Add support for byval function whose argument is not 32 bit aligned.
[oota-llvm.git] / lib / CodeGen / MachOWriter.cpp
index be21f5ce4292779fcc38ec30db7841a50414d923..0c743759da6c0aef0a4e80fc01edba2e1f9c514e 100644 (file)
 //
 //===----------------------------------------------------------------------===//
 
+#include "MachOWriter.h"
+#include "llvm/Constants.h"
+#include "llvm/DerivedTypes.h"
 #include "llvm/Module.h"
+#include "llvm/PassManager.h"
+#include "llvm/CodeGen/FileWriters.h"
 #include "llvm/CodeGen/MachineCodeEmitter.h"
 #include "llvm/CodeGen/MachineConstantPool.h"
 #include "llvm/CodeGen/MachineJumpTableInfo.h"
-#include "llvm/CodeGen/MachOWriter.h"
-#include "llvm/ExecutionEngine/ExecutionEngine.h"
+#include "llvm/Target/TargetAsmInfo.h"
 #include "llvm/Target/TargetJITInfo.h"
 #include "llvm/Support/Mangler.h"
 #include "llvm/Support/MathExtras.h"
+#include "llvm/Support/OutputBuffer.h"
+#include "llvm/Support/Streams.h"
 #include <algorithm>
-#include <iostream>
 using namespace llvm;
 
+/// AddMachOWriter - Concrete function to add the Mach-O writer to the function
+/// pass manager.
+MachineCodeEmitter *llvm::AddMachOWriter(FunctionPassManager &FPM,
+                                         std::ostream &O,
+                                         TargetMachine &TM) {
+  MachOWriter *MOW = new MachOWriter(O, TM);
+  FPM.add(MOW);
+  return &MOW->getMachineCodeEmitter();
+}
+
 //===----------------------------------------------------------------------===//
 //                       MachOCodeEmitter Implementation
 //===----------------------------------------------------------------------===//
@@ -44,9 +59,13 @@ namespace llvm {
   /// for functions to the Mach-O file.
   class MachOCodeEmitter : public MachineCodeEmitter {
     MachOWriter &MOW;
-    
-    /// MOS - The current section we're writing to
-    MachOWriter::MachOSection *MOS;
+
+    /// Target machine description.
+    TargetMachine &TM;
+
+    /// is64Bit/isLittleEndian - This information is inferred from the target
+    /// machine directly, indicating what header values and flags to set.
+    bool is64Bit, isLittleEndian;
 
     /// Relocations - These are the relocations that the function needs, as
     /// emitted.
@@ -56,6 +75,10 @@ namespace llvm {
     /// start of the section for that constant pool index.
     std::vector<intptr_t> CPLocations;
 
+    /// CPSections - This is a map of constant pool indices to the MachOSection
+    /// containing the constant pool entry for that index.
+    std::vector<unsigned> CPSections;
+
     /// JTLocations - This is a map of jump table indices to offsets from the
     /// start of the section for that jump table index.
     std::vector<intptr_t> JTLocations;
@@ -66,12 +89,15 @@ namespace llvm {
     std::vector<intptr_t> MBBLocations;
     
   public:
-    MachOCodeEmitter(MachOWriter &mow) : MOW(mow) {}
+    MachOCodeEmitter(MachOWriter &mow) : MOW(mow), TM(MOW.TM) {
+      is64Bit = TM.getTargetData()->getPointerSizeInBits() == 64;
+      isLittleEndian = TM.getTargetData()->isLittleEndian();
+    }
 
-    void startFunction(MachineFunction &F);
-    bool finishFunction(MachineFunction &F);
+    virtual void startFunction(MachineFunction &MF);
+    virtual bool finishFunction(MachineFunction &MF);
 
-    void addRelocation(const MachineRelocation &MR) {
+    virtual void addRelocation(const MachineRelocation &MR) {
       Relocations.push_back(MR);
     }
     
@@ -79,8 +105,8 @@ namespace llvm {
     void emitJumpTables(MachineJumpTableInfo *MJTI);
     
     virtual intptr_t getConstantPoolEntryAddress(unsigned Index) const {
-      assert(0 && "CP not implementated yet!");
-      return 0;
+      assert(CPLocations.size() > Index && "CP not emitted!");
+      return CPLocations[Index];
     }
     virtual intptr_t getJumpTableEntryAddress(unsigned Index) const {
       assert(JTLocations.size() > Index && "JT not emitted!");
@@ -100,11 +126,11 @@ namespace llvm {
     }
 
     /// JIT SPECIFIC FUNCTIONS - DO NOT IMPLEMENT THESE HERE!
-    void startFunctionStub(unsigned StubSize) {
+    virtual void startFunctionStub(unsigned StubSize, unsigned Alignment = 1) {
       assert(0 && "JIT specific function called!");
       abort();
     }
-    void *finishFunctionStub(const Function *F) {
+    virtual void *finishFunctionStub(const Function *F) {
       assert(0 && "JIT specific function called!");
       abort();
       return 0;
@@ -114,43 +140,69 @@ namespace llvm {
 
