assert(0) -> LLVM_UNREACHABLE.
[oota-llvm.git] / lib / CodeGen / SelectionDAG / ScheduleDAGList.cpp
index 34136d847ce6a9c502654d25208ec321423cac40..afce34879c2c0f1bbef2d5d17217f63c68f966ea 100644 (file)
@@ -2,8 +2,8 @@
 //
 //                     The LLVM Compiler Infrastructure
 //
-// This file was developed by Evan Cheng and is distributed under the
-// University of Illinois Open Source License. See LICENSE.TXT for details.
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
 //
 //===----------------------------------------------------------------------===//
 //
 //
 //===----------------------------------------------------------------------===//
 
-#define DEBUG_TYPE "sched"
-#include "llvm/CodeGen/ScheduleDAG.h"
-#include "llvm/CodeGen/SSARegMap.h"
-#include "llvm/Target/MRegisterInfo.h"
-#include "llvm/Target/TargetMachine.h"
+#define DEBUG_TYPE "pre-RA-sched"
+#include "ScheduleDAGSDNodes.h"
+#include "llvm/CodeGen/LatencyPriorityQueue.h"
+#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
+#include "llvm/CodeGen/SchedulerRegistry.h"
+#include "llvm/CodeGen/SelectionDAGISel.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Target/TargetData.h"
 #include "llvm/Target/TargetInstrInfo.h"
 #include "llvm/Support/Debug.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/ADT/PriorityQueue.h"
 #include "llvm/ADT/Statistic.h"
 #include <climits>
-#include <iostream>
-#include <queue>
 using namespace llvm;
 
-namespace {
-  Statistic<> NumNoops ("scheduler", "Number of noops inserted");
-  Statistic<> NumStalls("scheduler", "Number of pipeline stalls");
-}
+STATISTIC(NumNoops , "Number of noops inserted");
+STATISTIC(NumStalls, "Number of pipeline stalls");
 
+static RegisterScheduler
+  tdListDAGScheduler("list-td", "Top-down list scheduler",
+                     createTDListDAGScheduler);
+   
 namespace {
 //===----------------------------------------------------------------------===//
 /// ScheduleDAGList - The actual list scheduler implementation.  This supports
 /// top-down scheduling.
 ///
-class ScheduleDAGList : public ScheduleDAG {
+class VISIBILITY_HIDDEN ScheduleDAGList : public ScheduleDAGSDNodes {
 private:
   /// AvailableQueue - The priority queue to use for the available SUnits.
   ///
@@ -49,20 +55,18 @@ private:
   
   /// PendingQueue - This contains all of the instructions whose operands have
   /// been issued, but their results are not ready yet (due to the latency of
-  /// the operation).  Once the operands becomes available, the instruction is
-  /// added to the AvailableQueue.  This keeps track of each SUnit and the
-  /// number of cycles left to execute before the operation is available.
-  std::vector<std::pair<unsigned, SUnit*> > PendingQueue;
+  /// the operation).  Once the operands become available, the instruction is
+  /// added to the AvailableQueue.
+  std::vector<SUnit*> PendingQueue;
 
   /// HazardRec - The hazard recognizer to use.
-  HazardRecognizer *HazardRec;
+  ScheduleHazardRecognizer *HazardRec;
 
 public:
-  ScheduleDAGList(SelectionDAG &dag, MachineBasicBlock *bb,
-                  const TargetMachine &tm,
+  ScheduleDAGList(MachineFunction &mf,
                   SchedulingPriorityQueue *availqueue,
-                  HazardRecognizer *HR)
-    : ScheduleDAG(dag, bb, tm),
+                  ScheduleHazardRecognizer *HR)
+    : ScheduleDAGSDNodes(mf),
       AvailableQueue(availqueue), HazardRec(HR) {
     }
 
@@ -74,34 +78,25 @@ public:
   void Schedule();
 
 private:
-  void ReleaseSucc(SUnit *SuccSU, bool isChain);
+  void ReleaseSucc(SUnit *SU, const SDep &D);
+  void ReleaseSuccessors(SUnit *SU);
   void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle);
   void ListScheduleTopDown();
 };
 }  // end anonymous namespace
 
