Use MachineFrameInfo.getPristineRegs() to determine which callee-saved registers...
[oota-llvm.git] / lib / CodeGen / PostRASchedulerList.cpp
index 41981d3ff145d922237d31b340d36750358f19ba..1a744be1bf01079cd58c3b21d48cf5fe22fa6db4 100644 (file)
 //===----------------------------------------------------------------------===//
 
 #define DEBUG_TYPE "post-RA-sched"
+#include "ExactHazardRecognizer.h"
+#include "SimpleHazardRecognizer.h"
+#include "ScheduleDAGInstrs.h"
 #include "llvm/CodeGen/Passes.h"
+#include "llvm/CodeGen/LatencyPriorityQueue.h"
+#include "llvm/CodeGen/SchedulerRegistry.h"
+#include "llvm/CodeGen/MachineDominators.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
 #include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineLoopInfo.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
+#include "llvm/Target/TargetLowering.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Target/TargetSubtarget.h"
 #include "llvm/Support/Compiler.h"
 #include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/ADT/Statistic.h"
+#include <map>
+#include <set>
 using namespace llvm;
 
+STATISTIC(NumNoops, "Number of noops inserted");
+STATISTIC(NumStalls, "Number of pipeline stalls");
+
+static cl::opt<bool>
+EnableAntiDepBreaking("break-anti-dependencies",
+                      cl::desc("Break post-RA scheduling anti-dependencies"),
+                      cl::init(true), cl::Hidden);
+
+static cl::opt<bool>
+EnablePostRAHazardAvoidance("avoid-hazards",
+                      cl::desc("Enable exact hazard avoidance"),
+                      cl::init(true), cl::Hidden);
+
+// If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod
+static cl::opt<int>
+DebugDiv("postra-sched-debugdiv",
+                      cl::desc("Debug control MBBs that are scheduled"),
+                      cl::init(0), cl::Hidden);
+static cl::opt<int>
+DebugMod("postra-sched-debugmod",
+                      cl::desc("Debug control MBBs that are scheduled"),
+                      cl::init(0), cl::Hidden);
+
 namespace {
-  class VISIBILITY_HIDDEN SchedulePostRATDList : public MachineFunctionPass {
+  class VISIBILITY_HIDDEN PostRAScheduler : public MachineFunctionPass {
   public:
     static char ID;
-    SchedulePostRATDList() : MachineFunctionPass(&ID) {}
-  private:
-    MachineFunction *MF;
-    const TargetMachine *TM;
-  public:
+    PostRAScheduler() : MachineFunctionPass(&ID) {}
+
+    void getAnalysisUsage(AnalysisUsage &AU) const {
+      AU.setPreservesCFG();
+      AU.addRequired<MachineDominatorTree>();
+      AU.addPreserved<MachineDominatorTree>();
+      AU.addRequired<MachineLoopInfo>();
+      AU.addPreserved<MachineLoopInfo>();
+      MachineFunctionPass::getAnalysisUsage(AU);
+    }
+
     const char *getPassName() const {
-      return "Post RA top-down list latency scheduler (STUB)";
+      return "Post RA top-down list latency scheduler";
     }
 
     bool runOnMachineFunction(MachineFunction &Fn);
   };
-  char SchedulePostRATDList::ID = 0;
+  char PostRAScheduler::ID = 0;
+
+  class VISIBILITY_HIDDEN SchedulePostRATDList : public ScheduleDAGInstrs {
+    /// AvailableQueue - The priority queue to use for the available SUnits.
+    ///
+    LatencyPriorityQueue AvailableQueue;
+  
+    /// PendingQueue - This contains all of the instructions whose operands have
+    /// been issued, but their results are not ready yet (due to the latency of
+    /// the operation).  Once the operands becomes available, the instruction is
+    /// added to the AvailableQueue.
+    std::vector<SUnit*> PendingQueue;
+
+    /// Topo - A topological ordering for SUnits.
+    ScheduleDAGTopologicalSort Topo;
+
+    /// AllocatableSet - The set of allocatable registers.
+    /// We'll be ignoring anti-dependencies on non-allocatable registers,
+    /// because they may not be safe to break.
+    const BitVector AllocatableSet;
+
+    /// HazardRec - The hazard recognizer to use.
+    ScheduleHazardRecognizer *HazardRec;
+
+    /// Classes - For live regs that are only used in one register class in a
+    /// live range, the register class. If the register is not live, the
+    /// corresponding value is null. If the register is live but used in
+    /// multiple register classes, the corresponding value is -1 casted to a
+    /// pointer.
+    const TargetRegisterClass *
+      Classes[TargetRegisterInfo::FirstVirtualRegister];
+
+    /// RegRegs - Map registers to all their references within a live range.
+    std::multimap<unsigned, MachineOperand *> RegRefs;
+
+    /// KillIndices - The index of the most recent kill (proceding bottom-up),
+    /// or ~0u if the register is not live.
+    unsigned KillIndices[TargetRegisterInfo::FirstVirtualRegister];
+
+    /// DefIndices - The index of the most recent complete def (proceding bottom
+    /// up), or ~0u if the register is live.
+    unsigned DefIndices[TargetRegisterInfo::FirstVirtualRegister];
+
+    /// KeepRegs - A set of registers which are live and cannot be changed to
+    /// break anti-dependencies.
+    SmallSet<unsigned, 4> KeepRegs;
+
+  public:
+    SchedulePostRATDList(MachineFunction &MF,
+                         const MachineLoopInfo &MLI,
+                         const MachineDominatorTree &MDT,
+                         ScheduleHazardRecognizer *HR)
+      : ScheduleDAGInstrs(MF, MLI, MDT), Topo(SUnits),
+        AllocatableSet(TRI->getAllocatableSet(MF)),
+        HazardRec(HR) {}
+
+    ~SchedulePostRATDList() {
+      delete HazardRec;
+    }
+
+    /// StartBlock - Initialize register live-range state for scheduling in
+    /// this block.
