[WinEH] Implement state numbering for CoreCLR
[oota-llvm.git] / lib / CodeGen / SelectionDAG / FunctionLoweringInfo.cpp
index d518b5d346a1e0729d4be8de1c6f5f420a45edb9..d718ede35cde2abdc9bd1abf607a171f5e0a69e7 100644 (file)
 //
 //===----------------------------------------------------------------------===//
 
-#define DEBUG_TYPE "function-lowering-info"
 #include "llvm/CodeGen/FunctionLoweringInfo.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Function.h"
-#include "llvm/Instructions.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/LLVMContext.h"
-#include "llvm/Module.h"
-#include "llvm/Analysis/DebugInfo.h"
+#include "llvm/ADT/PostOrderIterator.h"
 #include "llvm/CodeGen/Analysis.h"
-#include "llvm/CodeGen/MachineFunction.h"
 #include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
 #include "llvm/CodeGen/MachineInstrBuilder.h"
 #include "llvm/CodeGen/MachineModuleInfo.h"
 #include "llvm/CodeGen/MachineRegisterInfo.h"
-#include "llvm/Target/TargetRegisterInfo.h"
-#include "llvm/Target/TargetData.h"
-#include "llvm/Target/TargetInstrInfo.h"
-#include "llvm/Target/TargetLowering.h"
-#include "llvm/Target/TargetOptions.h"
+#include "llvm/CodeGen/WinEHFuncInfo.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DebugInfo.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Module.h"
 #include "llvm/Support/Debug.h"
 #include "llvm/Support/ErrorHandling.h"
 #include "llvm/Support/MathExtras.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetFrameLowering.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetLowering.h"
+#include "llvm/Target/TargetOptions.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
 #include <algorithm>
 using namespace llvm;
 
+#define DEBUG_TYPE "function-lowering-info"
+
 /// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
 /// PHI nodes or outside of the basic block that defines it, or used by a
 /// switch or atomic instruction, which may expand to multiple basic blocks.
@@ -45,61 +51,125 @@ static bool isUsedOutsideOfDefiningBlock(const Instruction *I) {
   if (I->use_empty()) return false;
   if (isa<PHINode>(I)) return true;
   const BasicBlock *BB = I->getParent();
-  for (Value::const_use_iterator UI = I->use_begin(), E = I->use_end();
-        UI != E; ++UI) {
-    const User *U = *UI;
+  for (const User *U : I->users())
     if (cast<Instruction>(U)->getParent() != BB || isa<PHINode>(U))
       return true;
-  }
+
   return false;
 }
 
-FunctionLoweringInfo::FunctionLoweringInfo(const TargetLowering &tli)
-  : TLI(tli) {
+static ISD::NodeType getPreferredExtendForValue(const Value *V) {
+  // For the users of the source value being used for compare instruction, if
+  // the number of signed predicate is greater than unsigned predicate, we
+  // prefer to use SIGN_EXTEND.
+  //
+  // With this optimization, we would be able to reduce some redundant sign or
+  // zero extension instruction, and eventually more machine CSE opportunities
+  // can be exposed.
+  ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
+  unsigned NumOfSigned = 0, NumOfUnsigned = 0;
+  for (const User *U : V->users()) {
+    if (const auto *CI = dyn_cast<CmpInst>(U)) {
+      NumOfSigned += CI->isSigned();
+      NumOfUnsigned += CI->isUnsigned();
+    }
+  }
+  if (NumOfSigned > NumOfUnsigned)
+    ExtendKind = ISD::SIGN_EXTEND;
+
+  return ExtendKind;
 }
 
-void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf) {
+void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf,
+                               SelectionDAG *DAG) {
   Fn = &fn;
   MF = &mf;
+  TLI = MF->getSubtarget().getTargetLowering();
   RegInfo = &MF->getRegInfo();
+  MachineModuleInfo &MMI = MF->getMMI();
 
   // Check whether the function can return without sret-demotion.
   SmallVector<ISD::OutputArg, 4> Outs;
-  GetReturnInfo(Fn->getReturnType(),
-                Fn->getAttributes().getRetAttributes(), Outs, TLI);
-  CanLowerReturn = TLI.CanLowerReturn(Fn->getCallingConv(), *MF,
-                                     Fn->isVarArg(),
-                                      Outs, Fn->getContext());
+  GetReturnInfo(Fn->getReturnType(), Fn->getAttributes(), Outs, *TLI,
+                mf.getDataLayout());
+  CanLowerReturn = TLI->CanLowerReturn(Fn->getCallingConv(), *MF,
+                                       Fn->isVarArg(), Outs, Fn->getContext());
 