-HazardRecognizer::~HazardRecognizer() {}
-
-
 /// Schedule - Schedule the DAG using list scheduling.
 void ScheduleDAGList::Schedule() {
-  DEBUG(std::cerr << "********** List Scheduling **********\n");
+  DOUT << "********** List Scheduling **********\n";
   
-  // Build scheduling units.
-  BuildSchedUnits();
+  // Build the scheduling graph.
+  BuildSchedGraph();
 
   AvailableQueue->initNodes(SUnits);
   
   ListScheduleTopDown();
   
   AvailableQueue->releaseState();
-  
-  DEBUG(std::cerr << "*** Final schedule ***\n");
-  DEBUG(dumpSchedule());
-  DEBUG(std::cerr << "\n");
-  
-  // Emit in scheduled order
-  EmitSchedule();
 }
 
 //===----------------------------------------------------------------------===//
@@ -109,36 +104,36 @@ void ScheduleDAGList::Schedule() {
 //===----------------------------------------------------------------------===//
 
 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
-/// the PendingQueue if the count reaches zero.
-void ScheduleDAGList::ReleaseSucc(SUnit *SuccSU, bool isChain) {
-  if (!isChain)
-    SuccSU->NumPredsLeft--;
-  else
-    SuccSU->NumChainPredsLeft--;
+/// the PendingQueue if the count reaches zero. Also update its cycle bound.
+void ScheduleDAGList::ReleaseSucc(SUnit *SU, const SDep &D) {
+  SUnit *SuccSU = D.getSUnit();
+  --SuccSU->NumPredsLeft;
   
-  assert(SuccSU->NumPredsLeft >= 0 && SuccSU->NumChainPredsLeft >= 0 &&
-         "List scheduling internal error");
+#ifndef NDEBUG
+  if (SuccSU->NumPredsLeft < 0) {
+    cerr << "*** Scheduling failed! ***\n";
+    SuccSU->dump(this);
+    cerr << " has been released too many times!\n";
+    llvm_unreachable();
+  }
+#endif
   
-  if ((SuccSU->NumPredsLeft + SuccSU->NumChainPredsLeft) == 0) {
-    // Compute how many cycles it will be before this actually becomes
-    // available.  This is the max of the start time of all predecessors plus
-    // their latencies.
-    unsigned AvailableCycle = 0;
-    for (std::set<std::pair<SUnit*, bool> >::iterator I = SuccSU->Preds.begin(),
-         E = SuccSU->Preds.end(); I != E; ++I) {
-      // If this is a token edge, we don't need to wait for the latency of the
-      // preceeding instruction (e.g. a long-latency load) unless there is also
-      // some other data dependence.
-      unsigned PredDoneCycle = I->first->Cycle;
-      if (!I->second)
-        PredDoneCycle += I->first->Latency;
-      else if (I->first->Latency)
-        PredDoneCycle += 1;
+  SuccSU->setDepthToAtLeast(SU->getDepth() + D.getLatency());
+  
+  // If all the node's predecessors are scheduled, this node is ready
+  // to be scheduled. Ignore the special ExitSU node.
+  if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
+    PendingQueue.push_back(SuccSU);
+}
 
-      AvailableCycle = std::max(AvailableCycle, PredDoneCycle);
-    }
-    
-    PendingQueue.push_back(std::make_pair(AvailableCycle, SuccSU));
+void ScheduleDAGList::ReleaseSuccessors(SUnit *SU) {
+  // Top down: release successors.
+  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
+       I != E; ++I) {
+    assert(!I->isAssignedRegDep() &&
+           "The list-td scheduler doesn't yet support physreg dependencies!");
+
+    ReleaseSucc(SU, *I);
   }
 }
 
@@ -146,52 +141,51 @@ void ScheduleDAGList::ReleaseSucc(SUnit *SuccSU, bool isChain) {
 /// count of its successors. If a successor pending count is zero, add it to
 /// the Available queue.
 void ScheduleDAGList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
-  DEBUG(std::cerr << "*** Scheduling [" << CurCycle << "]: ");
-  DEBUG(SU->dump(&DAG));
+  DOUT << "*** Scheduling [" << CurCycle << "]: ";
+  DEBUG(SU->dump(this));
   
