Use the new script to sort the includes of every file under lib.
[oota-llvm.git] / lib / CodeGen / SelectionDAG / TargetLowering.cpp
index b301e3bd3ddbad8b9280f0cdb008dc530e304f58..931c569d4229f2850ff7b233cdd4fb4fa31487ec 100644 (file)
 //===----------------------------------------------------------------------===//
 
 #include "llvm/Target/TargetLowering.h"
-#include "llvm/MC/MCAsmInfo.h"
-#include "llvm/MC/MCExpr.h"
-#include "llvm/Target/TargetData.h"
-#include "llvm/Target/TargetLoweringObjectFile.h"
-#include "llvm/Target/TargetMachine.h"
-#include "llvm/Target/TargetRegisterInfo.h"
-#include "llvm/GlobalVariable.h"
-#include "llvm/DerivedTypes.h"
+#include "llvm/ADT/BitVector.h"
+#include "llvm/ADT/STLExtras.h"
 #include "llvm/CodeGen/Analysis.h"
 #include "llvm/CodeGen/MachineFrameInfo.h"
-#include "llvm/CodeGen/MachineJumpTableInfo.h"
 #include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineJumpTableInfo.h"
 #include "llvm/CodeGen/SelectionDAG.h"
-#include "llvm/ADT/STLExtras.h"
+#include "llvm/DataLayout.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/GlobalVariable.h"
+#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/Support/CommandLine.h"
 #include "llvm/Support/ErrorHandling.h"
 #include "llvm/Support/MathExtras.h"
+#include "llvm/Target/TargetLoweringObjectFile.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetRegisterInfo.h"
 #include <cctype>
 using namespace llvm;
 
-namespace llvm {
-TLSModel::Model getTLSModel(const GlobalValue *GV, Reloc::Model reloc) {
-  bool isLocal = GV->hasLocalLinkage();
-  bool isDeclaration = GV->isDeclaration();
-  // FIXME: what should we do for protected and internal visibility?
-  // For variables, is internal different from hidden?
-  bool isHidden = GV->hasHiddenVisibility();
-
-  if (reloc == Reloc::PIC_) {
-    if (isLocal || isHidden)
-      return TLSModel::LocalDynamic;
-    else
-      return TLSModel::GeneralDynamic;
-  } else {
-    if (!isDeclaration || isHidden)
-      return TLSModel::LocalExec;
-    else
-      return TLSModel::InitialExec;
-  }
-}
-}
-
 /// InitLibcallNames - Set default libcall names.
 ///
 static void InitLibcallNames(const char **Names) {
@@ -73,6 +53,9 @@ static void InitLibcallNames(const char **Names) {
   Names[RTLIB::MUL_I32] = "__mulsi3";
   Names[RTLIB::MUL_I64] = "__muldi3";
   Names[RTLIB::MUL_I128] = "__multi3";
+  Names[RTLIB::MULO_I32] = "__mulosi4";
+  Names[RTLIB::MULO_I64] = "__mulodi4";
+  Names[RTLIB::MULO_I128] = "__muloti4";
   Names[RTLIB::SDIV_I8] = "__divqi3";
   Names[RTLIB::SDIV_I16] = "__divhi3";
   Names[RTLIB::SDIV_I32] = "__divsi3";
@@ -128,6 +111,10 @@ static void InitLibcallNames(const char **Names) {
   Names[RTLIB::REM_F64] = "fmod";
   Names[RTLIB::REM_F80] = "fmodl";
   Names[RTLIB::REM_PPCF128] = "fmodl";
+  Names[RTLIB::FMA_F32] = "fmaf";
+  Names[RTLIB::FMA_F64] = "fma";
+  Names[RTLIB::FMA_F80] = "fmal";
+  Names[RTLIB::FMA_PPCF128] = "fmal";
   Names[RTLIB::POWI_F32] = "__powisf2";
   Names[RTLIB::POWI_F64] = "__powidf2";
   Names[RTLIB::POWI_F80] = "__powixf2";
@@ -302,7 +289,7 @@ static void InitLibcallNames(const char **Names) {
   Names[RTLIB::SYNC_FETCH_AND_OR_8] = "__sync_fetch_and_or_8";
   Names[RTLIB::SYNC_FETCH_AND_XOR_1] = "__sync_fetch_and_xor_1";
   Names[RTLIB::SYNC_FETCH_AND_XOR_2] = "__sync_fetch_and_xor_2";
-  Names[RTLIB::SYNC_FETCH_AND_XOR_4] = "__sync_fetch_and-xor_4";
+  Names[RTLIB::SYNC_FETCH_AND_XOR_4] = "__sync_fetch_and_xor_4";
   Names[RTLIB::SYNC_FETCH_AND_XOR_8] = "__sync_fetch_and_xor_8";
   Names[RTLIB::SYNC_FETCH_AND_NAND_1] = "__sync_fetch_and_nand_1";
   Names[RTLIB::SYNC_FETCH_AND_NAND_2] = "__sync_fetch_and_nand_2";
@@ -528,7 +515,7 @@ static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
 /// NOTE: The constructor takes ownership of TLOF.
 TargetLowering::TargetLowering(const TargetMachine &tm,
                                const TargetLoweringObjectFile *tlof)
-  : TM(tm), TD(TM.getTargetData()), TLOF(*tlof) {
+  : TM(tm), TD(TM.getDataLayout()), TLOF(*tlof) {
   // All operations default to being supported.
   memset(OpActions, 0, sizeof(OpActions));
   memset(LoadExtActions, 0, sizeof(LoadExtActions));
@@ -556,27 +543,53 @@ TargetLowering::TargetLowering(const TargetMachine &tm,
   // ConstantFP nodes default to expand.  Targets can either change this to
   // Legal, in which case all fp constants are legal, or use isFPImmLegal()
   // to optimize expansions for certain constants.
+  setOperationAction(ISD::ConstantFP, MVT::f16, Expand);
   setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
   setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
   setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
 
