Added an additional PBQP problem builder which adds coalescing costs (both between...
[oota-llvm.git] / lib / CodeGen / RegAllocPBQP.cpp
index 9e77abc59e7a73e7882b0f574ec41ddd922337ad..672a7d4e63b6a3546fd1b20fbb3a1502a50ecdce 100644 (file)
 
 #define DEBUG_TYPE "regalloc"
 
-#include "PBQP/HeuristicSolver.h"
-#include "PBQP/SimpleGraph.h"
-#include "PBQP/Heuristics/Briggs.h"
+#include "RenderMachineFunction.h"
+#include "Splitter.h"
 #include "VirtRegMap.h"
 #include "VirtRegRewriter.h"
+#include "llvm/CodeGen/CalcSpillWeights.h"
 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
 #include "llvm/CodeGen/LiveStackAnalysis.h"
+#include "llvm/CodeGen/RegAllocPBQP.h"
 #include "llvm/CodeGen/MachineFunctionPass.h"
 #include "llvm/CodeGen/MachineLoopInfo.h"
 #include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/PBQP/HeuristicSolver.h"
+#include "llvm/CodeGen/PBQP/Graph.h"
+#include "llvm/CodeGen/PBQP/Heuristics/Briggs.h"
 #include "llvm/CodeGen/RegAllocRegistry.h"
 #include "llvm/CodeGen/RegisterCoalescer.h"
 #include "llvm/Support/Debug.h"
 #include "llvm/Target/TargetInstrInfo.h"
 #include "llvm/Target/TargetMachine.h"
 #include <limits>
-#include <map>
 #include <memory>
 #include <set>
 #include <vector>
 
-using namespace llvm;
+namespace llvm {
 
 static RegisterRegAlloc
-registerPBQPRepAlloc("pbqp", "PBQP register allocator.",
-                      llvm::createPBQPRegisterAllocator);
-
-namespace {
-
-  ///
-  /// PBQP based allocators solve the register allocation problem by mapping
-  /// register allocation problems to Partitioned Boolean Quadratic
-  /// Programming problems.
-  class VISIBILITY_HIDDEN PBQPRegAlloc : public MachineFunctionPass {
-  public:
-
-    static char ID;
-    
-    /// Construct a PBQP register allocator.
-    PBQPRegAlloc() : MachineFunctionPass(&ID) {}
-
-    /// Return the pass name.
-    virtual const char* getPassName() const throw() {
-      return "PBQP Register Allocator";
+registerPBQPRepAlloc("pbqp", "PBQP register allocator",
+                       llvm::createPBQPRegisterAllocator);
+
+static cl::opt<bool>
+pbqpCoalescing("pbqp-coalescing",
+                cl::desc("Attempt coalescing during PBQP register allocation."),
+                cl::init(false), cl::Hidden);
+
+static cl::opt<bool>
+pbqpBuilder("pbqp-builder",
+                cl::desc("Use new builder system."),
+                cl::init(false), cl::Hidden);
+
+
+static cl::opt<bool>
+pbqpPreSplitting("pbqp-pre-splitting",
+                 cl::desc("Pre-splite before PBQP register allocation."),
+                 cl::init(false), cl::Hidden);
+
+char RegAllocPBQP::ID = 0;
+
+unsigned PBQPRAProblem::getVRegForNode(PBQP::Graph::ConstNodeItr node) const {
+  Node2VReg::const_iterator vregItr = node2VReg.find(node);
+  assert(vregItr != node2VReg.end() && "No vreg for node.");
+  return vregItr->second;
+}
+
+PBQP::Graph::NodeItr PBQPRAProblem::getNodeForVReg(unsigned vreg) const {
+  VReg2Node::const_iterator nodeItr = vreg2Node.find(vreg);
+  assert(nodeItr != vreg2Node.end() && "No node for vreg.");
+  return nodeItr->second;
+  
+}
+
+const PBQPRAProblem::AllowedSet&
+  PBQPRAProblem::getAllowedSet(unsigned vreg) const {
+  AllowedSetMap::const_iterator allowedSetItr = allowedSets.find(vreg);
+  assert(allowedSetItr != allowedSets.end() && "No pregs for vreg.");
+  const AllowedSet &allowedSet = allowedSetItr->second;
+  return allowedSet;
+}
+
+unsigned PBQPRAProblem::getPRegForOption(unsigned vreg, unsigned option) const {
+  assert(isPRegOption(vreg, option) && "Not a preg option.");
+
+  const AllowedSet& allowedSet = getAllowedSet(vreg);
+  assert(option <= allowedSet.size() && "Option outside allowed set.");
+  return allowedSet[option - 1];
+}
+
+std::auto_ptr<PBQPRAProblem> PBQPBuilder::build(MachineFunction *mf,
+                                                const LiveIntervals *lis,
+                                                const MachineLoopInfo *loopInfo,
+                                                const RegSet &vregs) {
+
+  typedef std::vector<const LiveInterval*> LIVector;
+
+  MachineRegisterInfo *mri = &mf->getRegInfo();
+  const TargetRegisterInfo *tri = mf->getTarget().getRegisterInfo();  
+
+  std::auto_ptr<PBQPRAProblem> p(new PBQPRAProblem());
+  PBQP::Graph &g = p->getGraph();
+  RegSet pregs;
+
+  // Collect the set of preg intervals, record that they're used in the MF.
+  for (LiveIntervals::const_iterator itr = lis->begin(), end = lis->end();
+       itr != end; ++itr) {
+    if (TargetRegisterInfo::isPhysicalRegister(itr->first)) {
+      pregs.insert(itr->first);
+      mri->setPhysRegUsed(itr->first);
+    }
+  }
+
+  BitVector reservedRegs = tri->getReservedRegs(*mf);
+
+  // Iterate over vregs. 
+  for (RegSet::const_iterator vregItr = vregs.begin(), vregEnd = vregs.end();
+       vregItr != vregEnd; ++vregItr) {
+    unsigned vreg = *vregItr;
+    const TargetRegisterClass *trc = mri->getRegClass(vreg);
+    const LiveInterval *vregLI = &lis->getInterval(vreg);
+
+    // Compute an initial allowed set for the current vreg.
+    typedef std::vector<unsigned> VRAllowed;
+    VRAllowed vrAllowed;
+    for (TargetRegisterClass::iterator aoItr = trc->allocation_order_begin(*mf),
+                                       aoEnd = trc->allocation_order_end(*mf);
+         aoItr != aoEnd; ++aoItr) {
+      unsigned preg = *aoItr;
+      if (!reservedRegs.test(preg)) {
+        vrAllowed.push_back(preg);
+      }
+    }
+
+    // Remove any physical registers which overlap.
+    for (RegSet::const_iterator pregItr = pregs.begin(),
+                                pregEnd = pregs.end();
+         pregItr != pregEnd; ++pregItr) {
+      unsigned preg = *pregItr;
+      const LiveInterval *pregLI = &lis->getInterval(preg);
+
+      if (pregLI->empty())
+        continue;
+
+      if (!vregLI->overlaps(*pregLI))
+        continue;
+
+      // Remove the register from the allowed set.
+      VRAllowed::iterator eraseItr =
+        std::find(vrAllowed.begin(), vrAllowed.end(), preg);
+
+      if (eraseItr != vrAllowed.end()) {
+        vrAllowed.erase(eraseItr);
+      }
+
+      // Also remove any aliases.
+      const unsigned *aliasItr = tri->getAliasSet(preg);
+      if (aliasItr != 0) {
+        for (; *aliasItr != 0; ++aliasItr) {
+          VRAllowed::iterator eraseItr =
+            std::find(vrAllowed.begin(), vrAllowed.end(), *aliasItr);
+
+          if (eraseItr != vrAllowed.end()) {
+            vrAllowed.erase(eraseItr);
+          }
+        }
+      }
     }
 
