfo);
+    }
   }
 
   // Clean up the handler action maps we created for this function
@@ -866,6 +1125,13 @@ bool WinEHPrepare::prepareExceptionHandlers(
   CatchHandlerMap.clear();
   DeleteContainerSeconds(CleanupHandlerMap);
   CleanupHandlerMap.clear();
+  HandlerToParentFP.clear();
+  DT = nullptr;
+  LibInfo = nullptr;
+  SEHExceptionCodeSlot = nullptr;
+  EHBlocks.clear();
+  NormalBlocks.clear();
+  EHReturnBlocks.clear();
 
   return HandlersOutlined;
 }
@@ -907,6 +1173,42 @@ void WinEHPrepare::promoteLandingPadValues(LandingPadInst *LPad) {
     RecursivelyDeleteTriviallyDeadInstructions(U);
 }
 
+void WinEHPrepare::getPossibleReturnTargets(Function *ParentF,
+                                            Function *HandlerF,
+                                            SetVector<BasicBlock*> &Targets) {
+  for (BasicBlock &BB : *HandlerF) {
+    // If the handler contains landing pads, check for any
+    // handlers that may return directly to a block in the
+    // parent function.
+    if (auto *LPI = BB.getLandingPadInst()) {
+      IntrinsicInst *Recover = cast<IntrinsicInst>(LPI->getNextNode());
+      SmallVector<std::unique_ptr<ActionHandler>, 4> ActionList;
+      parseEHActions(Recover, ActionList);
+      for (const auto &Action : ActionList) {
+        if (auto *CH = dyn_cast<CatchHandler>(Action.get())) {
+          Function *NestedF = cast<Function>(CH->getHandlerBlockOrFunc());
+          getPossibleReturnTargets(ParentF, NestedF, Targets);
+        }
+      }
+    }
+
+    auto *Ret = dyn_cast<ReturnInst>(BB.getTerminator());
+    if (!Ret)
+      continue;
+
+    // Handler functions must always return a block address.
+    BlockAddress *BA = cast<BlockAddress>(Ret->getReturnValue());
+
+    // If this is the handler for a nested landing pad, the
+    // return address may have been remapped to a block in the
+    // parent handler.  We're not interested in those.
+    if (BA->getFunction() != ParentF)
+      continue;
+
+    Targets.insert(BA->getBasicBlock());
+  }
+}
+
 void WinEHPrepare::completeNestedLandingPad(Function *ParentFn,
                                             LandingPadInst *OutlinedLPad,
                                             const LandingPadInst *OriginalLPad,
@@ -915,10 +1217,19 @@ void WinEHPrepare::completeNestedLandingPad(Function *ParentFn,
   // temporarily inserted as its terminator.
   LLVMContext &Context = ParentFn->getContext();
   BasicBlock *OutlinedBB = OutlinedLPad->getParent();
-  assert(isa<UnreachableInst>(OutlinedBB->getTerminator()));
-  OutlinedBB->getTerminator()->eraseFromParent();
-  // That should leave OutlinedLPad as the last instruction in its block.
-  assert(&OutlinedBB->back() == OutlinedLPad);
+  // If the nested landing pad was outlined before the landing pad that enclosed
+  // it, it will already be in outlined form.  In that case, we just need to see
+  // if the returns and the enclosing branch instruction need to be updated.
+  IndirectBrInst *Branch =
+      dyn_cast<IndirectBrInst>(OutlinedBB->getTerminator());
+  if (!Branch) {
+    // If the landing pad wasn't in outlined form, it should be a stub with
+    // an unreachable terminator.
+    assert(isa<UnreachableInst>(OutlinedBB->getTerminator()));
+    OutlinedBB->getTerminator()->eraseFromParent();
+    // That should leave OutlinedLPad as the last instruction in its block.
+    assert(&OutlinedBB->back() == OutlinedLPad);
+  }
 
   // The original landing pad will have already had its action intrinsic
   // built by the outlining loop.  We need to clone that into the outlined
@@ -931,16 +1242,14 @@ void WinEHPrepare::completeNestedLandingPad(Function *ParentFn,
   ++II;
   // The instruction after the landing pad should now be a call to eh.actions.
   const Instruction *Recover = II;
-  assert(match(Recover, m_Intrinsic<Intrinsic::eh_actions>()));
-  IntrinsicInst *EHActions = cast<IntrinsicInst>(Recover->clone());
+  const IntrinsicInst *EHActions = cast<IntrinsicInst>(Recover);
 
-  // Remap the exception variables into the outlined function.
-  WinEHFrameVariableMaterializer Materializer(OutlinedHandlerFn, FrameVarInfo);
+  // Remap the return target in the nested handler.
   SmallVector<BlockAddress *, 4> ActionTargets;
-  SmallVector<ActionHandler *, 4> ActionList;
+  SmallVector<std::unique_ptr<ActionHandler>, 4> ActionList;
   parseEHActions(EHActions, ActionList);
-  for (auto *Action : ActionList) {
-    auto *Catch = dyn_cast<CatchHandler>(Action);
+  for (const auto &Action : ActionList) {
+    auto *Catch = dyn_cast<CatchHandler>(Action.get());
     if (!Catch)
       continue;
     // The dyn_cast to function here selects C++ catch handlers and skips
@@ -962,7 +1271,7 @@ void WinEHPrepare::completeNestedLandingPad(Function *ParentFn,
       // should be a block that was outlined into OutlinedHandlerFn.
       assert(BA->getFunction() == ParentFn);
 
-      // Ignore targets that aren't part of OutlinedHandlerFn.
+      // Ignore targets that aren't part of an outlined handler function.
       if (!LPadTargetBlocks.count(BA->getBasicBlock()))
         continue;
 
@@ -978,15 +1287,26 @@ void WinEHPrepare::completeNestedLandingPad(Function *ParentFn,
       ActionTargets.push_back(NewBA);
     }
   }
-  DeleteContainerPointers(ActionList);
   ActionList.clear();
-  OutlinedBB->getInstList().push_back(EHActions);
 
-  // Insert an indirect branch into the outlined landing pad BB.
-  IndirectBrInst *IBr = IndirectBrInst::Create(EHActions, 0, OutlinedBB);
-  // Add the previously collected action targets.
-  for (auto *Target : ActionTargets)
-    IBr->addDestination(Target->getBasicBlock());
+  if (Branch) {
+    // If the landing pad was already in outlined form, just update its targets.
+    for (unsigned int I = Branch->getNumDestinations(); I > 0; --I)
+      Branch->removeDestination(I);
+    // Add the previously collected action targets.
+    for (auto *Target : ActionTargets)
+      Branch->addDestination(Target->getBasicBlock());
+  } else {
+    // If the landing pad was previously stubbed out, fill in its outlined form.
+    IntrinsicInst *NewEHActions = cast<IntrinsicInst>(EHActions->clone());
+    OutlinedBB->getInstList().push_back(NewEHActions);
+
+    // Insert an indirect branch into the outlined landing pad BB.
+    IndirectBrInst *IBr = IndirectBrInst::Create(NewEHActions, 0, OutlinedBB);
+    // Add the previously collected action targets.
+    for (auto *Target : ActionTargets)
+      IBr->addDestination(Target->getBasicBlock());
+  }
 }
 
 // This function examines a block to determine whether the block ends with a
@@ -1032,8 +1352,7 @@ static bool isCatchBlock(BasicBlock *BB) {
   return false;
 }
 
-static BasicBlock *createStubLandingPad(Function *Handler,
-                                        Value *PersonalityFn) {
+static BasicBlock *createStubLandingPad(Function *Handler) {
   // FIXME: Finish this!
   LLVMContext &Context = Handler->getContext();
   BasicBlock *StubBB = BasicBlock::Create(Context, "stub");
@@ -1042,11 +1361,11 @@ static BasicBlock *createStubLandingPad(Function *Handler,
   LandingPadInst *LPad = Builder.CreateLandingPad(
       llvm::StructType::get(Type::getInt8PtrTy(Context),
                             Type::getInt32Ty(Context), nullptr),
-      PersonalityFn, 0);
+      0);
   // Insert a call to llvm.eh.actions so that we don't try to outline this lpad.
-  Function *ActionIntrin = Intrinsic::getDeclaration(Handler->getParent(),
-                                                     Intrinsic::eh_actions);
-  Builder.CreateCall(ActionIntrin, "recover");
+  Function *ActionIntrin =
+      Intrinsic::getDeclaration(Handler->getParent(), Intrinsic::eh_actions);
+  Builder.CreateCall(ActionIntrin, {}, "recover");
   LPad->setCleanup(true);
   Builder.CreateUnreachable();
   return StubBB;
@@ -1057,8 +1376,7 @@ static BasicBlock *createStubLandingPad(Function *Handler,
 // landing pad if none is found.  The code that generates the .xdata tables for
 // the handler needs at least one landing pad to identify the parent function's
 // personality.
-void WinEHPrepare::addStubInvokeToHandlerIfNeeded(Function *Handler,
-                                                  Value *PersonalityFn) {
+void WinEHPrepare::addStubInvokeToHandlerIfNeeded(Function *Handler) {
   ReturnInst *Ret = nullptr;
   UnreachableInst *Unreached = nullptr;
   for (BasicBlock &BB : *Handler) {
@@ -1085,46 +1403,79 @@ void WinEHPrepare::addStubInvokeToHandlerIfNeeded(Function *Handler,
   else
     Term = Unreached;
   BasicBlock *OldRetBB = Term->getParent();
-  BasicBlock *NewRetBB = SplitBlock(OldRetBB, Term);
+  BasicBlock *NewRetBB = SplitBlock(OldRetBB, Term, DT);
   // SplitBlock adds an unconditional branch instruction at the end of the
   // parent block.  We want to replace that with an invoke call, so we can
   // erase it now.
   OldRetBB->getTerminator()->eraseFromParent();
-  BasicBlock *StubLandingPad = createStubLandingPad(Handler, PersonalityFn);
+  BasicBlock *StubLandingPad = createStubLandingPad(Handler);
   Function *F =
       Intrinsic::getDeclaration(Handler->getParent(), Intrinsic::donothing);
   InvokeInst::Create(F, NewRetBB, StubLandingPad, None, "", OldRetBB);
 }
 
+// FIXME: Consider sinking this into lib/Target/X86 somehow. TargetLowering
+// usually doesn't build LLVM IR, so that's probably the wrong place.
+Function *WinEHPrepare::createHandlerFunc(Function *ParentFn, Type *RetTy,
+                                          const Twine &Name, Module *M,
+                                          Value *&ParentFP) {
+  // x64 uses a two-argument prototype where the parent FP is the second
+  // argument. x86 uses no arguments, just the incoming EBP value.
+  LLVMContext &Context = M->getContext();
+  Type *Int8PtrType = Type::getInt8PtrTy(Context);
+  FunctionType *FnType;
+  if (TheTriple.getArch() == Triple::x86_64) {
+    Type *ArgTys[2] = {Int8PtrType, Int8PtrType};
+    FnType = FunctionType::get(RetTy, ArgTys, false);
+  } else {
+    FnType = FunctionType::get(RetTy, None, false);
+  }
+
+  Function *Handler =
+      Function::Create(FnType, GlobalVariable::InternalLinkage, Name, M);
+  BasicBlock *Entry = BasicBlock::Create(Context, "entry");
+  Handler->getBasicBlockList().push_front(Entry);
+  if (TheTriple.getArch() == Triple::x86_64) {
+    ParentFP = &(Handler->getArgumentList().back());
+  } else {
+    assert(M);
+    Function *FrameAddressFn =
+        Intrinsic::getDeclaration(M, Intrinsic::frameaddress);
+    Function *RecoverFPFn =
+        Intrinsic::getDeclaration(M, Intrinsic::x86_seh_recoverfp);
+    IRBuilder<> Builder(&Handler->getEntryBlock());
+    Value *EBP =
+        Builder.CreateCall(FrameAddressFn, {Builder.getInt32(1)}, "ebp");
+    Value *ParentI8Fn = Builder.CreateBitCast(ParentFn, Int8PtrType);
+    ParentFP = Builder.CreateCall(RecoverFPFn, {ParentI8Fn, EBP});
+  }
+  return Handler;
+}
+
 bool WinEHPrepare::outlineHandler(ActionHandler *Action, Function *SrcFn,
                                   LandingPadInst *LPad, BasicBlock *StartBB,
                                   FrameVarInfoMap &VarInfo) {
   Module *M = SrcFn->getParent();
   LLVMContext &Context = M->getContext();
+  Type *Int8PtrType = Type::getInt8PtrTy(Context);
 