 /// startFunction - This callback is invoked when a new machine function is
 /// about to be emitted.
-void MachOCodeEmitter::startFunction(MachineFunction &F) {
+void MachOCodeEmitter::startFunction(MachineFunction &MF) {
+  const TargetData *TD = TM.getTargetData();
+  const Function *F = MF.getFunction();
+
   // Align the output buffer to the appropriate alignment, power of 2.
-  // FIXME: GENERICIZE!!
-  unsigned Align = 4;
+  unsigned FnAlign = F->getAlignment();
+  unsigned TDAlign = TD->getPrefTypeAlignment(F->getType());
+  unsigned Align = Log2_32(std::max(FnAlign, TDAlign));
+  assert(!(Align & (Align-1)) && "Alignment is not a power of two!");
 
   // Get the Mach-O Section that this function belongs in.
-  MOS = &MOW.getTextSection();
+  MachOWriter::MachOSection *MOS = MOW.getTextSection();
   
-   // FIXME: better memory management
+  // FIXME: better memory management
   MOS->SectionData.reserve(4096);
-  BufferBegin = &(MOS->SectionData[0]);
+  BufferBegin = &MOS->SectionData[0];
   BufferEnd = BufferBegin + MOS->SectionData.capacity();
-  CurBufferPtr = BufferBegin + MOS->size;
 
   // Upgrade the section alignment if required.
   if (MOS->align < Align) MOS->align = Align;
 
+  // Round the size up to the correct alignment for starting the new function.
+  if ((MOS->size & ((1 << Align) - 1)) != 0) {
+    MOS->size += (1 << Align);
+    MOS->size &= ~((1 << Align) - 1);
+  }
+
+  // FIXME: Using MOS->size directly here instead of calculating it from the
+  // output buffer size (impossible because the code emitter deals only in raw
+  // bytes) forces us to manually synchronize size and write padding zero bytes
+  // to the output buffer for all non-text sections.  For text sections, we do
+  // not synchonize the output buffer, and we just blow up if anyone tries to
+  // write non-code to it.  An assert should probably be added to
+  // AddSymbolToSection to prevent calling it on the text section.
+  CurBufferPtr = BufferBegin + MOS->size;
+
   // Clear per-function data structures.
   CPLocations.clear();
+  CPSections.clear();
   JTLocations.clear();
   MBBLocations.clear();
 }
 
 /// finishFunction - This callback is invoked after the function is completely
 /// finished.
-bool MachOCodeEmitter::finishFunction(MachineFunction &F) {
-  MOS->size += CurBufferPtr - BufferBegin;
-  
-  // Get a symbol for the function to add to the symbol table
-  const GlobalValue *FuncV = F.getFunction();
-  MachOSym FnSym(FuncV, MOW.Mang->getValueName(FuncV), MOS->Index);
+bool MachOCodeEmitter::finishFunction(MachineFunction &MF) {
+  // Get the Mach-O Section that this function belongs in.
+  MachOWriter::MachOSection *MOS = MOW.getTextSection();
 
+  // Get a symbol for the function to add to the symbol table
+  // FIXME: it seems like we should call something like AddSymbolToSection
+  // in startFunction rather than changing the section size and symbol n_value
+  // here.
+  const GlobalValue *FuncV = MF.getFunction();
+  MachOSym FnSym(FuncV, MOW.Mang->getValueName(FuncV), MOS->Index, TM);
+  FnSym.n_value = MOS->size;
+  MOS->size = CurBufferPtr - BufferBegin;
+  
   // Emit constant pool to appropriate section(s)
-  emitConstantPool(F.getConstantPool());
+  emitConstantPool(MF.getConstantPool());
 
   // Emit jump tables to appropriate section
-  emitJumpTables(F.getJumpTableInfo());
+  emitJumpTables(MF.getJumpTableInfo());
   
