Sink SubtargetFeature and TargetInstrItineraries (renamed MCInstrItineraries) into MC.
[oota-llvm.git] / lib / CodeGen / SelectionDAG / ScheduleDAGSDNodes.cpp
index 347410ae7d690c795c1f5f092eb6530ed5ae4991..63ca326417135e6f965216aa201fb0a7b1b68193 100644 (file)
 //===----------------------------------------------------------------------===//
 
 #define DEBUG_TYPE "pre-RA-sched"
-#include "llvm/CodeGen/ScheduleDAGSDNodes.h"
+#include "SDNodeDbgValue.h"
+#include "ScheduleDAGSDNodes.h"
+#include "InstrEmitter.h"
 #include "llvm/CodeGen/SelectionDAG.h"
+#include "llvm/MC/MCInstrItineraries.h"
 #include "llvm/Target/TargetMachine.h"
 #include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetLowering.h"
 #include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Target/TargetSubtarget.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Support/CommandLine.h"
 #include "llvm/Support/Debug.h"
 #include "llvm/Support/raw_ostream.h"
 using namespace llvm;
 
-ScheduleDAGSDNodes::ScheduleDAGSDNodes(SelectionDAG *dag, MachineBasicBlock *bb,
-                                       const TargetMachine &tm)
-  : ScheduleDAG(dag, bb, tm) {
+STATISTIC(LoadsClustered, "Number of loads clustered together");
+
+// This allows latency based scheduler to notice high latency instructions
+// without a target itinerary. The choise if number here has more to do with
+// balancing scheduler heursitics than with the actual machine latency.
+static cl::opt<int> HighLatencyCycles(
+  "sched-high-latency-cycles", cl::Hidden, cl::init(10),
+  cl::desc("Roughly estimate the number of cycles that 'long latency'"
+           "instructions take for targets with no itinerary"));
+
+ScheduleDAGSDNodes::ScheduleDAGSDNodes(MachineFunction &mf)
+  : ScheduleDAG(mf),
+    InstrItins(mf.getTarget().getInstrItineraryData()) {}
+
+/// Run - perform scheduling.
+///
+void ScheduleDAGSDNodes::Run(SelectionDAG *dag, MachineBasicBlock *bb,
+                             MachineBasicBlock::iterator insertPos) {
+  DAG = dag;
+  ScheduleDAG::Run(bb, insertPos);
+}
+
+/// NewSUnit - Creates a new SUnit and return a ptr to it.
+///
+SUnit *ScheduleDAGSDNodes::NewSUnit(SDNode *N) {
+#ifndef NDEBUG
+  const SUnit *Addr = 0;
+  if (!SUnits.empty())
+    Addr = &SUnits[0];
+#endif
+  SUnits.push_back(SUnit(N, (unsigned)SUnits.size()));
+  assert((Addr == 0 || Addr == &SUnits[0]) &&
+         "SUnits std::vector reallocated on the fly!");
+  SUnits.back().OrigNode = &SUnits.back();
+  SUnit *SU = &SUnits.back();
+  const TargetLowering &TLI = DAG->getTargetLoweringInfo();
+  if (!N ||
+      (N->isMachineOpcode() &&
+       N->getMachineOpcode() == TargetOpcode::IMPLICIT_DEF))
+    SU->SchedulingPref = Sched::None;
+  else
+    SU->SchedulingPref = TLI.getSchedulingPreference(N);
+  return SU;
 }
 
 SUnit *ScheduleDAGSDNodes::Clone(SUnit *Old) {
   SUnit *SU = NewSUnit(Old->getNode());
   SU->OrigNode = Old->OrigNode;
   SU->Latency = Old->Latency;
+  SU->isVRegCycle = Old->isVRegCycle;
+  SU->isCall = Old->isCall;
+  SU->isCallOp = Old->isCallOp;
   SU->isTwoAddress = Old->isTwoAddress;
   SU->isCommutable = Old->isCommutable;
   SU->hasPhysRegDefs = Old->hasPhysRegDefs;
+  SU->hasPhysRegClobbers = Old->hasPhysRegClobbers;
+  SU->isScheduleHigh = Old->isScheduleHigh;
+  SU->isScheduleLow = Old->isScheduleLow;
+  SU->SchedulingPref = Old->SchedulingPref;
+  Old->isCloned = true;
   return SU;
 }
 
@@ -41,7 +100,7 @@ SUnit *ScheduleDAGSDNodes::Clone(SUnit *Old) {
 /// a specified operand is a physical register dependency. If so, returns the
 /// register and the cost of copying the register.
 static void CheckForPhysRegDependency(SDNode *Def, SDNode *User, unsigned Op,
-                                      const TargetRegisterInfo *TRI, 
+                                      const TargetRegisterInfo *TRI,
                                       const TargetInstrInfo *TII,
                                       unsigned &PhysReg, int &Cost) {
   if (Op != 2 || User->getOpcode() != ISD::CopyToReg)
@@ -53,17 +112,157 @@ static void CheckForPhysRegDependency(SDNode *Def, SDNode *User, unsigned Op,
 
   unsigned ResNo = User->getOperand(2).getResNo();
   if (Def->isMachineOpcode()) {
-    const TargetInstrDesc &II = TII->get(Def->getMachineOpcode());
+    const MCInstrDesc &II = TII->get(Def->getMachineOpcode());
     if (ResNo >= II.getNumDefs() &&
         II.ImplicitDefs[ResNo - II.getNumDefs()] == Reg) {
       PhysReg = Reg;
       const TargetRegisterClass *RC =
-        TRI->getPhysicalRegisterRegClass(Reg, Def->getValueType(ResNo));
+        TRI->getMinimalPhysRegClass(Reg, Def->getValueType(ResNo));
       Cost = RC->getCopyCost();
     }
   }
 }
 