   // Create a new function to receive the handler contents.
-  Type *Int8PtrType = Type::getInt8PtrTy(Context);
-  std::vector<Type *> ArgTys;
-  ArgTys.push_back(Int8PtrType);
-  ArgTys.push_back(Int8PtrType);
+  Value *ParentFP;
   Function *Handler;
   if (Action->getType() == Catch) {
-    FunctionType *FnType = FunctionType::get(Int8PtrType, ArgTys, false);
-    Handler = Function::Create(FnType, GlobalVariable::InternalLinkage,
-                               SrcFn->getName() + ".catch", M);
+    Handler = createHandlerFunc(SrcFn, Int8PtrType, SrcFn->getName() + ".catch", M,
+                                ParentFP);
   } else {
-    FunctionType *FnType =
-        FunctionType::get(Type::getVoidTy(Context), ArgTys, false);
-    Handler = Function::Create(FnType, GlobalVariable::InternalLinkage,
-                               SrcFn->getName() + ".cleanup", M);
+    Handler = createHandlerFunc(SrcFn, Type::getVoidTy(Context),
+                                SrcFn->getName() + ".cleanup", M, ParentFP);
   }
-
+  Handler->setPersonalityFn(SrcFn->getPersonalityFn());
+  HandlerToParentFP[Handler] = ParentFP;
   Handler->addFnAttr("wineh-parent", SrcFn->getName());
+  BasicBlock *Entry = &Handler->getEntryBlock();
 
   // Generate a standard prolog to setup the frame recovery structure.
   IRBuilder<> Builder(Context);
-  BasicBlock *Entry = BasicBlock::Create(Context, "entry");
-  Handler->getBasicBlockList().push_front(Entry);
   Builder.SetInsertPoint(Entry);
   Builder.SetCurrentDebugLocation(LPad->getDebugLoc());
 
@@ -1137,12 +1488,14 @@ bool WinEHPrepare::outlineHandler(ActionHandler *Action, Function *SrcFn,
     LPadMap.mapLandingPad(LPad);
   if (auto *CatchAction = dyn_cast<CatchHandler>(Action)) {
     Constant *Sel = CatchAction->getSelector();
-    Director.reset(new WinEHCatchDirector(Handler, Sel, VarInfo, LPadMap,
-                                          NestedLPtoOriginalLP));
+    Director.reset(new WinEHCatchDirector(Handler, ParentFP, Sel, VarInfo,
+                                          LPadMap, NestedLPtoOriginalLP, DT,
+                                          EHBlocks));
     LPadMap.remapEHValues(VMap, UndefValue::get(Int8PtrType),
                           ConstantInt::get(Type::getInt32Ty(Context), 1));
   } else {
-    Director.reset(new WinEHCleanupDirector(Handler, VarInfo, LPadMap));
+    Director.reset(
+        new WinEHCleanupDirector(Handler, ParentFP, VarInfo, LPadMap));
     LPadMap.remapEHValues(VMap, UndefValue::get(Int8PtrType),
                           UndefValue::get(Type::getInt32Ty(Context)));
   }
@@ -1185,7 +1538,7 @@ bool WinEHPrepare::outlineHandler(ActionHandler *Action, Function *SrcFn,
   // list.  We can recognize it, however, as the cloned block which has no
   // predecessors.  Any other block wouldn't have been cloned if it didn't
   // have a predecessor which was also cloned.
-  Function::iterator  ClonedIt = std::next(Function::iterator(Entry));
+  Function::iterator ClonedIt = std::next(Function::iterator(Entry));
   while (!pred_empty(ClonedIt))
     ++ClonedIt;
   BasicBlock *ClonedEntryBB = ClonedIt;
@@ -1194,7 +1547,7 @@ bool WinEHPrepare::outlineHandler(ActionHandler *Action, Function *SrcFn,
   ClonedEntryBB->eraseFromParent();
 
   // Make sure we can identify the handler's personality later.
-  addStubInvokeToHandlerIfNeeded(Handler, LPad->getPersonalityFn());
+  addStubInvokeToHandlerIfNeeded(Handler);
 
   if (auto *CatchAction = dyn_cast<CatchHandler>(Action)) {
     WinEHCatchDirector *CatchDirector =
@@ -1257,13 +1610,12 @@ void WinEHPrepare::processSEHCatchHandler(CatchHandler *CatchAction,
   } else {
     // This must be a catch-all. Split the block after the landingpad.
     assert(CatchAction->getSelector()->isNullValue() && "expected catch-all");
-    HandlerBB =
-        StartBB->splitBasicBlock(StartBB->getFirstInsertionPt(), "catch.all");
+    HandlerBB = SplitBlock(StartBB, StartBB->getFirstInsertionPt(), DT);
   }
   IRBuilder<> Builder(HandlerBB->getFirstInsertionPt());
   Function *EHCodeFn = Intrinsic::getDeclaration(
-      StartBB->getParent()->getParent(), Intrinsic::eh_exceptioncode);
-  Value *Code = Builder.CreateCall(EHCodeFn, "sehcode");
+      StartBB->getParent()->getParent(), Intrinsic::eh_exceptioncode_old);
+  Value *Code = Builder.CreateCall(EHCodeFn, {}, "sehcode");
   Code = Builder.CreateIntToPtr(Code, SEHExceptionCodeSlot->getAllocatedType());
   Builder.CreateStore(Code, SEHExceptionCodeSlot);
   CatchAction->setHandlerBlockOrFunc(BlockAddress::get(HandlerBB));
@@ -1330,9 +1682,8 @@ void LandingPadMap::remapEHValues(ValueToValueMapTy &VMap, Value *EHPtrValue,
     VMap[Extract] = SelectorValue;
 }
 
-static bool isFrameAddressCall(const Value *V) {
-  return match(const_cast<Value *>(V),
-               m_Intrinsic<Intrinsic::frameaddress>(m_SpecificInt(0)));
+static bool isLocalAddressCall(const Value *V) {
+  return match(const_cast<Value *>(V), m_Intrinsic<Intrinsic::localaddress>());
 }
 
 CloningDirector::CloningAction WinEHCloningDirectorBase::handleInstruction(
@@ -1342,15 +1693,22 @@ CloningDirector::CloningAction WinEHCloningDirectorBase::handleInstruction(
   if (LPadMap.isLandingPadSpecificInst(Inst))
     return CloningDirector::SkipInstruction;
 
-  // Nested landing pads will be cloned as stubs, with just the
-  // landingpad instruction and an unreachable instruction. When
-  // all landingpads have been outlined, we'll replace this with the
-  // llvm.eh.actions call and indirect branch created when the
-  // landing pad was outlined.
+  // Nested landing pads that have not already been outlined will be cloned as
+  // stubs, with just the landingpad instruction and an unreachable instruction.
+  // When all landingpads have been outlined, we'll replace this with the
+  // llvm.eh.actions call and indirect branch created when the landing pad was
+  // outlined.
   if (auto *LPad = dyn_cast<LandingPadInst>(Inst)) {
     return handleLandingPad(VMap, LPad, NewBB);
   }
 
+  // Nested landing pads that have already been outlined will be cloned in their
+  // outlined form, but we need to intercept the ibr instruction to filter out
+  // targets that do not return to the handler we are outlining.
+  if (auto *IBr = dyn_cast<IndirectBrInst>(Inst)) {
+    return handleIndirectBr(VMap, IBr, NewBB);
+  }
+
   if (auto *Invoke = dyn_cast<InvokeInst>(Inst))
     return handleInvoke(VMap, Invoke, NewBB);
 
@@ -1367,10 +1725,10 @@ CloningDirector::CloningAction WinEHCloningDirectorBase::handleInstruction(
   if (match(Inst, m_Intrinsic<Intrinsic::eh_typeid_for>()))
     return handleTypeIdFor(VMap, Inst, NewBB);
 
-  // When outlining llvm.frameaddress(i32 0), remap that to the second argument,
+  // When outlining llvm.localaddress(), remap that to the second argument,
   // which is the FP of the parent.
-  if (isFrameAddressCall(Inst)) {
-    VMap[Inst] = EstablisherFrame;
+  if (isLocalAddressCall(Inst)) {
+    VMap[Inst] = ParentFP;
     return CloningDirector::SkipInstruction;
   }
 
@@ -1380,6 +1738,20 @@ CloningDirector::CloningAction WinEHCloningDirectorBase::handleInstruction(
 
 CloningDirector::CloningAction WinEHCatchDirector::handleLandingPad(
     ValueToValueMapTy &VMap, const LandingPadInst *LPad, BasicBlock *NewBB) {
+  // If the instruction after the landing pad is a call to llvm.eh.actions
+  // the landing pad has already been outlined.  In this case, we should
+  // clone it because it may return to a block in the handler we are
+  // outlining now that would otherwise be unreachable.  The landing pads
+  // are sorted before outlining begins to enable this case to work
+  // properly.
+  const Instruction *NextI = LPad->getNextNode();
+  if (match(NextI, m_Intrinsic<Intrinsic::eh_actions>()))
+    return CloningDirector::CloneInstruction;
+
+  // If the landing pad hasn't been outlined yet, the landing pad we are
+  // outlining now does not dominate it and so it cannot return to a block
+  // in this handler.  In that case, we can just insert a stub landing
+  // pad now and patch it up later.
   Instruction *NewInst = LPad->clone();
   if (LPad->hasName())
     NewInst->setName(LPad->getName());
@@ -1471,6 +1843,48 @@ CloningDirector::CloningAction WinEHCatchDirector::handleTypeIdFor(
   return CloningDirector::SkipInstruction;
 }
 