-    /// PBQP analysis usage.
-    virtual void getAnalysisUsage(AnalysisUsage &au) const {
-      au.addRequired<LiveIntervals>();
-      //au.addRequiredID(SplitCriticalEdgesID);
-      au.addRequired<LiveStacks>();
-      au.addPreserved<LiveStacks>();
-      au.addRequired<MachineLoopInfo>();
-      au.addPreserved<MachineLoopInfo>();
-      au.addRequired<VirtRegMap>();
-      MachineFunctionPass::getAnalysisUsage(au);
+    // Construct the node.
+    PBQP::Graph::NodeItr node = 
+      g.addNode(PBQP::Vector(vrAllowed.size() + 1, 0));
+
+    // Record the mapping and allowed set in the problem.
+    p->recordVReg(vreg, node, vrAllowed.begin(), vrAllowed.end());
+
+    PBQP::PBQPNum spillCost = (vregLI->weight != 0.0) ?
+        vregLI->weight : std::numeric_limits<PBQP::PBQPNum>::min();
+
+    addSpillCosts(g.getNodeCosts(node), spillCost);
+  }
+
+  for (RegSet::const_iterator vr1Itr = vregs.begin(), vrEnd = vregs.end();
+         vr1Itr != vrEnd; ++vr1Itr) {
+    unsigned vr1 = *vr1Itr;
+    const LiveInterval &l1 = lis->getInterval(vr1);
+    const PBQPRAProblem::AllowedSet &vr1Allowed = p->getAllowedSet(vr1);
+
+    for (RegSet::const_iterator vr2Itr = llvm::next(vr1Itr);
+         vr2Itr != vrEnd; ++vr2Itr) {
+      unsigned vr2 = *vr2Itr;
+      const LiveInterval &l2 = lis->getInterval(vr2);
+      const PBQPRAProblem::AllowedSet &vr2Allowed = p->getAllowedSet(vr2);
+
+      assert(!l2.empty() && "Empty interval in vreg set?");
+      if (l1.overlaps(l2)) {
+        PBQP::Graph::EdgeItr edge =
+          g.addEdge(p->getNodeForVReg(vr1), p->getNodeForVReg(vr2),
+                    PBQP::Matrix(vr1Allowed.size()+1, vr2Allowed.size()+1, 0));
+
+        addInterferenceCosts(g.getEdgeCosts(edge), vr1Allowed, vr2Allowed, tri);
+      }
     }
+  }
 