   // These library functions default to expand.
-  setOperationAction(ISD::FLOG , MVT::f64, Expand);
-  setOperationAction(ISD::FLOG2, MVT::f64, Expand);
-  setOperationAction(ISD::FLOG10,MVT::f64, Expand);
-  setOperationAction(ISD::FEXP , MVT::f64, Expand);
-  setOperationAction(ISD::FEXP2, MVT::f64, Expand);
-  setOperationAction(ISD::FLOG , MVT::f32, Expand);
-  setOperationAction(ISD::FLOG2, MVT::f32, Expand);
-  setOperationAction(ISD::FLOG10,MVT::f32, Expand);
-  setOperationAction(ISD::FEXP , MVT::f32, Expand);
-  setOperationAction(ISD::FEXP2, MVT::f32, Expand);
+  setOperationAction(ISD::FLOG ,  MVT::f16, Expand);
+  setOperationAction(ISD::FLOG2,  MVT::f16, Expand);
+  setOperationAction(ISD::FLOG10, MVT::f16, Expand);
+  setOperationAction(ISD::FEXP ,  MVT::f16, Expand);
+  setOperationAction(ISD::FEXP2,  MVT::f16, Expand);
+  setOperationAction(ISD::FFLOOR, MVT::f16, Expand);
+  setOperationAction(ISD::FNEARBYINT, MVT::f16, Expand);
+  setOperationAction(ISD::FCEIL,  MVT::f16, Expand);
+  setOperationAction(ISD::FRINT,  MVT::f16, Expand);
+  setOperationAction(ISD::FTRUNC, MVT::f16, Expand);
+  setOperationAction(ISD::FLOG ,  MVT::f32, Expand);
+  setOperationAction(ISD::FLOG2,  MVT::f32, Expand);
+  setOperationAction(ISD::FLOG10, MVT::f32, Expand);
+  setOperationAction(ISD::FEXP ,  MVT::f32, Expand);
+  setOperationAction(ISD::FEXP2,  MVT::f32, Expand);
+  setOperationAction(ISD::FFLOOR, MVT::f32, Expand);
+  setOperationAction(ISD::FNEARBYINT, MVT::f32, Expand);
+  setOperationAction(ISD::FCEIL,  MVT::f32, Expand);
+  setOperationAction(ISD::FRINT,  MVT::f32, Expand);
+  setOperationAction(ISD::FTRUNC, MVT::f32, Expand);
+  setOperationAction(ISD::FLOG ,  MVT::f64, Expand);
+  setOperationAction(ISD::FLOG2,  MVT::f64, Expand);
+  setOperationAction(ISD::FLOG10, MVT::f64, Expand);
+  setOperationAction(ISD::FEXP ,  MVT::f64, Expand);
+  setOperationAction(ISD::FEXP2,  MVT::f64, Expand);
+  setOperationAction(ISD::FFLOOR, MVT::f64, Expand);
+  setOperationAction(ISD::FNEARBYINT, MVT::f64, Expand);
+  setOperationAction(ISD::FCEIL,  MVT::f64, Expand);
+  setOperationAction(ISD::FRINT,  MVT::f64, Expand);
+  setOperationAction(ISD::FTRUNC, MVT::f64, Expand);
 
   // Default ISD::TRAP to expand (which turns it into abort).
   setOperationAction(ISD::TRAP, MVT::Other, Expand);
 
+  // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand"
+  // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP.
+  //
+  setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand);
+
   IsLittleEndian = TD->isLittleEndian();
-  PointerTy = MVT::getIntegerVT(8*TD->getPointerSize());
+  PointerTy = MVT::getIntegerVT(8*TD->getPointerSize(0));
   memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
   memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
   maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
@@ -589,11 +602,13 @@ TargetLowering::TargetLowering(const TargetMachine &tm,
   IntDivIsCheap = false;
   Pow2DivIsCheap = false;
   JumpIsExpensive = false;
+  predictableSelectIsExpensive = false;
   StackPointerRegisterToSaveRestore = 0;
   ExceptionPointerRegister = 0;
   ExceptionSelectorRegister = 0;
   BooleanContents = UndefinedBooleanContent;
-  SchedPreferenceInfo = Sched::Latency;
+  BooleanVectorContents = UndefinedBooleanContent;
+  SchedPreferenceInfo = Sched::ILP;
   JumpBufSize = 0;
   JumpBufAlignment = 0;
   MinFunctionAlignment = 0;
@@ -601,6 +616,9 @@ TargetLowering::TargetLowering(const TargetMachine &tm,
   PrefLoopAlignment = 0;
   MinStackArgumentAlignment = 1;
   ShouldFoldAtomicFences = false;
+  InsertFencesForAtomic = false;
+  SupportJumpTables = true;
+  MinimumJumpTableEntries = 4;
 
   InitLibcallNames(LibcallRoutineNames);
   InitCmpLibcallCCs(CmpLibcallCCs);
@@ -612,7 +630,7 @@ TargetLowering::~TargetLowering() {
 }
 
 MVT TargetLowering::getShiftAmountTy(EVT LHSTy) const {
-  return MVT::getIntegerVT(8*TD->getPointerSize());
+  return MVT::getIntegerVT(8*TD->getPointerSize(0));
 }
 
 /// canOpTrap - Returns true if the operation can trap for the value type.
@@ -664,10 +682,16 @@ static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
     NewVT = EltTy;
   IntermediateVT = NewVT;
 
+  unsigned NewVTSize = NewVT.getSizeInBits();
+
+  // Convert sizes such as i33 to i64.
+  if (!isPowerOf2_32(NewVTSize))
+    NewVTSize = NextPowerOf2(NewVTSize);
+
   EVT DestVT = TLI->getRegisterType(NewVT);
   RegisterVT = DestVT;
   if (EVT(DestVT).bitsLT(NewVT))    // Value is expanded, e.g. i64 -> i16.
-    return NumVectorRegs*(NewVT.getSizeInBits()/DestVT.getSizeInBits());
+    return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
 
   // Otherwise, promotion or legal types use the same number of registers as
   // the vector decimated to the appropriate level.
@@ -685,42 +709,34 @@ bool TargetLowering::isLegalRC(const TargetRegisterClass *RC) const {
   return false;
 }
 