+static void AddGlue(SDNode *N, SDValue Glue, bool AddGlue, SelectionDAG *DAG) {
+  SmallVector<EVT, 4> VTs;
+  SDNode *GlueDestNode = Glue.getNode();
+
+  // Don't add glue from a node to itself.
+  if (GlueDestNode == N) return;
+
+  // Don't add glue to something which already has glue.
+  if (N->getValueType(N->getNumValues() - 1) == MVT::Glue) return;
+
+  for (unsigned I = 0, E = N->getNumValues(); I != E; ++I)
+    VTs.push_back(N->getValueType(I));
+
+  if (AddGlue)
+    VTs.push_back(MVT::Glue);
+
+  SmallVector<SDValue, 4> Ops;
+  for (unsigned I = 0, E = N->getNumOperands(); I != E; ++I)
+    Ops.push_back(N->getOperand(I));
+
+  if (GlueDestNode)
+    Ops.push_back(Glue);
+
+  SDVTList VTList = DAG->getVTList(&VTs[0], VTs.size());
+  MachineSDNode::mmo_iterator Begin = 0, End = 0;
+  MachineSDNode *MN = dyn_cast<MachineSDNode>(N);
+
+  // Store memory references.
+  if (MN) {
+    Begin = MN->memoperands_begin();
+    End = MN->memoperands_end();
+  }
+
+  DAG->MorphNodeTo(N, N->getOpcode(), VTList, &Ops[0], Ops.size());
+
+  // Reset the memory references
+  if (MN)
+    MN->setMemRefs(Begin, End);
+}
+
+/// ClusterNeighboringLoads - Force nearby loads together by "gluing" them.
+/// This function finds loads of the same base and different offsets. If the
+/// offsets are not far apart (target specific), it add MVT::Glue inputs and
+/// outputs to ensure they are scheduled together and in order. This
+/// optimization may benefit some targets by improving cache locality.
+void ScheduleDAGSDNodes::ClusterNeighboringLoads(SDNode *Node) {
+  SDNode *Chain = 0;
+  unsigned NumOps = Node->getNumOperands();
+  if (Node->getOperand(NumOps-1).getValueType() == MVT::Other)
+    Chain = Node->getOperand(NumOps-1).getNode();
+  if (!Chain)
+    return;
+
+  // Look for other loads of the same chain. Find loads that are loading from
+  // the same base pointer and different offsets.
+  SmallPtrSet<SDNode*, 16> Visited;
+  SmallVector<int64_t, 4> Offsets;
+  DenseMap<long long, SDNode*> O2SMap;  // Map from offset to SDNode.
+  bool Cluster = false;
+  SDNode *Base = Node;
+  for (SDNode::use_iterator I = Chain->use_begin(), E = Chain->use_end();
+       I != E; ++I) {
+    SDNode *User = *I;
+    if (User == Node || !Visited.insert(User))
+      continue;
+    int64_t Offset1, Offset2;
+    if (!TII->areLoadsFromSameBasePtr(Base, User, Offset1, Offset2) ||
+        Offset1 == Offset2)
+      // FIXME: Should be ok if they addresses are identical. But earlier
+      // optimizations really should have eliminated one of the loads.
+      continue;
+    if (O2SMap.insert(std::make_pair(Offset1, Base)).second)
+      Offsets.push_back(Offset1);
+    O2SMap.insert(std::make_pair(Offset2, User));
+    Offsets.push_back(Offset2);
+    if (Offset2 < Offset1)
+      Base = User;
+    Cluster = true;
+  }
+
+  if (!Cluster)
+    return;
+
+  // Sort them in increasing order.
+  std::sort(Offsets.begin(), Offsets.end());
+
+  // Check if the loads are close enough.
+  SmallVector<SDNode*, 4> Loads;
+  unsigned NumLoads = 0;
+  int64_t BaseOff = Offsets[0];
+  SDNode *BaseLoad = O2SMap[BaseOff];
+  Loads.push_back(BaseLoad);
+  for (unsigned i = 1, e = Offsets.size(); i != e; ++i) {
+    int64_t Offset = Offsets[i];
+    SDNode *Load = O2SMap[Offset];
+    if (!TII->shouldScheduleLoadsNear(BaseLoad, Load, BaseOff, Offset,NumLoads))
+      break; // Stop right here. Ignore loads that are further away.
+    Loads.push_back(Load);
+    ++NumLoads;
+  }
+
+  if (NumLoads == 0)
+    return;
+
+  // Cluster loads by adding MVT::Glue outputs and inputs. This also
+  // ensure they are scheduled in order of increasing addresses.
+  SDNode *Lead = Loads[0];
+  AddGlue(Lead, SDValue(0, 0), true, DAG);
+
+  SDValue InGlue = SDValue(Lead, Lead->getNumValues() - 1);
+  for (unsigned I = 1, E = Loads.size(); I != E; ++I) {
+    bool OutGlue = I < E - 1;
+    SDNode *Load = Loads[I];
+
+    AddGlue(Load, InGlue, OutGlue, DAG);
+
+    if (OutGlue)
+      InGlue = SDValue(Load, Load->getNumValues() - 1);
+
+    ++LoadsClustered;
+  }
+}
+
+/// ClusterNodes - Cluster certain nodes which should be scheduled together.
+///
+void ScheduleDAGSDNodes::ClusterNodes() {
+  for (SelectionDAG::allnodes_iterator NI = DAG->allnodes_begin(),
+       E = DAG->allnodes_end(); NI != E; ++NI) {
+    SDNode *Node = &*NI;
+    if (!Node || !Node->isMachineOpcode())
+      continue;
+
+    unsigned Opc = Node->getMachineOpcode();
+    const MCInstrDesc &MCID = TII->get(Opc);
+    if (MCID.mayLoad())
+      // Cluster loads from "near" addresses into combined SUnits.
+      ClusterNeighboringLoads(Node);
+  }
+}
+
 void ScheduleDAGSDNodes::BuildSchedUnits() {
   // During scheduling, the NodeId field of SDNode is used to map SDNodes
   // to their associated SUnits by holding SUnits table indices. A value
@@ -81,96 +280,140 @@ void ScheduleDAGSDNodes::BuildSchedUnits() {
   // FIXME: Multiply by 2 because we may clone nodes during scheduling.
   // This is a temporary workaround.
   SUnits.reserve(NumNodes * 2);
-  
-  // Check to see if the scheduler cares about latencies.
-  bool UnitLatencies = ForceUnitLatencies();
 