+CloningDirector::CloningAction WinEHCatchDirector::handleIndirectBr(
+    ValueToValueMapTy &VMap,
+    const IndirectBrInst *IBr,
+    BasicBlock *NewBB) {
+  // If this indirect branch is not part of a landing pad block, just clone it.
+  const BasicBlock *ParentBB = IBr->getParent();
+  if (!ParentBB->isLandingPad())
+    return CloningDirector::CloneInstruction;
+
+  // If it is part of a landing pad, we want to filter out target blocks
+  // that are not part of the handler we are outlining.
+  const LandingPadInst *LPad = ParentBB->getLandingPadInst();
+
+  // Save this correlation for later processing.
+  NestedLPtoOriginalLP[cast<LandingPadInst>(VMap[LPad])] = LPad;
+
+  // We should only get here for landing pads that have already been outlined.
+  assert(match(LPad->getNextNode(), m_Intrinsic<Intrinsic::eh_actions>()));
+
+  // Copy the indirectbr, but only include targets that were previously
+  // identified as EH blocks and are dominated by the nested landing pad.
+  SetVector<const BasicBlock *> ReturnTargets;
+  for (int I = 0, E = IBr->getNumDestinations(); I < E; ++I) {
+    auto *TargetBB = IBr->getDestination(I);
+    if (EHBlocks.count(const_cast<BasicBlock*>(TargetBB)) &&
+        DT->dominates(ParentBB, TargetBB)) {
+      DEBUG(dbgs() << "  Adding destination " << TargetBB->getName() << "\n");
+      ReturnTargets.insert(TargetBB);
+    }
+  }
+  IndirectBrInst *NewBranch = 
+        IndirectBrInst::Create(const_cast<Value *>(IBr->getAddress()),
+                               ReturnTargets.size(), NewBB);
+  for (auto *Target : ReturnTargets)
+    NewBranch->addDestination(const_cast<BasicBlock*>(Target));
+
+  // The operands and targets of the branch instruction are remapped later
+  // because it is a terminator.  Tell the cloning code to clone the
+  // blocks we just added to the target list.
+  return CloningDirector::CloneSuccessors;
+}
+
 CloningDirector::CloningAction
 WinEHCatchDirector::handleInvoke(ValueToValueMapTy &VMap,
                                  const InvokeInst *Invoke, BasicBlock *NewBB) {
@@ -1493,7 +1907,8 @@ WinEHCatchDirector::handleCompare(ValueToValueMapTy &VMap,
   const IntrinsicInst *IntrinCall = nullptr;
   if (match(Compare->getOperand(0), m_Intrinsic<Intrinsic::eh_typeid_for>())) {
     IntrinCall = dyn_cast<IntrinsicInst>(Compare->getOperand(0));
-  } else if (match(Compare->getOperand(1), m_Intrinsic<Intrinsic::eh_typeid_for>())) {
+  } else if (match(Compare->getOperand(1),
+                   m_Intrinsic<Intrinsic::eh_typeid_for>())) {
     IntrinCall = dyn_cast<IntrinsicInst>(Compare->getOperand(1));
   }
   if (IntrinCall) {
@@ -1502,8 +1917,7 @@ WinEHCatchDirector::handleCompare(ValueToValueMapTy &VMap,
     // on the filter function we intend to match.
     if (Selector == CurrentSelector->stripPointerCasts()) {
       VMap[Compare] = ConstantInt::get(SelectorIDType, 1);
-    }
-    else {
+    } else {
       VMap[Compare] = ConstantInt::get(SelectorIDType, 0);
     }
     return CloningDirector::SkipInstruction;
@@ -1560,6 +1974,14 @@ CloningDirector::CloningAction WinEHCleanupDirector::handleTypeIdFor(
   return CloningDirector::SkipInstruction;
 }
 
+CloningDirector::CloningAction WinEHCleanupDirector::handleIndirectBr(
+    ValueToValueMapTy &VMap,
+    const IndirectBrInst *IBr,
+    BasicBlock *NewBB) {
+  // No special handling is required for cleanup cloning.
+  return CloningDirector::CloneInstruction;
+}
+
 CloningDirector::CloningAction WinEHCleanupDirector::handleInvoke(
     ValueToValueMapTy &VMap, const InvokeInst *Invoke, BasicBlock *NewBB) {
   // All invokes in cleanup handlers can be replaced with calls.
@@ -1606,21 +2028,26 @@ WinEHCleanupDirector::handleCompare(ValueToValueMapTy &VMap,
     return CloningDirector::SkipInstruction;
   }
   return CloningDirector::CloneInstruction;
-
 }
 
 WinEHFrameVariableMaterializer::WinEHFrameVariableMaterializer(
-    Function *OutlinedFn, FrameVarInfoMap &FrameVarInfo)
+    Function *OutlinedFn, Value *ParentFP, FrameVarInfoMap &FrameVarInfo)
     : FrameVarInfo(FrameVarInfo), Builder(OutlinedFn->getContext()) {
   BasicBlock *EntryBB = &OutlinedFn->getEntryBlock();
-  Builder.SetInsertPoint(EntryBB, EntryBB->getFirstInsertionPt());
+
+  // New allocas should be inserted in the entry block, but after the parent FP
+  // is established if it is an instruction.
+  Instruction *InsertPoint = EntryBB->getFirstInsertionPt();
+  if (auto *FPInst = dyn_cast<Instruction>(ParentFP))
+    InsertPoint = FPInst->getNextNode();
+  Builder.SetInsertPoint(EntryBB, InsertPoint);
 }
 
 Value *WinEHFrameVariableMaterializer::materializeValueFor(Value *V) {
   // If we're asked to materialize a static alloca, we temporarily create an
   // alloca in the outlined function and add this to the FrameVarInfo map.  When
   // all the outlining is complete, we'll replace these temporary allocas with
-  // calls to llvm.framerecover.
+  // calls to llvm.localrecover.
   if (auto *AV = dyn_cast<AllocaInst>(V)) {
     assert(AV->isStaticAlloca() &&
            "cannot materialize un-demoted dynamic alloca");
@@ -1631,7 +2058,12 @@ Value *WinEHFrameVariableMaterializer::materializeValueFor(Value *V) {
   }
 
   if (isa<Instruction>(V) || isa<Argument>(V)) {
-    errs() << "Failed to demote instruction used in exception handler:\n";
+    Function *Parent = isa<Instruction>(V)
+                           ? cast<Instruction>(V)->getParent()->getParent()
+                           : cast<Argument>(V)->getParent();
+    errs()
+        << "Failed to demote instruction used in exception handler of function "
+        << GlobalValue::getRealLinkageName(Parent->getName()) << ":\n";
     errs() << "  " << *V << '\n';
     report_fatal_error("WinEHPrepare failed to demote instruction");
   }
@@ -1645,7 +2077,7 @@ void WinEHFrameVariableMaterializer::escapeCatchObject(Value *V) {
   // of a catch parameter, add a sentinel to the multimap to indicate that it's
   // used from another handler. This will prevent us from trying to sink the
   // alloca into the handler and ensure that the catch parameter is present in
-  // the call to llvm.frameescape.
+  // the call to llvm.localescape.
   FrameVarInfo[V].push_back(getCatchObjectSentinel());
 }
 
@@ -1703,7 +2135,8 @@ void WinEHPrepare::mapLandingPadBlocks(LandingPadInst *LPad,
 
     // See if the clause we're looking for is a catch-all.
     // If so, the catch begins immediately.
-    Constant *ExpectedSelector = LPad->getClause(HandlersFound)->stripPointerCasts();
+    Constant *ExpectedSelector =
+        LPad->getClause(HandlersFound)->stripPointerCasts();
     if (isa<ConstantPointerNull>(ExpectedSelector)) {
       // The catch all must occur last.
       assert(HandlersFound == NumClauses - 1);
@@ -1714,18 +2147,10 @@ void WinEHPrepare::mapLandingPadBlocks(LandingPadInst *LPad,
       Constant *Selector;
       while (BB && isSelectorDispatch(BB, CatchBlock, Selector, NextBB)) {
         DEBUG(dbgs() << "  Found extra catch dispatch in block "
-          << CatchBlock->getName() << "\n");
+                     << CatchBlock->getName() << "\n");
         BB = NextBB;
       }
 
-      // For C++ EH, check if there is any interesting cleanup code before we
-      // begin the catch. This is important because cleanups cannot rethrow
-      // exceptions but code called from catches can. For SEH, it isn't
-      // important if some finally code before a catch-all is executed out of
-      // line or after recovering from the exception.
-      if (Personality == EHPersonality::MSVC_CXX)
-        findCleanupHandlers(Actions, BB, BB);
-
       // Add the catch handler to the action list.
       CatchHandler *Action = nullptr;
       if (CatchHandlerMap.count(BB) && CatchHandlerMap[BB] != nullptr) {
@@ -1733,11 +2158,29 @@ void WinEHPrepare::mapLandingPadBlocks(LandingPadInst *LPad,
         Action = CatchHandlerMap[BB];
         assert(Action->getSelector() == ExpectedSelector);
       } else {
-        // Since this is a catch-all handler, the selector won't actually appear
-        // in the code anywhere.  ExpectedSelector here is the constant null ptr
-        // that we got from the landing pad instruction.
-        Action = new CatchHandler(BB, ExpectedSelector, nullptr);
-        CatchHandlerMap[BB] = Action;
+        // We don't expect a selector dispatch, but there may be a call to
+        // llvm.eh.begincatch, which separates catch handling code from
+        // cleanup code in the same control flow.  This call looks for the
+        // begincatch intrinsic.
+        Action = findCatchHandler(BB, NextBB, VisitedBlocks);
+        if (Action) {
+          // For C++ EH, check if there is any interesting cleanup code before
+          // we begin the catch. This is important because cleanups cannot
+          // rethrow exceptions but code called from catches can. For SEH, it
+          // isn't important if some finally code before a catch-all is executed
+          // out of line or after recovering from the exception.
+          if (Personality == EHPersonality::MSVC_CXX)
+            findCleanupHandlers(Actions, BB, BB);
+        } else {
+          // If an action was not found, it means that the control flows
+          // directly into the catch-all handler and there is no cleanup code.
+          // That's an expected situation and we must create a catch action.
+          // Since this is a catch-all handler, the selector won't actually
+          // appear in the code anywhere.  ExpectedSelector here is the constant
+          // null ptr that we got from the landing pad instruction.
+          Action = new CatchHandler(BB, ExpectedSelector, nullptr);
+          CatchHandlerMap[BB] = Action;
+        }
       }
       Actions.insertCatchHandler(Action);
       DEBUG(dbgs() << "  Catch all handler at block " << BB->getName() << "\n");
@@ -1768,7 +2211,7 @@ void WinEHPrepare::mapLandingPadBlocks(LandingPadInst *LPad,
       // Under some circumstances optimized IR will flow unconditionally into a
       // handler block without checking the selector.  This can only happen if
       // the landing pad has a catch-all handler and the handler for the
-      // preceeding catch clause is identical to the catch-call handler
+      // preceding catch clause is identical to the catch-call handler
       // (typically an empty catch).  In this case, the handler must be shared
       // by all remaining clauses.
       if (isa<ConstantPointerNull>(
@@ -1876,16 +2319,16 @@ static void createCleanupHandler(LandingPadActions &Actions,
 static CallSite matchOutlinedFinallyCall(BasicBlock *BB,
                                          Instruction *MaybeCall) {
   // Look for finally blocks that Clang has already outlined for us.
-  //   %fp = call i8* @llvm.frameaddress(i32 0)
+  //   %fp = call i8* @llvm.localaddress()
   //   call void @"fin$parent"(iN 1, i8* %fp)
-  if (isFrameAddressCall(MaybeCall) && MaybeCall != BB->getTerminator())
+  if (isLocalAddressCall(MaybeCall) && MaybeCall != BB->getTerminator())
     MaybeCall = MaybeCall->getNextNode();
   CallSite FinallyCall(MaybeCall);
   if (!FinallyCall || FinallyCall.arg_size() != 2)
     return CallSite();
   if (!match(FinallyCall.getArgument(0), m_SpecificInt(1)))
     return CallSite();
-  if (!isFrameAddressCall(FinallyCall.getArgument(1)))
+  if (!isLocalAddressCall(FinallyCall.getArgument(1)))
     return CallSite();
   return FinallyCall;
 }
@@ -1935,7 +2378,7 @@ void WinEHPrepare::findCleanupHandlers(LandingPadActions &Actions,
       if (auto *Action = CleanupHandlerMap[BB]) {
         Actions.insertCleanupHandler(Action);
         DEBUG(dbgs() << "  Found cleanup code in block "
-              << Action->getStartBlock()->getName() << "\n");
+                     << Action->getStartBlock()->getName() << "\n");
         // FIXME: This cleanup might chain into another, and we need to discover
         // that.
         return;
@@ -1944,7 +2387,7 @@ void WinEHPrepare::findCleanupHandlers(LandingPadActions &Actions,
         // value for this block but the value is a nullptr.  This means that
         // we have previously analyzed the block and determined that it did
         // not contain any cleanup code.  Based on the earlier analysis, we
-        // know the the block must end in either an unconditional branch, a
+        // know the block must end in either an unconditional branch, a
         // resume or a conditional branch that is predicated on a comparison
         // with a selector.  Either the resume or the selector dispatch
         // would terminate the search for cleanup code, so the unconditional
@@ -2043,36 +2486,43 @@ void WinEHPrepare::findCleanupHandlers(LandingPadActions &Actions,
           MaybeCall = MaybeCall->getNextNode();
       }
 