   // If we have emitted any relocations to function-specific objects such as 
   // basic blocks, constant pools entries, or jump tables, record their
@@ -159,16 +211,24 @@ bool MachOCodeEmitter::finishFunction(MachineFunction &F) {
   for (unsigned i = 0, e = Relocations.size(); i != e; ++i) {
     MachineRelocation &MR = Relocations[i];
     intptr_t Addr;
+
     if (MR.isBasicBlock()) {
       Addr = getMachineBasicBlockAddress(MR.getBasicBlock());
-      MR.setResultPointer((void *)Addr);
-    } else if (MR.isConstantPoolIndex()) {
-      Addr = getConstantPoolEntryAddress(MR.getConstantPoolIndex());
-      MR.setResultPointer((void *)Addr);
+      MR.setConstantVal(MOS->Index);
+      MR.setResultPointer((void*)Addr);
     } else if (MR.isJumpTableIndex()) {
-      // FIXME: handle PIC codegen
       Addr = getJumpTableEntryAddress(MR.getJumpTableIndex());
-      MR.setResultPointer((void *)Addr);
+      MR.setConstantVal(MOW.getJumpTableSection()->Index);
+      MR.setResultPointer((void*)Addr);
+    } else if (MR.isConstantPoolIndex()) {
+      Addr = getConstantPoolEntryAddress(MR.getConstantPoolIndex());
+      MR.setConstantVal(CPSections[MR.getConstantPoolIndex()]);
+      MR.setResultPointer((void*)Addr);
+    } else if (MR.isGlobalValue()) {
+      // FIXME: This should be a set or something that uniques
+      MOW.PendingGlobals.push_back(MR.getGlobalValue());
+    } else {
+      assert(0 && "Unhandled relocation type");
     }
     MOS->Relocations.push_back(MR);
   }
@@ -183,6 +243,42 @@ bool MachOCodeEmitter::finishFunction(MachineFunction &F) {
 /// the constant should live in, allocate space for it, and emit it to the 
 /// Section data buffer.
 void MachOCodeEmitter::emitConstantPool(MachineConstantPool *MCP) {
+  const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
+  if (CP.empty()) return;
+
+  // FIXME: handle PIC codegen
+  bool isPIC = TM.getRelocationModel() == Reloc::PIC_;
+  assert(!isPIC && "PIC codegen not yet handled for mach-o jump tables!");
+
+  // Although there is no strict necessity that I am aware of, we will do what
+  // gcc for OS X does and put each constant pool entry in a section of constant
+  // objects of a certain size.  That means that float constants go in the
+  // literal4 section, and double objects go in literal8, etc.
+  //
+  // FIXME: revisit this decision if we ever do the "stick everything into one
+  // "giant object for PIC" optimization.
+  for (unsigned i = 0, e = CP.size(); i != e; ++i) {
+    const Type *Ty = CP[i].getType();
+    unsigned Size = TM.getTargetData()->getTypeSize(Ty);
+
+    MachOWriter::MachOSection *Sec = MOW.getConstSection(CP[i].Val.ConstVal);
+    OutputBuffer SecDataOut(Sec->SectionData, is64Bit, isLittleEndian);
+
+    CPLocations.push_back(Sec->SectionData.size());
+    CPSections.push_back(Sec->Index);
+    
+    // FIXME: remove when we have unified size + output buffer
+    Sec->size += Size;
+
+    // Allocate space in the section for the global.
+    // FIXME: need alignment?
+    // FIXME: share between here and AddSymbolToSection?
+    for (unsigned j = 0; j < Size; ++j)
+      SecDataOut.outbyte(0);
+
+    MOW.InitMem(CP[i].Val.ConstVal, &Sec->SectionData[0], CPLocations[i],
+                TM.getTargetData(), Sec->Relocations);
+  }
 }
 
 /// emitJumpTables - Emit all the jump tables for a given jump table info
@@ -191,35 +287,39 @@ void MachOCodeEmitter::emitJumpTables(MachineJumpTableInfo *MJTI) {
   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
   if (JT.empty()) return;
 
-  bool isPIC = MOW.TM.getRelocationModel() == Reloc::PIC_;
+  // FIXME: handle PIC codegen
+  bool isPIC = TM.getRelocationModel() == Reloc::PIC_;
   assert(!isPIC && "PIC codegen not yet handled for mach-o jump tables!");
 
-  MachOWriter::MachOSection &Sec = MOW.getJumpTableSection();
+  MachOWriter::MachOSection *Sec = MOW.getJumpTableSection();
+  unsigned TextSecIndex = MOW.getTextSection()->Index;
+  OutputBuffer SecDataOut(Sec->SectionData, is64Bit, isLittleEndian);
 
   for (unsigned i = 0, e = JT.size(); i != e; ++i) {
     // For each jump table, record its offset from the start of the section,
     // reserve space for the relocations to the MBBs, and add the relocations.
     const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs;
-    JTLocations.push_back(Sec.SectionData.size());
+    JTLocations.push_back(Sec->SectionData.size());
     for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi) {
-      MachineRelocation MR(MOW.GetJTRelocation(Sec.SectionData.size(),
+      MachineRelocation MR(MOW.GetJTRelocation(Sec->SectionData.size(),
                                                MBBs[mi]));
       MR.setResultPointer((void *)JTLocations[i]);
-      Sec.Relocations.push_back(MR);
-      MOW.outaddr(Sec.SectionData, 0);
+      MR.setConstantVal(TextSecIndex);
+      Sec->Relocations.push_back(MR);
+      SecDataOut.outaddr(0);
     }
   }
-  // FIXME: it really seems like keeping these in sync is redundant, someone
-  // should do something about that (never access section size directly, only
-  // look at buffer size).
-  Sec.size = Sec.SectionData.size();
+  // FIXME: remove when we have unified size + output buffer
+  Sec->size = Sec->SectionData.size();
 }
 