-    /// Perform register allocation
-    virtual bool runOnMachineFunction(MachineFunction &MF);
-
-  private:
-    typedef std::map<const LiveInterval*, unsigned> LI2NodeMap;
-    typedef std::vector<const LiveInterval*> Node2LIMap;
-    typedef std::vector<unsigned> AllowedSet;
-    typedef std::vector<AllowedSet> AllowedSetMap;
-    typedef std::set<unsigned> RegSet;
-    typedef std::pair<unsigned, unsigned> RegPair;
-    typedef std::map<RegPair, PBQP::PBQPNum> CoalesceMap;
-
-    typedef std::set<LiveInterval*> LiveIntervalSet;
-
-    MachineFunction *mf;
-    const TargetMachine *tm;
-    const TargetRegisterInfo *tri;
-    const TargetInstrInfo *tii;
-    const MachineLoopInfo *loopInfo;
-    MachineRegisterInfo *mri;
-
-    LiveIntervals *lis;
-    LiveStacks *lss;
-    VirtRegMap *vrm;
-
-    LI2NodeMap li2Node;
-    Node2LIMap node2LI;
-    AllowedSetMap allowedSets;
-    LiveIntervalSet vregIntervalsToAlloc,
-                    emptyVRegIntervals;
-
-
-    /// Builds a PBQP cost vector.
-    template <typename RegContainer>
-    PBQP::Vector buildCostVector(unsigned vReg,
-                                 const RegContainer &allowed,
-                                 const CoalesceMap &cealesces,
-                                 PBQP::PBQPNum spillCost) const;
-
-    /// \brief Builds a PBQP interference matrix.
-    ///
-    /// @return Either a pointer to a non-zero PBQP matrix representing the
-    ///         allocation option costs, or a null pointer for a zero matrix.
-    ///
-    /// Expects allowed sets for two interfering LiveIntervals. These allowed
-    /// sets should contain only allocable registers from the LiveInterval's
-    /// register class, with any interfering pre-colored registers removed.
-    template <typename RegContainer>
-    PBQP::Matrix* buildInterferenceMatrix(const RegContainer &allowed1,
-                                          const RegContainer &allowed2) const;
-
-    ///
-    /// Expects allowed sets for two potentially coalescable LiveIntervals,
-    /// and an estimated benefit due to coalescing. The allowed sets should
-    /// contain only allocable registers from the LiveInterval's register
-    /// classes, with any interfering pre-colored registers removed.
-    template <typename RegContainer>
-    PBQP::Matrix* buildCoalescingMatrix(const RegContainer &allowed1,
-                                        const RegContainer &allowed2,
-                                        PBQP::PBQPNum cBenefit) const;
-
-    /// \brief Finds coalescing opportunities and returns them as a map.
-    ///
-    /// Any entries in the map are guaranteed coalescable, even if their
-    /// corresponding live intervals overlap.
-    CoalesceMap findCoalesces();
-
-    /// \brief Finds the initial set of vreg intervals to allocate.
-    void findVRegIntervalsToAlloc();
-
-    /// \brief Constructs a PBQP problem representation of the register
-    /// allocation problem for this function.
-    ///
-    /// @return a PBQP solver object for the register allocation problem.
-    PBQP::SimpleGraph constructPBQPProblem();
-
-    /// \brief Adds a stack interval if the given live interval has been
-    /// spilled. Used to support stack slot coloring.
-    void addStackInterval(const LiveInterval *spilled,MachineRegisterInfo* mri);
-
-    /// \brief Given a solved PBQP problem maps this solution back to a register
-    /// assignment.
-    bool mapPBQPToRegAlloc(const PBQP::Solution &solution);
-
-    /// \brief Postprocessing before final spilling. Sets basic block "live in"
-    /// variables.
-    void finalizeAlloc() const;
-
-  };
-
-  char PBQPRegAlloc::ID = 0;
+  return p;
 }
 