-      // Look for outlined finally calls.
-      if (CallSite FinallyCall = matchOutlinedFinallyCall(BB, MaybeCall)) {
-        Function *Fin = FinallyCall.getCalledFunction();
-        assert(Fin && "outlined finally call should be direct");
-        auto *Action = new CleanupHandler(BB);
-        Action->setHandlerBlockOrFunc(Fin);
-        Actions.insertCleanupHandler(Action);
-        CleanupHandlerMap[BB] = Action;
-        DEBUG(dbgs() << "  Found frontend-outlined finally call to "
-                     << Fin->getName() << " in block "
-                     << Action->getStartBlock()->getName() << "\n");
-
-        // Split the block if there were more interesting instructions and look
-        // for finally calls in the normal successor block.
-        BasicBlock *SuccBB = BB;
-        if (FinallyCall.getInstruction() != BB->getTerminator() &&
-            FinallyCall.getInstruction()->getNextNode() != BB->getTerminator()) {
-          SuccBB = BB->splitBasicBlock(FinallyCall.getInstruction()->getNextNode());
-        } else {
-          if (FinallyCall.isInvoke()) {
-            SuccBB = cast<InvokeInst>(FinallyCall.getInstruction())->getNormalDest();
+      // Look for outlined finally calls on x64, since those happen to match the
+      // prototype provided by the runtime.
+      if (TheTriple.getArch() == Triple::x86_64) {
+        if (CallSite FinallyCall = matchOutlinedFinallyCall(BB, MaybeCall)) {
+          Function *Fin = FinallyCall.getCalledFunction();
+          assert(Fin && "outlined finally call should be direct");
+          auto *Action = new CleanupHandler(BB);
+          Action->setHandlerBlockOrFunc(Fin);
+          Actions.insertCleanupHandler(Action);
+          CleanupHandlerMap[BB] = Action;
+          DEBUG(dbgs() << "  Found frontend-outlined finally call to "
+                       << Fin->getName() << " in block "
+                       << Action->getStartBlock()->getName() << "\n");
+
+          // Split the block if there were more interesting instructions and
+          // look for finally calls in the normal successor block.
+          BasicBlock *SuccBB = BB;
+          if (FinallyCall.getInstruction() != BB->getTerminator() &&
+              FinallyCall.getInstruction()->getNextNode() !=
+                  BB->getTerminator()) {
+            SuccBB =
+                SplitBlock(BB, FinallyCall.getInstruction()->getNextNode(), DT);
           } else {
-            SuccBB = BB->getUniqueSuccessor();
-            assert(SuccBB && "splitOutlinedFinallyCalls didn't insert a branch");
+            if (FinallyCall.isInvoke()) {
+              SuccBB = cast<InvokeInst>(FinallyCall.getInstruction())
+                           ->getNormalDest();
+            } else {
+              SuccBB = BB->getUniqueSuccessor();
+              assert(SuccBB &&
+                     "splitOutlinedFinallyCalls didn't insert a branch");
+            }
           }
+          BB = SuccBB;
+          if (BB == EndBB)
+            return;
+          continue;
         }
-        BB = SuccBB;
-        if (BB == EndBB)
-          return;
-        continue;
       }
     }
 
@@ -2105,8 +2555,11 @@ void WinEHPrepare::findCleanupHandlers(LandingPadActions &Actions,
 