   Sequence.push_back(SU);
-  SU->Cycle = CurCycle;
-  
-  // Bottom up: release successors.
-  for (std::set<std::pair<SUnit*, bool> >::iterator I = SU->Succs.begin(),
-       E = SU->Succs.end(); I != E; ++I)
-    ReleaseSucc(I->first, I->second);
+  assert(CurCycle >= SU->getDepth() && "Node scheduled above its depth!");
+  SU->setDepthToAtLeast(CurCycle);
+
+  ReleaseSuccessors(SU);
+  SU->isScheduled = true;
+  AvailableQueue->ScheduledNode(SU);
 }
 
 /// ListScheduleTopDown - The main loop of list scheduling for top-down
 /// schedulers.
 void ScheduleDAGList::ListScheduleTopDown() {
   unsigned CurCycle = 0;
-  SUnit *Entry = SUnitMap[DAG.getEntryNode().Val];
+
+  // Release any successors of the special Entry node.
+  ReleaseSuccessors(&EntrySU);
 
   // All leaves to Available queue.
   for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
     // It is available if it has no predecessors.
-    if (SUnits[i].Preds.size() == 0 && &SUnits[i] != Entry) {
+    if (SUnits[i].Preds.empty()) {
       AvailableQueue->push(&SUnits[i]);
-      SUnits[i].isAvailable = SUnits[i].isPending = true;
+      SUnits[i].isAvailable = true;
     }
   }
   
-  // Emit the entry node first.
-  ScheduleNodeTopDown(Entry, CurCycle);
-  HazardRec->EmitInstruction(Entry->Node);
-  
   // While Available queue is not empty, grab the node with the highest
   // priority. If it is not ready put it back.  Schedule the node.
   std::vector<SUnit*> NotReady;
+  Sequence.reserve(SUnits.size());
   while (!AvailableQueue->empty() || !PendingQueue.empty()) {
     // Check to see if any of the pending instructions are ready to issue.  If
     // so, add them to the available queue.
     for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
-      if (PendingQueue[i].first == CurCycle) {
-        AvailableQueue->push(PendingQueue[i].second);
-        PendingQueue[i].second->isAvailable = true;
+      if (PendingQueue[i]->getDepth() == CurCycle) {
+        AvailableQueue->push(PendingQueue[i]);
+        PendingQueue[i]->isAvailable = true;
         PendingQueue[i] = PendingQueue.back();
         PendingQueue.pop_back();
         --i; --e;
       } else {
-        assert(PendingQueue[i].first > CurCycle && "Negative latency?");
+        assert(PendingQueue[i]->getDepth() > CurCycle && "Negative latency?");
       }
     }
     
@@ -203,29 +197,20 @@ void ScheduleDAGList::ListScheduleTopDown() {
     }
 
     SUnit *FoundSUnit = 0;
-    SDNode *FoundNode = 0;
     
     bool HasNoopHazards = false;
     while (!AvailableQueue->empty()) {
       SUnit *CurSUnit = AvailableQueue->pop();
       
-      // Get the node represented by this SUnit.
-      FoundNode = CurSUnit->Node;
-      
-      // If this is a pseudo op, like copyfromreg, look to see if there is a
-      // real target node flagged to it.  If so, use the target node.
-      for (unsigned i = 0, e = CurSUnit->FlaggedNodes.size(); 
-           FoundNode->getOpcode() < ISD::BUILTIN_OP_END && i != e; ++i)
-        FoundNode = CurSUnit->FlaggedNodes[i];
-      
-      HazardRecognizer::HazardType HT = HazardRec->getHazardType(FoundNode);
-      if (HT == HazardRecognizer::NoHazard) {
+      ScheduleHazardRecognizer::HazardType HT =
+        HazardRec->getHazardType(CurSUnit);
+      if (HT == ScheduleHazardRecognizer::NoHazard) {
         FoundSUnit = CurSUnit;
         break;
       }
-      
+    
       // Remember if this is a noop hazard.
-      HasNoopHazards |= HT == HazardRecognizer::NoopHazard;
+      HasNoopHazards |= HT == ScheduleHazardRecognizer::NoopHazard;
       