   // Initialize the mapping of values to registers.  This is only set up for
   // instruction values that are used outside of the block that defines
   // them.
   Function::const_iterator BB = Fn->begin(), EB = Fn->end();
-  for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I)
-    if (const AllocaInst *AI = dyn_cast<AllocaInst>(I))
-      if (const ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) {
-        const Type *Ty = AI->getAllocatedType();
-        uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
-        unsigned Align =
-          std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
-                   AI->getAlignment());
-
-        TySize *= CUI->getZExtValue();   // Get total allocated size.
-        if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
-
-        // The object may need to be placed onto the stack near the stack
-        // protector if one exists. Determine here if this object is a suitable
-        // candidate. I.e., it would trigger the creation of a stack protector.
-        bool MayNeedSP =
-          (AI->isArrayAllocation() ||
-           (TySize > 8 && isa<ArrayType>(Ty) &&
-            cast<ArrayType>(Ty)->getElementType()->isIntegerTy(8)));
-        StaticAllocaMap[AI] =
-          MF->getFrameInfo()->CreateStackObject(TySize, Align, false, MayNeedSP);
+  for (; BB != EB; ++BB)
+    for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
+         I != E; ++I) {
+      if (const AllocaInst *AI = dyn_cast<AllocaInst>(I)) {
+        // Static allocas can be folded into the initial stack frame adjustment.
+        if (AI->isStaticAlloca()) {
+          const ConstantInt *CUI = cast<ConstantInt>(AI->getArraySize());
+          Type *Ty = AI->getAllocatedType();
+          uint64_t TySize = MF->getDataLayout().getTypeAllocSize(Ty);
+          unsigned Align =
+              std::max((unsigned)MF->getDataLayout().getPrefTypeAlignment(Ty),
+                       AI->getAlignment());
+
+          TySize *= CUI->getZExtValue();   // Get total allocated size.
+          if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
+
+          StaticAllocaMap[AI] =
+            MF->getFrameInfo()->CreateStackObject(TySize, Align, false, AI);
+
+        } else {
+          unsigned Align =
+              std::max((unsigned)MF->getDataLayout().getPrefTypeAlignment(
+                           AI->getAllocatedType()),
+                       AI->getAlignment());
+          unsigned StackAlign =
+              MF->getSubtarget().getFrameLowering()->getStackAlignment();
+          if (Align <= StackAlign)
+            Align = 0;
+          // Inform the Frame Information that we have variable-sized objects.
+          MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1, AI);
+        }
+      }
+
+      // Look for inline asm that clobbers the SP register.
+      if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
+        ImmutableCallSite CS(I);
+        if (isa<InlineAsm>(CS.getCalledValue())) {
+          unsigned SP = TLI->getStackPointerRegisterToSaveRestore();
+          const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
+          std::vector<TargetLowering::AsmOperandInfo> Ops =
+              TLI->ParseConstraints(Fn->getParent()->getDataLayout(), TRI, CS);
+          for (size_t I = 0, E = Ops.size(); I != E; ++I) {
+            TargetLowering::AsmOperandInfo &Op = Ops[I];
+            if (Op.Type == InlineAsm::isClobber) {
+              // Clobbers don't have SDValue operands, hence SDValue().
+              TLI->ComputeConstraintToUse(Op, SDValue(), DAG);
+              std::pair<unsigned, const TargetRegisterClass *> PhysReg =
+                  TLI->getRegForInlineAsmConstraint(TRI, Op.ConstraintCode,
+                                                    Op.ConstraintVT);
+              if (PhysReg.first == SP)
+                MF->getFrameInfo()->setHasOpaqueSPAdjustment(true);
+            }
+          }
+        }
+      }
+
+      // Look for calls to the @llvm.va_start intrinsic. We can omit some
+      // prologue boilerplate for variadic functions that don't examine their
+      // arguments.
+      if (const auto *II = dyn_cast<IntrinsicInst>(I)) {
+        if (II->getIntrinsicID() == Intrinsic::vastart)
+          MF->getFrameInfo()->setHasVAStart(true);
+      }
+
+      // If we have a musttail call in a variadic funciton, we need to ensure we
+      // forward implicit register parameters.
+      if (const auto *CI = dyn_cast<CallInst>(I)) {
+        if (CI->isMustTailCall() && Fn->isVarArg())
+          MF->getFrameInfo()->setHasMustTailInVarArgFunc(true);
       }
 
