Remove attribution from file headers, per discussion on llvmdev.
[oota-llvm.git] / lib / CodeGen / SelectionDAG / TargetLowering.cpp
index a2cd12801dd7eeec44c81c68f37cda397e5e1b24..c6fd113ee75912945e65eea7f9e2438f24e83852 100644 (file)
@@ -2,8 +2,8 @@
 //
 //                     The LLVM Compiler Infrastructure
 //
-// This file was developed by the LLVM research group and is distributed under
-// the University of Illinois Open Source License. See LICENSE.TXT for details.
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
 //
 //===----------------------------------------------------------------------===//
 //
 //===----------------------------------------------------------------------===//
 
 #include "llvm/Target/TargetLowering.h"
+#include "llvm/Target/TargetSubtarget.h"
 #include "llvm/Target/TargetData.h"
 #include "llvm/Target/TargetMachine.h"
 #include "llvm/Target/MRegisterInfo.h"
 #include "llvm/DerivedTypes.h"
 #include "llvm/CodeGen/SelectionDAG.h"
 #include "llvm/ADT/StringExtras.h"
+#include "llvm/ADT/STLExtras.h"
 #include "llvm/Support/MathExtras.h"
+#include "llvm/Target/TargetAsmInfo.h"
+#include "llvm/CallingConv.h"
 using namespace llvm;
 
 /// InitLibcallNames - Set default libcall names.
@@ -44,38 +48,58 @@ static void InitLibcallNames(const char **Names) {
   Names[RTLIB::NEG_I64] = "__negdi2";
   Names[RTLIB::ADD_F32] = "__addsf3";
   Names[RTLIB::ADD_F64] = "__adddf3";
+  Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
   Names[RTLIB::SUB_F32] = "__subsf3";
   Names[RTLIB::SUB_F64] = "__subdf3";
+  Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
   Names[RTLIB::MUL_F32] = "__mulsf3";
   Names[RTLIB::MUL_F64] = "__muldf3";
+  Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
   Names[RTLIB::DIV_F32] = "__divsf3";
   Names[RTLIB::DIV_F64] = "__divdf3";
+  Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
   Names[RTLIB::REM_F32] = "fmodf";
   Names[RTLIB::REM_F64] = "fmod";
+  Names[RTLIB::REM_PPCF128] = "fmodl";
   Names[RTLIB::NEG_F32] = "__negsf2";
   Names[RTLIB::NEG_F64] = "__negdf2";
   Names[RTLIB::POWI_F32] = "__powisf2";
   Names[RTLIB::POWI_F64] = "__powidf2";
+  Names[RTLIB::POWI_F80] = "__powixf2";
+  Names[RTLIB::POWI_PPCF128] = "__powitf2";
   Names[RTLIB::SQRT_F32] = "sqrtf";
   Names[RTLIB::SQRT_F64] = "sqrt";
+  Names[RTLIB::SQRT_F80] = "sqrtl";
+  Names[RTLIB::SQRT_PPCF128] = "sqrtl";
   Names[RTLIB::SIN_F32] = "sinf";
   Names[RTLIB::SIN_F64] = "sin";
   Names[RTLIB::COS_F32] = "cosf";
   Names[RTLIB::COS_F64] = "cos";
+  Names[RTLIB::POW_F32] = "powf";
+  Names[RTLIB::POW_F64] = "pow";
+  Names[RTLIB::POW_F80] = "powl";
+  Names[RTLIB::POW_PPCF128] = "powl";
   Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
   Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
   Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
   Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
   Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
   Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
+  Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
+  Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
   Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
   Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
   Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
   Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
+  Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
+  Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
+  Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
   Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
   Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
   Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
   Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
+  Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
+  Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
   Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
   Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
   Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
@@ -128,13 +152,20 @@ TargetLowering::TargetLowering(TargetMachine &tm)
   memset(OpActions, 0, sizeof(OpActions));
   memset(LoadXActions, 0, sizeof(LoadXActions));
   memset(&StoreXActions, 0, sizeof(StoreXActions));
-  // Initialize all indexed load / store to expand.
+  memset(&IndexedModeActions, 0, sizeof(IndexedModeActions));
+  memset(&ConvertActions, 0, sizeof(ConvertActions));
+
+  // Set default actions for various operations.
   for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
+    // Default all indexed load / store to expand.
     for (unsigned IM = (unsigned)ISD::PRE_INC;
          IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
       setIndexedLoadAction(IM, (MVT::ValueType)VT, Expand);
       setIndexedStoreAction(IM, (MVT::ValueType)VT, Expand);
     }
+    
+    // These operations default to expand.
+    setOperationAction(ISD::FGETSIGN, (MVT::ValueType)VT, Expand);
   }
 
   IsLittleEndian = TD->isLittleEndian();
@@ -142,8 +173,7 @@ TargetLowering::TargetLowering(TargetMachine &tm)
   ShiftAmountTy = SetCCResultTy = PointerTy = getValueType(TD->getIntPtrType());
   ShiftAmtHandling = Undefined;
   memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
-  memset(TargetDAGCombineArray, 0, 
-         sizeof(TargetDAGCombineArray)/sizeof(TargetDAGCombineArray[0]));
+  memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
   maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
   allowUnalignedMemoryAccesses = false;
   UseUnderscoreSetJmp = false;
@@ -154,6 +184,7 @@ TargetLowering::TargetLowering(TargetMachine &tm)
   StackPointerRegisterToSaveRestore = 0;
   ExceptionPointerRegister = 0;
   ExceptionSelectorRegister = 0;
+  SetCCResultContents = UndefinedSetCCResult;
   SchedPreferenceInfo = SchedulingForLatency;
   JumpBufSize = 0;
   JumpBufAlignment = 0;
@@ -161,50 +192,64 @@ TargetLowering::TargetLowering(TargetMachine &tm)
 
   InitLibcallNames(LibcallRoutineNames);
   InitCmpLibcallCCs(CmpLibcallCCs);
+
+  // Tell Legalize whether the assembler supports DEBUG_LOC.
+  if (!TM.getTargetAsmInfo()->hasDotLocAndDotFile())
+    setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
 }
 
 TargetLowering::~TargetLowering() {}
 
-/// setValueTypeAction - Set the action for a particular value type.  This
-/// assumes an action has not already been set for this value type.
-static void SetValueTypeAction(MVT::ValueType VT,
-                               TargetLowering::LegalizeAction Action,
-                               TargetLowering &TLI,
-                               MVT::ValueType *TransformToType,
-                        TargetLowering::ValueTypeActionImpl &ValueTypeActions) {
-  ValueTypeActions.setTypeAction(VT, Action);
-  if (Action == TargetLowering::Promote) {
-    MVT::ValueType PromoteTo;
-    if (VT == MVT::f32)
-      PromoteTo = MVT::f64;
-    else {
-      unsigned LargerReg = VT+1;
-      while (!TLI.isTypeLegal((MVT::ValueType)LargerReg)) {
-        ++LargerReg;
-        assert(MVT::isInteger((MVT::ValueType)LargerReg) &&
-               "Nothing to promote to??");
-      }
-      PromoteTo = (MVT::ValueType)LargerReg;
-    }
 