-/// hasLegalSuperRegRegClasses - Return true if the specified register class
-/// has one or more super-reg register classes that are legal.
-bool
-TargetLowering::hasLegalSuperRegRegClasses(const TargetRegisterClass *RC) const{
-  if (*RC->superregclasses_begin() == 0)
-    return false;
-  for (TargetRegisterInfo::regclass_iterator I = RC->superregclasses_begin(),
-         E = RC->superregclasses_end(); I != E; ++I) {
-    const TargetRegisterClass *RRC = *I;
-    if (isLegalRC(RRC))
-      return true;
-  }
-  return false;
-}
-
 /// findRepresentativeClass - Return the largest legal super-reg register class
 /// of the register class for the specified type and its associated "cost".
 std::pair<const TargetRegisterClass*, uint8_t>
 TargetLowering::findRepresentativeClass(EVT VT) const {
+  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
   const TargetRegisterClass *RC = RegClassForVT[VT.getSimpleVT().SimpleTy];
   if (!RC)
     return std::make_pair(RC, 0);
+
+  // Compute the set of all super-register classes.
+  BitVector SuperRegRC(TRI->getNumRegClasses());
+  for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI)
+    SuperRegRC.setBitsInMask(RCI.getMask());
+
+  // Find the first legal register class with the largest spill size.
   const TargetRegisterClass *BestRC = RC;
-  for (TargetRegisterInfo::regclass_iterator I = RC->superregclasses_begin(),
-         E = RC->superregclasses_end(); I != E; ++I) {
-    const TargetRegisterClass *RRC = *I;
-    if (RRC->isASubClass() || !isLegalRC(RRC))
+  for (int i = SuperRegRC.find_first(); i >= 0; i = SuperRegRC.find_next(i)) {
+    const TargetRegisterClass *SuperRC = TRI->getRegClass(i);
+    // We want the largest possible spill size.
+    if (SuperRC->getSize() <= BestRC->getSize())
       continue;
-    if (!hasLegalSuperRegRegClasses(RRC))
-      return std::make_pair(RRC, 1);
-    BestRC = RRC;
+    if (!isLegalRC(SuperRC))
+      continue;
+    BestRC = SuperRC;
   }
   return std::make_pair(BestRC, 1);
 }
 
-
 /// computeRegisterProperties - Once all of the register classes are added,
 /// this allows us to compute derived properties we expose.
 void TargetLowering::computeRegisterProperties() {
@@ -742,14 +758,13 @@ void TargetLowering::computeRegisterProperties() {
 
   // Every integer value type larger than this largest register takes twice as
   // many registers to represent as the previous ValueType.
-  for (unsigned ExpandedReg = LargestIntReg + 1; ; ++ExpandedReg) {
-    EVT ExpandedVT = (MVT::SimpleValueType)ExpandedReg;
-    if (!ExpandedVT.isInteger())
-      break;
+  for (unsigned ExpandedReg = LargestIntReg + 1;
+       ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) {
     NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
     RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
     TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
-    ValueTypeActions.setTypeAction(ExpandedVT, Expand);
+    ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg,
+                                   TypeExpandInteger);
   }
 
   // Inspect all of the ValueType's smaller than the largest integer
@@ -762,8 +777,8 @@ void TargetLowering::computeRegisterProperties() {
       LegalIntReg = IntReg;
     } else {
       RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
-        (MVT::SimpleValueType)LegalIntReg;
-      ValueTypeActions.setTypeAction(IVT, Promote);
+        (const MVT::SimpleValueType)LegalIntReg;
+      ValueTypeActions.setTypeAction(IVT, TypePromoteInteger);
     }
   }
 
@@ -772,7 +787,7 @@ void TargetLowering::computeRegisterProperties() {
     NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
     RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
     TransformToType[MVT::ppcf128] = MVT::f64;
-    ValueTypeActions.setTypeAction(MVT::ppcf128, Expand);
+    ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat);
   }
 
   // Decide how to handle f64. If the target does not have native f64 support,
@@ -781,7 +796,7 @@ void TargetLowering::computeRegisterProperties() {
     NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
     RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
     TransformToType[MVT::f64] = MVT::i64;
-    ValueTypeActions.setTypeAction(MVT::f64, Expand);
+    ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat);
   }
 
   // Decide how to handle f32. If the target does not have native support for
@@ -791,12 +806,12 @@ void TargetLowering::computeRegisterProperties() {
       NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
       RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
       TransformToType[MVT::f32] = MVT::f64;
-      ValueTypeActions.setTypeAction(MVT::f32, Promote);
+      ValueTypeActions.setTypeAction(MVT::f32, TypePromoteInteger);
     } else {
       NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
       RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
       TransformToType[MVT::f32] = MVT::i32;
-      ValueTypeActions.setTypeAction(MVT::f32, Expand);
+      ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat);
     }
   }
 
@@ -810,8 +825,29 @@ void TargetLowering::computeRegisterProperties() {
     // that wider vector type.
     EVT EltVT = VT.getVectorElementType();
     unsigned NElts = VT.getVectorNumElements();
-    if (NElts != 1) {
+    if (NElts != 1 && !shouldSplitVectorElementType(EltVT)) {
       bool IsLegalWiderType = false;
+      // First try to promote the elements of integer vectors. If no legal
+      // promotion was found, fallback to the widen-vector method.
+      for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
+        EVT SVT = (MVT::SimpleValueType)nVT;
+        // Promote vectors of integers to vectors with the same number
+        // of elements, with a wider element type.
+        if (SVT.getVectorElementType().getSizeInBits() > EltVT.getSizeInBits()
+            && SVT.getVectorNumElements() == NElts &&
+            isTypeLegal(SVT) && SVT.getScalarType().isInteger()) {
+          TransformToType[i] = SVT;
+          RegisterTypeForVT[i] = SVT;
+          NumRegistersForVT[i] = 1;
+          ValueTypeActions.setTypeAction(VT, TypePromoteInteger);
+          IsLegalWiderType = true;
+          break;
+        }
+      }
+
+      if (IsLegalWiderType) continue;
+
+      // Try to widen the vector.
       for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
         EVT SVT = (MVT::SimpleValueType)nVT;
         if (SVT.getVectorElementType() == EltVT &&
@@ -820,7 +856,7 @@ void TargetLowering::computeRegisterProperties() {
           TransformToType[i] = SVT;
           RegisterTypeForVT[i] = SVT;
           NumRegistersForVT[i] = 1;
-          ValueTypeActions.setTypeAction(VT, Promote);
+          ValueTypeActions.setTypeAction(VT, TypeWidenVector);
           IsLegalWiderType = true;
           break;
         }
@@ -840,10 +876,12 @@ void TargetLowering::computeRegisterProperties() {
     if (NVT == VT) {
       // Type is already a power of 2.  The default action is to split.
       TransformToType[i] = MVT::Other;
-      ValueTypeActions.setTypeAction(VT, Expand);
+      unsigned NumElts = VT.getVectorNumElements();
+      ValueTypeActions.setTypeAction(VT,
+            NumElts > 1 ? TypeSplitVector : TypeScalarizeVector);
     } else {
       TransformToType[i] = NVT;
-      ValueTypeActions.setTypeAction(VT, Promote);
+      ValueTypeActions.setTypeAction(VT, TypeWidenVector);
     }
   }
 
@@ -865,9 +903,9 @@ const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
   return NULL;
 }
 
-
-MVT::SimpleValueType TargetLowering::getSetCCResultType(EVT VT) const {
-  return PointerTy.SimpleTy;
+EVT TargetLowering::getSetCCResultType(EVT VT) const {
+  assert(!VT.isVector() && "No default SetCC type for vectors!");
+  return getPointerTy(0).SimpleTy;
 }
 