-  for (; BB != EB; ++BB)
-    for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
       // Mark values used outside their block as exported, by allocating
       // a virtual register for them.
       if (isUsedOutsideOfDefiningBlock(I))
@@ -111,10 +181,9 @@ void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf) {
       // during the initial isel pass through the IR so that it is done
       // in a predictable order.
       if (const DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(I)) {
-        MachineModuleInfo &MMI = MF->getMMI();
-        if (MMI.hasDebugInfo() &&
-            DIVariable(DI->getVariable()).Verify() &&
-            !DI->getDebugLoc().isUnknown()) {
+        assert(DI->getVariable() && "Missing variable");
+        assert(DI->getDebugLoc() && "Missing location");
+        if (MMI.hasDebugInfo()) {
           // Don't handle byval struct arguments or VLAs, for example.
           // Non-byval arguments are handled here (they refer to the stack
           // temporary alloca at this point).
@@ -127,19 +196,36 @@ void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf) {
                 StaticAllocaMap.find(AI);
               if (SI != StaticAllocaMap.end()) { // Check for VLAs.
                 int FI = SI->second;
-                MMI.setVariableDbgInfo(DI->getVariable(),
+                MMI.setVariableDbgInfo(DI->getVariable(), DI->getExpression(),
                                        FI, DI->getDebugLoc());
               }
             }
           }
         }
       }
+
+      // Decide the preferred extend type for a value.
+      PreferredExtendType[I] = getPreferredExtendForValue(I);
     }
 
   // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
   // also creates the initial PHI MachineInstrs, though none of the input
   // operands are populated.
   for (BB = Fn->begin(); BB != EB; ++BB) {
+    // Don't create MachineBasicBlocks for imaginary EH pad blocks. These blocks
+    // are really data, and no instructions can live here.
+    if (BB->isEHPad()) {
+      const Instruction *I = BB->getFirstNonPHI();
+      if (!isa<LandingPadInst>(I))
+        MMI.setHasEHFunclets(true);
+      if (isa<CatchPadInst>(I) || isa<CatchEndPadInst>(I) ||
+          isa<CleanupEndPadInst>(I)) {
+        assert(&*BB->begin() == I &&
+               "WinEHPrepare failed to remove PHIs from imaginary BBs");
+        continue;
+      }
+    }
+
     MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(BB);
     MBBMap[BB] = MBB;
     MF->push_back(MBB);
@@ -165,11 +251,11 @@ void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf) {
       assert(PHIReg && "PHI node does not have an assigned virtual register!");
 
       SmallVector<EVT, 4> ValueVTs;
-      ComputeValueVTs(TLI, PN->getType(), ValueVTs);
+      ComputeValueVTs(*TLI, MF->getDataLayout(), PN->getType(), ValueVTs);
       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
         EVT VT = ValueVTs[vti];
-        unsigned NumRegisters = TLI.getNumRegisters(Fn->getContext(), VT);
-        const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
+        unsigned NumRegisters = TLI->getNumRegisters(Fn->getContext(), VT);
+        const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
         for (unsigned i = 0; i != NumRegisters; ++i)
           BuildMI(MBB, DL, TII->get(TargetOpcode::PHI), PHIReg + i);
         PHIReg += NumRegisters;
@@ -178,9 +264,120 @@ void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf) {
   }
 