 // This is a public function, declared in WinEHFuncInfo.h and is also
 // referenced by WinEHNumbering in FunctionLoweringInfo.cpp.
-void llvm::parseEHActions(const IntrinsicInst *II,
-                          SmallVectorImpl<ActionHandler *> &Actions) {
+void llvm::parseEHActions(
+    const IntrinsicInst *II,
+    SmallVectorImpl<std::unique_ptr<ActionHandler>> &Actions) {
+  assert(II->getIntrinsicID() == Intrinsic::eh_actions &&
+         "attempted to parse non eh.actions intrinsic");
   for (unsigned I = 0, E = II->getNumArgOperands(); I != E;) {
     uint64_t ActionKind =
         cast<ConstantInt>(II->getArgOperand(I))->getZExtValue();
@@ -2116,19 +2569,1105 @@ void llvm::parseEHActions(const IntrinsicInst *II,
       int64_t EHObjIndexVal = EHObjIndex->getSExtValue();
       Constant *Handler = cast<Constant>(II->getArgOperand(I + 3));
       I += 4;
-      auto *CH = new CatchHandler(/*BB=*/nullptr, Selector, /*NextBB=*/nullptr);
+      auto CH = make_unique<CatchHandler>(/*BB=*/nullptr, Selector,
+                                          /*NextBB=*/nullptr);
       CH->setHandlerBlockOrFunc(Handler);
       CH->setExceptionVarIndex(EHObjIndexVal);
-      Actions.push_back(CH);
+      Actions.push_back(std::move(CH));
     } else if (ActionKind == 0) {
       Constant *Handler = cast<Constant>(II->getArgOperand(I + 1));
       I += 2;
-      auto *CH = new CleanupHandler(/*BB=*/nullptr);
+      auto CH = make_unique<CleanupHandler>(/*BB=*/nullptr);
       CH->setHandlerBlockOrFunc(Handler);
-      Actions.push_back(CH);
+      Actions.push_back(std::move(CH));
     } else {
       llvm_unreachable("Expected either a catch or cleanup handler!");
     }
   }
   std::reverse(Actions.begin(), Actions.end());
 }
+
+static int addUnwindMapEntry(WinEHFuncInfo &FuncInfo, int ToState,
+                             const Value *V) {
+  WinEHUnwindMapEntry UME;
+  UME.ToState = ToState;
+  UME.Cleanup = V;
+  FuncInfo.UnwindMap.push_back(UME);
+  return FuncInfo.getLastStateNumber();
+}
+
+static void addTryBlockMapEntry(WinEHFuncInfo &FuncInfo, int TryLow,
+                                int TryHigh, int CatchHigh,
+                                ArrayRef<const CatchPadInst *> Handlers) {
+  WinEHTryBlockMapEntry TBME;
+  TBME.TryLow = TryLow;
+  TBME.TryHigh = TryHigh;
+  TBME.CatchHigh = CatchHigh;
+  assert(TBME.TryLow <= TBME.TryHigh);
+  for (const CatchPadInst *CPI : Handlers) {
+    WinEHHandlerType HT;
+    Constant *TypeInfo = cast<Constant>(CPI->getArgOperand(0));
+    if (TypeInfo->isNullValue())
+      HT.TypeDescriptor = nullptr;
+    else
+      HT.TypeDescriptor = cast<GlobalVariable>(TypeInfo->stripPointerCasts());
+    HT.Adjectives = cast<ConstantInt>(CPI->getArgOperand(1))->getZExtValue();
+    HT.Handler = CPI->getParent();
+    HT.CatchObjRecoverIdx = -2;
+    if (isa<ConstantPointerNull>(CPI->getArgOperand(2)))
+      HT.CatchObj.Alloca = nullptr;
+    else
+      HT.CatchObj.Alloca = cast<AllocaInst>(CPI->getArgOperand(2));
+    TBME.HandlerArray.push_back(HT);
+  }
+  FuncInfo.TryBlockMap.push_back(TBME);
+}
+
+static const CatchPadInst *getSingleCatchPadPredecessor(const BasicBlock *BB) {
+  for (const BasicBlock *PredBlock : predecessors(BB))
+    if (auto *CPI = dyn_cast<CatchPadInst>(PredBlock->getFirstNonPHI()))
+      return CPI;
+  return nullptr;
+}
+
+/// Find all the catchpads that feed directly into the catchendpad. Frontends
+/// using this personality should ensure that each catchendpad and catchpad has
+/// one or zero catchpad predecessors.
+///
+/// The following C++ generates the IR after it:
+///   try {
+///   } catch (A) {
+///   } catch (B) {
+///   }
+///
+/// IR:
+///   %catchpad.A
+///     catchpad [i8* A typeinfo]
+///         to label %catch.A unwind label %catchpad.B
+///   %catchpad.B
+///     catchpad [i8* B typeinfo]
+///         to label %catch.B unwind label %endcatches
+///   %endcatches
+///     catchendblock unwind to caller
+static void
+findCatchPadsForCatchEndPad(const BasicBlock *CatchEndBB,
+                            SmallVectorImpl<const CatchPadInst *> &Handlers) {
+  const CatchPadInst *CPI = getSingleCatchPadPredecessor(CatchEndBB);
+  while (CPI) {
+    Handlers.push_back(CPI);
+    CPI = getSingleCatchPadPredecessor(CPI->getParent());
+  }
+  // We've pushed these back into reverse source order.  Reverse them to get
+  // the list back into source order.
+  std::reverse(Handlers.begin(), Handlers.end());
+}
+
+// Given BB which ends in an unwind edge, return the EHPad that this BB belongs
+// to. If the unwind edge came from an invoke, return null.
+static const BasicBlock *getEHPadFromPredecessor(const BasicBlock *BB) {
+  const TerminatorInst *TI = BB->getTerminator();
+  if (isa<InvokeInst>(TI))
+    return nullptr;
+  if (TI->isEHPad())
+    return BB;
+  return cast<CleanupReturnInst>(TI)->getCleanupPad()->getParent();
+}
+
+static void calculateExplicitCXXStateNumbers(WinEHFuncInfo &FuncInfo,
+                                             const BasicBlock &BB,
+                                             int ParentState) {
+  assert(BB.isEHPad());
+  const Instruction *FirstNonPHI = BB.getFirstNonPHI();
+  // All catchpad instructions will be handled when we process their
+  // respective catchendpad instruction.
+  if (isa<CatchPadInst>(FirstNonPHI))
+    return;
+
+  if (isa<CatchEndPadInst>(FirstNonPHI)) {
+    SmallVector<const CatchPadInst *, 2> Handlers;
+    findCatchPadsForCatchEndPad(&BB, Handlers);
+    const BasicBlock *FirstTryPad = Handlers.front()->getParent();
+    int TryLow = addUnwindMapEntry(FuncInfo, ParentState, nullptr);
+    FuncInfo.EHPadStateMap[Handlers.front()] = TryLow;
+    for (const BasicBlock *PredBlock : predecessors(FirstTryPad))
+      if ((PredBlock = getEHPadFromPredecessor(PredBlock)))
+        calculateExplicitCXXStateNumbers(FuncInfo, *PredBlock, TryLow);
+    int CatchLow = addUnwindMapEntry(FuncInfo, ParentState, nullptr);
+
+    // catchpads are separate funclets in C++ EH due to the way rethrow works.
+    // In SEH, they aren't, so no invokes will unwind to the catchendpad.
+    FuncInfo.EHPadStateMap[FirstNonPHI] = CatchLow;
+    int TryHigh = CatchLow - 1;
+    for (const BasicBlock *PredBlock : predecessors(&BB))
+      if ((PredBlock = getEHPadFromPredecessor(PredBlock)))
+        calculateExplicitCXXStateNumbers(FuncInfo, *PredBlock, CatchLow);
+    int CatchHigh = FuncInfo.getLastStateNumber();
+    addTryBlockMapEntry(FuncInfo, TryLow, TryHigh, CatchHigh, Handlers);
+    DEBUG(dbgs() << "TryLow[" << FirstTryPad->getName() << "]: " << TryLow
+                 << '\n');
+    DEBUG(dbgs() << "TryHigh[" << FirstTryPad->getName() << "]: " << TryHigh
+                 << '\n');
+    DEBUG(dbgs() << "CatchHigh[" << FirstTryPad->getName() << "]: " << CatchHigh
+                 << '\n');
+  } else if (isa<CleanupPadInst>(FirstNonPHI)) {
+    int CleanupState = addUnwindMapEntry(FuncInfo, ParentState, &BB);
+    FuncInfo.EHPadStateMap[FirstNonPHI] = CleanupState;
+    DEBUG(dbgs() << "Assigning state #" << CleanupState << " to BB "
+                 << BB.getName() << '\n');
+    for (const BasicBlock *PredBlock : predecessors(&BB))
+      if ((PredBlock = getEHPadFromPredecessor(PredBlock)))
+        calculateExplicitCXXStateNumbers(FuncInfo, *PredBlock, CleanupState);
+  } else if (isa<TerminatePadInst>(FirstNonPHI)) {
+    report_fatal_error("Not yet implemented!");
+  } else {
+    llvm_unreachable("unexpected EH Pad!");
+  }
+}
+
+static int addSEHExcept(WinEHFuncInfo &FuncInfo, int ParentState,
+                        const Function *Filter, const BasicBlock *Handler) {
+  SEHUnwindMapEntry Entry;
+  Entry.ToState = ParentState;
+  Entry.IsFinally = false;
+  Entry.Filter = Filter;
+  Entry.Handler = Handler;
+  FuncInfo.SEHUnwindMap.push_back(Entry);
+  return FuncInfo.SEHUnwindMap.size() - 1;
+}
+
+static int addSEHFinally(WinEHFuncInfo &FuncInfo, int ParentState,
+                         const BasicBlock *Handler) {
+  SEHUnwindMapEntry Entry;
+  Entry.ToState = ParentState;
+  Entry.IsFinally = true;
+  Entry.Filter = nullptr;
+  Entry.Handler = Handler;
+  FuncInfo.SEHUnwindMap.push_back(Entry);
+  return FuncInfo.SEHUnwindMap.size() - 1;
+}
+
+static void calculateExplicitSEHStateNumbers(WinEHFuncInfo &FuncInfo,
+                                             const BasicBlock &BB,
+                                             int ParentState) {
+  assert(BB.isEHPad());
+  const Instruction *FirstNonPHI = BB.getFirstNonPHI();
+  // All catchpad instructions will be handled when we process their
+  // respective catchendpad instruction.
+  if (isa<CatchPadInst>(FirstNonPHI))
+    return;
+
+  if (isa<CatchEndPadInst>(FirstNonPHI)) {
+    // Extract the filter function and the __except basic block and create a
+    // state for them.
+    SmallVector<const CatchPadInst *, 1> Handlers;
+    findCatchPadsForCatchEndPad(&BB, Handlers);
+    assert(Handlers.size() == 1 &&
+           "SEH doesn't have multiple handlers per __try");
+    const CatchPadInst *CPI = Handlers.front();
+    const BasicBlock *CatchPadBB = CPI->getParent();
+    const Constant *FilterOrNull =
+        cast<Constant>(CPI->getArgOperand(0)->stripPointerCasts());
+    const Function *Filter = dyn_cast<Function>(FilterOrNull);
+    assert((Filter || FilterOrNull->isNullValue()) &&
+           "unexpected filter value");
+    int TryState = addSEHExcept(FuncInfo, ParentState, Filter, CatchPadBB);
+
+    // Everything in the __try block uses TryState as its parent state.
+    FuncInfo.EHPadStateMap[CPI] = TryState;
+    DEBUG(dbgs() << "Assigning state #" << TryState << " to BB "
+                 << CatchPadBB->getName() << '\n');
+    for (const BasicBlock *PredBlock : predecessors(CatchPadBB))
+      if ((PredBlock = getEHPadFromPredecessor(PredBlock)))
+        calculateExplicitSEHStateNumbers(FuncInfo, *PredBlock, TryState);
+
+    // Everything in the __except block unwinds to ParentState, just like code
+    // outside the __try.
+    FuncInfo.EHPadStateMap[FirstNonPHI] = ParentState;
+    DEBUG(dbgs() << "Assigning state #" << ParentState << " to BB "
+                 << BB.getName() << '\n');
+    for (const BasicBlock *PredBlock : predecessors(&BB))
+      if ((PredBlock = getEHPadFromPredecessor(PredBlock)))
+        calculateExplicitSEHStateNumbers(FuncInfo, *PredBlock, ParentState);
+  } else if (isa<CleanupPadInst>(FirstNonPHI)) {
+    int CleanupState = addSEHFinally(FuncInfo, ParentState, &BB);
+    FuncInfo.EHPadStateMap[FirstNonPHI] = CleanupState;
+    DEBUG(dbgs() << "Assigning state #" << CleanupState << " to BB "
+                 << BB.getName() << '\n');
+    for (const BasicBlock *PredBlock : predecessors(&BB))
+      if ((PredBlock = getEHPadFromPredecessor(PredBlock)))
+        calculateExplicitSEHStateNumbers(FuncInfo, *PredBlock, CleanupState);
+  } else if (isa<CleanupEndPadInst>(FirstNonPHI)) {
+    // Anything unwinding through CleanupEndPadInst is in ParentState.
+    FuncInfo.EHPadStateMap[FirstNonPHI] = ParentState;
+    DEBUG(dbgs() << "Assigning state #" << ParentState << " to BB "
+                 << BB.getName() << '\n');
+    for (const BasicBlock *PredBlock : predecessors(&BB))
+      if ((PredBlock = getEHPadFromPredecessor(PredBlock)))
+        calculateExplicitSEHStateNumbers(FuncInfo, *PredBlock, ParentState);
+  } else if (isa<TerminatePadInst>(FirstNonPHI)) {
+    report_fatal_error("Not yet implemented!");
+  } else {
+    llvm_unreachable("unexpected EH Pad!");
+  }
+}
+
+/// Check if the EH Pad unwinds to caller.  Cleanups are a little bit of a
+/// special case because we have to look at the cleanupret instruction that uses
+/// the cleanuppad.
+static bool doesEHPadUnwindToCaller(const Instruction *EHPad) {