-  for (SelectionDAG::allnodes_iterator NI = DAG->allnodes_begin(),
-       E = DAG->allnodes_end(); NI != E; ++NI) {
+  // Add all nodes in depth first order.
+  SmallVector<SDNode*, 64> Worklist;
+  SmallPtrSet<SDNode*, 64> Visited;
+  Worklist.push_back(DAG->getRoot().getNode());
+  Visited.insert(DAG->getRoot().getNode());
+
+  SmallVector<SUnit*, 8> CallSUnits;
+  while (!Worklist.empty()) {
+    SDNode *NI = Worklist.pop_back_val();
+
+    // Add all operands to the worklist unless they've already been added.
+    for (unsigned i = 0, e = NI->getNumOperands(); i != e; ++i)
+      if (Visited.insert(NI->getOperand(i).getNode()))
+        Worklist.push_back(NI->getOperand(i).getNode());
+
     if (isPassiveNode(NI))  // Leaf node, e.g. a TargetImmediate.
       continue;
-    
+
     // If this node has already been processed, stop now.
     if (NI->getNodeId() != -1) continue;
-    
+
     SUnit *NodeSUnit = NewSUnit(NI);
-    
-    // See if anything is flagged to this node, if so, add them to flagged
-    // nodes.  Nodes can have at most one flag input and one flag output.  Flags
-    // are required the be the last operand and result of a node.
-    
-    // Scan up to find flagged preds.
+
+    // See if anything is glued to this node, if so, add them to glued
+    // nodes.  Nodes can have at most one glue input and one glue output.  Glue
+    // is required to be the last operand and result of a node.
+
+    // Scan up to find glued preds.
     SDNode *N = NI;
-    if (N->getNumOperands() &&
-        N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Flag) {
-      do {
-        N = N->getOperand(N->getNumOperands()-1).getNode();
-        assert(N->getNodeId() == -1 && "Node already inserted!");
-        N->setNodeId(NodeSUnit->NodeNum);
-      } while (N->getNumOperands() &&
-               N->getOperand(N->getNumOperands()-1).getValueType()== MVT::Flag);
+    while (N->getNumOperands() &&
+           N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue) {
+      N = N->getOperand(N->getNumOperands()-1).getNode();
+      assert(N->getNodeId() == -1 && "Node already inserted!");
+      N->setNodeId(NodeSUnit->NodeNum);
+      if (N->isMachineOpcode() && TII->get(N->getMachineOpcode()).isCall())
+        NodeSUnit->isCall = true;
     }
-    
-    // Scan down to find any flagged succs.
+
+    // Scan down to find any glued succs.
     N = NI;
-    while (N->getValueType(N->getNumValues()-1) == MVT::Flag) {
-      SDValue FlagVal(N, N->getNumValues()-1);
-      
-      // There are either zero or one users of the Flag result.
-      bool HasFlagUse = false;
-      for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); 
+    while (N->getValueType(N->getNumValues()-1) == MVT::Glue) {
+      SDValue GlueVal(N, N->getNumValues()-1);
+
+      // There are either zero or one users of the Glue result.
+      bool HasGlueUse = false;
+      for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end();
            UI != E; ++UI)
-        if (FlagVal.isOperandOf(*UI)) {
-          HasFlagUse = true;
+        if (GlueVal.isOperandOf(*UI)) {
+          HasGlueUse = true;
           assert(N->getNodeId() == -1 && "Node already inserted!");
           N->setNodeId(NodeSUnit->NodeNum);
           N = *UI;
+          if (N->isMachineOpcode() && TII->get(N->getMachineOpcode()).isCall())
+            NodeSUnit->isCall = true;
           break;
         }
-      if (!HasFlagUse) break;
+      if (!HasGlueUse) break;
     }
-    
-    // If there are flag operands involved, N is now the bottom-most node
-    // of the sequence of nodes that are flagged together.
+
+    if (NodeSUnit->isCall)
+      CallSUnits.push_back(NodeSUnit);
+
+    // Schedule zero-latency TokenFactor below any nodes that may increase the
+    // schedule height. Otherwise, ancestors of the TokenFactor may appear to
+    // have false stalls.
+    if (NI->getOpcode() == ISD::TokenFactor)
+      NodeSUnit->isScheduleLow = true;
+
+    // If there are glue operands involved, N is now the bottom-most node
+    // of the sequence of nodes that are glued together.
     // Update the SUnit.
     NodeSUnit->setNode(N);
     assert(N->getNodeId() == -1 && "Node already inserted!");
     N->setNodeId(NodeSUnit->NodeNum);
 