   // Mark landing pad blocks.
-  for (BB = Fn->begin(); BB != EB; ++BB)
-    if (const InvokeInst *Invoke = dyn_cast<InvokeInst>(BB->getTerminator()))
-      MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad();
+  SmallVector<const LandingPadInst *, 4> LPads;
+  for (BB = Fn->begin(); BB != EB; ++BB) {
+    const Instruction *FNP = BB->getFirstNonPHI();
+    if (BB->isEHPad() && MBBMap.count(BB))
+      MBBMap[BB]->setIsEHPad();
+    if (const auto *LPI = dyn_cast<LandingPadInst>(FNP))
+      LPads.push_back(LPI);
+  }
+
+  // If this personality uses funclets, we need to do a bit more work.
+  if (!Fn->hasPersonalityFn())
+    return;
+  EHPersonality Personality = classifyEHPersonality(Fn->getPersonalityFn());
+  if (!isFuncletEHPersonality(Personality))
+    return;
+
+  if (Personality == EHPersonality::MSVC_Win64SEH ||
+      Personality == EHPersonality::MSVC_X86SEH) {
+    addSEHHandlersForLPads(LPads);
+  }
+
+  // Calculate state numbers if we haven't already.
+  WinEHFuncInfo &EHInfo = MMI.getWinEHFuncInfo(&fn);
+  const Function *WinEHParentFn = MMI.getWinEHParent(&fn);
+  if (Personality == EHPersonality::MSVC_CXX)
+    calculateWinCXXEHStateNumbers(WinEHParentFn, EHInfo);
+  else if (isAsynchronousEHPersonality(Personality))
+    calculateSEHStateNumbers(WinEHParentFn, EHInfo);
+  else if (Personality == EHPersonality::CoreCLR)
+    calculateClrEHStateNumbers(WinEHParentFn, EHInfo);
+
+  calculateCatchReturnSuccessorColors(WinEHParentFn, EHInfo);
+
+  // Map all BB references in the WinEH data to MBBs.
+  for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) {
+    for (WinEHHandlerType &H : TBME.HandlerArray) {
+      if (H.CatchObjRecoverIdx == -2 && H.CatchObj.Alloca) {
+        assert(StaticAllocaMap.count(H.CatchObj.Alloca));
+        H.CatchObj.FrameIndex = StaticAllocaMap[H.CatchObj.Alloca];
+      } else {
+        H.CatchObj.FrameIndex = INT_MAX;
+      }
+      if (const auto *BB = dyn_cast<BasicBlock>(H.Handler.get<const Value *>()))
+        H.Handler = MBBMap[BB];
+    }
+  }
+  for (WinEHUnwindMapEntry &UME : EHInfo.UnwindMap)
+    if (UME.Cleanup)
+      if (const auto *BB = dyn_cast<BasicBlock>(UME.Cleanup.get<const Value *>()))
+        UME.Cleanup = MBBMap[BB];
+  for (SEHUnwindMapEntry &UME : EHInfo.SEHUnwindMap) {
+    const BasicBlock *BB = UME.Handler.get<const BasicBlock *>();
+    UME.Handler = MBBMap[BB];
+  }
+  for (ClrEHUnwindMapEntry &CME : EHInfo.ClrEHUnwindMap) {
+    const BasicBlock *BB = CME.Handler.get<const BasicBlock *>();
+    CME.Handler = MBBMap[BB];
+  }
+
+  // If there's an explicit EH registration node on the stack, record its
+  // frame index.
+  if (EHInfo.EHRegNode && EHInfo.EHRegNode->getParent()->getParent() == Fn) {
+    assert(StaticAllocaMap.count(EHInfo.EHRegNode));
+    EHInfo.EHRegNodeFrameIndex = StaticAllocaMap[EHInfo.EHRegNode];
+  }
+
+  // Copy the state numbers to LandingPadInfo for the current function, which
+  // could be a handler or the parent. This should happen for 32-bit SEH and
+  // C++ EH.
+  if (Personality == EHPersonality::MSVC_CXX ||
+      Personality == EHPersonality::MSVC_X86SEH) {
+    for (const LandingPadInst *LP : LPads) {
+      MachineBasicBlock *LPadMBB = MBBMap[LP->getParent()];
+      MMI.addWinEHState(LPadMBB, EHInfo.EHPadStateMap[LP]);
+    }
+  }
+}
+
+void FunctionLoweringInfo::addSEHHandlersForLPads(
+    ArrayRef<const LandingPadInst *> LPads) {
+  MachineModuleInfo &MMI = MF->getMMI();
+
+  // Iterate over all landing pads with llvm.eh.actions calls.
+  for (const LandingPadInst *LP : LPads) {
+    const IntrinsicInst *ActionsCall =
+        dyn_cast<IntrinsicInst>(LP->getNextNode());
+    if (!ActionsCall ||
+        ActionsCall->getIntrinsicID() != Intrinsic::eh_actions)
+      continue;
+
+    // Parse the llvm.eh.actions call we found.
+    MachineBasicBlock *LPadMBB = MBBMap[LP->getParent()];
+    SmallVector<std::unique_ptr<ActionHandler>, 4> Actions;
+    parseEHActions(ActionsCall, Actions);
+
+    // Iterate EH actions from most to least precedence, which means
+    // iterating in reverse.
+    for (auto I = Actions.rbegin(), E = Actions.rend(); I != E; ++I) {
+      ActionHandler *Action = I->get();
+      if (auto *CH = dyn_cast<CatchHandler>(Action)) {
+        const auto *Filter =
+            dyn_cast<Function>(CH->getSelector()->stripPointerCasts());
+        assert((Filter || CH->getSelector()->isNullValue()) &&
+               "expected function or catch-all");
+        const auto *RecoverBA =
+            cast<BlockAddress>(CH->getHandlerBlockOrFunc());
+        MMI.addSEHCatchHandler(LPadMBB, Filter, RecoverBA);
+      } else {
+        assert(isa<CleanupHandler>(Action));
+        const auto *Fini = cast<Function>(Action->getHandlerBlockOrFunc());
+        MMI.addSEHCleanupHandler(LPadMBB, Fini);
+      }
+    }
+  }
 }
 