 MVT::SimpleValueType TargetLowering::getCmpLibcallReturnType() const {
@@ -890,9 +928,12 @@ unsigned TargetLowering::getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
   unsigned NumElts = VT.getVectorNumElements();
 
   // If there is a wider vector type with the same element type as this one,
-  // we should widen to that legal vector type.  This handles things like
-  // <2 x float> -> <4 x float>.
-  if (NumElts != 1 && getTypeAction(VT) == Promote) {
+  // or a promoted vector type that has the same number of elements which
+  // are wider, then we should convert to that legal vector type.
+  // This handles things like <2 x float> -> <4 x float> and
+  // <4 x i1> -> <4 x i32>.
+  LegalizeTypeAction TA = getTypeAction(Context, VT);
+  if (NumElts != 1 && (TA == TypeWidenVector || TA == TypePromoteInteger)) {
     RegisterVT = getTypeToTransformTo(Context, VT);
     if (isTypeLegal(RegisterVT)) {
       IntermediateVT = RegisterVT;
@@ -930,8 +971,14 @@ unsigned TargetLowering::getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
 
   EVT DestVT = getRegisterType(Context, NewVT);
   RegisterVT = DestVT;
+  unsigned NewVTSize = NewVT.getSizeInBits();
+
+  // Convert sizes such as i33 to i64.
+  if (!isPowerOf2_32(NewVTSize))
+    NewVTSize = NextPowerOf2(NewVTSize);
+
   if (DestVT.bitsLT(NewVT))   // Value is expanded, e.g. i64 -> i16.
-    return NumVectorRegs*(NewVT.getSizeInBits()/DestVT.getSizeInBits());
+    return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
 
   // Otherwise, promotion or legal types use the same number of registers as
   // the vector decimated to the appropriate level.
@@ -942,23 +989,21 @@ unsigned TargetLowering::getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
 /// type of the given function.  This does not require a DAG or a return value,
 /// and is suitable for use before any DAGs for the function are constructed.
 /// TODO: Move this out of TargetLowering.cpp.
-void llvm::GetReturnInfo(const Type* ReturnType, Attributes attr,
+void llvm::GetReturnInfo(Type* ReturnType, Attributes attr,
                          SmallVectorImpl<ISD::OutputArg> &Outs,
-                         const TargetLowering &TLI,
-                         SmallVectorImpl<uint64_t> *Offsets) {
+                         const TargetLowering &TLI) {
   SmallVector<EVT, 4> ValueVTs;
   ComputeValueVTs(TLI, ReturnType, ValueVTs);
   unsigned NumValues = ValueVTs.size();
   if (NumValues == 0) return;
-  unsigned Offset = 0;
 
   for (unsigned j = 0, f = NumValues; j != f; ++j) {
     EVT VT = ValueVTs[j];
     ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
 
-    if (attr & Attribute::SExt)
+    if (attr.hasAttribute(Attributes::SExt))
       ExtendKind = ISD::SIGN_EXTEND;
-    else if (attr & Attribute::ZExt)
+    else if (attr.hasAttribute(Attributes::ZExt))
       ExtendKind = ISD::ZERO_EXTEND;
 
     // FIXME: C calling convention requires the return type to be promoted to
@@ -973,34 +1018,27 @@ void llvm::GetReturnInfo(const Type* ReturnType, Attributes attr,
 
     unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT);
     EVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT);
-    unsigned PartSize = TLI.getTargetData()->getTypeAllocSize(
-                        PartVT.getTypeForEVT(ReturnType->getContext()));
 
     // 'inreg' on function refers to return value
     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
-    if (attr & Attribute::InReg)
+    if (attr.hasAttribute(Attributes::InReg))
       Flags.setInReg();
 
     // Propagate extension type if any
-    if (attr & Attribute::SExt)
+    if (attr.hasAttribute(Attributes::SExt))
       Flags.setSExt();
-    else if (attr & Attribute::ZExt)
+    else if (attr.hasAttribute(Attributes::ZExt))
       Flags.setZExt();
 
-    for (unsigned i = 0; i < NumParts; ++i) {
-      Outs.push_back(ISD::OutputArg(Flags, PartVT, /*isFixed=*/true));
-      if (Offsets) {
-        Offsets->push_back(Offset);
-        Offset += PartSize;
-      }
-    }
+    for (unsigned i = 0; i < NumParts; ++i)
+      Outs.push_back(ISD::OutputArg(Flags, PartVT, /*isFixed=*/true, 0, 0));
   }
 }
 
 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
 /// function arguments in the caller parameter area.  This is the actual
 /// alignment, not its logarithm.
-unsigned TargetLowering::getByValTypeAlignment(const Type *Ty) const {
+unsigned TargetLowering::getByValTypeAlignment(Type *Ty) const {
   return TD->getCallFrameTypeAlignment(Ty);
 }
 
@@ -1023,8 +1061,12 @@ unsigned TargetLowering::getJumpTableEncoding() const {
 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
                                                  SelectionDAG &DAG) const {
   // If our PIC model is GP relative, use the global offset table as the base.
-  if (getJumpTableEncoding() == MachineJumpTableInfo::EK_GPRel32BlockAddress)
-    return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy());
+  unsigned JTEncoding = getJumpTableEncoding();
+
+  if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
+      (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
+    return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(0));
+
   return Table;
 }
 