+    ///
+    void StartBlock(MachineBasicBlock *BB);
+
+    /// Schedule - Schedule the instruction range using list scheduling.
+    ///
+    void Schedule();
+    
+    /// FixupKills - Fix register kill flags that have been made
+    /// invalid due to scheduling
+    ///
+    void FixupKills(MachineBasicBlock *MBB);
+
+    /// Observe - Update liveness information to account for the current
+    /// instruction, which will not be scheduled.
+    ///
+    void Observe(MachineInstr *MI, unsigned Count);
+
+    /// FinishBlock - Clean up register live-range state.
+    ///
+    void FinishBlock();
+
+  private:
+    void PrescanInstruction(MachineInstr *MI);
+    void ScanInstruction(MachineInstr *MI, unsigned Count);
+    void ReleaseSucc(SUnit *SU, SDep *SuccEdge);
+    void ReleaseSuccessors(SUnit *SU);
+    void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle);
+    void ListScheduleTopDown();
+    bool BreakAntiDependencies();
+    unsigned findSuitableFreeRegister(unsigned AntiDepReg,
+                                      unsigned LastNewReg,
+                                      const TargetRegisterClass *);
+    void StartBlockForKills(MachineBasicBlock *BB);
+    
+    // ToggleKillFlag - Toggle a register operand kill flag. Other
+    // adjustments may be made to the instruction if necessary. Return
+    // true if the operand has been deleted, false if not.
+    bool ToggleKillFlag(MachineInstr *MI, MachineOperand &MO);
+  };
+}
+
+/// isSchedulingBoundary - Test if the given instruction should be
+/// considered a scheduling boundary. This primarily includes labels
+/// and terminators.
+///
+static bool isSchedulingBoundary(const MachineInstr *MI,
+                                 const MachineFunction &MF) {
+  // Terminators and labels can't be scheduled around.
+  if (MI->getDesc().isTerminator() || MI->isLabel())
+    return true;
+
+  // Don't attempt to schedule around any instruction that modifies
+  // a stack-oriented pointer, as it's unlikely to be profitable. This
+  // saves compile time, because it doesn't require every single
+  // stack slot reference to depend on the instruction that does the
+  // modification.
+  const TargetLowering &TLI = *MF.getTarget().getTargetLowering();
+  if (MI->modifiesRegister(TLI.getStackPointerRegisterToSaveRestore()))
+    return true;
+
+  return false;
 }
 
-bool SchedulePostRATDList::runOnMachineFunction(MachineFunction &Fn) {
-  DOUT << "SchedulePostRATDList\n";
-  MF = &Fn;
-  TM = &MF->getTarget();
+bool PostRAScheduler::runOnMachineFunction(MachineFunction &Fn) {
+  // Check that post-RA scheduling is enabled for this function
+  const TargetSubtarget &ST = Fn.getTarget().getSubtarget<TargetSubtarget>();
+  if (!ST.enablePostRAScheduler())
+    return true;
+
+  DEBUG(errs() << "PostRAScheduler\n");
+
+  const MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>();
+  const MachineDominatorTree &MDT = getAnalysis<MachineDominatorTree>();
+  const InstrItineraryData &InstrItins = Fn.getTarget().getInstrItineraryData();
+  ScheduleHazardRecognizer *HR = EnablePostRAHazardAvoidance ?
+    (ScheduleHazardRecognizer *)new ExactHazardRecognizer(InstrItins) :
+    (ScheduleHazardRecognizer *)new SimpleHazardRecognizer();
+
+  SchedulePostRATDList Scheduler(Fn, MLI, MDT, HR);
 
   // Loop over all of the basic blocks
   for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
-       MBB != MBBe; ++MBB)
-    ;
+       MBB != MBBe; ++MBB) {
+#ifndef NDEBUG
+    // If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod
+    if (DebugDiv > 0) {
+      static int bbcnt = 0;
+      if (bbcnt++ % DebugDiv != DebugMod)
+        continue;
+      errs() << "*** DEBUG scheduling " << Fn.getFunction()->getNameStr() <<
+        ":MBB ID#" << MBB->getNumber() << " ***\n";
+    }
+#endif
+
+    // Initialize register live-range state for scheduling in this block.
+    Scheduler.StartBlock(MBB);
+
+    // Schedule each sequence of instructions not interrupted by a label
+    // or anything else that effectively needs to shut down scheduling.
+    MachineBasicBlock::iterator Current = MBB->end();
+    unsigned Count = MBB->size(), CurrentCount = Count;
+    for (MachineBasicBlock::iterator I = Current; I != MBB->begin(); ) {
+      MachineInstr *MI = prior(I);
+      if (isSchedulingBoundary(MI, Fn)) {
+        Scheduler.Run(MBB, I, Current, CurrentCount);
+        Scheduler.EmitSchedule(0);
+        Current = MI;
+        CurrentCount = Count - 1;
+        Scheduler.Observe(MI, CurrentCount);
+      }
+      I = MI;
+      --Count;
+    }
+    assert(Count == 0 && "Instruction count mismatch!");
+    assert((MBB->begin() == Current || CurrentCount != 0) &&
+           "Instruction count mismatch!");
+    Scheduler.Run(MBB, MBB->begin(), Current, CurrentCount);
+    Scheduler.EmitSchedule(0);
+
+    // Clean up register live-range state.