 /// clear - Clear out all the function-specific state. This returns this
@@ -202,11 +399,15 @@ void FunctionLoweringInfo::clear() {
   ArgDbgValues.clear();
   ByValArgFrameIndexMap.clear();
   RegFixups.clear();
+  StatepointStackSlots.clear();
+  StatepointRelocatedValues.clear();
+  PreferredExtendType.clear();
 }
 
 /// CreateReg - Allocate a single virtual register for the given type.
-unsigned FunctionLoweringInfo::CreateReg(EVT VT) {
-  return RegInfo->createVirtualRegister(TLI.getRegClassFor(VT));
+unsigned FunctionLoweringInfo::CreateReg(MVT VT) {
+  return RegInfo->createVirtualRegister(
+      MF->getSubtarget().getTargetLowering()->getRegClassFor(VT));
 }
 
 /// CreateRegs - Allocate the appropriate number of virtual registers of
@@ -216,16 +417,18 @@ unsigned FunctionLoweringInfo::CreateReg(EVT VT) {
 /// In the case that the given value has struct or array type, this function
 /// will assign registers for each member or element.
 ///
-unsigned FunctionLoweringInfo::CreateRegs(const Type *Ty) {
+unsigned FunctionLoweringInfo::CreateRegs(Type *Ty) {
+  const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
+
   SmallVector<EVT, 4> ValueVTs;
-  ComputeValueVTs(TLI, Ty, ValueVTs);
+  ComputeValueVTs(*TLI, MF->getDataLayout(), Ty, ValueVTs);
 
   unsigned FirstReg = 0;
   for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
     EVT ValueVT = ValueVTs[Value];
-    EVT RegisterVT = TLI.getRegisterType(Ty->getContext(), ValueVT);
+    MVT RegisterVT = TLI->getRegisterType(Ty->getContext(), ValueVT);
 
-    unsigned NumRegs = TLI.getNumRegisters(Ty->getContext(), ValueVT);
+    unsigned NumRegs = TLI->getNumRegisters(Ty->getContext(), ValueVT);
     for (unsigned i = 0; i != NumRegs; ++i) {
       unsigned R = CreateReg(RegisterVT);
       if (!FirstReg) FirstReg = R;
@@ -242,11 +445,11 @@ unsigned FunctionLoweringInfo::CreateRegs(const Type *Ty) {
 const FunctionLoweringInfo::LiveOutInfo *
 FunctionLoweringInfo::GetLiveOutRegInfo(unsigned Reg, unsigned BitWidth) {
   if (!LiveOutRegInfo.inBounds(Reg))
-    return NULL;
+    return nullptr;
 
   LiveOutInfo *LOI = &LiveOutRegInfo[Reg];
   if (!LOI->IsValid)
-    return NULL;
+    return nullptr;
 
   if (BitWidth > LOI->KnownZero.getBitWidth()) {
     LOI->NumSignBits = 1;
@@ -260,19 +463,19 @@ FunctionLoweringInfo::GetLiveOutRegInfo(unsigned Reg, unsigned BitWidth) {
 /// ComputePHILiveOutRegInfo - Compute LiveOutInfo for a PHI's destination
 /// register based on the LiveOutInfo of its operands.
 void FunctionLoweringInfo::ComputePHILiveOutRegInfo(const PHINode *PN) {
-  const Type *Ty = PN->getType();
+  Type *Ty = PN->getType();
   if (!Ty->isIntegerTy() || Ty->isVectorTy())
     return;
 