-    assert(MVT::isInteger(VT) == MVT::isInteger(PromoteTo) &&
-           MVT::isFloatingPoint(VT) == MVT::isFloatingPoint(PromoteTo) &&
-           "Can only promote from int->int or fp->fp!");
-    assert(VT < PromoteTo && "Must promote to a larger type!");
-    TransformToType[VT] = PromoteTo;
-  } else if (Action == TargetLowering::Expand) {
-    // f32 and f64 is each expanded to corresponding integer type of same size.
-    if (VT == MVT::f32)
-      TransformToType[VT] = MVT::i32;
-    else if (VT == MVT::f64)
-      TransformToType[VT] = MVT::i64;
-    else {
-      assert((VT == MVT::Vector || MVT::isInteger(VT)) && VT > MVT::i8 &&
-             "Cannot expand this type: target must support SOME integer reg!");
-      // Expand to the next smaller integer type!
-      TransformToType[VT] = (MVT::ValueType)(VT-1);
-    }
+SDOperand TargetLowering::LowerMEMCPY(SDOperand Op, SelectionDAG &DAG) {
+  assert(getSubtarget() && "Subtarget not defined");
+  SDOperand ChainOp = Op.getOperand(0);
+  SDOperand DestOp = Op.getOperand(1);
+  SDOperand SourceOp = Op.getOperand(2);
+  SDOperand CountOp = Op.getOperand(3);
+  SDOperand AlignOp = Op.getOperand(4);
+  SDOperand AlwaysInlineOp = Op.getOperand(5);
+
+  bool AlwaysInline = (bool)cast<ConstantSDNode>(AlwaysInlineOp)->getValue();
+  unsigned Align = (unsigned)cast<ConstantSDNode>(AlignOp)->getValue();
+  if (Align == 0) Align = 1;
+
+  // If size is unknown, call memcpy.
+  ConstantSDNode *I = dyn_cast<ConstantSDNode>(CountOp);
+  if (!I) {
+    assert(!AlwaysInline && "Cannot inline copy of unknown size");
+    return LowerMEMCPYCall(ChainOp, DestOp, SourceOp, CountOp, DAG);
   }
+
+  // If not DWORD aligned or if size is more than threshold, then call memcpy.
+  // The libc version is likely to be faster for the following cases. It can
+  // use the address value and run time information about the CPU.
+  // With glibc 2.6.1 on a core 2, coping an array of 100M longs was 30% faster
+  unsigned Size = I->getValue();
+  if (AlwaysInline ||
+      (Size <= getSubtarget()->getMaxInlineSizeThreshold() &&
+       (Align & 3) == 0))
+    return LowerMEMCPYInline(ChainOp, DestOp, SourceOp, Size, Align, DAG);
+  return LowerMEMCPYCall(ChainOp, DestOp, SourceOp, CountOp, DAG);
+}
+
+
+SDOperand TargetLowering::LowerMEMCPYCall(SDOperand Chain,
+                                          SDOperand Dest,
+                                          SDOperand Source,
+                                          SDOperand Count,
+                                          SelectionDAG &DAG) {
+  MVT::ValueType IntPtr = getPointerTy();
+  TargetLowering::ArgListTy Args;
+  TargetLowering::ArgListEntry Entry;
+  Entry.Ty = getTargetData()->getIntPtrType();
+  Entry.Node = Dest; Args.push_back(Entry);
+  Entry.Node = Source; Args.push_back(Entry);
+  Entry.Node = Count; Args.push_back(Entry);
+  std::pair<SDOperand,SDOperand> CallResult =
+      LowerCallTo(Chain, Type::VoidTy, false, false, CallingConv::C, false,
+                  DAG.getExternalSymbol("memcpy", IntPtr), Args, DAG);
+  return CallResult.second;
 }
 
 
@@ -214,9 +259,13 @@ void TargetLowering::computeRegisterProperties() {
   assert(MVT::LAST_VALUETYPE <= 32 &&
          "Too many value types for ValueTypeActions to hold!");
 
-  // Everything defaults to one.
-  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i)
-    NumElementsForVT[i] = 1;
+  // Everything defaults to needing one register.
+  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
+    NumRegistersForVT[i] = 1;
+    RegisterTypeForVT[i] = TransformToType[i] = i;
+  }
+  // ...except isVoid, which doesn't need any registers.
+  NumRegistersForVT[MVT::isVoid] = 0;
 
   // Find the largest integer register class.
   unsigned LargestIntReg = MVT::i128;
@@ -225,56 +274,74 @@ void TargetLowering::computeRegisterProperties() {
 