+    // Compute NumRegDefsLeft. This must be done before AddSchedEdges.
+    InitNumRegDefsLeft(NodeSUnit);
+
     // Assign the Latency field of NodeSUnit using target-provided information.
-    if (UnitLatencies)
-      NodeSUnit->Latency = 1;
-    else
-      ComputeLatency(NodeSUnit);
+    ComputeLatency(NodeSUnit);
+  }
+
+  // Find all call operands.
+  while (!CallSUnits.empty()) {
+    SUnit *SU = CallSUnits.pop_back_val();
+    for (const SDNode *SUNode = SU->getNode(); SUNode;
+         SUNode = SUNode->getGluedNode()) {
+      if (SUNode->getOpcode() != ISD::CopyToReg)
+        continue;
+      SDNode *SrcN = SUNode->getOperand(2).getNode();
+      if (isPassiveNode(SrcN)) continue;   // Not scheduled.
+      SUnit *SrcSU = &SUnits[SrcN->getNodeId()];
+      SrcSU->isCallOp = true;
+    }
   }
 }
 
 void ScheduleDAGSDNodes::AddSchedEdges() {
+  const TargetSubtarget &ST = TM.getSubtarget<TargetSubtarget>();
+
+  // Check to see if the scheduler cares about latencies.
+  bool UnitLatencies = ForceUnitLatencies();
+
   // Pass 2: add the preds, succs, etc.
   for (unsigned su = 0, e = SUnits.size(); su != e; ++su) {
     SUnit *SU = &SUnits[su];
     SDNode *MainNode = SU->getNode();
-    
+
     if (MainNode->isMachineOpcode()) {
       unsigned Opc = MainNode->getMachineOpcode();
-      const TargetInstrDesc &TID = TII->get(Opc);
-      for (unsigned i = 0; i != TID.getNumOperands(); ++i) {
-        if (TID.getOperandConstraint(i, TOI::TIED_TO) != -1) {
+      const MCInstrDesc &MCID = TII->get(Opc);
+      for (unsigned i = 0; i != MCID.getNumOperands(); ++i) {
+        if (MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1) {
           SU->isTwoAddress = true;
           break;
         }
       }
-      if (TID.isCommutable())
+      if (MCID.isCommutable())
         SU->isCommutable = true;
     }
-    
+
     // Find all predecessors and successors of the group.
-    for (SDNode *N = SU->getNode(); N; N = N->getFlaggedNode()) {
+    for (SDNode *N = SU->getNode(); N; N = N->getGluedNode()) {
       if (N->isMachineOpcode() &&
-          TII->get(N->getMachineOpcode()).getImplicitDefs() &&
-          CountResults(N) > TII->get(N->getMachineOpcode()).getNumDefs())
-        SU->hasPhysRegDefs = true;
-      
+          TII->get(N->getMachineOpcode()).getImplicitDefs()) {
+        SU->hasPhysRegClobbers = true;
+        unsigned NumUsed = InstrEmitter::CountResults(N);
+        while (NumUsed != 0 && !N->hasAnyUseOfValue(NumUsed - 1))
+          --NumUsed;    // Skip over unused values at the end.
+        if (NumUsed > TII->get(N->getMachineOpcode()).getNumDefs())
+          SU->hasPhysRegDefs = true;
+      }
+
       for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
         SDNode *OpN = N->getOperand(i).getNode();
         if (isPassiveNode(OpN)) continue;   // Not scheduled.
@@ -178,8 +421,8 @@ void ScheduleDAGSDNodes::AddSchedEdges() {
         assert(OpSU && "Node has no SUnit!");
         if (OpSU == SU) continue;           // In the same group.
 