   SmallVector<EVT, 1> ValueVTs;
-  ComputeValueVTs(TLI, Ty, ValueVTs);
+  ComputeValueVTs(*TLI, MF->getDataLayout(), Ty, ValueVTs);
   assert(ValueVTs.size() == 1 &&
          "PHIs with non-vector integer types should have a single VT.");
   EVT IntVT = ValueVTs[0];
 
-  if (TLI.getNumRegisters(PN->getContext(), IntVT) != 1)
+  if (TLI->getNumRegisters(PN->getContext(), IntVT) != 1)
     return;
-  IntVT = TLI.getTypeToTransformTo(PN->getContext(), IntVT);
+  IntVT = TLI->getTypeToTransformTo(PN->getContext(), IntVT);
   unsigned BitWidth = IntVT.getSizeInBits();
 
   unsigned DestReg = ValueMap[PN];
@@ -351,106 +554,77 @@ void FunctionLoweringInfo::ComputePHILiveOutRegInfo(const PHINode *PN) {
   }
 }
 
-/// setByValArgumentFrameIndex - Record frame index for the byval
+/// setArgumentFrameIndex - Record frame index for the byval
 /// argument. This overrides previous frame index entry for this argument,
 /// if any.
-void FunctionLoweringInfo::setByValArgumentFrameIndex(const Argument *A,
-                                                      int FI) {
-  assert (A->hasByValAttr() && "Argument does not have byval attribute!");
+void FunctionLoweringInfo::setArgumentFrameIndex(const Argument *A,
+                                                 int FI) {
   ByValArgFrameIndexMap[A] = FI;
 }
 
-/// getByValArgumentFrameIndex - Get frame index for the byval argument.
+/// getArgumentFrameIndex - Get frame index for the byval argument.
 /// If the argument does not have any assigned frame index then 0 is
 /// returned.
-int FunctionLoweringInfo::getByValArgumentFrameIndex(const Argument *A) {
-  assert (A->hasByValAttr() && "Argument does not have byval attribute!");
+int FunctionLoweringInfo::getArgumentFrameIndex(const Argument *A) {
   DenseMap<const Argument *, int>::iterator I =
     ByValArgFrameIndexMap.find(A);
   if (I != ByValArgFrameIndexMap.end())
     return I->second;
-  DEBUG(dbgs() << "Argument does not have assigned frame index!");
+  DEBUG(dbgs() << "Argument does not have assigned frame index!\n");
   return 0;
 }
 
-/// AddCatchInfo - Extract the personality and type infos from an eh.selector
-/// call, and add them to the specified machine basic block.
-void llvm::AddCatchInfo(const CallInst &I, MachineModuleInfo *MMI,
-                        MachineBasicBlock *MBB) {
-  // Inform the MachineModuleInfo of the personality for this landing pad.
-  const ConstantExpr *CE = cast<ConstantExpr>(I.getArgOperand(1));
-  assert(CE->getOpcode() == Instruction::BitCast &&
-         isa<Function>(CE->getOperand(0)) &&
-         "Personality should be a function");
-  MMI->addPersonality(MBB, cast<Function>(CE->getOperand(0)));
-
-  // Gather all the type infos for this landing pad and pass them along to
-  // MachineModuleInfo.
-  std::vector<const GlobalVariable *> TyInfo;
-  unsigned N = I.getNumArgOperands();
-
-  for (unsigned i = N - 1; i > 1; --i) {
-    if (const ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(i))) {
-      unsigned FilterLength = CI->getZExtValue();
-      unsigned FirstCatch = i + FilterLength + !FilterLength;
-      assert(FirstCatch <= N && "Invalid filter length");
-
-      if (FirstCatch < N) {
-        TyInfo.reserve(N - FirstCatch);
-        for (unsigned j = FirstCatch; j < N; ++j)
-          TyInfo.push_back(ExtractTypeInfo(I.getArgOperand(j)));
-        MMI->addCatchTypeInfo(MBB, TyInfo);
-        TyInfo.clear();
-      }
-
-      if (!FilterLength) {
-        // Cleanup.
-        MMI->addCleanup(MBB);
-      } else {
-        // Filter.
-        TyInfo.reserve(FilterLength - 1);
-        for (unsigned j = i + 1; j < FirstCatch; ++j)
-          TyInfo.push_back(ExtractTypeInfo(I.getArgOperand(j)));
-        MMI->addFilterTypeInfo(MBB, TyInfo);
-        TyInfo.clear();
+/// ComputeUsesVAFloatArgument - Determine if any floating-point values are
+/// being passed to this variadic function, and set the MachineModuleInfo's
+/// usesVAFloatArgument flag if so. This flag is used to emit an undefined
+/// reference to _fltused on Windows, which will link in MSVCRT's
+/// floating-point support.
+void llvm::ComputeUsesVAFloatArgument(const CallInst &I,
+                                      MachineModuleInfo *MMI)
+{
+  FunctionType *FT = cast<FunctionType>(
+    I.getCalledValue()->getType()->getContainedType(0));
+  if (FT->isVarArg() && !MMI->usesVAFloatArgument()) {
+    for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
+      Type* T = I.getArgOperand(i)->getType();
+      for (auto i : post_order(T)) {
+        if (i->isFloatingPointTy()) {
+          MMI->setUsesVAFloatArgument(true);
+          return;
+        }
       }
-
-      N = i;
     }
   }
-
-  if (N > 2) {
-    TyInfo.reserve(N - 2);
-    for (unsigned j = 2; j < N; ++j)
-      TyInfo.push_back(ExtractTypeInfo(I.getArgOperand(j)));
-    MMI->addCatchTypeInfo(MBB, TyInfo);
-  }
 }
 