+void PBQPBuilder::addSpillCosts(PBQP::Vector &costVec,
+                                PBQP::PBQPNum spillCost) {
+  costVec[0] = spillCost;
+}
+
+void PBQPBuilder::addInterferenceCosts(
+                                    PBQP::Matrix &costMat,
+                                    const PBQPRAProblem::AllowedSet &vr1Allowed,
+                                    const PBQPRAProblem::AllowedSet &vr2Allowed,
+                                    const TargetRegisterInfo *tri) {
+  assert(costMat.getRows() == vr1Allowed.size() + 1 && "Matrix height mismatch.");
+  assert(costMat.getCols() == vr2Allowed.size() + 1 && "Matrix width mismatch.");
+
+  for (unsigned i = 0; i < vr1Allowed.size(); ++i) {
+    unsigned preg1 = vr1Allowed[i];
+
+    for (unsigned j = 0; j < vr2Allowed.size(); ++j) {
+      unsigned preg2 = vr2Allowed[j];
+
+      if (tri->regsOverlap(preg1, preg2)) {
+        costMat[i + 1][j + 1] = std::numeric_limits<PBQP::PBQPNum>::infinity();
+      }
+    }
+  }
+}
+
+std::auto_ptr<PBQPRAProblem> PBQPBuilderWithCoalescing::build(
+                                                MachineFunction *mf,
+                                                const LiveIntervals *lis,
+                                                const MachineLoopInfo *loopInfo,
+                                                const RegSet &vregs) {
+
+  std::auto_ptr<PBQPRAProblem> p = PBQPBuilder::build(mf, lis, loopInfo, vregs);
+  PBQP::Graph &g = p->getGraph();
+
+  const TargetMachine &tm = mf->getTarget();
+  CoalescerPair cp(*tm.getInstrInfo(), *tm.getRegisterInfo());
+
+  // Scan the machine function and add a coalescing cost whenever CoalescerPair
+  // gives the Ok.
+  for (MachineFunction::const_iterator mbbItr = mf->begin(),
+                                       mbbEnd = mf->end();
+       mbbItr != mbbEnd; ++mbbItr) {
+    const MachineBasicBlock *mbb = &*mbbItr;
+
+    for (MachineBasicBlock::const_iterator miItr = mbb->begin(),
+                                           miEnd = mbb->end();
+         miItr != miEnd; ++miItr) {
+      const MachineInstr *mi = &*miItr;
+
+      if (!mi->isCopy() && !mi->isSubregToReg())
+        continue; // Not coalescable.
+
+      if (!cp.setRegisters(mi))
+        continue; // Not coalescable.
+
+      if (cp.getSrcReg() == cp.getDstReg())
+        continue; // Already coalesced.
+
+      if (cp.isCoalescable(mi)) {
+
+        unsigned dst = cp.getDstReg(),
+                 src = cp.getSrcReg();
+
+
+
+        PBQP::PBQPNum cBenefit = std::pow(10.0f, loopInfo->getLoopDepth(mbb));
+
+        if (cp.isPhys()) {
+          if (!lis->isAllocatable(dst))
+            continue;
+
+          const PBQPRAProblem::AllowedSet &allowed = p->getAllowedSet(src);
+          unsigned pregOpt = 0;  
+          while (pregOpt < allowed.size() && allowed[pregOpt] != dst)
+            ++pregOpt;
+          if (pregOpt < allowed.size()) {
+            ++pregOpt; // +1 to account for spill option.
+            PBQP::Graph::NodeItr node = p->getNodeForVReg(src);
+            addPhysRegCoalesce(g.getNodeCosts(node), pregOpt, cBenefit);
+          }
+        } else {
+          const PBQPRAProblem::AllowedSet *allowed1 = &p->getAllowedSet(dst);
+          const PBQPRAProblem::AllowedSet *allowed2 = &p->getAllowedSet(src);
+          PBQP::Graph::NodeItr node1 = p->getNodeForVReg(dst);
+          PBQP::Graph::NodeItr node2 = p->getNodeForVReg(src);
+          PBQP::Graph::EdgeItr edge = g.findEdge(node1, node2);
+          if (edge == g.edgesEnd()) {
+            edge = g.addEdge(node1, node2, PBQP::Matrix(allowed1->size() + 1,
+                                                        allowed2->size() + 1,
+                                                        0));
+          } else {
+            if (g.getEdgeNode1(edge) == node2) {
+              std::swap(node1, node2);
+              std::swap(allowed1, allowed2);
+            }
+          }
+            
+          addVirtRegCoalesce(g.getEdgeCosts(edge), *allowed1, *allowed2,
+                             cBenefit);
+        }
+      }
+    }
+  }
+
+  return p;
+}
+
+
+void PBQPBuilderWithCoalescing::addPhysRegCoalesce(PBQP::Vector &costVec,
+                                                   unsigned pregOption,
+                                                   PBQP::PBQPNum benefit) {
+  costVec[pregOption] += -benefit;
+}
+
+void PBQPBuilderWithCoalescing::addVirtRegCoalesce(
+                                    PBQP::Matrix &costMat,
+                                    const PBQPRAProblem::AllowedSet &vr1Allowed,
+                                    const PBQPRAProblem::AllowedSet &vr2Allowed,
+                                    PBQP::PBQPNum benefit) {
+
+  assert(costMat.getRows() == vr1Allowed.size() + 1 && "Size mismatch.");
+  assert(costMat.getCols() == vr2Allowed.size() + 1 && "Size mismatch.");
+
+  for (unsigned i = 0; i < vr1Allowed.size(); ++i) {
+    unsigned preg1 = vr1Allowed[i];
+    for (unsigned j = 0; j < vr2Allowed.size(); ++j) {
+      unsigned preg2 = vr2Allowed[j];
+
+      if (preg1 == preg2) {
+        costMat[i + 1][j + 1] += -benefit;
+      } 
+    }
+  }
+}
+
+
+void RegAllocPBQP::getAnalysisUsage(AnalysisUsage &au) const {
+  au.addRequired<SlotIndexes>();
+  au.addPreserved<SlotIndexes>();
+  au.addRequired<LiveIntervals>();
+  //au.addRequiredID(SplitCriticalEdgesID);
+  au.addRequired<RegisterCoalescer>();
+  au.addRequired<CalculateSpillWeights>();
+  au.addRequired<LiveStacks>();
+  au.addPreserved<LiveStacks>();
+  au.addRequired<MachineLoopInfo>();
+  au.addPreserved<MachineLoopInfo>();
+  if (pbqpPreSplitting)
+    au.addRequired<LoopSplitter>();
+  au.addRequired<VirtRegMap>();
+  au.addRequired<RenderMachineFunction>();
+  MachineFunctionPass::getAnalysisUsage(au);
+}
 
 template <typename RegContainer>
-PBQP::Vector PBQPRegAlloc::buildCostVector(unsigned vReg,
+PBQP::Vector RegAllocPBQP::buildCostVector(unsigned vReg,
                                            const RegContainer &allowed,
                                            const CoalesceMap &coalesces,
                                            PBQP::PBQPNum spillCost) const {
@@ -220,7 +418,7 @@ PBQP::Vector PBQPRegAlloc::buildCostVector(unsigned vReg,
 }
 
 template <typename RegContainer>
-PBQP::Matrix* PBQPRegAlloc::buildInterferenceMatrix(
+PBQP::Matrix* RegAllocPBQP::buildInterferenceMatrix(
       const RegContainer &allowed1, const RegContainer &allowed2) const {
 
   typedef typename RegContainer::const_iterator RegContainerIterator;
@@ -263,7 +461,7 @@ PBQP::Matrix* PBQPRegAlloc::buildInterferenceMatrix(
       unsigned reg2 = *a2Itr;
 
       // If the row/column regs are identical or alias insert an infinity.
-      if ((reg1 == reg2) || tri->areAliases(reg1, reg2)) {
+      if (tri->regsOverlap(reg1, reg2)) {
         (*m)[ri][ci] = std::numeric_limits<PBQP::PBQPNum>::infinity();
         isZeroMatrix = false;
       }
@@ -286,7 +484,7 @@ PBQP::Matrix* PBQPRegAlloc::buildInterferenceMatrix(
 }
 
 template <typename RegContainer>
-PBQP::Matrix* PBQPRegAlloc::buildCoalescingMatrix(
+PBQP::Matrix* RegAllocPBQP::buildCoalescingMatrix(
       const RegContainer &allowed1, const RegContainer &allowed2,
       PBQP::PBQPNum cBenefit) const {
 
@@ -347,7 +545,7 @@ PBQP::Matrix* PBQPRegAlloc::buildCoalescingMatrix(
   return m;
 }
 