-        MVT OpVT = N->getOperand(i).getValueType();
-        assert(OpVT != MVT::Flag && "Flagged nodes should be in same sunit!");
+        EVT OpVT = N->getOperand(i).getValueType();
+        assert(OpVT != MVT::Glue && "Glued nodes should be in same sunit!");
         bool isChain = OpVT == MVT::Other;
 
         unsigned PhysReg = 0;
@@ -188,8 +431,38 @@ void ScheduleDAGSDNodes::AddSchedEdges() {
         CheckForPhysRegDependency(OpN, N, i, TRI, TII, PhysReg, Cost);
         assert((PhysReg == 0 || !isChain) &&
                "Chain dependence via physreg data?");
-        SU->addPred(SDep(OpSU, isChain ? SDep::Order : SDep::Data,
-                         OpSU->Latency, PhysReg));
+        // FIXME: See ScheduleDAGSDNodes::EmitCopyFromReg. For now, scheduler
+        // emits a copy from the physical register to a virtual register unless
+        // it requires a cross class copy (cost < 0). That means we are only
+        // treating "expensive to copy" register dependency as physical register
+        // dependency. This may change in the future though.
+        if (Cost >= 0 && !StressSched)
+          PhysReg = 0;
+
+        // If this is a ctrl dep, latency is 1.
+        unsigned OpLatency = isChain ? 1 : OpSU->Latency;
+        // Special-case TokenFactor chains as zero-latency.
+        if(isChain && OpN->getOpcode() == ISD::TokenFactor)
+          OpLatency = 0;
+
+        const SDep &dep = SDep(OpSU, isChain ? SDep::Order : SDep::Data,
+                               OpLatency, PhysReg);
+        if (!isChain && !UnitLatencies) {
+          ComputeOperandLatency(OpN, N, i, const_cast<SDep &>(dep));
+          ST.adjustSchedDependency(OpSU, SU, const_cast<SDep &>(dep));
+        }
+
+        if (!SU->addPred(dep) && !dep.isCtrl() && OpSU->NumRegDefsLeft > 1) {
+          // Multiple register uses are combined in the same SUnit. For example,
+          // we could have a set of glued nodes with all their defs consumed by
+          // another set of glued nodes. Register pressure tracking sees this as
+          // a single use, so to keep pressure balanced we reduce the defs.
+          //
+          // We can't tell (without more book-keeping) if this results from
+          // glued nodes or duplicate operands. As long as we don't reduce
+          // NumRegDefsLeft to zero, we handle the common cases well.
+          --OpSU->NumRegDefsLeft;
+        }
       }
     }
   }
@@ -198,77 +471,332 @@ void ScheduleDAGSDNodes::AddSchedEdges() {
 /// BuildSchedGraph - Build the SUnit graph from the selection dag that we
 /// are input.  This SUnit graph is similar to the SelectionDAG, but
 /// excludes nodes that aren't interesting to scheduling, and represents
-/// flagged together nodes with a single SUnit.
-void ScheduleDAGSDNodes::BuildSchedGraph() {
+/// glued together nodes with a single SUnit.
+void ScheduleDAGSDNodes::BuildSchedGraph(AliasAnalysis *AA) {
+  // Cluster certain nodes which should be scheduled together.
+  ClusterNodes();
   // Populate the SUnits array.
   BuildSchedUnits();
   // Compute all the scheduling dependencies between nodes.
   AddSchedEdges();
 }
 