   // Every integer value type larger than this largest register takes twice as
   // many registers to represent as the previous ValueType.
-  unsigned ExpandedReg = LargestIntReg; ++LargestIntReg;
-  for (++ExpandedReg; MVT::isInteger((MVT::ValueType)ExpandedReg);++ExpandedReg)
-    NumElementsForVT[ExpandedReg] = 2*NumElementsForVT[ExpandedReg-1];
-
-  // Inspect all of the ValueType's possible, deciding how to process them.
-  for (unsigned IntReg = MVT::i1; IntReg <= MVT::i128; ++IntReg)
-    // If we are expanding this type, expand it!
-    if (getNumElements((MVT::ValueType)IntReg) != 1)
-      SetValueTypeAction((MVT::ValueType)IntReg, Expand, *this, TransformToType,
-                         ValueTypeActions);
-    else if (!isTypeLegal((MVT::ValueType)IntReg))
-      // Otherwise, if we don't have native support, we must promote to a
-      // larger type.
-      SetValueTypeAction((MVT::ValueType)IntReg, Promote, *this,
-                         TransformToType, ValueTypeActions);
-    else
-      TransformToType[(MVT::ValueType)IntReg] = (MVT::ValueType)IntReg;
-
-  // If the target does not have native F64 support, expand it to I64. We will
-  // be generating soft float library calls. If the target does not have native
-  // support for F32, promote it to F64 if it is legal. Otherwise, expand it to
-  // I32.
-  if (isTypeLegal(MVT::f64))
-    TransformToType[MVT::f64] = MVT::f64;  
-  else {
-    NumElementsForVT[MVT::f64] = NumElementsForVT[MVT::i64];
-    SetValueTypeAction(MVT::f64, Expand, *this, TransformToType,
-                       ValueTypeActions);
+  for (MVT::ValueType ExpandedReg = LargestIntReg + 1;
+       MVT::isInteger(ExpandedReg); ++ExpandedReg) {
+    NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
+    RegisterTypeForVT[ExpandedReg] = LargestIntReg;
+    TransformToType[ExpandedReg] = ExpandedReg - 1;
+    ValueTypeActions.setTypeAction(ExpandedReg, Expand);
   }
-  if (isTypeLegal(MVT::f32))
-    TransformToType[MVT::f32] = MVT::f32;
-  else if (isTypeLegal(MVT::f64))
-    SetValueTypeAction(MVT::f32, Promote, *this, TransformToType,
-                       ValueTypeActions);
-  else {
-    NumElementsForVT[MVT::f32] = NumElementsForVT[MVT::i32];
-    SetValueTypeAction(MVT::f32, Expand, *this, TransformToType,
-                       ValueTypeActions);
+
+  // Inspect all of the ValueType's smaller than the largest integer
+  // register to see which ones need promotion.
+  MVT::ValueType LegalIntReg = LargestIntReg;
+  for (MVT::ValueType IntReg = LargestIntReg - 1;
+       IntReg >= MVT::i1; --IntReg) {
+    if (isTypeLegal(IntReg)) {
+      LegalIntReg = IntReg;
+    } else {
+      RegisterTypeForVT[IntReg] = TransformToType[IntReg] = LegalIntReg;
+      ValueTypeActions.setTypeAction(IntReg, Promote);
+    }
+  }
+
+  // ppcf128 type is really two f64's.
+  if (!isTypeLegal(MVT::ppcf128)) {
+    NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
+    RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
+    TransformToType[MVT::ppcf128] = MVT::f64;
+    ValueTypeActions.setTypeAction(MVT::ppcf128, Expand);
+  }    
+
+  // Decide how to handle f64. If the target does not have native f64 support,
+  // expand it to i64 and we will be generating soft float library calls.
+  if (!isTypeLegal(MVT::f64)) {
+    NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
+    RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
+    TransformToType[MVT::f64] = MVT::i64;
+    ValueTypeActions.setTypeAction(MVT::f64, Expand);
+  }
+
+  // Decide how to handle f32. If the target does not have native support for
+  // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
+  if (!isTypeLegal(MVT::f32)) {
+    if (isTypeLegal(MVT::f64)) {
+      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
+      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
+      TransformToType[MVT::f32] = MVT::f64;
+      ValueTypeActions.setTypeAction(MVT::f32, Promote);
+    } else {
+      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
+      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
+      TransformToType[MVT::f32] = MVT::i32;
+      ValueTypeActions.setTypeAction(MVT::f32, Expand);
+    }
   }
   
-  // Set MVT::Vector to always be Expanded
-  SetValueTypeAction(MVT::Vector, Expand, *this, TransformToType, 
-                     ValueTypeActions);
-  
-  // Loop over all of the legal vector value types, specifying an identity type
-  // transformation.
-  for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
+  // Loop over all of the vector value types to see which need transformations.
+  for (MVT::ValueType i = MVT::FIRST_VECTOR_VALUETYPE;
        i <= MVT::LAST_VECTOR_VALUETYPE; ++i) {
-    if (isTypeLegal((MVT::ValueType)i))
-      TransformToType[i] = (MVT::ValueType)i;
+    if (!isTypeLegal(i)) {
+      MVT::ValueType IntermediateVT, RegisterVT;
+      unsigned NumIntermediates;
+      NumRegistersForVT[i] =
+        getVectorTypeBreakdown(i,
+                               IntermediateVT, NumIntermediates,
+                               RegisterVT);
+      RegisterTypeForVT[i] = RegisterVT;
+      TransformToType[i] = MVT::Other; // this isn't actually used
+      ValueTypeActions.setTypeAction(i, Expand);
+    }
   }
 }
 
@@ -282,38 +349,52 @@ const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
   return NULL;
 }
 
-/// getVectorTypeBreakdown - Packed types are broken down into some number of
-/// legal first class types. For example, <8 x float> maps to 2 MVT::v4f32
+/// getVectorTypeBreakdown - Vector types are broken down into some number of
+/// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
 /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
+/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
 ///
-/// This method returns the number and type of the resultant breakdown.
+/// This method returns the number of registers needed, and the VT for each
+/// register.  It also returns the VT and quantity of the intermediate values
+/// before they are promoted/expanded.
 ///
-unsigned TargetLowering::getVectorTypeBreakdown(const VectorType *PTy, 
-                                                MVT::ValueType &PTyElementVT,
-                                      MVT::ValueType &PTyLegalElementVT) const {
+unsigned TargetLowering::getVectorTypeBreakdown(MVT::ValueType VT, 
+                                                MVT::ValueType &IntermediateVT,
+                                                unsigned &NumIntermediates,
+                                      MVT::ValueType &RegisterVT) const {
   // Figure out the right, legal destination reg to copy into.
-  unsigned NumElts = PTy->getNumElements();
-  MVT::ValueType EltTy = getValueType(PTy->getElementType());
+  unsigned NumElts = MVT::getVectorNumElements(VT);
+  MVT::ValueType EltTy = MVT::getVectorElementType(VT);
   
   unsigned NumVectorRegs = 1;
   
+  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we 
+  // could break down into LHS/RHS like LegalizeDAG does.
+  if (!isPowerOf2_32(NumElts)) {
+    NumVectorRegs = NumElts;
+    NumElts = 1;
+  }
+  
   // Divide the input until we get to a supported size.  This will always
   // end with a scalar if the target doesn't support vectors.
-  while (NumElts > 1 && !isTypeLegal(MVT::getVectorType(EltTy, NumElts))) {
+  while (NumElts > 1 &&
+         !isTypeLegal(MVT::getVectorType(EltTy, NumElts))) {
     NumElts >>= 1;
     NumVectorRegs <<= 1;
   }
+
+  NumIntermediates = NumVectorRegs;
   
-  MVT::ValueType VT = MVT::getVectorType(EltTy, NumElts);
-  if (!isTypeLegal(VT))
-    VT = EltTy;
-  PTyElementVT = VT;
-
-  MVT::ValueType DestVT = getTypeToTransformTo(VT);
-  PTyLegalElementVT = DestVT;
-  if (DestVT < VT) {
+  MVT::ValueType NewVT = MVT::getVectorType(EltTy, NumElts);
+  if (!isTypeLegal(NewVT))
+    NewVT = EltTy;
+  IntermediateVT = NewVT;
+
+  MVT::ValueType DestVT = getTypeToTransformTo(NewVT);
+  RegisterVT = DestVT;
+  if (DestVT < NewVT) {
     // Value is expanded, e.g. i64 -> i16.
-    return NumVectorRegs*(MVT::getSizeInBits(VT)/MVT::getSizeInBits(DestVT));
+    return NumVectorRegs*(MVT::getSizeInBits(NewVT)/MVT::getSizeInBits(DestVT));
   } else {
     // Otherwise, promotion or legal types use the same number of registers as
     // the vector decimated to the appropriate level.
@@ -323,6 +404,13 @@ unsigned TargetLowering::getVectorTypeBreakdown(const VectorType *PTy,
   return 1;
 }
 