@@ -1166,7 +1208,7 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op,
     if (Depth != 0) {
       // If not at the root, Just compute the KnownZero/KnownOne bits to
       // simplify things downstream.
-      TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
+      TLO.DAG.ComputeMaskedBits(Op, KnownZero, KnownOne, Depth);
       return false;
     }
     // If this is the root being simplified, allow it to have multiple uses,
@@ -1185,8 +1227,8 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op,
   switch (Op.getOpcode()) {
   case ISD::Constant:
     // We know all of the bits for a constant!
-    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & NewMask;
-    KnownZero = ~KnownOne & NewMask;
+    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue();
+    KnownZero = ~KnownOne;
     return false;   // Don't fall through, will infinitely loop.
   case ISD::AND:
     // If the RHS is a constant, check to see if the LHS would be zero without
@@ -1196,8 +1238,7 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op,
     if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
       APInt LHSZero, LHSOne;
       // Do not increment Depth here; that can cause an infinite loop.
-      TLO.DAG.ComputeMaskedBits(Op.getOperand(0), NewMask,
-                                LHSZero, LHSOne, Depth);
+      TLO.DAG.ComputeMaskedBits(Op.getOperand(0), LHSZero, LHSOne, Depth);
       // If the LHS already has zeros where RHSC does, this and is dead.
       if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
         return TLO.CombineTo(Op, Op.getOperand(0));
@@ -1308,8 +1349,9 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op,
     // bits on that side are also known to be set on the other side, turn this
     // into an AND, as we know the bits will be cleared.
     //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
-    if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known
-      if ((KnownOne & KnownOne2) == KnownOne) {
+    // NB: it is okay if more bits are known than are requested
+    if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known on one side 
+      if (KnownOne == KnownOne2) { // set bits are the same on both sides
         EVT VT = Op.getValueType();
         SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT);
         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT,
@@ -1416,9 +1458,8 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op,
       if (InOp.getNode()->getOpcode() == ISD::ANY_EXTEND) {
         SDValue InnerOp = InOp.getNode()->getOperand(0);
         EVT InnerVT = InnerOp.getValueType();
-        if ((APInt::getHighBitsSet(BitWidth,
-                                   BitWidth - InnerVT.getSizeInBits()) &
-               DemandedMask) == 0 &&
+        unsigned InnerBits = InnerVT.getSizeInBits();
+        if (ShAmt < InnerBits && NewMask.lshr(InnerBits) == 0 &&
             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
           EVT ShTy = getShiftAmountTy(InnerVT);
           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
@@ -1488,7 +1529,7 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op,
     // always convert this into a logical shr, even if the shift amount is
     // variable.  The low bit of the shift cannot be an input sign bit unless
     // the shift amount is >= the size of the datatype, which is undefined.
-    if (DemandedMask == 1)
+    if (NewMask == 1)
       return TLO.CombineTo(Op,
                            TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(),
                                            Op.getOperand(0), Op.getOperand(1)));
@@ -1531,23 +1572,40 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op,
     }
     break;
   case ISD::SIGN_EXTEND_INREG: {
-    EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
+    EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
+
+    APInt MsbMask = APInt::getHighBitsSet(BitWidth, 1);
+    // If we only care about the highest bit, don't bother shifting right.
+    if (MsbMask == DemandedMask) {
+      unsigned ShAmt = ExVT.getScalarType().getSizeInBits();
+      SDValue InOp = Op.getOperand(0);
+
+      // Compute the correct shift amount type, which must be getShiftAmountTy
+      // for scalar types after legalization.
+      EVT ShiftAmtTy = Op.getValueType();
+      if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
+        ShiftAmtTy = getShiftAmountTy(ShiftAmtTy);
+
+      SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ShAmt, ShiftAmtTy);
+      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl,
+                                            Op.getValueType(), InOp, ShiftAmt));
+    }
 
     // Sign extension.  Compute the demanded bits in the result that are not
     // present in the input.
     APInt NewBits =
       APInt::getHighBitsSet(BitWidth,
-                            BitWidth - EVT.getScalarType().getSizeInBits());
+                            BitWidth - ExVT.getScalarType().getSizeInBits());
 
     // If none of the extended bits are demanded, eliminate the sextinreg.
     if ((NewBits & NewMask) == 0)
       return TLO.CombineTo(Op, Op.getOperand(0));
 
     APInt InSignBit =
-      APInt::getSignBit(EVT.getScalarType().getSizeInBits()).zext(BitWidth);
+      APInt::getSignBit(ExVT.getScalarType().getSizeInBits()).zext(BitWidth);
     APInt InputDemandedBits =
       APInt::getLowBitsSet(BitWidth,
-                           EVT.getScalarType().getSizeInBits()) &
+                           ExVT.getScalarType().getSizeInBits()) &
       NewMask;
 
     // Since the sign extended bits are demanded, we know that the sign
@@ -1565,7 +1623,7 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op,
     // If the input sign bit is known zero, convert this into a zero extension.
     if (KnownZero.intersects(InSignBit))
       return TLO.CombineTo(Op,
-                           TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,EVT));
+                          TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,ExVT));
 
     if (KnownOne.intersects(InSignBit)) {    // Input sign bit known set
       KnownOne |= NewBits;
@@ -1631,11 +1689,11 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op,
 
     // If the sign bit is known one, the top bits match.
     if (KnownOne.intersects(InSignBit)) {
-      KnownOne  |= NewBits;
-      KnownZero &= ~NewBits;
+      KnownOne |= NewBits;
+      assert((KnownZero & NewBits) == 0);
     } else {   // Otherwise, top bits aren't known.
-      KnownOne  &= ~NewBits;
-      KnownZero &= ~NewBits;
+      assert((KnownOne & NewBits) == 0);
+      assert((KnownZero & NewBits) == 0);
     }
     break;
   }
@@ -1710,41 +1768,44 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op,
     break;
   }
   case ISD::AssertZext: {
-    // Demand all the bits of the input that are demanded in the output.
-    // The low bits are obvious; the high bits are demanded because we're
-    // asserting that they're zero here.
-    if (SimplifyDemandedBits(Op.getOperand(0), NewMask,
+    // AssertZext demands all of the high bits, plus any of the low bits
+    // demanded by its users.
+    EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
+    APInt InMask = APInt::getLowBitsSet(BitWidth,
+                                        VT.getSizeInBits());
+    if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | NewMask,
                              KnownZero, KnownOne, TLO, Depth+1))
       return true;
     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
 
-    EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
-    APInt InMask = APInt::getLowBitsSet(BitWidth,
-                                        VT.getSizeInBits());
     KnownZero |= ~InMask & NewMask;
     break;
   }
   case ISD::BITCAST:
-#if 0
-    // If this is an FP->Int bitcast and if the sign bit is the only thing that
-    // is demanded, turn this into a FGETSIGN.
-    if (NewMask == EVT::getIntegerVTSignBit(Op.getValueType()) &&
-        MVT::isFloatingPoint(Op.getOperand(0).getValueType()) &&
-        !MVT::isVector(Op.getOperand(0).getValueType())) {
-      // Only do this xform if FGETSIGN is valid or if before legalize.
-      if (!TLO.AfterLegalize ||
-          isOperationLegal(ISD::FGETSIGN, Op.getValueType())) {
+    // If this is an FP->Int bitcast and if the sign bit is the only
+    // thing demanded, turn this into a FGETSIGN.
+    if (!TLO.LegalOperations() &&
+        !Op.getValueType().isVector() &&
+        !Op.getOperand(0).getValueType().isVector() &&
+        NewMask == APInt::getSignBit(Op.getValueType().getSizeInBits()) &&
+        Op.getOperand(0).getValueType().isFloatingPoint()) {
+      bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, Op.getValueType());
+      bool i32Legal  = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
+      if ((OpVTLegal || i32Legal) && Op.getValueType().isSimple()) {
+        EVT Ty = OpVTLegal ? Op.getValueType() : MVT::i32;
         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
         // place.  We expect the SHL to be eliminated by other optimizations.
-        SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, Op.getValueType(),
-                                         Op.getOperand(0));
+        SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Op.getOperand(0));
+        unsigned OpVTSizeInBits = Op.getValueType().getSizeInBits();
+        if (!OpVTLegal && OpVTSizeInBits > 32)
+          Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), Sign);
         unsigned ShVal = Op.getValueType().getSizeInBits()-1;
-        SDValue ShAmt = TLO.DAG.getConstant(ShVal, getShiftAmountTy());
-        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, Op.getValueType(),
+        SDValue ShAmt = TLO.DAG.getConstant(ShVal, Op.getValueType());
+        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl,
+                                                 Op.getValueType(),
                                                  Sign, ShAmt));
       }
     }
-#endif
     break;
   case ISD::ADD:
   case ISD::MUL:
@@ -1766,7 +1827,7 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op,
   // FALL THROUGH
   default:
     // Just use ComputeMaskedBits to compute output bits.
-    TLO.DAG.ComputeMaskedBits(Op, NewMask, KnownZero, KnownOne, Depth);
+    TLO.DAG.ComputeMaskedBits(Op, KnownZero, KnownOne, Depth);
     break;
   }
 