 //===----------------------------------------------------------------------===//
 //                          MachOWriter Implementation
 //===----------------------------------------------------------------------===//
 
-MachOWriter::MachOWriter(std::ostream &o, TargetMachine &tm) : O(o), TM(tm) {
+char MachOWriter::ID = 0;
+MachOWriter::MachOWriter(std::ostream &o, TargetMachine &tm) 
+  : MachineFunctionPass((intptr_t)&ID), O(o), TM(tm) {
   is64Bit = TM.getTargetData()->getPointerSizeInBits() == 64;
   isLittleEndian = TM.getTargetData()->isLittleEndian();
 
@@ -231,33 +331,51 @@ MachOWriter::~MachOWriter() {
   delete MCE;
 }
 
-void MachOWriter::AddSymbolToSection(MachOSection &Sec, GlobalVariable *GV) {
+void MachOWriter::AddSymbolToSection(MachOSection *Sec, GlobalVariable *GV) {
   const Type *Ty = GV->getType()->getElementType();
   unsigned Size = TM.getTargetData()->getTypeSize(Ty);
-  unsigned Align = Log2_32(TM.getTargetData()->getTypeAlignment(Ty));
+  unsigned Align = GV->getAlignment();
+  if (Align == 0)
+    Align = TM.getTargetData()->getPrefTypeAlignment(Ty);
   
-  MachOSym Sym(GV, Mang->getValueName(GV), Sec.Index);
   // Reserve space in the .bss section for this symbol while maintaining the
   // desired section alignment, which must be at least as much as required by
   // this symbol.
+  OutputBuffer SecDataOut(Sec->SectionData, is64Bit, isLittleEndian);
+
   if (Align) {
-    Sec.align = std::max(unsigned(Sec.align), Align);
-    Sec.size = (Sec.size + Align - 1) & ~(Align-1);
+    uint64_t OrigSize = Sec->size;
+    Align = Log2_32(Align);
+    Sec->align = std::max(unsigned(Sec->align), Align);
+    Sec->size = (Sec->size + Align - 1) & ~(Align-1);
+    
+    // Add alignment padding to buffer as well.
+    // FIXME: remove when we have unified size + output buffer
+    unsigned AlignedSize = Sec->size - OrigSize;
+    for (unsigned i = 0; i < AlignedSize; ++i)
+      SecDataOut.outbyte(0);
   }
-  // Record the offset of the symbol, and then allocate space for it.
-  Sym.n_value = Sec.size;
-  Sec.size += Size;
-
-  switch (GV->getLinkage()) {
-  default:  // weak/linkonce handled above
-    assert(0 && "Unexpected linkage type!");
-  case GlobalValue::ExternalLinkage:
-    Sym.n_type |= MachOSym::N_EXT;
-    break;
-  case GlobalValue::InternalLinkage:
-    break;
+  // Globals without external linkage apparently do not go in the symbol table.
+  if (GV->getLinkage() != GlobalValue::InternalLinkage) {
+    MachOSym Sym(GV, Mang->getValueName(GV), Sec->Index, TM);
+    Sym.n_value = Sec->size;
+    SymbolTable.push_back(Sym);
   }
-  SymbolTable.push_back(Sym);
+
+  // Record the offset of the symbol, and then allocate space for it.
+  // FIXME: remove when we have unified size + output buffer
+  Sec->size += Size;
+  
+  // Now that we know what section the GlovalVariable is going to be emitted 
+  // into, update our mappings.
+  // FIXME: We may also need to update this when outputting non-GlobalVariable
+  // GlobalValues such as functions.
+  GVSection[GV] = Sec;
+  GVOffset[GV] = Sec->SectionData.size();
+  
+  // Allocate space in the section for the global.
+  for (unsigned i = 0; i < Size; ++i)
+    SecDataOut.outbyte(0);
 }
 