+SDOperand TargetLowering::getPICJumpTableRelocBase(SDOperand Table,
+                                                   SelectionDAG &DAG) const {
+  if (usesGlobalOffsetTable())
+    return DAG.getNode(ISD::GLOBAL_OFFSET_TABLE, getPointerTy());
+  return Table;
+}
+
 //===----------------------------------------------------------------------===//
 //  Optimization Methods
 //===----------------------------------------------------------------------===//
@@ -375,7 +463,7 @@ bool TargetLowering::SimplifyDemandedBits(SDOperand Op, uint64_t DemandedMask,
     if (Depth != 0) {
       // If not at the root, Just compute the KnownZero/KnownOne bits to 
       // simplify things downstream.
-      ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
+      TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
       return false;
     }
     // If this is the root being simplified, allow it to have multiple uses,
@@ -404,8 +492,8 @@ bool TargetLowering::SimplifyDemandedBits(SDOperand Op, uint64_t DemandedMask,
     // the RHS.
     if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
       uint64_t LHSZero, LHSOne;
-      ComputeMaskedBits(Op.getOperand(0), DemandedMask,
-                        LHSZero, LHSOne, Depth+1);
+      TLO.DAG.ComputeMaskedBits(Op.getOperand(0), DemandedMask,
+                                LHSZero, LHSOne, Depth+1);
       // If the LHS already has zeros where RHSC does, this and is dead.
       if ((LHSZero & DemandedMask) == (~RHSC->getValue() & DemandedMask))
         return TLO.CombineTo(Op, Op.getOperand(0));
@@ -587,7 +675,7 @@ bool TargetLowering::SimplifyDemandedBits(SDOperand Op, uint64_t DemandedMask,
           }          
           
           SDOperand NewSA = 
-            TLO.DAG.getConstant(ShAmt-C1, Op.getOperand(1).getValueType());
+            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
           MVT::ValueType VT = Op.getValueType();
           return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, VT,
                                                    InOp.getOperand(0), NewSA));
@@ -856,13 +944,39 @@ bool TargetLowering::SimplifyDemandedBits(SDOperand Op, uint64_t DemandedMask,
     KnownZero |= ~InMask & DemandedMask;
     break;
   }
+  case ISD::FGETSIGN:
+    // All bits are zero except the low bit.
+    KnownZero = MVT::getIntVTBitMask(Op.getValueType()) ^ 1;
+    break;
+  case ISD::BIT_CONVERT:
+#if 0
+    // If this is an FP->Int bitcast and if the sign bit is the only thing that
+    // is demanded, turn this into a FGETSIGN.
+    if (DemandedMask == MVT::getIntVTSignBit(Op.getValueType()) &&
+        MVT::isFloatingPoint(Op.getOperand(0).getValueType()) &&
+        !MVT::isVector(Op.getOperand(0).getValueType())) {
+      // Only do this xform if FGETSIGN is valid or if before legalize.
+      if (!TLO.AfterLegalize ||
+          isOperationLegal(ISD::FGETSIGN, Op.getValueType())) {
+        // Make a FGETSIGN + SHL to move the sign bit into the appropriate
+        // place.  We expect the SHL to be eliminated by other optimizations.
+        SDOperand Sign = TLO.DAG.getNode(ISD::FGETSIGN, Op.getValueType(), 
+                                         Op.getOperand(0));
+        unsigned ShVal = MVT::getSizeInBits(Op.getValueType())-1;
+        SDOperand ShAmt = TLO.DAG.getConstant(ShVal, getShiftAmountTy());
+        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, Op.getValueType(),
+                                                 Sign, ShAmt));
+      }
+    }
+#endif
+    break;
   case ISD::ADD:
   case ISD::SUB:
   case ISD::INTRINSIC_WO_CHAIN:
   case ISD::INTRINSIC_W_CHAIN:
   case ISD::INTRINSIC_VOID:
     // Just use ComputeMaskedBits to compute output bits.
-    ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
+    TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
     break;
   }
   
@@ -874,337 +988,6 @@ bool TargetLowering::SimplifyDemandedBits(SDOperand Op, uint64_t DemandedMask,
   return false;
 }
 