+    Scheduler.FinishBlock();
+
+    // Update register kills
+    Scheduler.FixupKills(MBB);
+  }
 
   return true;
 }
   
+/// StartBlock - Initialize register live-range state for scheduling in
+/// this block.
+///
+void SchedulePostRATDList::StartBlock(MachineBasicBlock *BB) {
+  // Call the superclass.
+  ScheduleDAGInstrs::StartBlock(BB);
+
+  // Reset the hazard recognizer.
+  HazardRec->Reset();
+
+  // Clear out the register class data.
+  std::fill(Classes, array_endof(Classes),
+            static_cast<const TargetRegisterClass *>(0));
+
+  // Initialize the indices to indicate that no registers are live.
+  std::fill(KillIndices, array_endof(KillIndices), ~0u);
+  std::fill(DefIndices, array_endof(DefIndices), BB->size());
+
+  // Clear "do not change" set.
+  KeepRegs.clear();
+
+  // Determine the live-out physregs for this block.
+  if (!BB->empty() && BB->back().getDesc().isReturn()) {
+    // In a return block, examine the function live-out regs.
+    for (MachineRegisterInfo::liveout_iterator I = MRI.liveout_begin(),
+         E = MRI.liveout_end(); I != E; ++I) {
+      unsigned Reg = *I;
+      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
+      KillIndices[Reg] = BB->size();
+      DefIndices[Reg] = ~0u;
+      // Repeat, for all aliases.
+      for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
+        unsigned AliasReg = *Alias;
+        Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
+        KillIndices[AliasReg] = BB->size();
+        DefIndices[AliasReg] = ~0u;
+      }
+    }
+  } else {
+    // In a non-return block, examine the live-in regs of all successors.
+    for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
+         SE = BB->succ_end(); SI != SE; ++SI)
+      for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
+           E = (*SI)->livein_end(); I != E; ++I) {
+        unsigned Reg = *I;
+        Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
+        KillIndices[Reg] = BB->size();
+        DefIndices[Reg] = ~0u;
+        // Repeat, for all aliases.
+        for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
+          unsigned AliasReg = *Alias;
+          Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
+          KillIndices[AliasReg] = BB->size();
+          DefIndices[AliasReg] = ~0u;
+        }
+      }
+
+    // Also mark as live-out any callee-saved registers that were not
+    // saved in the prolog.
+    const MachineFrameInfo *MFI = MF.getFrameInfo();
+    BitVector Pristine = MFI->getPristineRegs(BB);
+    for (const unsigned *I = TRI->getCalleeSavedRegs(); *I; ++I) {
+      unsigned Reg = *I;
+      if (!Pristine.test(Reg)) continue;
+      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
+      KillIndices[Reg] = BB->size();
+      DefIndices[Reg] = ~0u;
+      // Repeat, for all aliases.
+      for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
+        unsigned AliasReg = *Alias;
+        Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
+        KillIndices[AliasReg] = BB->size();
+        DefIndices[AliasReg] = ~0u;
+      }
+    }
+  }
+}
+
+/// Schedule - Schedule the instruction range using list scheduling.
+///
+void SchedulePostRATDList::Schedule() {
+  DEBUG(errs() << "********** List Scheduling **********\n");
+  
+  // Build the scheduling graph.
+  BuildSchedGraph();
+
+  if (EnableAntiDepBreaking) {
+    if (BreakAntiDependencies()) {
+      // We made changes. Update the dependency graph.
+      // Theoretically we could update the graph in place:
+      // When a live range is changed to use a different register, remove
+      // the def's anti-dependence *and* output-dependence edges due to
+      // that register, and add new anti-dependence and output-dependence
+      // edges based on the next live range of the register.
+      SUnits.clear();
+      EntrySU = SUnit();
+      ExitSU = SUnit();
+      BuildSchedGraph();
+    }
+  }
+
+  DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
+          SUnits[su].dumpAll(this));
+
+  AvailableQueue.initNodes(SUnits);
+
+  ListScheduleTopDown();
+  
+  AvailableQueue.releaseState();
+}
+
+/// Observe - Update liveness information to account for the current
+/// instruction, which will not be scheduled.
+///
+void SchedulePostRATDList::Observe(MachineInstr *MI, unsigned Count) {
+  assert(Count < InsertPosIndex && "Instruction index out of expected range!");
+
+  // Any register which was defined within the previous scheduling region
+  // may have been rescheduled and its lifetime may overlap with registers
+  // in ways not reflected in our current liveness state. For each such
+  // register, adjust the liveness state to be conservatively correct.
+  for (unsigned Reg = 0; Reg != TargetRegisterInfo::FirstVirtualRegister; ++Reg)
+    if (DefIndices[Reg] < InsertPosIndex && DefIndices[Reg] >= Count) {
+      assert(KillIndices[Reg] == ~0u && "Clobbered register is live!");
+      // Mark this register to be non-renamable.
+      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
+      // Move the def index to the end of the previous region, to reflect
+      // that the def could theoretically have been scheduled at the end.
+      DefIndices[Reg] = InsertPosIndex;
+    }
+
+  PrescanInstruction(MI);
+  ScanInstruction(MI, Count);
+}
+
+/// FinishBlock - Clean up register live-range state.
+///
+void SchedulePostRATDList::FinishBlock() {
+  RegRefs.clear();
+
+  // Call the superclass.
+  ScheduleDAGInstrs::FinishBlock();
+}
+
+/// CriticalPathStep - Return the next SUnit after SU on the bottom-up
+/// critical path.
+static SDep *CriticalPathStep(SUnit *SU) {
+  SDep *Next = 0;
+  unsigned NextDepth = 0;
+  // Find the predecessor edge with the greatest depth.