+// Initialize NumNodeDefs for the current Node's opcode.
+void ScheduleDAGSDNodes::RegDefIter::InitNodeNumDefs() {
+  // Check for phys reg copy.
+  if (!Node)
+    return;
+
+  if (!Node->isMachineOpcode()) {
+    if (Node->getOpcode() == ISD::CopyFromReg)
+      NodeNumDefs = 1;
+    else
+      NodeNumDefs = 0;
+    return;
+  }
+  unsigned POpc = Node->getMachineOpcode();
+  if (POpc == TargetOpcode::IMPLICIT_DEF) {
+    // No register need be allocated for this.
+    NodeNumDefs = 0;
+    return;
+  }
+  unsigned NRegDefs = SchedDAG->TII->get(Node->getMachineOpcode()).getNumDefs();
+  // Some instructions define regs that are not represented in the selection DAG
+  // (e.g. unused flags). See tMOVi8. Make sure we don't access past NumValues.
+  NodeNumDefs = std::min(Node->getNumValues(), NRegDefs);
+  DefIdx = 0;
+}
+
+// Construct a RegDefIter for this SUnit and find the first valid value.
+ScheduleDAGSDNodes::RegDefIter::RegDefIter(const SUnit *SU,
+                                           const ScheduleDAGSDNodes *SD)
+  : SchedDAG(SD), Node(SU->getNode()), DefIdx(0), NodeNumDefs(0) {
+  InitNodeNumDefs();
+  Advance();
+}
+
+// Advance to the next valid value defined by the SUnit.
+void ScheduleDAGSDNodes::RegDefIter::Advance() {
+  for (;Node;) { // Visit all glued nodes.
+    for (;DefIdx < NodeNumDefs; ++DefIdx) {
+      if (!Node->hasAnyUseOfValue(DefIdx))
+        continue;
+      ValueType = Node->getValueType(DefIdx);
+      ++DefIdx;
+      return; // Found a normal regdef.
+    }
+    Node = Node->getGluedNode();
+    if (Node == NULL) {
+      return; // No values left to visit.
+    }
+    InitNodeNumDefs();
+  }
+}
+
+void ScheduleDAGSDNodes::InitNumRegDefsLeft(SUnit *SU) {
+  assert(SU->NumRegDefsLeft == 0 && "expect a new node");
+  for (RegDefIter I(SU, this); I.IsValid(); I.Advance()) {
+    assert(SU->NumRegDefsLeft < USHRT_MAX && "overflow is ok but unexpected");
+    ++SU->NumRegDefsLeft;
+  }
+}
+
 void ScheduleDAGSDNodes::ComputeLatency(SUnit *SU) {
-  const InstrItineraryData &InstrItins = TM.getInstrItineraryData();
-  
+  SDNode *N = SU->getNode();
+
+  // TokenFactor operands are considered zero latency, and some schedulers
+  // (e.g. Top-Down list) may rely on the fact that operand latency is nonzero
+  // whenever node latency is nonzero.
+  if (N && N->getOpcode() == ISD::TokenFactor) {
+    SU->Latency = 0;
+    return;
+  }
+
+  // Check to see if the scheduler cares about latencies.
+  if (ForceUnitLatencies()) {
+    SU->Latency = 1;
+    return;
+  }
+
+  if (!InstrItins || InstrItins->isEmpty()) {
+    if (N && N->isMachineOpcode() &&
+        TII->isHighLatencyDef(N->getMachineOpcode()))
+      SU->Latency = HighLatencyCycles;
+    else
+      SU->Latency = 1;
+    return;
+  }
+
   // Compute the latency for the node.  We use the sum of the latencies for
-  // all nodes flagged together into this SUnit.
+  // all nodes glued together into this SUnit.
   SU->Latency = 0;
-  bool SawMachineOpcode = false;
-  for (SDNode *N = SU->getNode(); N; N = N->getFlaggedNode())
-    if (N->isMachineOpcode()) {
-      SawMachineOpcode = true;
-      SU->Latency +=
-        InstrItins.getLatency(TII->get(N->getMachineOpcode()).getSchedClass());
-    }
+  for (SDNode *N = SU->getNode(); N; N = N->getGluedNode())
+    if (N->isMachineOpcode())
+      SU->Latency += TII->getInstrLatency(InstrItins, N);
+}
+
+void ScheduleDAGSDNodes::ComputeOperandLatency(SDNode *Def, SDNode *Use,
+                                               unsigned OpIdx, SDep& dep) const{
+  // Check to see if the scheduler cares about latencies.
+  if (ForceUnitLatencies())
+    return;
+
+  if (dep.getKind() != SDep::Data)
+    return;
+
+  unsigned DefIdx = Use->getOperand(OpIdx).getResNo();
+  if (Use->isMachineOpcode())
+    // Adjust the use operand index by num of defs.
+    OpIdx += TII->get(Use->getMachineOpcode()).getNumDefs();
+  int Latency = TII->getOperandLatency(InstrItins, Def, DefIdx, Use, OpIdx);
+  if (Latency > 1 && Use->getOpcode() == ISD::CopyToReg &&
+      !BB->succ_empty()) {
+    unsigned Reg = cast<RegisterSDNode>(Use->getOperand(1))->getReg();
+    if (TargetRegisterInfo::isVirtualRegister(Reg))
+      // This copy is a liveout value. It is likely coalesced, so reduce the
+      // latency so not to penalize the def.
+      // FIXME: need target specific adjustment here?
+      Latency = (Latency > 1) ? Latency - 1 : 1;
+  }
+  if (Latency >= 0)
+    dep.setLatency(Latency);
+}
+
+void ScheduleDAGSDNodes::dumpNode(const SUnit *SU) const {
+  if (!SU->getNode()) {
+    dbgs() << "PHYS REG COPY\n";
+    return;
+  }
+
+  SU->getNode()->dump(DAG);
+  dbgs() << "\n";
+  SmallVector<SDNode *, 4> GluedNodes;
+  for (SDNode *N = SU->getNode()->getGluedNode(); N; N = N->getGluedNode())
+    GluedNodes.push_back(N);
+  while (!GluedNodes.empty()) {
+    dbgs() << "    ";
+    GluedNodes.back()->dump(DAG);
+    dbgs() << "\n";
+    GluedNodes.pop_back();
+  }
 }
 