 void MachOWriter::EmitGlobal(GlobalVariable *GV) {
@@ -272,20 +390,17 @@ void MachOWriter::EmitGlobal(GlobalVariable *GV) {
     // part of the common block if they are zero initialized and allowed to be
     // merged with other symbols.
     if (NoInit || GV->hasLinkOnceLinkage() || GV->hasWeakLinkage()) {
-      MachOSym ExtOrCommonSym(GV, Mang->getValueName(GV), MachOSym::NO_SECT);
+      MachOSym ExtOrCommonSym(GV, Mang->getValueName(GV), MachOSym::NO_SECT,TM);
       // For undefined (N_UNDF) external (N_EXT) types, n_value is the size in
       // bytes of the symbol.
       ExtOrCommonSym.n_value = Size;
-      // If the symbol is external, we'll put it on a list of symbols whose
-      // addition to the symbol table is being pended until we find a reference
-      if (NoInit)
-        PendingSyms.push_back(ExtOrCommonSym);
-      else
-        SymbolTable.push_back(ExtOrCommonSym);
+      SymbolTable.push_back(ExtOrCommonSym);
+      // Remember that we've seen this symbol
+      GVOffset[GV] = Size;
       return;
     }
     // Otherwise, this symbol is part of the .bss section.
-    MachOSection &BSS = getBSSSection();
+    MachOSection *BSS = getBSSSection();
     AddSymbolToSection(BSS, GV);
     return;
   }
@@ -293,23 +408,11 @@ void MachOWriter::EmitGlobal(GlobalVariable *GV) {
   // Scalar read-only data goes in a literal section if the scalar is 4, 8, or
   // 16 bytes, or a cstring.  Other read only data goes into a regular const
   // section.  Read-write data goes in the data section.
-  MachOSection &Sec = GV->isConstant() ? getConstSection(Ty) : getDataSection();
+  MachOSection *Sec = GV->isConstant() ? getConstSection(GV->getInitializer()) : 
+                                         getDataSection();
   AddSymbolToSection(Sec, GV);
-  
-  // FIXME: A couple significant changes are required for this to work, even for
-  //        trivial cases such as a constant integer:
-  //   0. InitializeMemory needs to be split out of ExecutionEngine.  We don't
-  //      want to have to create an ExecutionEngine such as JIT just to write
-  //      some bytes into a buffer.  The only thing necessary for
-  //      InitializeMemory to function properly should be TargetData.
-  //
-  //   1. InitializeMemory needs to be enhanced to return MachineRelocations 
-  //      rather than accessing the address of objects such basic blocks, 
-  //      constant pools, and jump tables.  The client of InitializeMemory such
-  //      as an object writer or jit emitter should then handle these relocs
-  //      appropriately.
-  //
-  // FIXME: need to allocate memory for the global initializer.
+  InitMem(GV->getInitializer(), &Sec->SectionData[0], GVOffset[GV],
+          TM.getTargetData(), Sec->Relocations);
 }
 
 
@@ -342,10 +445,6 @@ bool MachOWriter::doFinalization(Module &M) {
        I != E; ++I)
     EmitGlobal(I);
   
-  // Emit the symbol table to temporary buffers, so that we know the size of
-  // the string table when we write the load commands in the next phase.
-  BufferSymbolAndStringTable();
-  
   // Emit the header and load commands.
   EmitHeaderAndLoadCommands();
 
@@ -372,7 +471,7 @@ void MachOWriter::EmitHeaderAndLoadCommands() {
   MachOSegment SEG("", is64Bit);
   SEG.nsects  = SectionList.size();
   SEG.cmdsize = SEG.cmdSize(is64Bit) + 
-                SEG.nsects * SectionList.begin()->cmdSize(is64Bit);
+                SEG.nsects * SectionList[0]->cmdSize(is64Bit);
   
   // Step #1: calculate the number of load commands.  We always have at least
   //          one, for the LC_SEGMENT load command, plus two for the normal
@@ -387,107 +486,119 @@ void MachOWriter::EmitHeaderAndLoadCommands() {
   // Step #3: write the header to the file
   // Local alias to shortenify coming code.
   DataBuffer &FH = Header.HeaderData;
-  outword(FH, Header.magic);
-  outword(FH, Header.cputype);
-  outword(FH, Header.cpusubtype);
-  outword(FH, Header.filetype);
-  outword(FH, Header.ncmds);
-  outword(FH, Header.sizeofcmds);
-  outword(FH, Header.flags);
+  OutputBuffer FHOut(FH, is64Bit, isLittleEndian);
+
+  FHOut.outword(Header.magic);
+  FHOut.outword(TM.getMachOWriterInfo()->getCPUType());
+  FHOut.outword(TM.getMachOWriterInfo()->getCPUSubType());
+  FHOut.outword(Header.filetype);
+  FHOut.outword(Header.ncmds);
+  FHOut.outword(Header.sizeofcmds);
+  FHOut.outword(Header.flags);
   if (is64Bit)
-    outword(FH, Header.reserved);
+    FHOut.outword(Header.reserved);
   
   // Step #4: Finish filling in the segment load command and write it out
-  for (std::list<MachOSection>::iterator I = SectionList.begin(),
+  for (std::vector<MachOSection*>::iterator I = SectionList.begin(),
          E = SectionList.end(); I != E; ++I)
-    SEG.filesize += I->size;
+    SEG.filesize += (*I)->size;
+
   SEG.vmsize = SEG.filesize;
   SEG.fileoff = Header.cmdSize(is64Bit) + Header.sizeofcmds;
   