-/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
-/// this predicate to simplify operations downstream.  Mask is known to be zero
-/// for bits that V cannot have.
-bool TargetLowering::MaskedValueIsZero(SDOperand Op, uint64_t Mask, 
-                                       unsigned Depth) const {
-  // The masks are not wide enough to represent this type!  Should use APInt.
-  if (Op.getValueType() == MVT::i128)
-    return false;
-  
-  uint64_t KnownZero, KnownOne;
-  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
-  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
-  return (KnownZero & Mask) == Mask;
-}
-
-/// ComputeMaskedBits - Determine which of the bits specified in Mask are
-/// known to be either zero or one and return them in the KnownZero/KnownOne
-/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
-/// processing.
-void TargetLowering::ComputeMaskedBits(SDOperand Op, uint64_t Mask, 
-                                       uint64_t &KnownZero, uint64_t &KnownOne,
-                                       unsigned Depth) const {
-  KnownZero = KnownOne = 0;   // Don't know anything.
-  if (Depth == 6 || Mask == 0)
-    return;  // Limit search depth.
-  
-  // The masks are not wide enough to represent this type!  Should use APInt.
-  if (Op.getValueType() == MVT::i128)
-    return;
-  
-  uint64_t KnownZero2, KnownOne2;
-
-  switch (Op.getOpcode()) {
-  case ISD::Constant:
-    // We know all of the bits for a constant!
-    KnownOne = cast<ConstantSDNode>(Op)->getValue() & Mask;
-    KnownZero = ~KnownOne & Mask;
-    return;
-  case ISD::AND:
-    // If either the LHS or the RHS are Zero, the result is zero.
-    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
-    Mask &= ~KnownZero;
-    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
-    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
-    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 
-
-    // Output known-1 bits are only known if set in both the LHS & RHS.
-    KnownOne &= KnownOne2;
-    // Output known-0 are known to be clear if zero in either the LHS | RHS.
-    KnownZero |= KnownZero2;
-    return;
-  case ISD::OR:
-    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
-    Mask &= ~KnownOne;
-    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
-    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
-    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 
-    
-    // Output known-0 bits are only known if clear in both the LHS & RHS.
-    KnownZero &= KnownZero2;
-    // Output known-1 are known to be set if set in either the LHS | RHS.
-    KnownOne |= KnownOne2;
-    return;
-  case ISD::XOR: {
-    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
-    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
-    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
-    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 
-    
-    // Output known-0 bits are known if clear or set in both the LHS & RHS.
-    uint64_t KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
-    // Output known-1 are known to be set if set in only one of the LHS, RHS.
-    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
-    KnownZero = KnownZeroOut;
-    return;
-  }
-  case ISD::SELECT:
-    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
-    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
-    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
-    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 
-    
-    // Only known if known in both the LHS and RHS.
-    KnownOne &= KnownOne2;
-    KnownZero &= KnownZero2;
-    return;
-  case ISD::SELECT_CC:
-    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
-    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
-    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
-    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 
-    
-    // Only known if known in both the LHS and RHS.
-    KnownOne &= KnownOne2;
-    KnownZero &= KnownZero2;
-    return;
-  case ISD::SETCC:
-    // If we know the result of a setcc has the top bits zero, use this info.
-    if (getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult)
-      KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
-    return;
-  case ISD::SHL:
-    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
-    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
-      ComputeMaskedBits(Op.getOperand(0), Mask >> SA->getValue(),
-                        KnownZero, KnownOne, Depth+1);
-      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
-      KnownZero <<= SA->getValue();
-      KnownOne  <<= SA->getValue();
-      KnownZero |= (1ULL << SA->getValue())-1;  // low bits known zero.
-    }
-    return;
-  case ISD::SRL:
-    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
-    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
-      MVT::ValueType VT = Op.getValueType();
-      unsigned ShAmt = SA->getValue();
-
-      uint64_t TypeMask = MVT::getIntVTBitMask(VT);
-      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt) & TypeMask,
-                        KnownZero, KnownOne, Depth+1);
-      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
-      KnownZero &= TypeMask;
-      KnownOne  &= TypeMask;
-      KnownZero >>= ShAmt;
-      KnownOne  >>= ShAmt;
-
-      uint64_t HighBits = (1ULL << ShAmt)-1;
-      HighBits <<= MVT::getSizeInBits(VT)-ShAmt;
-      KnownZero |= HighBits;  // High bits known zero.
-    }
-    return;
-  case ISD::SRA:
-    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
-      MVT::ValueType VT = Op.getValueType();
-      unsigned ShAmt = SA->getValue();
-
-      // Compute the new bits that are at the top now.
-      uint64_t TypeMask = MVT::getIntVTBitMask(VT);
-
-      uint64_t InDemandedMask = (Mask << ShAmt) & TypeMask;
-      // If any of the demanded bits are produced by the sign extension, we also
-      // demand the input sign bit.
-      uint64_t HighBits = (1ULL << ShAmt)-1;
-      HighBits <<= MVT::getSizeInBits(VT) - ShAmt;
-      if (HighBits & Mask)
-        InDemandedMask |= MVT::getIntVTSignBit(VT);
-      
-      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
-                        Depth+1);
-      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
-      KnownZero &= TypeMask;
-      KnownOne  &= TypeMask;
-      KnownZero >>= ShAmt;
-      KnownOne  >>= ShAmt;
-      
-      // Handle the sign bits.
-      uint64_t SignBit = MVT::getIntVTSignBit(VT);
-      SignBit >>= ShAmt;  // Adjust to where it is now in the mask.
-      
-      if (KnownZero & SignBit) {       
-        KnownZero |= HighBits;  // New bits are known zero.
-      } else if (KnownOne & SignBit) {
-        KnownOne  |= HighBits;  // New bits are known one.
-      }
-    }
-    return;
-  case ISD::SIGN_EXTEND_INREG: {
-    MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
-    
-    // Sign extension.  Compute the demanded bits in the result that are not 
-    // present in the input.
-    uint64_t NewBits = ~MVT::getIntVTBitMask(EVT) & Mask;
-
-    uint64_t InSignBit = MVT::getIntVTSignBit(EVT);
-    int64_t InputDemandedBits = Mask & MVT::getIntVTBitMask(EVT);
-    
-    // If the sign extended bits are demanded, we know that the sign
-    // bit is demanded.
-    if (NewBits)
-      InputDemandedBits |= InSignBit;
-    
-    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
-                      KnownZero, KnownOne, Depth+1);
-    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
-    
-    // If the sign bit of the input is known set or clear, then we know the
-    // top bits of the result.
-    if (KnownZero & InSignBit) {          // Input sign bit known clear
-      KnownZero |= NewBits;
-      KnownOne  &= ~NewBits;
-    } else if (KnownOne & InSignBit) {    // Input sign bit known set
-      KnownOne  |= NewBits;
-      KnownZero &= ~NewBits;
-    } else {                              // Input sign bit unknown
-      KnownZero &= ~NewBits;
-      KnownOne  &= ~NewBits;
-    }
-    return;
-  }
-  case ISD::CTTZ:
-  case ISD::CTLZ:
-  case ISD::CTPOP: {
-    MVT::ValueType VT = Op.getValueType();
-    unsigned LowBits = Log2_32(MVT::getSizeInBits(VT))+1;
-    KnownZero = ~((1ULL << LowBits)-1) & MVT::getIntVTBitMask(VT);
-    KnownOne  = 0;
-    return;
-  }
-  case ISD::LOAD: {
-    if (ISD::isZEXTLoad(Op.Val)) {
-      LoadSDNode *LD = cast<LoadSDNode>(Op);
-      MVT::ValueType VT = LD->getLoadedVT();
-      KnownZero |= ~MVT::getIntVTBitMask(VT) & Mask;
-    }
-    return;
-  }
-  case ISD::ZERO_EXTEND: {
-    uint64_t InMask  = MVT::getIntVTBitMask(Op.getOperand(0).getValueType());
-    uint64_t NewBits = (~InMask) & Mask;
-    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero, 
-                      KnownOne, Depth+1);
-    KnownZero |= NewBits & Mask;
-    KnownOne  &= ~NewBits;
-    return;
-  }
-  case ISD::SIGN_EXTEND: {
-    MVT::ValueType InVT = Op.getOperand(0).getValueType();
-    unsigned InBits    = MVT::getSizeInBits(InVT);
-    uint64_t InMask    = MVT::getIntVTBitMask(InVT);
-    uint64_t InSignBit = 1ULL << (InBits-1);
-    uint64_t NewBits   = (~InMask) & Mask;
-    uint64_t InDemandedBits = Mask & InMask;
-
-    // If any of the sign extended bits are demanded, we know that the sign
-    // bit is demanded.
-    if (NewBits & Mask)
-      InDemandedBits |= InSignBit;
-    
-    ComputeMaskedBits(Op.getOperand(0), InDemandedBits, KnownZero, 
-                      KnownOne, Depth+1);
-    // If the sign bit is known zero or one, the  top bits match.
-    if (KnownZero & InSignBit) {
-      KnownZero |= NewBits;
-      KnownOne  &= ~NewBits;
-    } else if (KnownOne & InSignBit) {
-      KnownOne  |= NewBits;
-      KnownZero &= ~NewBits;
-    } else {   // Otherwise, top bits aren't known.
-      KnownOne  &= ~NewBits;
-      KnownZero &= ~NewBits;
-    }
-    return;
-  }
-  case ISD::ANY_EXTEND: {
-    MVT::ValueType VT = Op.getOperand(0).getValueType();
-    ComputeMaskedBits(Op.getOperand(0), Mask & MVT::getIntVTBitMask(VT),
-                      KnownZero, KnownOne, Depth+1);
-    return;
-  }
-  case ISD::TRUNCATE: {
-    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
-    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
-    uint64_t OutMask = MVT::getIntVTBitMask(Op.getValueType());
-    KnownZero &= OutMask;
-    KnownOne &= OutMask;
-    break;
-  }
-  case ISD::AssertZext: {
-    MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
-    uint64_t InMask = MVT::getIntVTBitMask(VT);
-    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero, 
-                      KnownOne, Depth+1);
-    KnownZero |= (~InMask) & Mask;
-    return;
-  }
-  case ISD::ADD: {
-    // If either the LHS or the RHS are Zero, the result is zero.
-    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
-    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
-    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
-    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 
-    
-    // Output known-0 bits are known if clear or set in both the low clear bits
-    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
-    // low 3 bits clear.
-    uint64_t KnownZeroOut = std::min(CountTrailingZeros_64(~KnownZero), 
-                                     CountTrailingZeros_64(~KnownZero2));
-    
-    KnownZero = (1ULL << KnownZeroOut) - 1;
-    KnownOne = 0;
-    return;
-  }
-  case ISD::SUB: {
-    ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0));
-    if (!CLHS) return;
-
-    // We know that the top bits of C-X are clear if X contains less bits
-    // than C (i.e. no wrap-around can happen).  For example, 20-X is
-    // positive if we can prove that X is >= 0 and < 16.
-    MVT::ValueType VT = CLHS->getValueType(0);
-    if ((CLHS->getValue() & MVT::getIntVTSignBit(VT)) == 0) {  // sign bit clear
-      unsigned NLZ = CountLeadingZeros_64(CLHS->getValue()+1);
-      uint64_t MaskV = (1ULL << (63-NLZ))-1; // NLZ can't be 64 with no sign bit
-      MaskV = ~MaskV & MVT::getIntVTBitMask(VT);
-      ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero, KnownOne, Depth+1);
-
-      // If all of the MaskV bits are known to be zero, then we know the output
-      // top bits are zero, because we now know that the output is from [0-C].
-      if ((KnownZero & MaskV) == MaskV) {
-        unsigned NLZ2 = CountLeadingZeros_64(CLHS->getValue());
-        KnownZero = ~((1ULL << (64-NLZ2))-1) & Mask;  // Top bits known zero.
-        KnownOne = 0;   // No one bits known.
-      } else {
-        KnownZero = KnownOne = 0;  // Otherwise, nothing known.
-      }
-    }
-    return;
-  }
-  default:
-    // Allow the target to implement this method for its nodes.
-    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
-  case ISD::INTRINSIC_WO_CHAIN:
-  case ISD::INTRINSIC_W_CHAIN:
-  case ISD::INTRINSIC_VOID:
-      computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne);
-    }
-    return;
-  }
-}
-
 /// computeMaskedBitsForTargetNode - Determine which of the bits specified 
 /// in Mask are known to be either zero or one and return them in the 
 /// KnownZero/KnownOne bitsets.
@@ -1212,6 +995,7 @@ void TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
                                                     uint64_t Mask,
                                                     uint64_t &KnownZero, 
                                                     uint64_t &KnownOne,
+                                                    const SelectionDAG &DAG,
                                                     unsigned Depth) const {
   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
@@ -1223,222 +1007,6 @@ void TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
   KnownOne = 0;
 }
 