@@ -1782,7 +1843,6 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op,
 /// in Mask are known to be either zero or one and return them in the
 /// KnownZero/KnownOne bitsets.
 void TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
-                                                    const APInt &Mask,
                                                     APInt &KnownZero,
                                                     APInt &KnownOne,
                                                     const SelectionDAG &DAG,
@@ -1793,7 +1853,7 @@ void TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
          "Should use MaskedValueIsZero if you don't know whether Op"
          " is a target node!");
-  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
+  KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0);
 }
 
 /// ComputeNumSignBitsForTargetNode - This method can be implemented by
@@ -1837,9 +1897,8 @@ static bool ValueHasExactlyOneBitSet(SDValue Val, const SelectionDAG &DAG) {
   // Fall back to ComputeMaskedBits to catch other known cases.
   EVT OpVT = Val.getValueType();
   unsigned BitWidth = OpVT.getScalarType().getSizeInBits();
-  APInt Mask = APInt::getAllOnesValue(BitWidth);
   APInt KnownZero, KnownOne;
-  DAG.ComputeMaskedBits(Val, Mask, KnownZero, KnownOne);
+  DAG.ComputeMaskedBits(Val, KnownZero, KnownOne);
   return (KnownZero.countPopulation() == BitWidth - 1) &&
          (KnownOne.countPopulation() == 1);
 }
@@ -1865,7 +1924,7 @@ TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
   // comparisons.
   if (isa<ConstantSDNode>(N0.getNode()))
     return DAG.getSetCC(dl, VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
-  
+
   if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
     const APInt &C1 = N1C->getAPIntValue();
 
@@ -1942,7 +2001,7 @@ TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
         }
       }
 
-      // Make sure we're not loosing bits from the constant.
+      // Make sure we're not losing bits from the constant.
       if (MinBits < C1.getBitWidth() && MinBits > C1.getActiveBits()) {
         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
@@ -2002,7 +2061,7 @@ TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
           unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
           SDValue NewLoad = DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
                                 Lod->getPointerInfo().getWithOffset(bestOffset),
-                                        false, false, NewAlign);
+                                        false, false, false, NewAlign);
           return DAG.getSetCC(dl, VT,
                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
                                       DAG.getConstant(bestMask.trunc(bestWidth),
@@ -2135,7 +2194,7 @@ TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
         }
       } else if (N1C->getAPIntValue() == 1 &&
                  (VT == MVT::i1 ||
-                  getBooleanContents() == ZeroOrOneBooleanContent)) {
+                  getBooleanContents(false) == ZeroOrOneBooleanContent)) {
         SDValue Op0 = N0;
         if (Op0.getOpcode() == ISD::TRUNCATE)
           Op0 = Op0.getOperand(0);
@@ -2247,7 +2306,7 @@ TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
         N0.getOpcode() == ISD::AND)
       if (ConstantSDNode *AndRHS =
                   dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
-        EVT ShiftTy = DCI.isBeforeLegalize() ?
+        EVT ShiftTy = DCI.isBeforeLegalizeOps() ?
           getPointerTy() : getShiftAmountTy(N0.getValueType());
         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
           // Perform the xform if the AND RHS is a single bit.
@@ -2266,6 +2325,55 @@ TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
           }
         }
       }
+
+    if (C1.getMinSignedBits() <= 64 &&
+        !isLegalICmpImmediate(C1.getSExtValue())) {
+      // (X & -256) == 256 -> (X >> 8) == 1
+      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
+          N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
+        if (ConstantSDNode *AndRHS =
+            dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
+          const APInt &AndRHSC = AndRHS->getAPIntValue();
+          if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) {
+            unsigned ShiftBits = AndRHSC.countTrailingZeros();
+            EVT ShiftTy = DCI.isBeforeLegalizeOps() ?
+              getPointerTy() : getShiftAmountTy(N0.getValueType());
+            EVT CmpTy = N0.getValueType();
+            SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0),
+                                        DAG.getConstant(ShiftBits, ShiftTy));
+            SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), CmpTy);
+            return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
+          }
+        }
+      } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
+                 Cond == ISD::SETULE || Cond == ISD::SETUGT) {
+        bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
+        // X <  0x100000000 -> (X >> 32) <  1
+        // X >= 0x100000000 -> (X >> 32) >= 1
+        // X <= 0x0ffffffff -> (X >> 32) <  1
+        // X >  0x0ffffffff -> (X >> 32) >= 1
+        unsigned ShiftBits;
+        APInt NewC = C1;
+        ISD::CondCode NewCond = Cond;
+        if (AdjOne) {
+          ShiftBits = C1.countTrailingOnes();
+          NewC = NewC + 1;
+          NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
+        } else {
+          ShiftBits = C1.countTrailingZeros();
+        }
+        NewC = NewC.lshr(ShiftBits);
+        if (ShiftBits && isLegalICmpImmediate(NewC.getSExtValue())) {
+          EVT ShiftTy = DCI.isBeforeLegalizeOps() ?
+            getPointerTy() : getShiftAmountTy(N0.getValueType());
+          EVT CmpTy = N0.getValueType();
+          SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0,
+                                      DAG.getConstant(ShiftBits, ShiftTy));
+          SDValue CmpRHS = DAG.getConstant(NewC, CmpTy);
+          return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
+        }
+      }
+    }
   }
 
   if (isa<ConstantFPSDNode>(N0.getNode())) {
@@ -2334,18 +2442,33 @@ TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
   }
 