-/// CountResults - The results of target nodes have register or immediate
-/// operands first, then an optional chain, and optional flag operands (which do
-/// not go into the resulting MachineInstr).
-unsigned ScheduleDAGSDNodes::CountResults(SDNode *Node) {
-  unsigned N = Node->getNumValues();
-  while (N && Node->getValueType(N - 1) == MVT::Flag)
-    --N;
-  if (N && Node->getValueType(N - 1) == MVT::Other)
-    --N;    // Skip over chain result.
-  return N;
+namespace {
+  struct OrderSorter {
+    bool operator()(const std::pair<unsigned, MachineInstr*> &A,
+                    const std::pair<unsigned, MachineInstr*> &B) {
+      return A.first < B.first;
+    }
+  };
 }
 
-/// CountOperands - The inputs to target nodes have any actual inputs first,
-/// followed by special operands that describe memory references, then an
-/// optional chain operand, then an optional flag operand.  Compute the number
-/// of actual operands that will go into the resulting MachineInstr.
-unsigned ScheduleDAGSDNodes::CountOperands(SDNode *Node) {
-  unsigned N = ComputeMemOperandsEnd(Node);
-  while (N && isa<MemOperandSDNode>(Node->getOperand(N - 1).getNode()))
-    --N; // Ignore MEMOPERAND nodes
-  return N;
+/// ProcessSDDbgValues - Process SDDbgValues associated with this node.
+static void ProcessSDDbgValues(SDNode *N, SelectionDAG *DAG,
+                               InstrEmitter &Emitter,
+                    SmallVector<std::pair<unsigned, MachineInstr*>, 32> &Orders,
+                            DenseMap<SDValue, unsigned> &VRBaseMap,
+                            unsigned Order) {
+  if (!N->getHasDebugValue())
+    return;
+
+  // Opportunistically insert immediate dbg_value uses, i.e. those with source
+  // order number right after the N.
+  MachineBasicBlock *BB = Emitter.getBlock();
+  MachineBasicBlock::iterator InsertPos = Emitter.getInsertPos();
+  ArrayRef<SDDbgValue*> DVs = DAG->GetDbgValues(N);
+  for (unsigned i = 0, e = DVs.size(); i != e; ++i) {
+    if (DVs[i]->isInvalidated())
+      continue;
+    unsigned DVOrder = DVs[i]->getOrder();
+    if (!Order || DVOrder == ++Order) {
+      MachineInstr *DbgMI = Emitter.EmitDbgValue(DVs[i], VRBaseMap);
+      if (DbgMI) {
+        Orders.push_back(std::make_pair(DVOrder, DbgMI));
+        BB->insert(InsertPos, DbgMI);
+      }
+      DVs[i]->setIsInvalidated();
+    }
+  }
 }
 
-/// ComputeMemOperandsEnd - Find the index one past the last MemOperandSDNode
-/// operand
-unsigned ScheduleDAGSDNodes::ComputeMemOperandsEnd(SDNode *Node) {
-  unsigned N = Node->getNumOperands();
-  while (N && Node->getOperand(N - 1).getValueType() == MVT::Flag)
-    --N;
-  if (N && Node->getOperand(N - 1).getValueType() == MVT::Other)
-    --N; // Ignore chain if it exists.
-  return N;
+// ProcessSourceNode - Process nodes with source order numbers. These are added
+// to a vector which EmitSchedule uses to determine how to insert dbg_value
+// instructions in the right order.
+static void ProcessSourceNode(SDNode *N, SelectionDAG *DAG,
+                           InstrEmitter &Emitter,
+                           DenseMap<SDValue, unsigned> &VRBaseMap,
+                    SmallVector<std::pair<unsigned, MachineInstr*>, 32> &Orders,
+                           SmallSet<unsigned, 8> &Seen) {
+  unsigned Order = DAG->GetOrdering(N);
+  if (!Order || !Seen.insert(Order)) {
+    // Process any valid SDDbgValues even if node does not have any order
+    // assigned.
+    ProcessSDDbgValues(N, DAG, Emitter, Orders, VRBaseMap, 0);
+    return;
+  }
+
+  MachineBasicBlock *BB = Emitter.getBlock();
+  if (Emitter.getInsertPos() == BB->begin() || BB->back().isPHI()) {
+    // Did not insert any instruction.
+    Orders.push_back(std::make_pair(Order, (MachineInstr*)0));
+    return;
+  }
+
+  Orders.push_back(std::make_pair(Order, prior(Emitter.getInsertPos())));
+  ProcessSDDbgValues(N, DAG, Emitter, Orders, VRBaseMap, Order);
 }
 