+  auto *CPI = dyn_cast<CleanupPadInst>(EHPad);
+  if (!CPI)
+    return EHPad->mayThrow();
+
+  // This cleanup does not return or unwind, so we say it unwinds to caller.
+  if (CPI->use_empty())
+    return true;
+
+  const Instruction *User = CPI->user_back();
+  if (auto *CRI = dyn_cast<CleanupReturnInst>(User))
+    return CRI->unwindsToCaller();
+  return cast<CleanupEndPadInst>(User)->unwindsToCaller();
+}
+
+void llvm::calculateSEHStateNumbers(const Function *Fn,
+                                    WinEHFuncInfo &FuncInfo) {
+  // Don't compute state numbers twice.
+  if (!FuncInfo.SEHUnwindMap.empty())
+    return;
+
+  for (const BasicBlock &BB : *Fn) {
+    if (!BB.isEHPad() || !doesEHPadUnwindToCaller(BB.getFirstNonPHI()))
+      continue;
+    calculateExplicitSEHStateNumbers(FuncInfo, BB, -1);
+  }
+}
+
+void llvm::calculateWinCXXEHStateNumbers(const Function *Fn,
+                                         WinEHFuncInfo &FuncInfo) {
+  // Return if it's already been done.
+  if (!FuncInfo.EHPadStateMap.empty())
+    return;
+
+  for (const BasicBlock &BB : *Fn) {
+    if (!BB.isEHPad())
+      continue;
+    if (BB.isLandingPad())
+      report_fatal_error("MSVC C++ EH cannot use landingpads");
+    const Instruction *FirstNonPHI = BB.getFirstNonPHI();
+    // Skip cleanupendpads; they are exits, not entries.
+    if (isa<CleanupEndPadInst>(FirstNonPHI))
+      continue;
+    if (!doesEHPadUnwindToCaller(FirstNonPHI))
+      continue;
+    calculateExplicitCXXStateNumbers(FuncInfo, BB, -1);
+  }
+}
+
+static int addClrEHHandler(WinEHFuncInfo &FuncInfo, int ParentState,
+                           ClrHandlerType HandlerType, uint32_t TypeToken,
+                           const BasicBlock *Handler) {
+  ClrEHUnwindMapEntry Entry;
+  Entry.Parent = ParentState;
+  Entry.Handler = Handler;
+  Entry.HandlerType = HandlerType;
+  Entry.TypeToken = TypeToken;
+  FuncInfo.ClrEHUnwindMap.push_back(Entry);
+  return FuncInfo.ClrEHUnwindMap.size() - 1;
+}
+
+void llvm::calculateClrEHStateNumbers(const Function *Fn,
+                                      WinEHFuncInfo &FuncInfo) {
+  // Return if it's already been done.
+  if (!FuncInfo.EHPadStateMap.empty())
+    return;
+
+  SmallVector<std::pair<const Instruction *, int>, 8> Worklist;
+
+  // Each pad needs to be able to refer to its parent, so scan the function
+  // looking for top-level handlers and seed the worklist with them.
+  for (const BasicBlock &BB : *Fn) {
+    if (!BB.isEHPad())
+      continue;
+    if (BB.isLandingPad())
+      report_fatal_error("CoreCLR EH cannot use landingpads");
+    const Instruction *FirstNonPHI = BB.getFirstNonPHI();
+    if (!doesEHPadUnwindToCaller(FirstNonPHI))
+      continue;
+    // queue this with sentinel parent state -1 to mean unwind to caller.
+    Worklist.emplace_back(FirstNonPHI, -1);
+  }
+
+  while (!Worklist.empty()) {
+    const Instruction *Pad;
+    int ParentState;
+    std::tie(Pad, ParentState) = Worklist.pop_back_val();
+
+    int PredState;
+    if (const CleanupEndPadInst *EndPad = dyn_cast<CleanupEndPadInst>(Pad)) {
+      FuncInfo.EHPadStateMap[EndPad] = ParentState;
+      // Queue the cleanuppad, in case it doesn't have a cleanupret.
+      Worklist.emplace_back(EndPad->getCleanupPad(), ParentState);
+      // Preds of the endpad should get the parent state.
+      PredState = ParentState;
+    } else if (const CleanupPadInst *Cleanup = dyn_cast<CleanupPadInst>(Pad)) {
+      // A cleanup can have multiple exits; don't re-process after the first.
+      if (FuncInfo.EHPadStateMap.count(Pad))
+        continue;
+      // CoreCLR personality uses arity to distinguish faults from finallies.
+      const BasicBlock *PadBlock = Cleanup->getParent();
+      ClrHandlerType HandlerType =
+          (Cleanup->getNumOperands() ? ClrHandlerType::Fault
+                                     : ClrHandlerType::Finally);
+      int NewState =
+          addClrEHHandler(FuncInfo, ParentState, HandlerType, 0, PadBlock);
+      FuncInfo.EHPadStateMap[Cleanup] = NewState;
+      // Propagate the new state to all preds of the cleanup
+      PredState = NewState;
+    } else if (const CatchEndPadInst *EndPad = dyn_cast<CatchEndPadInst>(Pad)) {
+      FuncInfo.EHPadStateMap[EndPad] = ParentState;
+      // Preds of the endpad should get the parent state.
+      PredState = ParentState;
+    } else if (const CatchPadInst *Catch = dyn_cast<CatchPadInst>(Pad)) {
+      const BasicBlock *Handler = Catch->getNormalDest();
+      uint32_t TypeToken = static_cast<uint32_t>(
+          cast<ConstantInt>(Catch->getArgOperand(0))->getZExtValue());
+      int NewState = addClrEHHandler(FuncInfo, ParentState,
+                                     ClrHandlerType::Catch, TypeToken, Handler);
+      FuncInfo.EHPadStateMap[Catch] = NewState;
+      // Preds of the catch get its state
+      PredState = NewState;
+    } else {
+      llvm_unreachable("Unexpected EH pad");
+    }
+
+    // Queue all predecessors with the given state
+    for (const BasicBlock *Pred : predecessors(Pad->getParent())) {
+      if ((Pred = getEHPadFromPredecessor(Pred)))
+        Worklist.emplace_back(Pred->getFirstNonPHI(), PredState);
+    }
+  }
+}
+
+void WinEHPrepare::replaceTerminatePadWithCleanup(Function &F) {
+  if (Personality != EHPersonality::MSVC_CXX)
+    return;
+  for (BasicBlock &BB : F) {
+    Instruction *First = BB.getFirstNonPHI();
+    auto *TPI = dyn_cast<TerminatePadInst>(First);
+    if (!TPI)
+      continue;
+
+    if (TPI->getNumArgOperands() != 1)
+      report_fatal_error(
+          "Expected a unary terminatepad for MSVC C++ personalities!");
+
+    auto *TerminateFn = dyn_cast<Function>(TPI->getArgOperand(0));
+    if (!TerminateFn)
+      report_fatal_error("Function operand expected in terminatepad for MSVC "
+                         "C++ personalities!");
+
+    // Insert the cleanuppad instruction.
+    auto *CPI = CleanupPadInst::Create(
+        BB.getContext(), {}, Twine("terminatepad.for.", BB.getName()), &BB);
+
+    // Insert the call to the terminate instruction.
+    auto *CallTerminate = CallInst::Create(TerminateFn, {}, &BB);
+    CallTerminate->setDoesNotThrow();
+    CallTerminate->setDoesNotReturn();
+    CallTerminate->setCallingConv(TerminateFn->getCallingConv());
+
+    // Insert a new terminator for the cleanuppad using the same successor as
+    // the terminatepad.
+    CleanupReturnInst::Create(CPI, TPI->getUnwindDest(), &BB);
+
+    // Let's remove the terminatepad now that we've inserted the new
+    // instructions.
+    TPI->eraseFromParent();
+  }
+}
+
+static void
+colorFunclets(Function &F, SmallVectorImpl<BasicBlock *> &EntryBlocks,
+              std::map<BasicBlock *, std::set<BasicBlock *>> &BlockColors,
+              std::map<BasicBlock *, std::set<BasicBlock *>> &FuncletBlocks,
+              std::map<BasicBlock *, std::set<BasicBlock *>> &FuncletChildren) {
+  SmallVector<std::pair<BasicBlock *, BasicBlock *>, 16> Worklist;
+  BasicBlock *EntryBlock = &F.getEntryBlock();
+
+  // Build up the color map, which maps each block to its set of 'colors'.
+  // For any block B, the "colors" of B are the set of funclets F (possibly
+  // including a root "funclet" representing the main function), such that
+  // F will need to directly contain B or a copy of B (where the term "directly
+  // contain" is used to distinguish from being "transitively contained" in
+  // a nested funclet).
+  // Use a CFG walk driven by a worklist of (block, color) pairs.  The "color"
+  // sets attached during this processing to a block which is the entry of some
+  // funclet F is actually the set of F's parents -- i.e. the union of colors
+  // of all predecessors of F's entry.  For all other blocks, the color sets
+  // are as defined above.  A post-pass fixes up the block color map to reflect
+  // the same sense of "color" for funclet entries as for other blocks.
+
+  Worklist.push_back({EntryBlock, EntryBlock});
+
+  while (!Worklist.empty()) {
+    BasicBlock *Visiting;
+    BasicBlock *Color;
+    std::tie(Visiting, Color) = Worklist.pop_back_val();
+    Instruction *VisitingHead = Visiting->getFirstNonPHI();
+    if (VisitingHead->isEHPad() && !isa<CatchEndPadInst>(VisitingHead) &&
+        !isa<CleanupEndPadInst>(VisitingHead)) {
+      // Mark this as a funclet head as a member of itself.
+      FuncletBlocks[Visiting].insert(Visiting);
+      // Queue exits with the parent color.
+      for (User *U : VisitingHead->users()) {
+        if (auto *Exit = dyn_cast<TerminatorInst>(U)) {
+          for (BasicBlock *Succ : successors(Exit->getParent()))
+            if (BlockColors[Succ].insert(Color).second)
+              Worklist.push_back({Succ, Color});
+        }
+      }
+      // Handle CatchPad specially since its successors need different colors.
+      if (CatchPadInst *CatchPad = dyn_cast<CatchPadInst>(VisitingHead)) {
+        // Visit the normal successor with the color of the new EH pad, and
+        // visit the unwind successor with the color of the parent.
+        BasicBlock *NormalSucc = CatchPad->getNormalDest();
+        if (BlockColors[NormalSucc].insert(Visiting).second) {
+          Worklist.push_back({NormalSucc, Visiting});
+        }
+        BasicBlock *UnwindSucc = CatchPad->getUnwindDest();
+        if (BlockColors[UnwindSucc].insert(Color).second) {
+          Worklist.push_back({UnwindSucc, Color});
+        }
+        continue;
+      }
+      // Switch color to the current node, except for terminate pads which
+      // have no bodies and only unwind successors and so need their successors
+      // visited with the color of the parent.
+      if (!isa<TerminatePadInst>(VisitingHead))
+        Color = Visiting;
+    } else {
+      // Note that this is a member of the given color.
+      FuncletBlocks[Color].insert(Visiting);
+    }
+
+    TerminatorInst *Terminator = Visiting->getTerminator();
+    if (isa<CleanupReturnInst>(Terminator) ||
+        isa<CatchReturnInst>(Terminator) ||
+        isa<CleanupEndPadInst>(Terminator)) {
+      // These blocks' successors have already been queued with the parent
+      // color.
+      continue;
+    }
+    for (BasicBlock *Succ : successors(Visiting)) {
+      if (isa<CatchEndPadInst>(Succ->getFirstNonPHI())) {
+        // The catchendpad needs to be visited with the parent's color, not
+        // the current color.  This will happen in the code above that visits
+        // any catchpad unwind successor with the parent color, so we can
+        // safely skip this successor here.
+        continue;
+      }
+      if (BlockColors[Succ].insert(Color).second) {
+        Worklist.push_back({Succ, Color});
+      }
+    }
+  }
+
+  // The processing above actually accumulated the parent set for this
+  // funclet into the color set for its entry; use the parent set to
+  // populate the children map, and reset the color set to include just
+  // the funclet itself (no instruction can target a funclet entry except on
+  // that transitions to the child funclet).
+  for (BasicBlock *FuncletEntry : EntryBlocks) {
+    std::set<BasicBlock *> &ColorMapItem = BlockColors[FuncletEntry];
+    for (BasicBlock *Parent : ColorMapItem)
+      FuncletChildren[Parent].insert(FuncletEntry);
+    ColorMapItem.clear();
+    ColorMapItem.insert(FuncletEntry);
+  }
+}
+
+void WinEHPrepare::colorFunclets(Function &F,
+                                 SmallVectorImpl<BasicBlock *> &EntryBlocks) {
+  ::colorFunclets(F, EntryBlocks, BlockColors, FuncletBlocks, FuncletChildren);
+}
+
+void llvm::calculateCatchReturnSuccessorColors(const Function *Fn,
+                                               WinEHFuncInfo &FuncInfo) {