+  for (SUnit::pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end();
+       P != PE; ++P) {
+    SUnit *PredSU = P->getSUnit();
+    unsigned PredLatency = P->getLatency();
+    unsigned PredTotalLatency = PredSU->getDepth() + PredLatency;
+    // In the case of a latency tie, prefer an anti-dependency edge over
+    // other types of edges.
+    if (NextDepth < PredTotalLatency ||
+        (NextDepth == PredTotalLatency && P->getKind() == SDep::Anti)) {
+      NextDepth = PredTotalLatency;
+      Next = &*P;
+    }
+  }
+  return Next;
+}
+
+void SchedulePostRATDList::PrescanInstruction(MachineInstr *MI) {
+  // Scan the register operands for this instruction and update
+  // Classes and RegRefs.
+  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+    MachineOperand &MO = MI->getOperand(i);
+    if (!MO.isReg()) continue;
+    unsigned Reg = MO.getReg();
+    if (Reg == 0) continue;
+    const TargetRegisterClass *NewRC = 0;
+    
+    if (i < MI->getDesc().getNumOperands())
+      NewRC = MI->getDesc().OpInfo[i].getRegClass(TRI);
+
+    // For now, only allow the register to be changed if its register
+    // class is consistent across all uses.
+    if (!Classes[Reg] && NewRC)
+      Classes[Reg] = NewRC;
+    else if (!NewRC || Classes[Reg] != NewRC)
+      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
+
+    // Now check for aliases.
+    for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
+      // If an alias of the reg is used during the live range, give up.
+      // Note that this allows us to skip checking if AntiDepReg
+      // overlaps with any of the aliases, among other things.
+      unsigned AliasReg = *Alias;
+      if (Classes[AliasReg]) {
+        Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
+        Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
+      }
+    }
+
+    // If we're still willing to consider this register, note the reference.
+    if (Classes[Reg] != reinterpret_cast<TargetRegisterClass *>(-1))
+      RegRefs.insert(std::make_pair(Reg, &MO));
+
+    // It's not safe to change register allocation for source operands of
+    // that have special allocation requirements.
+    if (MO.isUse() && MI->getDesc().hasExtraSrcRegAllocReq()) {
+      if (KeepRegs.insert(Reg)) {
+        for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
+             *Subreg; ++Subreg)
+          KeepRegs.insert(*Subreg);
+      }
+    }
+  }
+}
+
+void SchedulePostRATDList::ScanInstruction(MachineInstr *MI,
+                                           unsigned Count) {
+  // Update liveness.
+  // Proceding upwards, registers that are defed but not used in this
+  // instruction are now dead.
+  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+    MachineOperand &MO = MI->getOperand(i);
+    if (!MO.isReg()) continue;
+    unsigned Reg = MO.getReg();
+    if (Reg == 0) continue;
+    if (!MO.isDef()) continue;
+    // Ignore two-addr defs.
+    if (MI->isRegTiedToUseOperand(i)) continue;
+
+    DefIndices[Reg] = Count;
+    KillIndices[Reg] = ~0u;
+    assert(((KillIndices[Reg] == ~0u) !=
+            (DefIndices[Reg] == ~0u)) &&
+           "Kill and Def maps aren't consistent for Reg!");
+    KeepRegs.erase(Reg);
+    Classes[Reg] = 0;
+    RegRefs.erase(Reg);
+    // Repeat, for all subregs.
+    for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
+         *Subreg; ++Subreg) {
+      unsigned SubregReg = *Subreg;
+      DefIndices[SubregReg] = Count;
+      KillIndices[SubregReg] = ~0u;
+      KeepRegs.erase(SubregReg);
+      Classes[SubregReg] = 0;
+      RegRefs.erase(SubregReg);
+    }
+    // Conservatively mark super-registers as unusable.
+    for (const unsigned *Super = TRI->getSuperRegisters(Reg);
+         *Super; ++Super) {
+      unsigned SuperReg = *Super;
+      Classes[SuperReg] = reinterpret_cast<TargetRegisterClass *>(-1);
+    }
+  }
+  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+    MachineOperand &MO = MI->getOperand(i);
+    if (!MO.isReg()) continue;
+    unsigned Reg = MO.getReg();
+    if (Reg == 0) continue;
+    if (!MO.isUse()) continue;
+
+    const TargetRegisterClass *NewRC = 0;
+    if (i < MI->getDesc().getNumOperands())
+      NewRC = MI->getDesc().OpInfo[i].getRegClass(TRI);
+
+    // For now, only allow the register to be changed if its register
+    // class is consistent across all uses.
+    if (!Classes[Reg] && NewRC)
+      Classes[Reg] = NewRC;
+    else if (!NewRC || Classes[Reg] != NewRC)
+      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
+
+    RegRefs.insert(std::make_pair(Reg, &MO));
+
+    // It wasn't previously live but now it is, this is a kill.
+    if (KillIndices[Reg] == ~0u) {
+      KillIndices[Reg] = Count;
+      DefIndices[Reg] = ~0u;
+          assert(((KillIndices[Reg] == ~0u) !=
+                  (DefIndices[Reg] == ~0u)) &&
+               "Kill and Def maps aren't consistent for Reg!");
+    }
+    // Repeat, for all aliases.
+    for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
+      unsigned AliasReg = *Alias;
+      if (KillIndices[AliasReg] == ~0u) {
+        KillIndices[AliasReg] = Count;
+        DefIndices[AliasReg] = ~0u;
+      }
+    }
+  }
+}
+
+unsigned
+SchedulePostRATDList::findSuitableFreeRegister(unsigned AntiDepReg,
+                                               unsigned LastNewReg,
+                                               const TargetRegisterClass *RC) {
+  for (TargetRegisterClass::iterator R = RC->allocation_order_begin(MF),
+       RE = RC->allocation_order_end(MF); R != RE; ++R) {
+    unsigned NewReg = *R;
+    // Don't replace a register with itself.