 
-void ScheduleDAGSDNodes::dumpNode(const SUnit *SU) const {
-  if (SU->getNode())
-    SU->getNode()->dump(DAG);
-  else
-    cerr << "CROSS RC COPY ";
-  cerr << "\n";
-  SmallVector<SDNode *, 4> FlaggedNodes;
-  for (SDNode *N = SU->getNode()->getFlaggedNode(); N; N = N->getFlaggedNode())
-    FlaggedNodes.push_back(N);
-  while (!FlaggedNodes.empty()) {
-    cerr << "    ";
-    FlaggedNodes.back()->dump(DAG);
-    cerr << "\n";
-    FlaggedNodes.pop_back();
+/// EmitSchedule - Emit the machine code in scheduled order.
+MachineBasicBlock *ScheduleDAGSDNodes::EmitSchedule() {
+  InstrEmitter Emitter(BB, InsertPos);
+  DenseMap<SDValue, unsigned> VRBaseMap;
+  DenseMap<SUnit*, unsigned> CopyVRBaseMap;
+  SmallVector<std::pair<unsigned, MachineInstr*>, 32> Orders;
+  SmallSet<unsigned, 8> Seen;
+  bool HasDbg = DAG->hasDebugValues();
+
+  // If this is the first BB, emit byval parameter dbg_value's.
+  if (HasDbg && BB->getParent()->begin() == MachineFunction::iterator(BB)) {
+    SDDbgInfo::DbgIterator PDI = DAG->ByvalParmDbgBegin();
+    SDDbgInfo::DbgIterator PDE = DAG->ByvalParmDbgEnd();
+    for (; PDI != PDE; ++PDI) {
+      MachineInstr *DbgMI= Emitter.EmitDbgValue(*PDI, VRBaseMap);
+      if (DbgMI)
+        BB->insert(InsertPos, DbgMI);
+    }
+  }
+
+  for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
+    SUnit *SU = Sequence[i];
+    if (!SU) {
+      // Null SUnit* is a noop.
+      EmitNoop();
+      continue;
+    }
+
+    // For pre-regalloc scheduling, create instructions corresponding to the
+    // SDNode and any glued SDNodes and append them to the block.
+    if (!SU->getNode()) {
+      // Emit a copy.
+      EmitPhysRegCopy(SU, CopyVRBaseMap);
+      continue;
+    }
+
+    SmallVector<SDNode *, 4> GluedNodes;
+    for (SDNode *N = SU->getNode()->getGluedNode(); N;
+         N = N->getGluedNode())
+      GluedNodes.push_back(N);
+    while (!GluedNodes.empty()) {
+      SDNode *N = GluedNodes.back();
+      Emitter.EmitNode(GluedNodes.back(), SU->OrigNode != SU, SU->isCloned,
+                       VRBaseMap);
+      // Remember the source order of the inserted instruction.
+      if (HasDbg)
+        ProcessSourceNode(N, DAG, Emitter, VRBaseMap, Orders, Seen);
+      GluedNodes.pop_back();
+    }
+    Emitter.EmitNode(SU->getNode(), SU->OrigNode != SU, SU->isCloned,
+                     VRBaseMap);
+    // Remember the source order of the inserted instruction.
+    if (HasDbg)
+      ProcessSourceNode(SU->getNode(), DAG, Emitter, VRBaseMap, Orders,
+                        Seen);
   }
+
+  // Insert all the dbg_values which have not already been inserted in source
+  // order sequence.
+  if (HasDbg) {
+    MachineBasicBlock::iterator BBBegin = BB->getFirstNonPHI();
+
+    // Sort the source order instructions and use the order to insert debug
+    // values.
+    std::sort(Orders.begin(), Orders.end(), OrderSorter());
+
+    SDDbgInfo::DbgIterator DI = DAG->DbgBegin();
+    SDDbgInfo::DbgIterator DE = DAG->DbgEnd();
+    // Now emit the rest according to source order.
+    unsigned LastOrder = 0;
+    for (unsigned i = 0, e = Orders.size(); i != e && DI != DE; ++i) {
+      unsigned Order = Orders[i].first;
+      MachineInstr *MI = Orders[i].second;
+      // Insert all SDDbgValue's whose order(s) are before "Order".
+      if (!MI)
+        continue;
+      for (; DI != DE &&
+             (*DI)->getOrder() >= LastOrder && (*DI)->getOrder() < Order; ++DI) {
+        if ((*DI)->isInvalidated())
+          continue;
+        MachineInstr *DbgMI = Emitter.EmitDbgValue(*DI, VRBaseMap);
+        if (DbgMI) {
+          if (!LastOrder)
+            // Insert to start of the BB (after PHIs).
+            BB->insert(BBBegin, DbgMI);
+          else {
+            // Insert at the instruction, which may be in a different
+            // block, if the block was split by a custom inserter.
+            MachineBasicBlock::iterator Pos = MI;
+            MI->getParent()->insert(llvm::next(Pos), DbgMI);
+          }
+        }
+      }
+      LastOrder = Order;
+    }
+    // Add trailing DbgValue's before the terminator. FIXME: May want to add
+    // some of them before one or more conditional branches?
+    while (DI != DE) {
+      MachineBasicBlock *InsertBB = Emitter.getBlock();
+      MachineBasicBlock::iterator Pos= Emitter.getBlock()->getFirstTerminator();
+      if (!(*DI)->isInvalidated()) {
+        MachineInstr *DbgMI= Emitter.EmitDbgValue(*DI, VRBaseMap);
+        if (DbgMI)
+          InsertBB->insert(Pos, DbgMI);
+      }
+      ++DI;
+    }
+  }
+
+  BB = Emitter.getBlock();
+  InsertPos = Emitter.getInsertPos();
+  return BB;
 }