-PBQPRegAlloc::CoalesceMap PBQPRegAlloc::findCoalesces() {
+RegAllocPBQP::CoalesceMap RegAllocPBQP::findCoalesces() {
 
   typedef MachineFunction::const_iterator MFIterator;
   typedef MachineBasicBlock::const_iterator MBBIterator;
@@ -366,12 +564,14 @@ PBQPRegAlloc::CoalesceMap PBQPRegAlloc::findCoalesces() {
          iItr != iEnd; ++iItr) {
 
       const MachineInstr *instr = &*iItr;
-      unsigned srcReg, dstReg, srcSubReg, dstSubReg;
 
       // If this isn't a copy then continue to the next instruction.
-      if (!tii->isMoveInstr(*instr, srcReg, dstReg, srcSubReg, dstSubReg))
+      if (!instr->isCopy())
         continue;
 
+      unsigned srcReg = instr->getOperand(1).getReg();
+      unsigned dstReg = instr->getOperand(0).getReg();
+
       // If the registers are already the same our job is nice and easy.
       if (dstReg == srcReg)
         continue;
@@ -383,33 +583,28 @@ PBQPRegAlloc::CoalesceMap PBQPRegAlloc::findCoalesces() {
       if (srcRegIsPhysical && dstRegIsPhysical)
         continue;
 
-      // If it's a copy that includes a virtual register but the source and
-      // destination classes differ then we can't coalesce, so continue with
-      // the next instruction.
-      const TargetRegisterClass *srcRegClass = srcRegIsPhysical ?
-          tri->getPhysicalRegisterRegClass(srcReg) : mri->getRegClass(srcReg);
-
-      const TargetRegisterClass *dstRegClass = dstRegIsPhysical ?
-          tri->getPhysicalRegisterRegClass(dstReg) : mri->getRegClass(dstReg);
-
-      if (srcRegClass != dstRegClass)
+      // If it's a copy that includes two virtual register but the source and
+      // destination classes differ then we can't coalesce.
+      if (!srcRegIsPhysical && !dstRegIsPhysical &&
+          mri->getRegClass(srcReg) != mri->getRegClass(dstReg))
         continue;
 
-      // We also need any physical regs to be allocable, coalescing with
-      // a non-allocable register is invalid.
-      if (srcRegIsPhysical) {
-        if (std::find(srcRegClass->allocation_order_begin(*mf),
-                      srcRegClass->allocation_order_end(*mf), srcReg) ==
-            srcRegClass->allocation_order_end(*mf))
-          continue;
-      }
-
-      if (dstRegIsPhysical) {
+      // If one is physical and one is virtual, check that the physical is
+      // allocatable in the class of the virtual.
+      if (srcRegIsPhysical && !dstRegIsPhysical) {
+        const TargetRegisterClass *dstRegClass = mri->getRegClass(dstReg);
         if (std::find(dstRegClass->allocation_order_begin(*mf),
-                      dstRegClass->allocation_order_end(*mf), dstReg) ==
+                      dstRegClass->allocation_order_end(*mf), srcReg) ==
             dstRegClass->allocation_order_end(*mf))
           continue;
       }
+      if (!srcRegIsPhysical && dstRegIsPhysical) {
+        const TargetRegisterClass *srcRegClass = mri->getRegClass(srcReg);
+        if (std::find(srcRegClass->allocation_order_begin(*mf),
+                      srcRegClass->allocation_order_end(*mf), dstReg) ==
+            srcRegClass->allocation_order_end(*mf))
+          continue;
+      }
 
       // If we've made it here we have a copy with compatible register classes.
       // We can probably coalesce, but we need to consider overlap.
@@ -429,6 +624,12 @@ PBQPRegAlloc::CoalesceMap PBQPRegAlloc::findCoalesces() {
                vniItr = srcLI->vni_begin(), vniEnd = srcLI->vni_end();
                vniItr != vniEnd; ++vniItr) {
 
+          // If we find a poorly defined def we err on the side of caution.
+          if (!(*vniItr)->def.isValid()) {
+            badDef = true;
+            break;
+          }
+
           // If we find a def that kills the coalescing opportunity then
           // record it and break from the loop.
           if (dstLI->liveAt((*vniItr)->def)) {
@@ -450,6 +651,11 @@ PBQPRegAlloc::CoalesceMap PBQPRegAlloc::findCoalesces() {
           if ((*vniItr)->getCopy() == instr)
             continue;
 
+          if (!(*vniItr)->def.isValid()) {
+            badDef = true;
+            break;
+          }
+
           if (srcLI->liveAt((*vniItr)->def)) {
             badDef = true;
             break;
@@ -465,7 +671,7 @@ PBQPRegAlloc::CoalesceMap PBQPRegAlloc::findCoalesces() {
       // did, but none of their definitions would prevent us from coalescing.
       // We're good to go with the coalesce.
 
-      float cBenefit = powf(10.0f, loopInfo->getLoopDepth(mbb)) / 5.0;
+      float cBenefit = std::pow(10.0f, (float)loopInfo->getLoopDepth(mbb)) / 5.0;
 
       coalescesFound[RegPair(srcReg, dstReg)] = cBenefit;
       coalescesFound[RegPair(dstReg, srcReg)] = cBenefit;
@@ -476,7 +682,7 @@ PBQPRegAlloc::CoalesceMap PBQPRegAlloc::findCoalesces() {
   return coalescesFound;
 }
 
-void PBQPRegAlloc::findVRegIntervalsToAlloc() {
+void RegAllocPBQP::findVRegIntervalsToAlloc() {
 
   // Iterate over all live ranges.
   for (LiveIntervals::iterator itr = lis->begin(), end = lis->end();
@@ -492,19 +698,18 @@ void PBQPRegAlloc::findVRegIntervalsToAlloc() {
     // Empty intervals we allocate in a simple post-processing stage in
     // finalizeAlloc.
     if (!li->empty()) {
-      vregIntervalsToAlloc.insert(li);
+      vregsToAlloc.insert(li->reg);
     }
     else {
-      emptyVRegIntervals.insert(li);
+      emptyIntervalVRegs.insert(li->reg);
     }
   }
 }
 