+    if (NewReg == AntiDepReg) continue;
+    // Don't replace a register with one that was recently used to repair
+    // an anti-dependence with this AntiDepReg, because that would
+    // re-introduce that anti-dependence.
+    if (NewReg == LastNewReg) continue;
+    // If NewReg is dead and NewReg's most recent def is not before
+    // AntiDepReg's kill, it's safe to replace AntiDepReg with NewReg.
+    assert(((KillIndices[AntiDepReg] == ~0u) != (DefIndices[AntiDepReg] == ~0u)) &&
+           "Kill and Def maps aren't consistent for AntiDepReg!");
+    assert(((KillIndices[NewReg] == ~0u) != (DefIndices[NewReg] == ~0u)) &&
+           "Kill and Def maps aren't consistent for NewReg!");
+    if (KillIndices[NewReg] != ~0u ||
+        Classes[NewReg] == reinterpret_cast<TargetRegisterClass *>(-1) ||
+        KillIndices[AntiDepReg] > DefIndices[NewReg])
+      continue;
+    return NewReg;
+  }
+
+  // No registers are free and available!
+  return 0;
+}
+
+/// BreakAntiDependencies - Identifiy anti-dependencies along the critical path
+/// of the ScheduleDAG and break them by renaming registers.
+///
+bool SchedulePostRATDList::BreakAntiDependencies() {
+  // The code below assumes that there is at least one instruction,
+  // so just duck out immediately if the block is empty.
+  if (SUnits.empty()) return false;
+
+  // Find the node at the bottom of the critical path.
+  SUnit *Max = 0;
+  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
+    SUnit *SU = &SUnits[i];
+    if (!Max || SU->getDepth() + SU->Latency > Max->getDepth() + Max->Latency)
+      Max = SU;
+  }
+
+  DEBUG(errs() << "Critical path has total latency "
+        << (Max->getDepth() + Max->Latency) << "\n");
+
+  // Track progress along the critical path through the SUnit graph as we walk
+  // the instructions.
+  SUnit *CriticalPathSU = Max;
+  MachineInstr *CriticalPathMI = CriticalPathSU->getInstr();
+
+  // Consider this pattern:
+  //   A = ...
+  //   ... = A
+  //   A = ...
+  //   ... = A
+  //   A = ...
+  //   ... = A
+  //   A = ...
+  //   ... = A
+  // There are three anti-dependencies here, and without special care,
+  // we'd break all of them using the same register:
+  //   A = ...
+  //   ... = A
+  //   B = ...
+  //   ... = B
+  //   B = ...
+  //   ... = B
+  //   B = ...
+  //   ... = B
+  // because at each anti-dependence, B is the first register that
+  // isn't A which is free.  This re-introduces anti-dependencies
+  // at all but one of the original anti-dependencies that we were
+  // trying to break.  To avoid this, keep track of the most recent
+  // register that each register was replaced with, avoid
+  // using it to repair an anti-dependence on the same register.
+  // This lets us produce this:
+  //   A = ...
+  //   ... = A
+  //   B = ...
+  //   ... = B
+  //   C = ...
+  //   ... = C
+  //   B = ...
+  //   ... = B
+  // This still has an anti-dependence on B, but at least it isn't on the
+  // original critical path.
+  //
+  // TODO: If we tracked more than one register here, we could potentially
+  // fix that remaining critical edge too. This is a little more involved,
+  // because unlike the most recent register, less recent registers should
+  // still be considered, though only if no other registers are available.
+  unsigned LastNewReg[TargetRegisterInfo::FirstVirtualRegister] = {};
+
+  // Attempt to break anti-dependence edges on the critical path. Walk the
+  // instructions from the bottom up, tracking information about liveness
+  // as we go to help determine which registers are available.
+  bool Changed = false;
+  unsigned Count = InsertPosIndex - 1;
+  for (MachineBasicBlock::iterator I = InsertPos, E = Begin;
+       I != E; --Count) {
+    MachineInstr *MI = --I;
+
+    // Check if this instruction has a dependence on the critical path that
+    // is an anti-dependence that we may be able to break. If it is, set
+    // AntiDepReg to the non-zero register associated with the anti-dependence.
+    //
+    // We limit our attention to the critical path as a heuristic to avoid
+    // breaking anti-dependence edges that aren't going to significantly
+    // impact the overall schedule. There are a limited number of registers
+    // and we want to save them for the important edges.
+    // 
+    // TODO: Instructions with multiple defs could have multiple
+    // anti-dependencies. The current code here only knows how to break one
+    // edge per instruction. Note that we'd have to be able to break all of
+    // the anti-dependencies in an instruction in order to be effective.
+    unsigned AntiDepReg = 0;
+    if (MI == CriticalPathMI) {
+      if (SDep *Edge = CriticalPathStep(CriticalPathSU)) {
+        SUnit *NextSU = Edge->getSUnit();
+
+        // Only consider anti-dependence edges.
+        if (Edge->getKind() == SDep::Anti) {
+          AntiDepReg = Edge->getReg();
+          assert(AntiDepReg != 0 && "Anti-dependence on reg0?");
+          if (!AllocatableSet.test(AntiDepReg))
+            // Don't break anti-dependencies on non-allocatable registers.
+            AntiDepReg = 0;
+          else if (KeepRegs.count(AntiDepReg))
+            // Don't break anti-dependencies if an use down below requires
+            // this exact register.
+            AntiDepReg = 0;
+          else {
+            // If the SUnit has other dependencies on the SUnit that it
+            // anti-depends on, don't bother breaking the anti-dependency
+            // since those edges would prevent such units from being
+            // scheduled past each other regardless.