   if (N0 == N1) {
+    // The sext(setcc()) => setcc() optimization relies on the appropriate
+    // constant being emitted.
+    uint64_t EqVal = 0;
+    switch (getBooleanContents(N0.getValueType().isVector())) {
+    case UndefinedBooleanContent:
+    case ZeroOrOneBooleanContent:
+      EqVal = ISD::isTrueWhenEqual(Cond);
+      break;
+    case ZeroOrNegativeOneBooleanContent:
+      EqVal = ISD::isTrueWhenEqual(Cond) ? -1 : 0;
+      break;
+    }
+
     // We can always fold X == X for integer setcc's.
-    if (N0.getValueType().isInteger())
-      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
+    if (N0.getValueType().isInteger()) {
+      return DAG.getConstant(EqVal, VT);
+    }
     unsigned UOF = ISD::getUnorderedFlavor(Cond);
     if (UOF == 2)   // FP operators that are undefined on NaNs.
-      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
+      return DAG.getConstant(EqVal, VT);
     if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
-      return DAG.getConstant(UOF, VT);
+      return DAG.getConstant(EqVal, VT);
     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
     // if it is not already.
     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
-    if (NewCond != Cond)
+    if (NewCond != Cond && (DCI.isBeforeLegalizeOps() ||
+          getCondCodeAction(NewCond, N0.getValueType()) == Legal))
       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
   }
 
@@ -2370,6 +2493,10 @@ TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
         }
       }
 
+      // If RHS is a legal immediate value for a compare instruction, we need
+      // to be careful about increasing register pressure needlessly.
+      bool LegalRHSImm = false;
+
       if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
         if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
           // Turn (X+C1) == C2 --> X == C2-C1
@@ -2404,25 +2531,33 @@ TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
                            Cond);
           }
         }
+
+        // Could RHSC fold directly into a compare?
+        if (RHSC->getValueType(0).getSizeInBits() <= 64)
+          LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
       }
 
       // Simplify (X+Z) == X -->  Z == 0
-      if (N0.getOperand(0) == N1)
-        return DAG.getSetCC(dl, VT, N0.getOperand(1),
-                        DAG.getConstant(0, N0.getValueType()), Cond);
-      if (N0.getOperand(1) == N1) {
-        if (DAG.isCommutativeBinOp(N0.getOpcode()))
-          return DAG.getSetCC(dl, VT, N0.getOperand(0),
-                          DAG.getConstant(0, N0.getValueType()), Cond);
-        else if (N0.getNode()->hasOneUse()) {
-          assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
-          // (Z-X) == X  --> Z == X<<1
-          SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(),
-                                     N1,
+      // Don't do this if X is an immediate that can fold into a cmp
+      // instruction and X+Z has other uses. It could be an induction variable
+      // chain, and the transform would increase register pressure.
+      if (!LegalRHSImm || N0.getNode()->hasOneUse()) {
+        if (N0.getOperand(0) == N1)
+          return DAG.getSetCC(dl, VT, N0.getOperand(1),
+                              DAG.getConstant(0, N0.getValueType()), Cond);
+        if (N0.getOperand(1) == N1) {
+          if (DAG.isCommutativeBinOp(N0.getOpcode()))
+            return DAG.getSetCC(dl, VT, N0.getOperand(0),
+                                DAG.getConstant(0, N0.getValueType()), Cond);
+          else if (N0.getNode()->hasOneUse()) {
+            assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
+            // (Z-X) == X  --> Z == X<<1
+            SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N1,
                        DAG.getConstant(1, getShiftAmountTy(N1.getValueType())));
-          if (!DCI.isCalledByLegalizer())
-            DCI.AddToWorklist(SH.getNode());
-          return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond);
+            if (!DCI.isCalledByLegalizer())
+              DCI.AddToWorklist(SH.getNode());
+            return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond);
+          }
         }
       }
     }
@@ -2571,7 +2706,6 @@ PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
 
 TargetLowering::ConstraintType
 TargetLowering::getConstraintType(const std::string &Constraint) const {
-  // FIXME: lots more standard ones to handle.
   if (Constraint.size() == 1) {
     switch (Constraint[0]) {
     default: break;
@@ -2621,9 +2755,13 @@ const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{
 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
 /// vector.  If it is invalid, don't add anything to Ops.
 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
-                                                  char ConstraintLetter,
+                                                  std::string &Constraint,
                                                   std::vector<SDValue> &Ops,
                                                   SelectionDAG &DAG) const {
+
+  if (Constraint.length() > 1) return;
+
+  char ConstraintLetter = Constraint[0];
   switch (ConstraintLetter) {
   default: break;
   case 'X':     // Allows any operand; labels (basic block) use this.
@@ -2681,13 +2819,6 @@ void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
   }
 }
 
-std::vector<unsigned> TargetLowering::
-getRegClassForInlineAsmConstraint(const std::string &Constraint,
-                                  EVT VT) const {
-  return std::vector<unsigned>();
-}
-
-
 std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
 getRegForInlineAsmConstraint(const std::string &Constraint,
                              EVT VT) const {
@@ -2706,16 +2837,8 @@ getRegForInlineAsmConstraint(const std::string &Constraint,
 
     // If none of the value types for this register class are valid, we
     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
-    bool isLegal = false;
-    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
-         I != E; ++I) {
-      if (isTypeLegal(*I)) {
-        isLegal = true;
-        break;
-      }
-    }
-
-    if (!isLegal) continue;
+    if (!isLegalRC(RC))
+      continue;
 
     for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
          I != E; ++I) {
@@ -2788,7 +2911,7 @@ TargetLowering::AsmOperandInfoVector TargetLowering::ParseConstraints(
       // corresponding argument.
       assert(!CS.getType()->isVoidTy() &&
              "Bad inline asm!");
-      if (const StructType *STy = dyn_cast<StructType>(CS.getType())) {
+      if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
         OpInfo.ConstraintVT = getValueType(STy->getElementType(ResNo));
       } else {
         assert(ResNo == 0 && "Asm only has one result!");
@@ -2805,16 +2928,16 @@ TargetLowering::AsmOperandInfoVector TargetLowering::ParseConstraints(
     }
 
     if (OpInfo.CallOperandVal) {
-      const llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
+      llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
       if (OpInfo.isIndirect) {
-        const llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
+        llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
         if (!PtrTy)
           report_fatal_error("Indirect operand for inline asm not a pointer!");
         OpTy = PtrTy->getElementType();
       }
-      
+
       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
-      if (const StructType *STy = dyn_cast<StructType>(OpTy))
+      if (StructType *STy = dyn_cast<StructType>(OpTy))
         if (STy->getNumElements() == 1)
           OpTy = STy->getElementType(0);
 