       NotReady.push_back(CurSUnit);
     }
@@ -239,9 +224,7 @@ void ScheduleDAGList::ListScheduleTopDown() {
     // If we found a node to schedule, do it now.
     if (FoundSUnit) {
       ScheduleNodeTopDown(FoundSUnit, CurCycle);
-      HazardRec->EmitInstruction(FoundNode);
-      FoundSUnit->isScheduled = true;
-      AvailableQueue->ScheduledNode(FoundSUnit);
+      HazardRec->EmitInstruction(FoundSUnit);
 
       // If this is a pseudo-op node, we don't want to increment the current
       // cycle.
@@ -250,7 +233,7 @@ void ScheduleDAGList::ListScheduleTopDown() {
     } else if (!HasNoopHazards) {
       // Otherwise, we have a pipeline stall, but no other problem, just advance
       // the current cycle and try again.
-      DEBUG(std::cerr << "*** Advancing cycle, no work to do\n");
+      DOUT << "*** Advancing cycle, no work to do\n";
       HazardRec->AdvanceCycle();
       ++NumStalls;
       ++CurCycle;
@@ -258,262 +241,29 @@ void ScheduleDAGList::ListScheduleTopDown() {
       // Otherwise, we have no instructions to issue and we have instructions
       // that will fault if we don't do this right.  This is the case for
       // processors without pipeline interlocks and other cases.
-      DEBUG(std::cerr << "*** Emitting noop\n");
+      DOUT << "*** Emitting noop\n";
       HazardRec->EmitNoop();
-      Sequence.push_back(0);   // NULL SUnit* -> noop
+      Sequence.push_back(0);   // NULL here means noop
       ++NumNoops;
       ++CurCycle;
     }
   }
 
 #ifndef NDEBUG
-  // Verify that all SUnits were scheduled.
-  bool AnyNotSched = false;
-  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
-    if (SUnits[i].NumPredsLeft != 0 || SUnits[i].NumChainPredsLeft != 0) {
-      if (!AnyNotSched)
-        std::cerr << "*** List scheduling failed! ***\n";
-      SUnits[i].dump(&DAG);
-      std::cerr << "has not been scheduled!\n";
-      AnyNotSched = true;
-    }
-  }
-  assert(!AnyNotSched);
+  VerifySchedule(/*isBottomUp=*/false);
 #endif
 }
 