+            //
+            // Also, if there are dependencies on other SUnits with the
+            // same register as the anti-dependency, don't attempt to
+            // break it.
+            for (SUnit::pred_iterator P = CriticalPathSU->Preds.begin(),
+                 PE = CriticalPathSU->Preds.end(); P != PE; ++P)
+              if (P->getSUnit() == NextSU ?
+                    (P->getKind() != SDep::Anti || P->getReg() != AntiDepReg) :
+                    (P->getKind() == SDep::Data && P->getReg() == AntiDepReg)) {
+                AntiDepReg = 0;
+                break;
+              }
+          }
+        }
+        CriticalPathSU = NextSU;
+        CriticalPathMI = CriticalPathSU->getInstr();
+      } else {
+        // We've reached the end of the critical path.
+        CriticalPathSU = 0;
+        CriticalPathMI = 0;
+      }
+    }
+
+    PrescanInstruction(MI);
+
+    if (MI->getDesc().hasExtraDefRegAllocReq())
+      // If this instruction's defs have special allocation requirement, don't
+      // break this anti-dependency.
+      AntiDepReg = 0;
+    else if (AntiDepReg) {
+      // If this instruction has a use of AntiDepReg, breaking it
+      // is invalid.
+      for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+        MachineOperand &MO = MI->getOperand(i);
+        if (!MO.isReg()) continue;
+        unsigned Reg = MO.getReg();
+        if (Reg == 0) continue;
+        if (MO.isUse() && AntiDepReg == Reg) {
+          AntiDepReg = 0;
+          break;
+        }
+      }
+    }
+
+    // Determine AntiDepReg's register class, if it is live and is
+    // consistently used within a single class.
+    const TargetRegisterClass *RC = AntiDepReg != 0 ? Classes[AntiDepReg] : 0;
+    assert((AntiDepReg == 0 || RC != NULL) &&
+           "Register should be live if it's causing an anti-dependence!");
+    if (RC == reinterpret_cast<TargetRegisterClass *>(-1))
+      AntiDepReg = 0;
+
+    // Look for a suitable register to use to break the anti-depenence.
+    //
+    // TODO: Instead of picking the first free register, consider which might
+    // be the best.
+    if (AntiDepReg != 0) {
+      if (unsigned NewReg = findSuitableFreeRegister(AntiDepReg,
+                                                     LastNewReg[AntiDepReg],
+                                                     RC)) {
+        DEBUG(errs() << "Breaking anti-dependence edge on "
+              << TRI->getName(AntiDepReg)
+              << " with " << RegRefs.count(AntiDepReg) << " references"
+              << " using " << TRI->getName(NewReg) << "!\n");
+
+        // Update the references to the old register to refer to the new
+        // register.
+        std::pair<std::multimap<unsigned, MachineOperand *>::iterator,
+                  std::multimap<unsigned, MachineOperand *>::iterator>
+           Range = RegRefs.equal_range(AntiDepReg);
+        for (std::multimap<unsigned, MachineOperand *>::iterator
+             Q = Range.first, QE = Range.second; Q != QE; ++Q)
+          Q->second->setReg(NewReg);
+
+        // We just went back in time and modified history; the
+        // liveness information for the anti-depenence reg is now
+        // inconsistent. Set the state as if it were dead.
+        Classes[NewReg] = Classes[AntiDepReg];
+        DefIndices[NewReg] = DefIndices[AntiDepReg];
+        KillIndices[NewReg] = KillIndices[AntiDepReg];
+        assert(((KillIndices[NewReg] == ~0u) !=
+                (DefIndices[NewReg] == ~0u)) &&
+             "Kill and Def maps aren't consistent for NewReg!");
+
+        Classes[AntiDepReg] = 0;
+        DefIndices[AntiDepReg] = KillIndices[AntiDepReg];
+        KillIndices[AntiDepReg] = ~0u;
+        assert(((KillIndices[AntiDepReg] == ~0u) !=
+                (DefIndices[AntiDepReg] == ~0u)) &&
+             "Kill and Def maps aren't consistent for AntiDepReg!");
+
+        RegRefs.erase(AntiDepReg);
+        Changed = true;
+        LastNewReg[AntiDepReg] = NewReg;
+      }
+    }
+
+    ScanInstruction(MI, Count);
+  }
+
+  return Changed;
+}
+
+/// StartBlockForKills - Initialize register live-range state for updating kills
+///
+void SchedulePostRATDList::StartBlockForKills(MachineBasicBlock *BB) {
+  // Initialize the indices to indicate that no registers are live.
+  std::fill(KillIndices, array_endof(KillIndices), ~0u);
+
+  // Determine the live-out physregs for this block.
+  if (!BB->empty() && BB->back().getDesc().isReturn()) {
+    // In a return block, examine the function live-out regs.
+    for (MachineRegisterInfo::liveout_iterator I = MRI.liveout_begin(),
+           E = MRI.liveout_end(); I != E; ++I) {
+      unsigned Reg = *I;
+      KillIndices[Reg] = BB->size();
+      // Repeat, for all subregs.
+      for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
+           *Subreg; ++Subreg) {
+        KillIndices[*Subreg] = BB->size();
+      }
+    }
+  }
+  else {
+    // In a non-return block, examine the live-in regs of all successors.
+    for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
+           SE = BB->succ_end(); SI != SE; ++SI) {
+      for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
+             E = (*SI)->livein_end(); I != E; ++I) {
+        unsigned Reg = *I;
+        KillIndices[Reg] = BB->size();
+        // Repeat, for all subregs.