-/// ComputeNumSignBits - Return the number of times the sign bit of the
-/// register is replicated into the other bits.  We know that at least 1 bit
-/// is always equal to the sign bit (itself), but other cases can give us
-/// information.  For example, immediately after an "SRA X, 2", we know that
-/// the top 3 bits are all equal to each other, so we return 3.
-unsigned TargetLowering::ComputeNumSignBits(SDOperand Op, unsigned Depth) const{
-  MVT::ValueType VT = Op.getValueType();
-  assert(MVT::isInteger(VT) && "Invalid VT!");
-  unsigned VTBits = MVT::getSizeInBits(VT);
-  unsigned Tmp, Tmp2;
-  
-  if (Depth == 6)
-    return 1;  // Limit search depth.
-
-  switch (Op.getOpcode()) {
-  default: break;
-  case ISD::AssertSext:
-    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
-    return VTBits-Tmp+1;
-  case ISD::AssertZext:
-    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
-    return VTBits-Tmp;
-    
-  case ISD::Constant: {
-    uint64_t Val = cast<ConstantSDNode>(Op)->getValue();
-    // If negative, invert the bits, then look at it.
-    if (Val & MVT::getIntVTSignBit(VT))
-      Val = ~Val;
-    
-    // Shift the bits so they are the leading bits in the int64_t.
-    Val <<= 64-VTBits;
-    
-    // Return # leading zeros.  We use 'min' here in case Val was zero before
-    // shifting.  We don't want to return '64' as for an i32 "0".
-    return std::min(VTBits, CountLeadingZeros_64(Val));
-  }
-    
-  case ISD::SIGN_EXTEND:
-    Tmp = VTBits-MVT::getSizeInBits(Op.getOperand(0).getValueType());
-    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
-    
-  case ISD::SIGN_EXTEND_INREG:
-    // Max of the input and what this extends.
-    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
-    Tmp = VTBits-Tmp+1;
-    
-    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
-    return std::max(Tmp, Tmp2);
-
-  case ISD::SRA:
-    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
-    // SRA X, C   -> adds C sign bits.
-    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
-      Tmp += C->getValue();
-      if (Tmp > VTBits) Tmp = VTBits;
-    }
-    return Tmp;
-  case ISD::SHL:
-    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
-      // shl destroys sign bits.
-      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
-      if (C->getValue() >= VTBits ||      // Bad shift.
-          C->getValue() >= Tmp) break;    // Shifted all sign bits out.
-      return Tmp - C->getValue();
-    }
-    break;
-  case ISD::AND:
-  case ISD::OR:
-  case ISD::XOR:    // NOT is handled here.
-    // Logical binary ops preserve the number of sign bits.
-    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
-    if (Tmp == 1) return 1;  // Early out.
-    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
-    return std::min(Tmp, Tmp2);
-
-  case ISD::SELECT:
-    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
-    if (Tmp == 1) return 1;  // Early out.
-    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
-    return std::min(Tmp, Tmp2);
-    
-  case ISD::SETCC:
-    // If setcc returns 0/-1, all bits are sign bits.
-    if (getSetCCResultContents() == ZeroOrNegativeOneSetCCResult)
-      return VTBits;
-    break;
-  case ISD::ROTL:
-  case ISD::ROTR:
-    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
-      unsigned RotAmt = C->getValue() & (VTBits-1);
-      
-      // Handle rotate right by N like a rotate left by 32-N.
-      if (Op.getOpcode() == ISD::ROTR)
-        RotAmt = (VTBits-RotAmt) & (VTBits-1);
-
-      // If we aren't rotating out all of the known-in sign bits, return the
-      // number that are left.  This handles rotl(sext(x), 1) for example.
-      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
-      if (Tmp > RotAmt+1) return Tmp-RotAmt;
-    }
-    break;
-  case ISD::ADD:
-    // Add can have at most one carry bit.  Thus we know that the output
-    // is, at worst, one more bit than the inputs.
-    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
-    if (Tmp == 1) return 1;  // Early out.
-      
-    // Special case decrementing a value (ADD X, -1):
-    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
-      if (CRHS->isAllOnesValue()) {
-        uint64_t KnownZero, KnownOne;
-        uint64_t Mask = MVT::getIntVTBitMask(VT);
-        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
-        
-        // If the input is known to be 0 or 1, the output is 0/-1, which is all
-        // sign bits set.
-        if ((KnownZero|1) == Mask)
-          return VTBits;
-        
-        // If we are subtracting one from a positive number, there is no carry
-        // out of the result.
-        if (KnownZero & MVT::getIntVTSignBit(VT))
-          return Tmp;
-      }
-      
-    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
-    if (Tmp2 == 1) return 1;
-      return std::min(Tmp, Tmp2)-1;
-    break;
-    
-  case ISD::SUB:
-    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
-    if (Tmp2 == 1) return 1;
-      
-    // Handle NEG.
-    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
-      if (CLHS->getValue() == 0) {
-        uint64_t KnownZero, KnownOne;
-        uint64_t Mask = MVT::getIntVTBitMask(VT);
-        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
-        // If the input is known to be 0 or 1, the output is 0/-1, which is all
-        // sign bits set.
-        if ((KnownZero|1) == Mask)
-          return VTBits;
-        
-        // If the input is known to be positive (the sign bit is known clear),
-        // the output of the NEG has the same number of sign bits as the input.
-        if (KnownZero & MVT::getIntVTSignBit(VT))
-          return Tmp2;
-        
-        // Otherwise, we treat this like a SUB.
-      }
-    
-    // Sub can have at most one carry bit.  Thus we know that the output
-    // is, at worst, one more bit than the inputs.
-    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
-    if (Tmp == 1) return 1;  // Early out.
-      return std::min(Tmp, Tmp2)-1;
-    break;
-  case ISD::TRUNCATE:
-    // FIXME: it's tricky to do anything useful for this, but it is an important
-    // case for targets like X86.
-    break;
-  }
-  
-  // Handle LOADX separately here. EXTLOAD case will fallthrough.
-  if (Op.getOpcode() == ISD::LOAD) {
-    LoadSDNode *LD = cast<LoadSDNode>(Op);
-    unsigned ExtType = LD->getExtensionType();
-    switch (ExtType) {
-    default: break;
-    case ISD::SEXTLOAD:    // '17' bits known
-      Tmp = MVT::getSizeInBits(LD->getLoadedVT());
-      return VTBits-Tmp+1;
-    case ISD::ZEXTLOAD:    // '16' bits known
-      Tmp = MVT::getSizeInBits(LD->getLoadedVT());
-      return VTBits-Tmp;
-    }
-  }
-
-  // Allow the target to implement this method for its nodes.
-  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
-      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 
-      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
-      Op.getOpcode() == ISD::INTRINSIC_VOID) {
-    unsigned NumBits = ComputeNumSignBitsForTargetNode(Op, Depth);
-    if (NumBits > 1) return NumBits;
-  }
-  
-  // Finally, if we can prove that the top bits of the result are 0's or 1's,
-  // use this information.
-  uint64_t KnownZero, KnownOne;
-  uint64_t Mask = MVT::getIntVTBitMask(VT);
-  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
-  
-  uint64_t SignBit = MVT::getIntVTSignBit(VT);
-  if (KnownZero & SignBit) {        // SignBit is 0
-    Mask = KnownZero;
-  } else if (KnownOne & SignBit) {  // SignBit is 1;
-    Mask = KnownOne;
-  } else {
-    // Nothing known.
-    return 1;
-  }
-  
-  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
-  // the number of identical bits in the top of the input value.
-  Mask ^= ~0ULL;
-  Mask <<= 64-VTBits;
-  // Return # leading zeros.  We use 'min' here in case Val was zero before
-  // shifting.  We don't want to return '64' as for an i32 "0".
-  return std::min(VTBits, CountLeadingZeros_64(Mask));
-}
-
-
-
 /// ComputeNumSignBitsForTargetNode - This method can be implemented by
 /// targets that want to expose additional information about sign bits to the
 /// DAG Combiner.
@@ -1597,7 +1165,8 @@ TargetLowering::SimplifySetCC(MVT::ValueType VT, SDOperand N0, SDOperand N1,
             cast<ConstantSDNode>(N0.getOperand(1))->getValue() == 1) {
           // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
           // can only do this if the top bits are known zero.
-          if (MaskedValueIsZero(N0, MVT::getIntVTBitMask(N0.getValueType())-1)){
+          if (DAG.MaskedValueIsZero(N0,
+                                    MVT::getIntVTBitMask(N0.getValueType())-1)){
             // Okay, get the un-inverted input value.
             SDOperand Val;
             if (N0.getOpcode() == ISD::XOR)
@@ -1711,6 +1280,28 @@ TargetLowering::SimplifySetCC(MVT::ValueType VT, SDOperand N0, SDOperand N1,
     // Constant fold or commute setcc.
     SDOperand O = DAG.FoldSetCC(VT, N0, N1, Cond);    
     if (O.Val) return O;
+  } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.Val)) {
+    // If the RHS of an FP comparison is a constant, simplify it away in
+    // some cases.
+    if (CFP->getValueAPF().isNaN()) {
+      // If an operand is known to be a nan, we can fold it.
+      switch (ISD::getUnorderedFlavor(Cond)) {
+      default: assert(0 && "Unknown flavor!");
+      case 0:  // Known false.
+        return DAG.getConstant(0, VT);
+      case 1:  // Known true.
+        return DAG.getConstant(1, VT);
+      case 2:  // undefind.
+        return DAG.getNode(ISD::UNDEF, VT);
+      }
+    }
+    
+    // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
+    // constant if knowing that the operand is non-nan is enough.  We prefer to
+    // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
+    // materialize 0.0.
+    if (Cond == ISD::SETO || Cond == ISD::SETUO)
+      return DAG.getSetCC(VT, N0, N0, Cond);
   }
 