@@ -2834,8 +2957,9 @@ TargetLowering::AsmOperandInfoVector TargetLowering::ParseConstraints(
               EVT::getEVT(IntegerType::get(OpTy->getContext(), BitSize), true);
           break;
         }
-      } else if (dyn_cast<PointerType>(OpTy)) {
-        OpInfo.ConstraintVT = MVT::getIntegerVT(8*TD->getPointerSize());
+      } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
+        OpInfo.ConstraintVT = MVT::getIntegerVT(
+            8*TD->getPointerSize(PT->getAddressSpace()));
       } else {
         OpInfo.ConstraintVT = EVT::getEVT(OpTy, true);
       }
@@ -2914,10 +3038,15 @@ TargetLowering::AsmOperandInfoVector TargetLowering::ParseConstraints(
       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
 
       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
+        std::pair<unsigned, const TargetRegisterClass*> MatchRC =
+          getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
+                                       OpInfo.ConstraintVT);
+        std::pair<unsigned, const TargetRegisterClass*> InputRC =
+          getRegForInlineAsmConstraint(Input.ConstraintCode,
+                                       Input.ConstraintVT);
         if ((OpInfo.ConstraintVT.isInteger() !=
              Input.ConstraintVT.isInteger()) ||
-            (OpInfo.ConstraintVT.getSizeInBits() !=
-             Input.ConstraintVT.getSizeInBits())) {
+            (MatchRC.second != InputRC.second)) {
           report_fatal_error("Unsupported asm: input constraint"
                              " with a matching output constraint of"
                              " incompatible type!");
@@ -2935,7 +3064,6 @@ TargetLowering::AsmOperandInfoVector TargetLowering::ParseConstraints(
 /// is.
 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
   switch (CT) {
-  default: llvm_unreachable("Unknown constraint type!");
   case TargetLowering::C_Other:
   case TargetLowering::C_Unknown:
     return 0;
@@ -2946,6 +3074,7 @@ static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
   case TargetLowering::C_Memory:
     return 3;
   }
+  llvm_unreachable("Invalid constraint type");
 }
 
 /// Examine constraint type and operand type and determine a weight value.
@@ -3062,7 +3191,7 @@ static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
       assert(OpInfo.Codes[i].size() == 1 &&
              "Unhandled multi-letter 'other' constraint");
       std::vector<SDValue> ResultOps;
-      TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i][0],
+      TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
                                        ResultOps, *DAG);
       if (!ResultOps.empty()) {
         BestType = CType;
@@ -3132,7 +3261,7 @@ void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
 /// isLegalAddressingMode - Return true if the addressing mode represented
 /// by AM is legal for this target, for a load/store of the specified type.
 bool TargetLowering::isLegalAddressingMode(const AddrMode &AM,
-                                           const Type *Ty) const {
+                                           Type *Ty) const {
   // The default implementation of this implements a conservative RISCy, r+r and
   // r+i addr mode.
 
@@ -3163,12 +3292,39 @@ bool TargetLowering::isLegalAddressingMode(const AddrMode &AM,
   return true;
 }
 
+/// BuildExactDiv - Given an exact SDIV by a constant, create a multiplication
+/// with the multiplicative inverse of the constant.
+SDValue TargetLowering::BuildExactSDIV(SDValue Op1, SDValue Op2, DebugLoc dl,
+                                       SelectionDAG &DAG) const {
+  ConstantSDNode *C = cast<ConstantSDNode>(Op2);
+  APInt d = C->getAPIntValue();
+  assert(d != 0 && "Division by zero!");
+
+  // Shift the value upfront if it is even, so the LSB is one.
+  unsigned ShAmt = d.countTrailingZeros();
+  if (ShAmt) {
+    // TODO: For UDIV use SRL instead of SRA.
+    SDValue Amt = DAG.getConstant(ShAmt, getShiftAmountTy(Op1.getValueType()));
+    Op1 = DAG.getNode(ISD::SRA, dl, Op1.getValueType(), Op1, Amt);
+    d = d.ashr(ShAmt);
+  }
+
+  // Calculate the multiplicative inverse, using Newton's method.
+  APInt t, xn = d;
+  while ((t = d*xn) != 1)
+    xn *= APInt(d.getBitWidth(), 2) - t;
+
+  Op2 = DAG.getConstant(xn, Op1.getValueType());
+  return DAG.getNode(ISD::MUL, dl, Op1.getValueType(), Op1, Op2);
+}
+
 /// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
 /// return a DAG expression to select that will generate the same value by
 /// multiplying by a magic number.  See:
 /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
-SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
-                                  std::vector<SDNode*>* Created) const {
+SDValue TargetLowering::
+BuildSDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization,
+          std::vector<SDNode*>* Created) const {
   EVT VT = N->getValueType(0);
   DebugLoc dl= N->getDebugLoc();
 
@@ -3183,10 +3339,12 @@ SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
   // Multiply the numerator (operand 0) by the magic value
   // FIXME: We should support doing a MUL in a wider type
   SDValue Q;
-  if (isOperationLegalOrCustom(ISD::MULHS, VT))
+  if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) :
+                            isOperationLegalOrCustom(ISD::MULHS, VT))
     Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0),
                     DAG.getConstant(magics.m, VT));
-  else if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT))
+  else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) :
+                                 isOperationLegalOrCustom(ISD::SMUL_LOHI, VT))
     Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT),
                               N->getOperand(0),
                               DAG.getConstant(magics.m, VT)).getNode(), 1);
@@ -3224,8 +3382,9 @@ SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
 /// return a DAG expression to select that will generate the same value by
 /// multiplying by a magic number.  See:
 /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
-SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
-                                  std::vector<SDNode*>* Created) const {
+SDValue TargetLowering::
+BuildUDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization,
+          std::vector<SDNode*>* Created) const {
   EVT VT = N->getValueType(0);
   DebugLoc dl = N->getDebugLoc();
 
@@ -3257,9 +3416,11 @@ SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
 
   // Multiply the numerator (operand 0) by the magic value
   // FIXME: We should support doing a MUL in a wider type
-  if (isOperationLegalOrCustom(ISD::MULHU, VT))
+  if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) :
+                            isOperationLegalOrCustom(ISD::MULHU, VT))
     Q = DAG.getNode(ISD::MULHU, dl, VT, Q, DAG.getConstant(magics.m, VT));
-  else if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT))
+  else if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) :
+                                 isOperationLegalOrCustom(ISD::UMUL_LOHI, VT))
     Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), Q,
                             DAG.getConstant(magics.m, VT)).getNode(), 1);
   else