-//===----------------------------------------------------------------------===//
-//                    LatencyPriorityQueue Implementation
-//===----------------------------------------------------------------------===//
-//
-// This is a SchedulingPriorityQueue that schedules using latency information to
-// reduce the length of the critical path through the basic block.
-// 
-namespace {
-  class LatencyPriorityQueue;
-  
-  /// Sorting functions for the Available queue.
-  struct latency_sort : public std::binary_function<SUnit*, SUnit*, bool> {
-    LatencyPriorityQueue *PQ;
-    latency_sort(LatencyPriorityQueue *pq) : PQ(pq) {}
-    latency_sort(const latency_sort &RHS) : PQ(RHS.PQ) {}
-    
-    bool operator()(const SUnit* left, const SUnit* right) const;
-  };
-}  // end anonymous namespace
-
-namespace {
-  class LatencyPriorityQueue : public SchedulingPriorityQueue {
-    // SUnits - The SUnits for the current graph.
-    const std::vector<SUnit> *SUnits;
-    
-    // Latencies - The latency (max of latency from this node to the bb exit)
-    // for each node.
-    std::vector<int> Latencies;
-
-    /// NumNodesSolelyBlocking - This vector contains, for every node in the
-    /// Queue, the number of nodes that the node is the sole unscheduled
-    /// predecessor for.  This is used as a tie-breaker heuristic for better
-    /// mobility.
-    std::vector<unsigned> NumNodesSolelyBlocking;
-
-    std::priority_queue<SUnit*, std::vector<SUnit*>, latency_sort> Queue;
-public:
-    LatencyPriorityQueue() : Queue(latency_sort(this)) {
-    }
-    
-    void initNodes(const std::vector<SUnit> &sunits) {
-      SUnits = &sunits;
-      // Calculate node priorities.
-      CalculatePriorities();
-    }
-    void releaseState() {
-      SUnits = 0;
-      Latencies.clear();
-    }
-    
-    unsigned getLatency(unsigned NodeNum) const {
-      assert(NodeNum < Latencies.size());
-      return Latencies[NodeNum];
-    }
-    
-    unsigned getNumSolelyBlockNodes(unsigned NodeNum) const {
-      assert(NodeNum < NumNodesSolelyBlocking.size());
-      return NumNodesSolelyBlocking[NodeNum];
-    }
-    
-    bool empty() const { return Queue.empty(); }
-    
-    virtual void push(SUnit *U) {
-      push_impl(U);
-    }
-    void push_impl(SUnit *U);
-    
-    void push_all(const std::vector<SUnit *> &Nodes) {
-      for (unsigned i = 0, e = Nodes.size(); i != e; ++i)
-        push_impl(Nodes[i]);
-    }
-    
-    SUnit *pop() {
-      SUnit *V = Queue.top();
-      Queue.pop();
-      return V;
-    }
-
-    // ScheduledNode - As nodes are scheduled, we look to see if there are any
-    // successor nodes that have a single unscheduled predecessor.  If so, that
-    // single predecessor has a higher priority, since scheduling it will make
-    // the node available.
-    void ScheduledNode(SUnit *Node);
-
-private:
-    void CalculatePriorities();
-    int CalcLatency(const SUnit &SU);
-    void AdjustPriorityOfUnscheduledPreds(SUnit *SU);
-
-    /// RemoveFromPriorityQueue - This is a really inefficient way to remove a
-    /// node from a priority queue.  We should roll our own heap to make this
-    /// better or something.
-    void RemoveFromPriorityQueue(SUnit *SU) {
-      std::vector<SUnit*> Temp;
-      
-      assert(!Queue.empty() && "Not in queue!");
-      while (Queue.top() != SU) {
-        Temp.push_back(Queue.top());
-        Queue.pop();
-        assert(!Queue.empty() && "Not in queue!");
-      }
-
-      // Remove the node from the PQ.
-      Queue.pop();
-      
-      // Add all the other nodes back.
-      for (unsigned i = 0, e = Temp.size(); i != e; ++i)
-        Queue.push(Temp[i]);
-    }
-  };
-}
-
-bool latency_sort::operator()(const SUnit *LHS, const SUnit *RHS) const {
-  unsigned LHSNum = LHS->NodeNum;
-  unsigned RHSNum = RHS->NodeNum;
-
-  // The most important heuristic is scheduling the critical path.
-  unsigned LHSLatency = PQ->getLatency(LHSNum);
-  unsigned RHSLatency = PQ->getLatency(RHSNum);
-  if (LHSLatency < RHSLatency) return true;
-  if (LHSLatency > RHSLatency) return false;
-  
-  // After that, if two nodes have identical latencies, look to see if one will
-  // unblock more other nodes than the other.
-  unsigned LHSBlocked = PQ->getNumSolelyBlockNodes(LHSNum);
-  unsigned RHSBlocked = PQ->getNumSolelyBlockNodes(RHSNum);
-  if (LHSBlocked < RHSBlocked) return true;
-  if (LHSBlocked > RHSBlocked) return false;
-  
-  // Finally, just to provide a stable ordering, use the node number as a
-  // deciding factor.
-  return LHSNum < RHSNum;
-}
-
-
-/// CalcNodePriority - Calculate the maximal path from the node to the exit.