+        for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
+             *Subreg; ++Subreg) {
+          KillIndices[*Subreg] = BB->size();
+        }
+      }
+    }
+  }
+}
+
+bool SchedulePostRATDList::ToggleKillFlag(MachineInstr *MI,
+                                          MachineOperand &MO) {
+  // Setting kill flag...
+  if (!MO.isKill()) {
+    MO.setIsKill(true);
+    return false;
+  }
+  
+  // If MO itself is live, clear the kill flag...
+  if (KillIndices[MO.getReg()] != ~0u) {
+    MO.setIsKill(false);
+    return false;
+  }
+
+  // If any subreg of MO is live, then create an imp-def for that
+  // subreg and keep MO marked as killed.
+  bool AllDead = true;
+  const unsigned SuperReg = MO.getReg();
+  for (const unsigned *Subreg = TRI->getSubRegisters(SuperReg);
+       *Subreg; ++Subreg) {
+    if (KillIndices[*Subreg] != ~0u) {
+      MI->addOperand(MachineOperand::CreateReg(*Subreg,
+                                               true  /*IsDef*/,
+                                               true  /*IsImp*/,
+                                               false /*IsKill*/,
+                                               false /*IsDead*/));
+      AllDead = false;
+    }
+  }
+
+  MO.setIsKill(AllDead);
+  return false;
+}
+
+/// FixupKills - Fix the register kill flags, they may have been made
+/// incorrect by instruction reordering.
+///
+void SchedulePostRATDList::FixupKills(MachineBasicBlock *MBB) {
+  DEBUG(errs() << "Fixup kills for BB ID#" << MBB->getNumber() << '\n');
+
+  std::set<unsigned> killedRegs;
+  BitVector ReservedRegs = TRI->getReservedRegs(MF);
+
+  StartBlockForKills(MBB);
+  
+  // Examine block from end to start...
+  unsigned Count = MBB->size();
+  for (MachineBasicBlock::iterator I = MBB->end(), E = MBB->begin();
+       I != E; --Count) {
+    MachineInstr *MI = --I;
+
+    // Update liveness.  Registers that are defed but not used in this
+    // instruction are now dead. Mark register and all subregs as they
+    // are completely defined.
+    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+      MachineOperand &MO = MI->getOperand(i);
+      if (!MO.isReg()) continue;
+      unsigned Reg = MO.getReg();
+      if (Reg == 0) continue;
+      if (!MO.isDef()) continue;
+      // Ignore two-addr defs.
+      if (MI->isRegTiedToUseOperand(i)) continue;
+      
+      KillIndices[Reg] = ~0u;
+      
+      // Repeat for all subregs.
+      for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
+           *Subreg; ++Subreg) {
+        KillIndices[*Subreg] = ~0u;
+      }
+    }
+
+    // Examine all used registers and set/clear kill flag. When a
+    // register is used multiple times we only set the kill flag on
+    // the first use.
+    killedRegs.clear();
+    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+      MachineOperand &MO = MI->getOperand(i);
+      if (!MO.isReg() || !MO.isUse()) continue;
+      unsigned Reg = MO.getReg();
+      if ((Reg == 0) || ReservedRegs.test(Reg)) continue;
+
+      bool kill = false;
+      if (killedRegs.find(Reg) == killedRegs.end()) {
+        kill = true;
+        // A register is not killed if any subregs are live...
+        for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
+             *Subreg; ++Subreg) {
+          if (KillIndices[*Subreg] != ~0u) {
+            kill = false;
+            break;
+          }
+        }
+
+        // If subreg is not live, then register is killed if it became
+        // live in this instruction
+        if (kill)
+          kill = (KillIndices[Reg] == ~0u);
+      }
+      
+      if (MO.isKill() != kill) {
+        bool removed = ToggleKillFlag(MI, MO);
+        if (removed) {
+          DEBUG(errs() << "Fixed <removed> in ");
+        } else {
+          DEBUG(errs() << "Fixed " << MO << " in ");
+        }
+        DEBUG(MI->dump());
+      }
+      
+      killedRegs.insert(Reg);
+    }
+    
+    // Mark any used register (that is not using undef) and subregs as
+    // now live...
+    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+      MachineOperand &MO = MI->getOperand(i);
+      if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue;
+      unsigned Reg = MO.getReg();
+      if ((Reg == 0) || ReservedRegs.test(Reg)) continue;
+
+      KillIndices[Reg] = Count;
+      
+      for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
+           *Subreg; ++Subreg) {
+        KillIndices[*Subreg] = Count;
+      }
+    }
+  }
+}
+
+//===----------------------------------------------------------------------===//
+//  Top-Down Scheduling
+//===----------------------------------------------------------------------===//
+
+/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
+/// the PendingQueue if the count reaches zero. Also update its cycle bound.
+void SchedulePostRATDList::ReleaseSucc(SUnit *SU, SDep *SuccEdge) {
+  SUnit *SuccSU = SuccEdge->getSUnit();
+
+#ifndef NDEBUG
+  if (SuccSU->NumPredsLeft == 0) {
+    errs() << "*** Scheduling failed! ***\n";
+    SuccSU->dump(this);
+    errs() << " has been released too many times!\n";
+    llvm_unreachable(0);
+  }
+#endif
+  --SuccSU->NumPredsLeft;
+
+  // Compute how many cycles it will be before this actually becomes
+  // available.  This is the max of the start time of all predecessors plus
+  // their latencies.
+  SuccSU->setDepthToAtLeast(SU->getDepth() + SuccEdge->getLatency());
+  
+  // If all the node's predecessors are scheduled, this node is ready
+  // to be scheduled. Ignore the special ExitSU node.