-  outword(FH, SEG.cmd);
-  outword(FH, SEG.cmdsize);
-  outstring(FH, SEG.segname, 16);
-  outaddr(FH, SEG.vmaddr);
-  outaddr(FH, SEG.vmsize);
-  outaddr(FH, SEG.fileoff);
-  outaddr(FH, SEG.filesize);
-  outword(FH, SEG.maxprot);
-  outword(FH, SEG.initprot);
-  outword(FH, SEG.nsects);
-  outword(FH, SEG.flags);
+  FHOut.outword(SEG.cmd);
+  FHOut.outword(SEG.cmdsize);
+  FHOut.outstring(SEG.segname, 16);
+  FHOut.outaddr(SEG.vmaddr);
+  FHOut.outaddr(SEG.vmsize);
+  FHOut.outaddr(SEG.fileoff);
+  FHOut.outaddr(SEG.filesize);
+  FHOut.outword(SEG.maxprot);
+  FHOut.outword(SEG.initprot);
+  FHOut.outword(SEG.nsects);
+  FHOut.outword(SEG.flags);
   
   // Step #5: Finish filling in the fields of the MachOSections 
   uint64_t currentAddr = 0;
-  for (std::list<MachOSection>::iterator I = SectionList.begin(),
+  for (std::vector<MachOSection*>::iterator I = SectionList.begin(),
          E = SectionList.end(); I != E; ++I) {
-    I->addr = currentAddr;
-    I->offset = currentAddr + SEG.fileoff;
+    MachOSection *MOS = *I;
+    MOS->addr = currentAddr;
+    MOS->offset = currentAddr + SEG.fileoff;
 
     // FIXME: do we need to do something with alignment here?
-    currentAddr += I->size;
+    currentAddr += MOS->size;
   }
   
-  // Step #6: Calculate the number of relocations for each section and write out
+  // Step #6: Emit the symbol table to temporary buffers, so that we know the
+  // size of the string table when we write the next load command.  This also
+  // sorts and assigns indices to each of the symbols, which is necessary for
+  // emitting relocations to externally-defined objects.
+  BufferSymbolAndStringTable();
+  
+  // Step #7: Calculate the number of relocations for each section and write out
   // the section commands for each section
   currentAddr += SEG.fileoff;
-  for (std::list<MachOSection>::iterator I = SectionList.begin(),
+  for (std::vector<MachOSection*>::iterator I = SectionList.begin(),
          E = SectionList.end(); I != E; ++I) {
-    // calculate the relocation info for this section command
-    CalculateRelocations(*I, currentAddr);
-    currentAddr += I->nreloc * 8;
+    MachOSection *MOS = *I;
+    // Convert the relocations to target-specific relocations, and fill in the
+    // relocation offset for this section.
+    CalculateRelocations(*MOS);
+    MOS->reloff = MOS->nreloc ? currentAddr : 0;
+    currentAddr += MOS->nreloc * 8;
     
     // write the finalized section command to the output buffer
-    outstring(FH, I->sectname, 16);
-    outstring(FH, I->segname, 16);
-    outaddr(FH, I->addr);
-    outaddr(FH, I->size);
-    outword(FH, I->offset);
-    outword(FH, I->align);
-    outword(FH, I->reloff);
-    outword(FH, I->nreloc);
-    outword(FH, I->flags);
-    outword(FH, I->reserved1);
-    outword(FH, I->reserved2);
+    FHOut.outstring(MOS->sectname, 16);
+    FHOut.outstring(MOS->segname, 16);
+    FHOut.outaddr(MOS->addr);
+    FHOut.outaddr(MOS->size);
+    FHOut.outword(MOS->offset);
+    FHOut.outword(MOS->align);
+    FHOut.outword(MOS->reloff);
+    FHOut.outword(MOS->nreloc);
+    FHOut.outword(MOS->flags);
+    FHOut.outword(MOS->reserved1);
+    FHOut.outword(MOS->reserved2);
     if (is64Bit)
-      outword(FH, I->reserved3);
+      FHOut.outword(MOS->reserved3);
   }
   
-  // Step #7: Emit LC_SYMTAB/LC_DYSYMTAB load commands
-  // FIXME: add size of relocs
+  // Step #8: Emit LC_SYMTAB/LC_DYSYMTAB load commands
   SymTab.symoff  = currentAddr;
   SymTab.nsyms   = SymbolTable.size();
   SymTab.stroff  = SymTab.symoff + SymT.size();
   SymTab.strsize = StrT.size();
-  outword(FH, SymTab.cmd);
-  outword(FH, SymTab.cmdsize);
-  outword(FH, SymTab.symoff);
-  outword(FH, SymTab.nsyms);
-  outword(FH, SymTab.stroff);
-  outword(FH, SymTab.strsize);
+  FHOut.outword(SymTab.cmd);
+  FHOut.outword(SymTab.cmdsize);
+  FHOut.outword(SymTab.symoff);
+  FHOut.outword(SymTab.nsyms);
+  FHOut.outword(SymTab.stroff);
+  FHOut.outword(SymTab.strsize);
 