-PBQP::SimpleGraph PBQPRegAlloc::constructPBQPProblem() {
+PBQP::Graph RegAllocPBQP::constructPBQPProblem() {
 
   typedef std::vector<const LiveInterval*> LIVector;
   typedef std::vector<unsigned> RegVector;
-  typedef std::vector<PBQP::SimpleGraph::NodeIterator> NodeVector;
 
   // This will store the physical intervals for easy reference.
   LIVector physIntervals;
@@ -526,24 +731,30 @@ PBQP::SimpleGraph PBQPRegAlloc::constructPBQPProblem() {
 
   // Iterate over vreg intervals, construct live interval <-> node number
   //  mappings.
-  for (LiveIntervalSet::const_iterator
-       itr = vregIntervalsToAlloc.begin(), end = vregIntervalsToAlloc.end();
+  for (RegSet::const_iterator itr = vregsToAlloc.begin(),
+                              end = vregsToAlloc.end();
        itr != end; ++itr) {
-    const LiveInterval *li = *itr;
+    const LiveInterval *li = &lis->getInterval(*itr);
 
     li2Node[li] = node2LI.size();
     node2LI.push_back(li);
   }
 
   // Get the set of potential coalesces.
-  CoalesceMap coalesces;//(findCoalesces());
+  CoalesceMap coalesces;
+
+  if (pbqpCoalescing) {
+    coalesces = findCoalesces();
+  }
 
   // Construct a PBQP solver for this problem
-  PBQP::SimpleGraph problem;
-  NodeVector problemNodes(vregIntervalsToAlloc.size());
+  PBQP::Graph problem;
+  problemNodes.resize(vregsToAlloc.size());
 
   // Resize allowedSets container appropriately.
-  allowedSets.resize(vregIntervalsToAlloc.size());
+  allowedSets.resize(vregsToAlloc.size());
+
+  BitVector ReservedRegs = tri->getReservedRegs(*mf);
 
   // Iterate over virtual register intervals to compute allowed sets...
   for (unsigned node = 0; node < node2LI.size(); ++node) {
@@ -553,8 +764,12 @@ PBQP::SimpleGraph PBQPRegAlloc::constructPBQPProblem() {
     const TargetRegisterClass *liRC = mri->getRegClass(li->reg);
 
     // Start by assuming all allocable registers in the class are allowed...
-    RegVector liAllowed(liRC->allocation_order_begin(*mf),
-                        liRC->allocation_order_end(*mf));
+    RegVector liAllowed;
+    TargetRegisterClass::iterator aob = liRC->allocation_order_begin(*mf);
+    TargetRegisterClass::iterator aoe = liRC->allocation_order_end(*mf);
+    for (TargetRegisterClass::iterator it = aob; it != aoe; ++it)
+      if (!ReservedRegs.test(*it))
+        liAllowed.push_back(*it);
 
     // Eliminate the physical registers which overlap with this range, along
     // with all their aliases.
@@ -568,8 +783,10 @@ PBQP::SimpleGraph PBQPRegAlloc::constructPBQPProblem() {
 
       // If we get here then the live intervals overlap, but we're still ok
       // if they're coalescable.
-      if (coalesces.find(RegPair(li->reg, pReg)) != coalesces.end())
+      if (coalesces.find(RegPair(li->reg, pReg)) != coalesces.end()) {
+        DEBUG(dbgs() << "CoalescingOverride: (" << li->reg << ", " << pReg << ")\n");
         continue;
+      }
 
       // If we get here then we have a genuine exclusion.
 
@@ -643,12 +860,7 @@ PBQP::SimpleGraph PBQPRegAlloc::constructPBQPProblem() {
     }
   }
 
-  problem.assignNodeIDs();
-
   assert(problem.getNumNodes() == allowedSets.size());
-  for (unsigned i = 0; i < allowedSets.size(); ++i) {
-    assert(problem.getNodeItr(i) == problemNodes[i]);
-  }
 /*
   std::cerr << "Allocating for " << problem.getNumNodes() << " nodes, "
             << problem.getNumEdges() << " edges.\n";
@@ -659,7 +871,7 @@ PBQP::SimpleGraph PBQPRegAlloc::constructPBQPProblem() {
   return problem;
 }
 
-void PBQPRegAlloc::addStackInterval(const LiveInterval *spilled,
+void RegAllocPBQP::addStackInterval(const LiveInterval *spilled,
                                     MachineRegisterInfo* mri) {
   int stackSlot = vrm->getStackSlot(spilled->reg);
 
@@ -673,27 +885,25 @@ void PBQPRegAlloc::addStackInterval(const LiveInterval *spilled,
   if (stackInterval.getNumValNums() != 0)
     vni = stackInterval.getValNumInfo(0);
   else
-    vni = stackInterval.getNextValue(0, 0, false, lss->getVNInfoAllocator());
+    vni = stackInterval.getNextValue(
+      SlotIndex(), 0, false, lss->getVNInfoAllocator());
 
   LiveInterval &rhsInterval = lis->getInterval(spilled->reg);
   stackInterval.MergeRangesInAsValue(rhsInterval, vni);
 }
 
-bool PBQPRegAlloc::mapPBQPToRegAlloc(const PBQP::Solution &solution) {
-
-  static unsigned round = 0;
-  (void) round;
+bool RegAllocPBQP::mapPBQPToRegAlloc(const PBQP::Solution &solution) {
 
   // Set to true if we have any spills
   bool anotherRoundNeeded = false;
 