   if (N0 == N1) {
@@ -1761,7 +1352,7 @@ TargetLowering::SimplifySetCC(MVT::ValueType VT, SDOperand N0, SDOperand N1,
           if (N0.getOpcode() == ISD::XOR)
             // If we know that all of the inverted bits are zero, don't bother
             // performing the inversion.
-            if (MaskedValueIsZero(N0.getOperand(0), ~LHSR->getValue()))
+            if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getValue()))
               return DAG.getSetCC(VT, N0.getOperand(0),
                               DAG.getConstant(LHSR->getValue()^RHSC->getValue(),
                                               N0.getValueType()), Cond);
@@ -1785,7 +1376,7 @@ TargetLowering::SimplifySetCC(MVT::ValueType VT, SDOperand N0, SDOperand N1,
         if (DAG.isCommutativeBinOp(N0.getOpcode()))
           return DAG.getSetCC(VT, N0.getOperand(0),
                           DAG.getConstant(0, N0.getValueType()), Cond);
-        else {
+        else if (N0.Val->hasOneUse()) {
           assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
           // (Z-X) == X  --> Z == X<<1
           SDOperand SH = DAG.getNode(ISD::SHL, N1.getValueType(),
@@ -1808,7 +1399,7 @@ TargetLowering::SimplifySetCC(MVT::ValueType VT, SDOperand N0, SDOperand N1,
         if (DAG.isCommutativeBinOp(N1.getOpcode())) {
           return DAG.getSetCC(VT, N1.getOperand(0),
                           DAG.getConstant(0, N1.getValueType()), Cond);
-        } else {
+        } else if (N1.Val->hasOneUse()) {
           assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
           // X == (Z-X)  --> X<<1 == Z
           SDOperand SH = DAG.getNode(ISD::SHL, N1.getValueType(), N0, 
@@ -1918,18 +1509,23 @@ TargetLowering::getConstraintType(const std::string &Constraint) const {
   return C_Unknown;
 }
 