   // FIXME: set DySymTab fields appropriately
   // We should probably just update these in BufferSymbolAndStringTable since
   // thats where we're partitioning up the different kinds of symbols.
-  outword(FH, DySymTab.cmd);
-  outword(FH, DySymTab.cmdsize);
-  outword(FH, DySymTab.ilocalsym);
-  outword(FH, DySymTab.nlocalsym);
-  outword(FH, DySymTab.iextdefsym);
-  outword(FH, DySymTab.nextdefsym);
-  outword(FH, DySymTab.iundefsym);
-  outword(FH, DySymTab.nundefsym);
-  outword(FH, DySymTab.tocoff);
-  outword(FH, DySymTab.ntoc);
-  outword(FH, DySymTab.modtaboff);
-  outword(FH, DySymTab.nmodtab);
-  outword(FH, DySymTab.extrefsymoff);
-  outword(FH, DySymTab.nextrefsyms);
-  outword(FH, DySymTab.indirectsymoff);
-  outword(FH, DySymTab.nindirectsyms);
-  outword(FH, DySymTab.extreloff);
-  outword(FH, DySymTab.nextrel);
-  outword(FH, DySymTab.locreloff);
-  outword(FH, DySymTab.nlocrel);
+  FHOut.outword(DySymTab.cmd);
+  FHOut.outword(DySymTab.cmdsize);
+  FHOut.outword(DySymTab.ilocalsym);
+  FHOut.outword(DySymTab.nlocalsym);
+  FHOut.outword(DySymTab.iextdefsym);
+  FHOut.outword(DySymTab.nextdefsym);
+  FHOut.outword(DySymTab.iundefsym);
+  FHOut.outword(DySymTab.nundefsym);
+  FHOut.outword(DySymTab.tocoff);
+  FHOut.outword(DySymTab.ntoc);
+  FHOut.outword(DySymTab.modtaboff);
+  FHOut.outword(DySymTab.nmodtab);
+  FHOut.outword(DySymTab.extrefsymoff);
+  FHOut.outword(DySymTab.nextrefsyms);
+  FHOut.outword(DySymTab.indirectsymoff);
+  FHOut.outword(DySymTab.nindirectsyms);
+  FHOut.outword(DySymTab.extreloff);
+  FHOut.outword(DySymTab.nextrel);
+  FHOut.outword(DySymTab.locreloff);
+  FHOut.outword(DySymTab.nlocrel);
   
   O.write((char*)&FH[0], FH.size());
 }
@@ -495,20 +606,19 @@ void MachOWriter::EmitHeaderAndLoadCommands() {
 /// EmitSections - Now that we have constructed the file header and load
 /// commands, emit the data for each section to the file.
 void MachOWriter::EmitSections() {
-  for (std::list<MachOSection>::iterator I = SectionList.begin(),
+  for (std::vector<MachOSection*>::iterator I = SectionList.begin(),
          E = SectionList.end(); I != E; ++I)
     // Emit the contents of each section
-    O.write((char*)&I->SectionData[0], I->size);
-  for (std::list<MachOSection>::iterator I = SectionList.begin(),
+    O.write((char*)&(*I)->SectionData[0], (*I)->size);
+  for (std::vector<MachOSection*>::iterator I = SectionList.begin(),
          E = SectionList.end(); I != E; ++I)
     // Emit the relocation entry data for each section.
-    O.write((char*)&I->RelocBuffer[0], I->RelocBuffer.size());
+    O.write((char*)&(*I)->RelocBuffer[0], (*I)->RelocBuffer.size());
 }
 
 /// PartitionByLocal - Simple boolean predicate that returns true if Sym is
 /// a local symbol rather than an external symbol.
 bool MachOWriter::PartitionByLocal(const MachOSym &Sym) {
-  // FIXME: Not totally sure if private extern counts as external
   return (Sym.n_type & (MachOSym::N_EXT | MachOSym::N_PEXT)) == 0;
 }
 
@@ -528,6 +638,17 @@ void MachOWriter::BufferSymbolAndStringTable() {
   // 2. defined external symbols (sorted by name)
   // 3. undefined external symbols (sorted by name)
   