   // Clear the existing allocation.
   vrm->clearAllVirt();
-  
+
   // Iterate over the nodes mapping the PBQP solution to a register assignment.
   for (unsigned node = 0; node < node2LI.size(); ++node) {
     unsigned virtReg = node2LI[node]->reg,
-             allocSelection = solution.getSelection(node);
+             allocSelection = solution.getSelection(problemNodes[node]);
 
 
     // If the PBQP solution is non-zero it's a physical register...
@@ -701,7 +911,8 @@ bool PBQPRegAlloc::mapPBQPToRegAlloc(const PBQP::Solution &solution) {
       // Get the physical reg, subtracting 1 to account for the spill option.
       unsigned physReg = allowedSets[node][allocSelection - 1];
 
-      DOUT << "VREG " << virtReg << " -> " << tri->getName(physReg) << "\n";
+      DEBUG(dbgs() << "VREG " << virtReg << " -> "
+            << tri->getName(physReg) << " (Option: " << allocSelection << ")\n");
 
       assert(physReg != 0);
 
@@ -713,18 +924,21 @@ bool PBQPRegAlloc::mapPBQPToRegAlloc(const PBQP::Solution &solution) {
 
       // Make sure we ignore this virtual reg on the next round
       // of allocation
-      vregIntervalsToAlloc.erase(&lis->getInterval(virtReg));
+      vregsToAlloc.erase(virtReg);
 
       // Insert spill ranges for this live range
       const LiveInterval *spillInterval = node2LI[node];
       double oldSpillWeight = spillInterval->weight;
       SmallVector<LiveInterval*, 8> spillIs;
+      rmf->rememberUseDefs(spillInterval);
       std::vector<LiveInterval*> newSpills =
         lis->addIntervalsForSpills(*spillInterval, spillIs, loopInfo, *vrm);
       addStackInterval(spillInterval, mri);
+      rmf->rememberSpills(spillInterval, newSpills);
 
-      DOUT << "VREG " << virtReg << " -> SPILLED (Cost: "
-           << oldSpillWeight << ", New vregs: ";
+      (void) oldSpillWeight;
+      DEBUG(dbgs() << "VREG " << virtReg << " -> SPILLED (Option: 0, Cost: "
+                   << oldSpillWeight << ", New vregs: ");
 
       // Copy any newly inserted live intervals into the list of regs to
       // allocate.
@@ -734,12 +948,12 @@ bool PBQPRegAlloc::mapPBQPToRegAlloc(const PBQP::Solution &solution) {
 
         assert(!(*itr)->empty() && "Empty spill range.");
 
-        DOUT << (*itr)->reg << " ";
+        DEBUG(dbgs() << (*itr)->reg << " ");
 
-        vregIntervalsToAlloc.insert(*itr);
+        vregsToAlloc.insert((*itr)->reg);
       }
 
-      DOUT << ")\n";
+      DEBUG(dbgs() << ")\n");
 
       // We need another round if spill intervals were added.
       anotherRoundNeeded |= !newSpills.empty();
@@ -749,15 +963,75 @@ bool PBQPRegAlloc::mapPBQPToRegAlloc(const PBQP::Solution &solution) {
   return !anotherRoundNeeded;
 }
 
-void PBQPRegAlloc::finalizeAlloc() const {
+bool RegAllocPBQP::mapPBQPToRegAlloc2(const PBQPRAProblem &problem,
+                                      const PBQP::Solution &solution) {
+  // Set to true if we have any spills
+  bool anotherRoundNeeded = false;
+
+  // Clear the existing allocation.
+  vrm->clearAllVirt();
+
+  const PBQP::Graph &g = problem.getGraph();
+  // Iterate over the nodes mapping the PBQP solution to a register
+  // assignment.
+  for (PBQP::Graph::ConstNodeItr node = g.nodesBegin(),
+                                 nodeEnd = g.nodesEnd();
+       node != nodeEnd; ++node) {
+    unsigned vreg = problem.getVRegForNode(node);
+    unsigned alloc = solution.getSelection(node);
+
+    if (problem.isPRegOption(vreg, alloc)) {
+      unsigned preg = problem.getPRegForOption(vreg, alloc);    
+      DEBUG(dbgs() << "VREG " << vreg << " -> " << tri->getName(preg) << "\n");
+      assert(preg != 0 && "Invalid preg selected.");
+      vrm->assignVirt2Phys(vreg, preg);      
+    } else if (problem.isSpillOption(vreg, alloc)) {
+      vregsToAlloc.erase(vreg);
+      const LiveInterval* spillInterval = &lis->getInterval(vreg);
+      double oldWeight = spillInterval->weight;
+      SmallVector<LiveInterval*, 8> spillIs;
+      rmf->rememberUseDefs(spillInterval);
+      std::vector<LiveInterval*> newSpills =
+        lis->addIntervalsForSpills(*spillInterval, spillIs, loopInfo, *vrm);
+      addStackInterval(spillInterval, mri);
+      rmf->rememberSpills(spillInterval, newSpills);
+
+      (void) oldWeight;
+      DEBUG(dbgs() << "VREG " << vreg << " -> SPILLED (Cost: "
+                   << oldWeight << ", New vregs: ");
+
+      // Copy any newly inserted live intervals into the list of regs to
+      // allocate.
+      for (std::vector<LiveInterval*>::const_iterator
+           itr = newSpills.begin(), end = newSpills.end();
+           itr != end; ++itr) {
+        assert(!(*itr)->empty() && "Empty spill range.");
+        DEBUG(dbgs() << (*itr)->reg << " ");
+        vregsToAlloc.insert((*itr)->reg);
+      }
+
+      DEBUG(dbgs() << ")\n");
+
+      // We need another round if spill intervals were added.
+      anotherRoundNeeded |= !newSpills.empty();
+    } else {
+      assert(false && "Unknown allocation option.");
+    }
+  }
+
+  return !anotherRoundNeeded;
+}
+
+
+void RegAllocPBQP::finalizeAlloc() const {
   typedef LiveIntervals::iterator LIIterator;
   typedef LiveInterval::Ranges::const_iterator LRIterator;
 