-///
-int LatencyPriorityQueue::CalcLatency(const SUnit &SU) {
-  int &Latency = Latencies[SU.NodeNum];
-  if (Latency != -1)
-    return Latency;
-  
-  int MaxSuccLatency = 0;
-  for (std::set<std::pair<SUnit*, bool> >::const_iterator I = SU.Succs.begin(),
-       E = SU.Succs.end(); I != E; ++I)
-    MaxSuccLatency = std::max(MaxSuccLatency, CalcLatency(*I->first));
-
-  return Latency = MaxSuccLatency + SU.Latency;
-}
-
-/// CalculatePriorities - Calculate priorities of all scheduling units.
-void LatencyPriorityQueue::CalculatePriorities() {
-  Latencies.assign(SUnits->size(), -1);
-  NumNodesSolelyBlocking.assign(SUnits->size(), 0);
-  
-  for (unsigned i = 0, e = SUnits->size(); i != e; ++i)
-    CalcLatency((*SUnits)[i]);
-}
-
-/// getSingleUnscheduledPred - If there is exactly one unscheduled predecessor
-/// of SU, return it, otherwise return null.
-static SUnit *getSingleUnscheduledPred(SUnit *SU) {
-  SUnit *OnlyAvailablePred = 0;
-  for (std::set<std::pair<SUnit*, bool> >::const_iterator I = SU->Preds.begin(),
-       E = SU->Preds.end(); I != E; ++I)
-    if (!I->first->isScheduled) {
-      // We found an available, but not scheduled, predecessor.  If it's the
-      // only one we have found, keep track of it... otherwise give up.
-      if (OnlyAvailablePred && OnlyAvailablePred != I->first)
-        return 0;
-      OnlyAvailablePred = I->first;
-    }
-      
-  return OnlyAvailablePred;
-}
-
-void LatencyPriorityQueue::push_impl(SUnit *SU) {
-  // Look at all of the successors of this node.  Count the number of nodes that
-  // this node is the sole unscheduled node for.
-  unsigned NumNodesBlocking = 0;
-  for (std::set<std::pair<SUnit*, bool> >::const_iterator I = SU->Succs.begin(),
-       E = SU->Succs.end(); I != E; ++I)
-    if (getSingleUnscheduledPred(I->first) == SU)
-      ++NumNodesBlocking;
-  NumNodesSolelyBlocking[SU->NodeNum] = NumNodesBlocking;
-  
-  Queue.push(SU);
-}
-
-
-// ScheduledNode - As nodes are scheduled, we look to see if there are any
-// successor nodes that have a single unscheduled predecessor.  If so, that
-// single predecessor has a higher priority, since scheduling it will make
-// the node available.
-void LatencyPriorityQueue::ScheduledNode(SUnit *SU) {
-  for (std::set<std::pair<SUnit*, bool> >::const_iterator I = SU->Succs.begin(),
-       E = SU->Succs.end(); I != E; ++I)
-    AdjustPriorityOfUnscheduledPreds(I->first);
-}
-
-/// AdjustPriorityOfUnscheduledPreds - One of the predecessors of SU was just
-/// scheduled.  If SU is not itself available, then there is at least one
-/// predecessor node that has not been scheduled yet.  If SU has exactly ONE
-/// unscheduled predecessor, we want to increase its priority: it getting
-/// scheduled will make this node available, so it is better than some other
-/// node of the same priority that will not make a node available.
-void LatencyPriorityQueue::AdjustPriorityOfUnscheduledPreds(SUnit *SU) {
-  if (SU->isPending) return;  // All preds scheduled.
-  
-  SUnit *OnlyAvailablePred = getSingleUnscheduledPred(SU);
-  if (OnlyAvailablePred == 0 || !OnlyAvailablePred->isAvailable) return;
-  
-  // Okay, we found a single predecessor that is available, but not scheduled.
-  // Since it is available, it must be in the priority queue.  First remove it.
-  RemoveFromPriorityQueue(OnlyAvailablePred);
-
-  // Reinsert the node into the priority queue, which recomputes its
-  // NumNodesSolelyBlocking value.
-  push(OnlyAvailablePred);
-}
-
-
 //===----------------------------------------------------------------------===//
 //                         Public Constructor Functions
 //===----------------------------------------------------------------------===//
 
-/// createTDListDAGScheduler - This creates a top-down list scheduler with the
-/// specified hazard recognizer.
-ScheduleDAG* llvm::createTDListDAGScheduler(SelectionDAG &DAG,
-                                            MachineBasicBlock *BB,
-                                            HazardRecognizer *HR) {
-  return new ScheduleDAGList(DAG, BB, DAG.getTarget(),
+/// createTDListDAGScheduler - This creates a top-down list scheduler with a
+/// new hazard recognizer. This scheduler takes ownership of the hazard
+/// recognizer and deletes it when done.
+ScheduleDAGSDNodes *
+llvm::createTDListDAGScheduler(SelectionDAGISel *IS, CodeGenOpt::Level) {
+  return new ScheduleDAGList(*IS->MF,
                              new LatencyPriorityQueue(),
-                             HR);
+                             IS->CreateTargetHazardRecognizer());
 }