+  SmallVector<LandingPadInst *, 4> LPads;
+  SmallVector<ResumeInst *, 4> Resumes;
+  SmallVector<BasicBlock *, 4> EntryBlocks;
+  // colorFunclets needs the set of EntryBlocks, get them using
+  // findExceptionalConstructs.
+  bool ForExplicitEH = findExceptionalConstructs(const_cast<Function &>(*Fn),
+                                                 LPads, Resumes, EntryBlocks);
+  if (!ForExplicitEH)
+    return;
+
+  std::map<BasicBlock *, std::set<BasicBlock *>> BlockColors;
+  std::map<BasicBlock *, std::set<BasicBlock *>> FuncletBlocks;
+  std::map<BasicBlock *, std::set<BasicBlock *>> FuncletChildren;
+  // Figure out which basic blocks belong to which funclets.
+  colorFunclets(const_cast<Function &>(*Fn), EntryBlocks, BlockColors,
+                FuncletBlocks, FuncletChildren);
+
+  // We need to find the catchret successors.  To do this, we must first find
+  // all the catchpad funclets.
+  for (auto &Funclet : FuncletBlocks) {
+    // Figure out what kind of funclet we are looking at; We only care about
+    // catchpads.
+    BasicBlock *FuncletPadBB = Funclet.first;
+    Instruction *FirstNonPHI = FuncletPadBB->getFirstNonPHI();
+    auto *CatchPad = dyn_cast<CatchPadInst>(FirstNonPHI);
+    if (!CatchPad)
+      continue;
+
+    // The users of a catchpad are always catchrets.
+    for (User *Exit : CatchPad->users()) {
+      auto *CatchReturn = dyn_cast<CatchReturnInst>(Exit);
+      if (!CatchReturn)
+        continue;
+      BasicBlock *CatchRetSuccessor = CatchReturn->getSuccessor();
+      std::set<BasicBlock *> &SuccessorColors = BlockColors[CatchRetSuccessor];
+      assert(SuccessorColors.size() == 1 && "Expected BB to be monochrome!");
+      BasicBlock *Color = *SuccessorColors.begin();
+      if (auto *CPI = dyn_cast<CatchPadInst>(Color->getFirstNonPHI()))
+        Color = CPI->getNormalDest();
+      // Record the catchret successor's funclet membership.
+      FuncInfo.CatchRetSuccessorColorMap[CatchReturn] = Color;
+    }
+  }
+}
+
+void WinEHPrepare::demotePHIsOnFunclets(Function &F) {
+  // Strip PHI nodes off of EH pads.
+  SmallVector<PHINode *, 16> PHINodes;
+  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE;) {
+    BasicBlock *BB = FI++;
+    if (!BB->isEHPad())
+      continue;
+    for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE;) {
+      Instruction *I = BI++;
+      auto *PN = dyn_cast<PHINode>(I);
+      // Stop at the first non-PHI.
+      if (!PN)
+        break;
+
+      AllocaInst *SpillSlot = insertPHILoads(PN, F);
+      if (SpillSlot)
+        insertPHIStores(PN, SpillSlot);
+
+      PHINodes.push_back(PN);
+    }
+  }
+
+  for (auto *PN : PHINodes) {
+    // There may be lingering uses on other EH PHIs being removed
+    PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
+    PN->eraseFromParent();
+  }
+}
+
+void WinEHPrepare::demoteUsesBetweenFunclets(Function &F) {
+  // Turn all inter-funclet uses of a Value into loads and stores.
+  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE;) {
+    BasicBlock *BB = FI++;
+    std::set<BasicBlock *> &ColorsForBB = BlockColors[BB];
+    for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE;) {
+      Instruction *I = BI++;
+      // Funclets are permitted to use static allocas.
+      if (auto *AI = dyn_cast<AllocaInst>(I))
+        if (AI->isStaticAlloca())
+          continue;
+
+      demoteNonlocalUses(I, ColorsForBB, F);
+    }
+  }
+}
+
+void WinEHPrepare::demoteArgumentUses(Function &F) {
+  // Also demote function parameters used in funclets.
+  std::set<BasicBlock *> &ColorsForEntry = BlockColors[&F.getEntryBlock()];
+  for (Argument &Arg : F.args())
+    demoteNonlocalUses(&Arg, ColorsForEntry, F);
+}
+
+void WinEHPrepare::cloneCommonBlocks(
+    Function &F, SmallVectorImpl<BasicBlock *> &EntryBlocks) {
+  // We need to clone all blocks which belong to multiple funclets.  Values are
+  // remapped throughout the funclet to propogate both the new instructions
+  // *and* the new basic blocks themselves.
+  for (BasicBlock *FuncletPadBB : EntryBlocks) {
+    std::set<BasicBlock *> &BlocksInFunclet = FuncletBlocks[FuncletPadBB];
+
+    std::map<BasicBlock *, BasicBlock *> Orig2Clone;
+    ValueToValueMapTy VMap;
+    for (BasicBlock *BB : BlocksInFunclet) {
+      std::set<BasicBlock *> &ColorsForBB = BlockColors[BB];
+      // We don't need to do anything if the block is monochromatic.
+      size_t NumColorsForBB = ColorsForBB.size();
+      if (NumColorsForBB == 1)
+        continue;
+
+      // Create a new basic block and copy instructions into it!
+      BasicBlock *CBB =
+          CloneBasicBlock(BB, VMap, Twine(".for.", FuncletPadBB->getName()));
+      // Insert the clone immediately after the original to ensure determinism
+      // and to keep the same relative ordering of any funclet's blocks.
+      CBB->insertInto(&F, BB->getNextNode());
+
+      // Add basic block mapping.
+      VMap[BB] = CBB;
+
+      // Record delta operations that we need to perform to our color mappings.
+      Orig2Clone[BB] = CBB;
+    }
+
+    // Update our color mappings to reflect that one block has lost a color and
+    // another has gained a color.
+    for (auto &BBMapping : Orig2Clone) {
+      BasicBlock *OldBlock = BBMapping.first;
+      BasicBlock *NewBlock = BBMapping.second;
+
+      BlocksInFunclet.insert(NewBlock);
+      BlockColors[NewBlock].insert(FuncletPadBB);
+
+      BlocksInFunclet.erase(OldBlock);
+      BlockColors[OldBlock].erase(FuncletPadBB);
+    }
+
+    // Loop over all of the instructions in the function, fixing up operand
+    // references as we go.  This uses VMap to do all the hard work.
+    for (BasicBlock *BB : BlocksInFunclet)
+      // Loop over all instructions, fixing each one as we find it...
+      for (Instruction &I : *BB)
+        RemapInstruction(&I, VMap, RF_IgnoreMissingEntries);
+
+    // Check to see if SuccBB has PHI nodes. If so, we need to add entries to
+    // the PHI nodes for NewBB now.
+    for (auto &BBMapping : Orig2Clone) {
+      BasicBlock *OldBlock = BBMapping.first;
+      BasicBlock *NewBlock = BBMapping.second;
+      for (BasicBlock *SuccBB : successors(NewBlock)) {
+        for (Instruction &SuccI : *SuccBB) {
+          auto *SuccPN = dyn_cast<PHINode>(&SuccI);
+          if (!SuccPN)
+            break;
+
+          // Ok, we have a PHI node.  Figure out what the incoming value was for
+          // the OldBlock.
+          int OldBlockIdx = SuccPN->getBasicBlockIndex(OldBlock);
+          if (OldBlockIdx == -1)
+            break;
+          Value *IV = SuccPN->getIncomingValue(OldBlockIdx);
+
+          // Remap the value if necessary.
+          if (auto *Inst = dyn_cast<Instruction>(IV)) {
+            ValueToValueMapTy::iterator I = VMap.find(Inst);
+            if (I != VMap.end())
+              IV = I->second;
+          }
+
+          SuccPN->addIncoming(IV, NewBlock);
+        }
+      }
+    }
+
+    for (ValueToValueMapTy::value_type VT : VMap) {
+      // If there were values defined in BB that are used outside the funclet,
+      // then we now have to update all uses of the value to use either the
+      // original value, the cloned value, or some PHI derived value.  This can
+      // require arbitrary PHI insertion, of which we are prepared to do, clean
+      // these up now.
+      SmallVector<Use *, 16> UsesToRename;
+
+      auto *OldI = dyn_cast<Instruction>(const_cast<Value *>(VT.first));
+      if (!OldI)
+        continue;
+      auto *NewI = cast<Instruction>(VT.second);
+      // Scan all uses of this instruction to see if it is used outside of its
+      // funclet, and if so, record them in UsesToRename.
+      for (Use &U : OldI->uses()) {
+        Instruction *UserI = cast<Instruction>(U.getUser());
+        BasicBlock *UserBB = UserI->getParent();
+        std::set<BasicBlock *> &ColorsForUserBB = BlockColors[UserBB];
+        assert(!ColorsForUserBB.empty());
+        if (ColorsForUserBB.size() > 1 ||
+            *ColorsForUserBB.begin() != FuncletPadBB)
+          UsesToRename.push_back(&U);
+      }
+
+      // If there are no uses outside the block, we're done with this
+      // instruction.
+      if (UsesToRename.empty())
+        continue;
+
+      // We found a use of OldI outside of the funclet.  Rename all uses of OldI
+      // that are outside its funclet to be uses of the appropriate PHI node
+      // etc.
+      SSAUpdater SSAUpdate;
+      SSAUpdate.Initialize(OldI->getType(), OldI->getName());
+      SSAUpdate.AddAvailableValue(OldI->getParent(), OldI);
+      SSAUpdate.AddAvailableValue(NewI->getParent(), NewI);
+
+      while (!UsesToRename.empty())
+        SSAUpdate.RewriteUseAfterInsertions(*UsesToRename.pop_back_val());
+    }
+  }
+}
+
+void WinEHPrepare::removeImplausibleTerminators(Function &F) {
+  // Remove implausible terminators and replace them with UnreachableInst.
+  for (auto &Funclet : FuncletBlocks) {
+    BasicBlock *FuncletPadBB = Funclet.first;
+    std::set<BasicBlock *> &BlocksInFunclet = Funclet.second;
+    Instruction *FirstNonPHI = FuncletPadBB->getFirstNonPHI();
+    auto *CatchPad = dyn_cast<CatchPadInst>(FirstNonPHI);
+    auto *CleanupPad = dyn_cast<CleanupPadInst>(FirstNonPHI);
+
+    for (BasicBlock *BB : BlocksInFunclet) {
+      TerminatorInst *TI = BB->getTerminator();
+      // CatchPadInst and CleanupPadInst can't transfer control to a ReturnInst.
+      bool IsUnreachableRet = isa<ReturnInst>(TI) && (CatchPad || CleanupPad);
+      // The token consumed by a CatchReturnInst must match the funclet token.
+      bool IsUnreachableCatchret = false;
+      if (auto *CRI = dyn_cast<CatchReturnInst>(TI))
+        IsUnreachableCatchret = CRI->getCatchPad() != CatchPad;
+      // The token consumed by a CleanupReturnInst must match the funclet token.
+      bool IsUnreachableCleanupret = false;
+      if (auto *CRI = dyn_cast<CleanupReturnInst>(TI))
+        IsUnreachableCleanupret = CRI->getCleanupPad() != CleanupPad;
+      // The token consumed by a CleanupEndPadInst must match the funclet token.
+      bool IsUnreachableCleanupendpad = false;
+      if (auto *CEPI = dyn_cast<CleanupEndPadInst>(TI))
+        IsUnreachableCleanupendpad = CEPI->getCleanupPad() != CleanupPad;
+      if (IsUnreachableRet || IsUnreachableCatchret ||
+          IsUnreachableCleanupret || IsUnreachableCleanupendpad) {
+        // Loop through all of our successors and make sure they know that one
+        // of their predecessors is going away.
+        for (BasicBlock *SuccBB : TI->successors())
+          SuccBB->removePredecessor(BB);
+
+        if (IsUnreachableCleanupendpad) {
+          // We can't simply replace a cleanupendpad with unreachable, because
+          // its predecessor edges are EH edges and unreachable is not an EH
+          // pad.  Change all predecessors to the "unwind to caller" form.
+          for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
+               PI != PE;) {
+            BasicBlock *Pred = *PI++;
+            removeUnwindEdge(Pred);
+          }
+        }
+
+        new UnreachableInst(BB->getContext(), TI);
+        TI->eraseFromParent();
+      }
+      // FIXME: Check for invokes/cleanuprets/cleanupendpads which unwind to
+      // implausible catchendpads (i.e. catchendpad not in immediate parent
+      // funclet).
+    }
+  }
+}
+
+void WinEHPrepare::cleanupPreparedFunclets(Function &F) {
+  // Clean-up some of the mess we made by removing useles PHI nodes, trivial
+  // branches, etc.
+  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE;) {
+    BasicBlock *BB = FI++;
+    SimplifyInstructionsInBlock(BB);
+    ConstantFoldTerminator(BB, /*DeleteDeadConditions=*/true);
+    MergeBlockIntoPredecessor(BB);
+  }
+