+  if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
+    PendingQueue.push_back(SuccSU);
+}
+
+/// ReleaseSuccessors - Call ReleaseSucc on each of SU's successors.
+void SchedulePostRATDList::ReleaseSuccessors(SUnit *SU) {
+  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
+       I != E; ++I)
+    ReleaseSucc(SU, &*I);
+}
+
+/// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
+/// count of its successors. If a successor pending count is zero, add it to
+/// the Available queue.
+void SchedulePostRATDList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
+  DEBUG(errs() << "*** Scheduling [" << CurCycle << "]: ");
+  DEBUG(SU->dump(this));
+  
+  Sequence.push_back(SU);
+  assert(CurCycle >= SU->getDepth() && "Node scheduled above its depth!");
+  SU->setDepthToAtLeast(CurCycle);
+
+  ReleaseSuccessors(SU);
+  SU->isScheduled = true;
+  AvailableQueue.ScheduledNode(SU);
+}
+
+/// ListScheduleTopDown - The main loop of list scheduling for top-down
+/// schedulers.
+void SchedulePostRATDList::ListScheduleTopDown() {
+  unsigned CurCycle = 0;
+
+  // Release any successors of the special Entry node.
+  ReleaseSuccessors(&EntrySU);
+
+  // All leaves to Available queue.
+  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
+    // It is available if it has no predecessors.
+    if (SUnits[i].Preds.empty()) {
+      AvailableQueue.push(&SUnits[i]);
+      SUnits[i].isAvailable = true;
+    }
+  }
+
+  // In any cycle where we can't schedule any instructions, we must
+  // stall or emit a noop, depending on the target.
+  bool CycleHasInsts = false;
+
+  // While Available queue is not empty, grab the node with the highest
+  // priority. If it is not ready put it back.  Schedule the node.
+  std::vector<SUnit*> NotReady;
+  Sequence.reserve(SUnits.size());
+  while (!AvailableQueue.empty() || !PendingQueue.empty()) {
+    // Check to see if any of the pending instructions are ready to issue.  If
+    // so, add them to the available queue.
+    unsigned MinDepth = ~0u;
+    for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
+      if (PendingQueue[i]->getDepth() <= CurCycle) {
+        AvailableQueue.push(PendingQueue[i]);
+        PendingQueue[i]->isAvailable = true;
+        PendingQueue[i] = PendingQueue.back();
+        PendingQueue.pop_back();
+        --i; --e;
+      } else if (PendingQueue[i]->getDepth() < MinDepth)
+        MinDepth = PendingQueue[i]->getDepth();
+    }
+
+    DEBUG(errs() << "\n*** Examining Available\n";
+          LatencyPriorityQueue q = AvailableQueue;
+          while (!q.empty()) {
+            SUnit *su = q.pop();
+            errs() << "Height " << su->getHeight() << ": ";
+            su->dump(this);
+          });
+
+    SUnit *FoundSUnit = 0;
+
+    bool HasNoopHazards = false;
+    while (!AvailableQueue.empty()) {
+      SUnit *CurSUnit = AvailableQueue.pop();
+
+      ScheduleHazardRecognizer::HazardType HT =
+        HazardRec->getHazardType(CurSUnit);
+      if (HT == ScheduleHazardRecognizer::NoHazard) {
+        FoundSUnit = CurSUnit;
+        break;
+      }
+
+      // Remember if this is a noop hazard.
+      HasNoopHazards |= HT == ScheduleHazardRecognizer::NoopHazard;
+
+      NotReady.push_back(CurSUnit);
+    }
+
+    // Add the nodes that aren't ready back onto the available list.
+    if (!NotReady.empty()) {
+      AvailableQueue.push_all(NotReady);
+      NotReady.clear();
+    }
+
+    // If we found a node to schedule, do it now.
+    if (FoundSUnit) {
+      ScheduleNodeTopDown(FoundSUnit, CurCycle);
+      HazardRec->EmitInstruction(FoundSUnit);
+      CycleHasInsts = true;
+
+      // If we are using the target-specific hazards, then don't
+      // advance the cycle time just because we schedule a node. If
+      // the target allows it we can schedule multiple nodes in the
+      // same cycle.
+      if (!EnablePostRAHazardAvoidance) {
+        if (FoundSUnit->Latency)  // Don't increment CurCycle for pseudo-ops!
+          ++CurCycle;
+      }
+    } else {
+      if (CycleHasInsts) {
+        DEBUG(errs() << "*** Finished cycle " << CurCycle << '\n');
+        HazardRec->AdvanceCycle();
+      } else if (!HasNoopHazards) {
+        // Otherwise, we have a pipeline stall, but no other problem,
+        // just advance the current cycle and try again.
+        DEBUG(errs() << "*** Stall in cycle " << CurCycle << '\n');
+        HazardRec->AdvanceCycle();
+        ++NumStalls;
+      } else {
+        // Otherwise, we have no instructions to issue and we have instructions
+        // that will fault if we don't do this right.  This is the case for
+        // processors without pipeline interlocks and other cases.
+        DEBUG(errs() << "*** Emitting noop in cycle " << CurCycle << '\n');
+        HazardRec->EmitNoop();
+        Sequence.push_back(0);   // NULL here means noop
+        ++NumNoops;
+      }
+
+      ++CurCycle;
+      CycleHasInsts = false;
+    }
+  }
+
+#ifndef NDEBUG
+  VerifySchedule(/*isBottomUp=*/false);
+#endif
+}
 
 //===----------------------------------------------------------------------===//
 //                         Public Constructor Functions
 //===----------------------------------------------------------------------===//
 
 FunctionPass *llvm::createPostRAScheduler() {
-  return new SchedulePostRATDList();
+  return new PostRAScheduler();
 }