-void llvm::CopyCatchInfo(const BasicBlock *SuccBB, const BasicBlock *LPad,
-                         MachineModuleInfo *MMI, FunctionLoweringInfo &FLI) {
-  SmallPtrSet<const BasicBlock*, 4> Visited;
-
-  // The 'eh.selector' call may not be in the direct successor of a basic block,
-  // but could be several successors deeper. If we don't find it, try going one
-  // level further. <rdar://problem/8824861>
-  while (Visited.insert(SuccBB)) {
-    for (BasicBlock::const_iterator I = SuccBB->begin(), E = --SuccBB->end();
-         I != E; ++I)
-      if (const EHSelectorInst *EHSel = dyn_cast<EHSelectorInst>(I)) {
-        // Apply the catch info to LPad.
-        AddCatchInfo(*EHSel, MMI, FLI.MBBMap[LPad]);
-#ifndef NDEBUG
-        if (!FLI.MBBMap[SuccBB]->isLandingPad())
-          FLI.CatchInfoFound.insert(EHSel);
-#endif
-        return;
-      }
-
-    const BranchInst *Br = dyn_cast<BranchInst>(SuccBB->getTerminator());
-    if (Br && Br->isUnconditional())
-      SuccBB = Br->getSuccessor(0);
-    else
-      break;
+/// AddLandingPadInfo - Extract the exception handling information from the
+/// landingpad instruction and add them to the specified machine module info.
+void llvm::AddLandingPadInfo(const LandingPadInst &I, MachineModuleInfo &MMI,
+                             MachineBasicBlock *MBB) {
+  if (const auto *PF = dyn_cast<Function>(
+      I.getParent()->getParent()->getPersonalityFn()->stripPointerCasts()))
+    MMI.addPersonality(PF);
+
+  if (I.isCleanup())
+    MMI.addCleanup(MBB);
+
+  // FIXME: New EH - Add the clauses in reverse order. This isn't 100% correct,
+  //        but we need to do it this way because of how the DWARF EH emitter
+  //        processes the clauses.
+  for (unsigned i = I.getNumClauses(); i != 0; --i) {
+    Value *Val = I.getClause(i - 1);
+    if (I.isCatch(i - 1)) {
+      MMI.addCatchTypeInfo(MBB,
+                           dyn_cast<GlobalValue>(Val->stripPointerCasts()));
+    } else {
+      // Add filters in a list.
+      Constant *CVal = cast<Constant>(Val);
+      SmallVector<const GlobalValue*, 4> FilterList;
+      for (User::op_iterator
+             II = CVal->op_begin(), IE = CVal->op_end(); II != IE; ++II)
+        FilterList.push_back(cast<GlobalValue>((*II)->stripPointerCasts()));
+
+      MMI.addFilterTypeInfo(MBB, FilterList);
+    }
   }
 }