-/// isOperandValidForConstraint - Return the specified operand (possibly
-/// modified) if the specified SDOperand is valid for the specified target
-/// constraint letter, otherwise return null.
-SDOperand TargetLowering::isOperandValidForConstraint(SDOperand Op,
-                                                      char ConstraintLetter,
-                                                      SelectionDAG &DAG) {
+/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
+/// vector.  If it is invalid, don't add anything to Ops.
+void TargetLowering::LowerAsmOperandForConstraint(SDOperand Op,
+                                                  char ConstraintLetter,
+                                                  std::vector<SDOperand> &Ops,
+                                                  SelectionDAG &DAG) {
   switch (ConstraintLetter) {
   default: break;
+  case 'X':     // Allows any operand; labels (basic block) use this.
+    if (Op.getOpcode() == ISD::BasicBlock) {
+      Ops.push_back(Op);
+      return;
+    }
+    // fall through
   case 'i':    // Simple Integer or Relocatable Constant
   case 'n':    // Simple Integer
-  case 's':    // Relocatable Constant
-  case 'X': {  // Allows any operand.
+  case 's': {  // Relocatable Constant
     // These operands are interested in values of the form (GV+C), where C may
     // be folded in as an offset of GV, or it may be explicitly added.  Also, it
     // is possible and fine if either GV or C are missing.
@@ -1954,19 +1550,21 @@ SDOperand TargetLowering::isOperandValidForConstraint(SDOperand Op,
       if (ConstraintLetter != 'n') {
         int64_t Offs = GA->getOffset();
         if (C) Offs += C->getValue();
-        return DAG.getTargetGlobalAddress(GA->getGlobal(), Op.getValueType(),
-                                          Offs);
+        Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
+                                                 Op.getValueType(), Offs));
+        return;
       }
     }
     if (C) {   // just C, no GV.
       // Simple constants are not allowed for 's'.
-      if (ConstraintLetter != 's')
-        return DAG.getTargetConstant(C->getValue(), Op.getValueType());
+      if (ConstraintLetter != 's') {
+        Ops.push_back(DAG.getTargetConstant(C->getValue(), Op.getValueType()));
+        return;
+      }
     }
     break;
   }
   }
-  return SDOperand(0,0);
 }
 
 std::vector<unsigned> TargetLowering::
@@ -2238,15 +1836,21 @@ SDOperand TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
   // Check to see if we can do this.
   if (!isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64))
     return SDOperand();       // BuildSDIV only operates on i32 or i64
-  if (!isOperationLegal(ISD::MULHS, VT))
-    return SDOperand();       // Make sure the target supports MULHS.
   
   int64_t d = cast<ConstantSDNode>(N->getOperand(1))->getSignExtended();
   ms magics = (VT == MVT::i32) ? magic32(d) : magic64(d);
   
   // Multiply the numerator (operand 0) by the magic value
-  SDOperand Q = DAG.getNode(ISD::MULHS, VT, N->getOperand(0),
-                            DAG.getConstant(magics.m, VT));
+  SDOperand Q;
+  if (isOperationLegal(ISD::MULHS, VT))
+    Q = DAG.getNode(ISD::MULHS, VT, N->getOperand(0),
+                    DAG.getConstant(magics.m, VT));
+  else if (isOperationLegal(ISD::SMUL_LOHI, VT))
+    Q = SDOperand(DAG.getNode(ISD::SMUL_LOHI, DAG.getVTList(VT, VT),
+                              N->getOperand(0),
+                              DAG.getConstant(magics.m, VT)).Val, 1);
+  else
+    return SDOperand();       // No mulhs or equvialent
   // If d > 0 and m < 0, add the numerator
   if (d > 0 && magics.m < 0) { 
     Q = DAG.getNode(ISD::ADD, VT, Q, N->getOperand(0));
@@ -2286,15 +1890,21 @@ SDOperand TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
   // Check to see if we can do this.
   if (!isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64))
     return SDOperand();       // BuildUDIV only operates on i32 or i64
-  if (!isOperationLegal(ISD::MULHU, VT))
-    return SDOperand();       // Make sure the target supports MULHU.
   
   uint64_t d = cast<ConstantSDNode>(N->getOperand(1))->getValue();
   mu magics = (VT == MVT::i32) ? magicu32(d) : magicu64(d);
   
   // Multiply the numerator (operand 0) by the magic value
-  SDOperand Q = DAG.getNode(ISD::MULHU, VT, N->getOperand(0),
-                            DAG.getConstant(magics.m, VT));
+  SDOperand Q;
+  if (isOperationLegal(ISD::MULHU, VT))
+    Q = DAG.getNode(ISD::MULHU, VT, N->getOperand(0),
+                    DAG.getConstant(magics.m, VT));
+  else if (isOperationLegal(ISD::UMUL_LOHI, VT))
+    Q = SDOperand(DAG.getNode(ISD::UMUL_LOHI, DAG.getVTList(VT, VT),
+                              N->getOperand(0),
+                              DAG.getConstant(magics.m, VT)).Val, 1);
+  else
+    return SDOperand();       // No mulhu or equvialent
   if (Created)
     Created->push_back(Q.Val);