+  // We might have some unreachable blocks after cleaning up some impossible
+  // control flow.
+  removeUnreachableBlocks(F);
+}
+
+void WinEHPrepare::verifyPreparedFunclets(Function &F) {
+  // Recolor the CFG to verify that all is well.
+  for (BasicBlock &BB : F) {
+    size_t NumColors = BlockColors[&BB].size();
+    assert(NumColors == 1 && "Expected monochromatic BB!");
+    if (NumColors == 0)
+      report_fatal_error("Uncolored BB!");
+    if (NumColors > 1)
+      report_fatal_error("Multicolor BB!");
+    if (!DisableDemotion) {
+      bool EHPadHasPHI = BB.isEHPad() && isa<PHINode>(BB.begin());
+      assert(!EHPadHasPHI && "EH Pad still has a PHI!");
+      if (EHPadHasPHI)
+        report_fatal_error("EH Pad still has a PHI!");
+    }
+  }
+}
+
+bool WinEHPrepare::prepareExplicitEH(
+    Function &F, SmallVectorImpl<BasicBlock *> &EntryBlocks) {
+  // Remove unreachable blocks.  It is not valuable to assign them a color and
+  // their existence can trick us into thinking values are alive when they are
+  // not.
+  removeUnreachableBlocks(F);
+
+  replaceTerminatePadWithCleanup(F);
+
+  // Determine which blocks are reachable from which funclet entries.
+  colorFunclets(F, EntryBlocks);
+
+  if (!DisableDemotion) {
+    demotePHIsOnFunclets(F);
+
+    demoteUsesBetweenFunclets(F);
+
+    demoteArgumentUses(F);
+  }
+
+  cloneCommonBlocks(F, EntryBlocks);
+
+  if (!DisableCleanups) {
+    removeImplausibleTerminators(F);
+
+    cleanupPreparedFunclets(F);
+  }
+
+  verifyPreparedFunclets(F);
+
+  BlockColors.clear();
+  FuncletBlocks.clear();
+  FuncletChildren.clear();
+
+  return true;
+}
+
+// TODO: Share loads when one use dominates another, or when a catchpad exit
+// dominates uses (needs dominators).
+AllocaInst *WinEHPrepare::insertPHILoads(PHINode *PN, Function &F) {
+  BasicBlock *PHIBlock = PN->getParent();
+  AllocaInst *SpillSlot = nullptr;
+
+  if (isa<CleanupPadInst>(PHIBlock->getFirstNonPHI())) {
+    // Insert a load in place of the PHI and replace all uses.
+    SpillSlot = new AllocaInst(PN->getType(), nullptr,
+                               Twine(PN->getName(), ".wineh.spillslot"),
+                               F.getEntryBlock().begin());
+    Value *V = new LoadInst(SpillSlot, Twine(PN->getName(), ".wineh.reload"),
+                            PHIBlock->getFirstInsertionPt());
+    PN->replaceAllUsesWith(V);
+    return SpillSlot;
+  }
+
+  DenseMap<BasicBlock *, Value *> Loads;
+  for (Value::use_iterator UI = PN->use_begin(), UE = PN->use_end();
+       UI != UE;) {
+    Use &U = *UI++;
+    auto *UsingInst = cast<Instruction>(U.getUser());
+    BasicBlock *UsingBB = UsingInst->getParent();
+    if (UsingBB->isEHPad()) {
+      // Use is on an EH pad phi.  Leave it alone; we'll insert loads and
+      // stores for it separately.
+      assert(isa<PHINode>(UsingInst));
+      continue;
+    }
+    replaceUseWithLoad(PN, U, SpillSlot, Loads, F);
+  }
+  return SpillSlot;
+}
+
+// TODO: improve store placement.  Inserting at def is probably good, but need
+// to be careful not to introduce interfering stores (needs liveness analysis).
+// TODO: identify related phi nodes that can share spill slots, and share them
+// (also needs liveness).
+void WinEHPrepare::insertPHIStores(PHINode *OriginalPHI,
+                                   AllocaInst *SpillSlot) {
+  // Use a worklist of (Block, Value) pairs -- the given Value needs to be
+  // stored to the spill slot by the end of the given Block.
+  SmallVector<std::pair<BasicBlock *, Value *>, 4> Worklist;
+
+  Worklist.push_back({OriginalPHI->getParent(), OriginalPHI});
+
+  while (!Worklist.empty()) {
+    BasicBlock *EHBlock;
+    Value *InVal;
+    std::tie(EHBlock, InVal) = Worklist.pop_back_val();
+
+    PHINode *PN = dyn_cast<PHINode>(InVal);
+    if (PN && PN->getParent() == EHBlock) {
+      // The value is defined by another PHI we need to remove, with no room to
+      // insert a store after the PHI, so each predecessor needs to store its
+      // incoming value.
+      for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i) {
+        Value *PredVal = PN->getIncomingValue(i);
+
+        // Undef can safely be skipped.
+        if (isa<UndefValue>(PredVal))
+          continue;
+
+        insertPHIStore(PN->getIncomingBlock(i), PredVal, SpillSlot, Worklist);
+      }
+    } else {
+      // We need to store InVal, which dominates EHBlock, but can't put a store
+      // in EHBlock, so need to put stores in each predecessor.
+      for (BasicBlock *PredBlock : predecessors(EHBlock)) {
+        insertPHIStore(PredBlock, InVal, SpillSlot, Worklist);
+      }
+    }
+  }
+}
+
+void WinEHPrepare::insertPHIStore(
+    BasicBlock *PredBlock, Value *PredVal, AllocaInst *SpillSlot,
+    SmallVectorImpl<std::pair<BasicBlock *, Value *>> &Worklist) {
+
+  if (PredBlock->isEHPad() &&
+      !isa<CleanupPadInst>(PredBlock->getFirstNonPHI())) {
+    // Pred is unsplittable, so we need to queue it on the worklist.
+    Worklist.push_back({PredBlock, PredVal});
+    return;
+  }
+
+  // Otherwise, insert the store at the end of the basic block.
+  new StoreInst(PredVal, SpillSlot, PredBlock->getTerminator());
+}
+
+// TODO: Share loads for same-funclet uses (requires dominators if funclets
+// aren't properly nested).
+void WinEHPrepare::demoteNonlocalUses(Value *V,
+                                      std::set<BasicBlock *> &ColorsForBB,
+                                      Function &F) {
+  // Tokens can only be used non-locally due to control flow involving
+  // unreachable edges.  Don't try to demote the token usage, we'll simply
+  // delete the cloned user later.
+  if (isa<CatchPadInst>(V) || isa<CleanupPadInst>(V))
+    return;
+
+  DenseMap<BasicBlock *, Value *> Loads;
+  AllocaInst *SpillSlot = nullptr;
+  for (Value::use_iterator UI = V->use_begin(), UE = V->use_end(); UI != UE;) {
+    Use &U = *UI++;
+    auto *UsingInst = cast<Instruction>(U.getUser());
+    BasicBlock *UsingBB = UsingInst->getParent();
+
+    // Is the Use inside a block which is colored the same as the Def?
+    // If so, we don't need to escape the Def because we will clone
+    // ourselves our own private copy.
+    std::set<BasicBlock *> &ColorsForUsingBB = BlockColors[UsingBB];
+    if (ColorsForUsingBB == ColorsForBB)
+      continue;
+
+    replaceUseWithLoad(V, U, SpillSlot, Loads, F);
+  }
+  if (SpillSlot) {
+    // Insert stores of the computed value into the stack slot.
+    // We have to be careful if I is an invoke instruction,
+    // because we can't insert the store AFTER the terminator instruction.
+    BasicBlock::iterator InsertPt;
+    if (isa<Argument>(V)) {
+      InsertPt = F.getEntryBlock().getTerminator();
+    } else if (isa<TerminatorInst>(V)) {
+      auto *II = cast<InvokeInst>(V);
+      // We cannot demote invoke instructions to the stack if their normal
+      // edge is critical. Therefore, split the critical edge and create a
+      // basic block into which the store can be inserted.
+      if (!II->getNormalDest()->getSinglePredecessor()) {
+        unsigned SuccNum =
+            GetSuccessorNumber(II->getParent(), II->getNormalDest());
+        assert(isCriticalEdge(II, SuccNum) && "Expected a critical edge!");
+        BasicBlock *NewBlock = SplitCriticalEdge(II, SuccNum);
+        assert(NewBlock && "Unable to split critical edge.");
+        // Update the color mapping for the newly split edge.
+        std::set<BasicBlock *> &ColorsForUsingBB = BlockColors[II->getParent()];
+        BlockColors[NewBlock] = ColorsForUsingBB;
+        for (BasicBlock *FuncletPad : ColorsForUsingBB)
+          FuncletBlocks[FuncletPad].insert(NewBlock);
+      }
+      InsertPt = II->getNormalDest()->getFirstInsertionPt();
+    } else {
+      InsertPt = cast<Instruction>(V);
+      ++InsertPt;
+      // Don't insert before PHI nodes or EH pad instrs.
+      for (; isa<PHINode>(InsertPt) || InsertPt->isEHPad(); ++InsertPt)
+        ;
+    }
+    new StoreInst(V, SpillSlot, InsertPt);
+  }
+}
+
+void WinEHPrepare::replaceUseWithLoad(Value *V, Use &U, AllocaInst *&SpillSlot,
+                                      DenseMap<BasicBlock *, Value *> &Loads,
+                                      Function &F) {
+  // Lazilly create the spill slot.
+  if (!SpillSlot)
+    SpillSlot = new AllocaInst(V->getType(), nullptr,
+                               Twine(V->getName(), ".wineh.spillslot"),
+                               F.getEntryBlock().begin());
+
+  auto *UsingInst = cast<Instruction>(U.getUser());
+  if (auto *UsingPHI = dyn_cast<PHINode>(UsingInst)) {
+    // If this is a PHI node, we can't insert a load of the value before
+    // the use.  Instead insert the load in the predecessor block
+    // corresponding to the incoming value.
+    //
+    // Note that if there are multiple edges from a basic block to this
+    // PHI node that we cannot have multiple loads.  The problem is that
+    // the resulting PHI node will have multiple values (from each load)
+    // coming in from the same block, which is illegal SSA form.
+    // For this reason, we keep track of and reuse loads we insert.
+    BasicBlock *IncomingBlock = UsingPHI->getIncomingBlock(U);
+    if (auto *CatchRet =
+            dyn_cast<CatchReturnInst>(IncomingBlock->getTerminator())) {
+      // Putting a load above a catchret and use on the phi would still leave
+      // a cross-funclet def/use.  We need to split the edge, change the
+      // catchret to target the new block, and put the load there.
+      BasicBlock *PHIBlock = UsingInst->getParent();
+      BasicBlock *NewBlock = SplitEdge(IncomingBlock, PHIBlock);
+      // SplitEdge gives us:
+      //   IncomingBlock:
+      //     ...
+      //     br label %NewBlock
+      //   NewBlock:
+      //     catchret label %PHIBlock
+      // But we need:
+      //   IncomingBlock:
+      //     ...
+      //     catchret label %NewBlock
+      //   NewBlock:
+      //     br label %PHIBlock
+      // So move the terminators to each others' blocks and swap their
+      // successors.
+      BranchInst *Goto = cast<BranchInst>(IncomingBlock->getTerminator());
+      Goto->removeFromParent();
+      CatchRet->removeFromParent();
+      IncomingBlock->getInstList().push_back(CatchRet);
+      NewBlock->getInstList().push_back(Goto);
+      Goto->setSuccessor(0, PHIBlock);
+      CatchRet->setSuccessor(NewBlock);
+      // Update the color mapping for the newly split edge.
+      std::set<BasicBlock *> &ColorsForPHIBlock = BlockColors[PHIBlock];
+      BlockColors[NewBlock] = ColorsForPHIBlock;
+      for (BasicBlock *FuncletPad : ColorsForPHIBlock)
+        FuncletBlocks[FuncletPad].insert(NewBlock);
+      // Treat the new block as incoming for load insertion.
+      IncomingBlock = NewBlock;
+    }
+    Value *&Load = Loads[IncomingBlock];
+    // Insert the load into the predecessor block
+    if (!Load)
+      Load = new LoadInst(SpillSlot, Twine(V->getName(), ".wineh.reload"),
+                          /*Volatile=*/false, IncomingBlock->getTerminator());
+
+    U.set(Load);
+  } else {
+    // Reload right before the old use.
+    auto *Load = new LoadInst(SpillSlot, Twine(V->getName(), ".wineh.reload"),
+                              /*Volatile=*/false, UsingInst);
+    U.set(Load);
+  }
+}
+
+void WinEHFuncInfo::addIPToStateRange(const BasicBlock *PadBB,
+                                      MCSymbol *InvokeBegin,
+                                      MCSymbol *InvokeEnd) {
+  assert(PadBB->isEHPad() && EHPadStateMap.count(PadBB->getFirstNonPHI()) &&
+         "should get EH pad BB with precomputed state");
+  InvokeToStateMap[InvokeBegin] =
+      std::make_pair(EHPadStateMap[PadBB->getFirstNonPHI()], InvokeEnd);
+}