   // First allocate registers for the empty intervals.
-  for (LiveIntervalSet::const_iterator
-        itr = emptyVRegIntervals.begin(), end = emptyVRegIntervals.end();
+  for (RegSet::const_iterator
+         itr = emptyIntervalVRegs.begin(), end = emptyIntervalVRegs.end();
          itr != end; ++itr) {
-    LiveInterval *li = *itr;
+    LiveInterval *li = &lis->getInterval(*itr);
 
     unsigned physReg = vrm->getRegAllocPref(li->reg);
 
@@ -817,21 +1091,23 @@ void PBQPRegAlloc::finalizeAlloc() const {
 
 }
 
-bool PBQPRegAlloc::runOnMachineFunction(MachineFunction &MF) {
+bool RegAllocPBQP::runOnMachineFunction(MachineFunction &MF) {
 
   mf = &MF;
   tm = &mf->getTarget();
   tri = tm->getRegisterInfo();
   tii = tm->getInstrInfo();
-  mri = &mf->getRegInfo();
+  mri = &mf->getRegInfo(); 
 
   lis = &getAnalysis<LiveIntervals>();
   lss = &getAnalysis<LiveStacks>();
   loopInfo = &getAnalysis<MachineLoopInfo>();
+  rmf = &getAnalysis<RenderMachineFunction>();
 
   vrm = &getAnalysis<VirtRegMap>();
 
-  DEBUG(errs() << "PBQP2 Register Allocating for " << mf->getFunction()->getName() << "\n");
+
+  DEBUG(dbgs() << "PBQP Register Allocating for " << mf->getFunction()->getName() << "\n");
 
   // Allocator main loop:
   //
@@ -845,45 +1121,54 @@ bool PBQPRegAlloc::runOnMachineFunction(MachineFunction &MF) {
   // Find the vreg intervals in need of allocation.
   findVRegIntervalsToAlloc();
 
-  // If there aren't any then we're done here.
-  if (vregIntervalsToAlloc.empty() && emptyVRegIntervals.empty())
-    return true;
-
   // If there are non-empty intervals allocate them using pbqp.
-  if (!vregIntervalsToAlloc.empty()) {
+  if (!vregsToAlloc.empty()) {
 
     bool pbqpAllocComplete = false;
     unsigned round = 0;
 
-    while (!pbqpAllocComplete) {
-      DEBUG(errs() << "  PBQP Regalloc round " << round << ":\n");
+    if (!pbqpBuilder) {
+      while (!pbqpAllocComplete) {
+        DEBUG(dbgs() << "  PBQP Regalloc round " << round << ":\n");
 
-      PBQP::SimpleGraph problem = constructPBQPProblem();
-      PBQP::HeuristicSolver<PBQP::Heuristics::Briggs> solver;
-      problem.assignNodeIDs();
-      PBQP::Solution solution = solver.solve(problem);
-/*
-      std::cerr << "Solution:\n";
-      for (unsigned i = 0; i < solution.numNodes(); ++i) {
-        std::cerr << "  " << i << " -> " << solution.getSelection(i) << "\n";
+        PBQP::Graph problem = constructPBQPProblem();
+        PBQP::Solution solution =
+          PBQP::HeuristicSolver<PBQP::Heuristics::Briggs>::solve(problem);
+
+        pbqpAllocComplete = mapPBQPToRegAlloc(solution);
+
+        ++round;
       }
-*/
-      pbqpAllocComplete = mapPBQPToRegAlloc(solution);
+    } else {
+      while (!pbqpAllocComplete) {
+        DEBUG(dbgs() << "  PBQP Regalloc round " << round << ":\n");
 
-      ++round;
+        std::auto_ptr<PBQPRAProblem> problem =
+          builder->build(mf, lis, loopInfo, vregsToAlloc);
+        PBQP::Solution solution =
+          PBQP::HeuristicSolver<PBQP::Heuristics::Briggs>::solve(
+            problem->getGraph());
+
+        pbqpAllocComplete = mapPBQPToRegAlloc2(*problem, solution);
+
+        ++round;
+      }
     }
   }
 
   // Finalise allocation, allocate empty ranges.
   finalizeAlloc();
 
-  vregIntervalsToAlloc.clear();
-  emptyVRegIntervals.clear();
+  rmf->renderMachineFunction("After PBQP register allocation.", vrm);
+
+  vregsToAlloc.clear();
+  emptyIntervalVRegs.clear();
   li2Node.clear();
   node2LI.clear();
   allowedSets.clear();
+  problemNodes.clear();
 
-  DEBUG(errs() << "Post alloc VirtRegMap:\n" << *vrm << "\n");
+  DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << *vrm << "\n");
 
   // Run rewriter
   std::auto_ptr<VirtRegRewriter> rewriter(createVirtRegRewriter());
@@ -893,9 +1178,15 @@ bool PBQPRegAlloc::runOnMachineFunction(MachineFunction &MF) {
   return true;
 }
 
-FunctionPass* llvm::createPBQPRegisterAllocator() {
-  return new PBQPRegAlloc();
+FunctionPass* createPBQPRegisterAllocator() {
+  if (pbqpCoalescing) {
+    return new RegAllocPBQP(
+                 std::auto_ptr<PBQPBuilder>(new PBQPBuilderWithCoalescing()));
+  } // else
+  return new RegAllocPBQP(
+                 std::auto_ptr<PBQPBuilder>(new PBQPBuilder()));
 }
 
+}
 
 #undef DEBUG_TYPE