+  // Before sorting the symbols, check the PendingGlobals for any undefined
+  // globals that need to be put in the symbol table.
+  for (std::vector<GlobalValue*>::iterator I = PendingGlobals.begin(),
+         E = PendingGlobals.end(); I != E; ++I) {
+    if (GVOffset[*I] == 0 && GVSection[*I] == 0) {
+      MachOSym UndfSym(*I, Mang->getValueName(*I), MachOSym::NO_SECT, TM);
+      SymbolTable.push_back(UndfSym);
+      GVOffset[*I] = -1;
+    }
+  }
+  
   // Sort the symbols by name, so that when we partition the symbols by scope
   // of definition, we won't have to sort by name within each partition.
   std::sort(SymbolTable.begin(), SymbolTable.end(), MachOSymCmp());
@@ -546,10 +667,28 @@ void MachOWriter::BufferSymbolAndStringTable() {
       break;
     }
   }
+
+  // Calculate the starting index for each of the local, extern defined, and 
+  // undefined symbols, as well as the number of each to put in the LC_DYSYMTAB
+  // load command.
+  for (std::vector<MachOSym>::iterator I = SymbolTable.begin(),
+         E = SymbolTable.end(); I != E; ++I) {
+    if (PartitionByLocal(*I)) {
+      ++DySymTab.nlocalsym;
+      ++DySymTab.iextdefsym;
+      ++DySymTab.iundefsym;
+    } else if (PartitionByDefined(*I)) {
+      ++DySymTab.nextdefsym;
+      ++DySymTab.iundefsym;
+    } else {
+      ++DySymTab.nundefsym;
+    }
+  }
   
   // Write out a leading zero byte when emitting string table, for n_strx == 0
   // which means an empty string.
-  outbyte(StrT, 0);
+  OutputBuffer StrTOut(StrT, is64Bit, isLittleEndian);
+  StrTOut.outbyte(0);
 
   // The order of the string table is:
   // 1. strings for external symbols
@@ -562,18 +701,30 @@ void MachOWriter::BufferSymbolAndStringTable() {
       I->n_strx = 0;
     } else {
       I->n_strx = StrT.size();
-      outstring(StrT, I->GVName, I->GVName.length()+1);
+      StrTOut.outstring(I->GVName, I->GVName.length()+1);
     }
   }
 
+  OutputBuffer SymTOut(SymT, is64Bit, isLittleEndian);
+
+  unsigned index = 0;
   for (std::vector<MachOSym>::iterator I = SymbolTable.begin(),
-         E = SymbolTable.end(); I != E; ++I) {
+         E = SymbolTable.end(); I != E; ++I, ++index) {
+    // Add the section base address to the section offset in the n_value field
+    // to calculate the full address.
+    // FIXME: handle symbols where the n_value field is not the address
+    GlobalValue *GV = const_cast<GlobalValue*>(I->GV);
+    if (GV && GVSection[GV])
+      I->n_value += GVSection[GV]->addr;
+    if (GV && (GVOffset[GV] == -1))
+      GVOffset[GV] = index;
+         
     // Emit nlist to buffer
-    outword(SymT, I->n_strx);
-    outbyte(SymT, I->n_type);
-    outbyte(SymT, I->n_sect);
-    outhalf(SymT, I->n_desc);
-    outaddr(SymT, I->n_value);
+    SymTOut.outword(I->n_strx);
+    SymTOut.outbyte(I->n_type);
+    SymTOut.outbyte(I->n_sect);
+    SymTOut.outhalf(I->n_desc);
+    SymTOut.outaddr(I->n_value);
   }
 }
 
@@ -582,23 +733,202 @@ void MachOWriter::BufferSymbolAndStringTable() {
 /// and the offset into that section.  From this information, create the
 /// appropriate target-specific MachORelocation type and add buffer it to be
 /// written out after we are finished writing out sections.
-void MachOWriter::CalculateRelocations(MachOSection &MOS, unsigned RelOffset) {
+void MachOWriter::CalculateRelocations(MachOSection &MOS) {
   for (unsigned i = 0, e = MOS.Relocations.size(); i != e; ++i) {
-    // FIXME: calculate the correct offset and section index for relocated
-    // object.
-    // FIXME: somehow convey the fact that the relocation might be external
-    // to the relocating code.
-    GetTargetRelocation(MOS.Relocations[i], MOS, MOS.Index);
+    MachineRelocation &MR = MOS.Relocations[i];
+    unsigned TargetSection = MR.getConstantVal();
+    unsigned TargetAddr = 0;
+    unsigned TargetIndex = 0;
+
+    // This is a scattered relocation entry if it points to a global value with
+    // a non-zero offset.
+    bool Scattered = false;
+    bool Extern = false;
+
+    // Since we may not have seen the GlobalValue we were interested in yet at
+    // the time we emitted the relocation for it, fix it up now so that it
+    // points to the offset into the correct section.
+    if (MR.isGlobalValue()) {
+      GlobalValue *GV = MR.getGlobalValue();
+      MachOSection *MOSPtr = GVSection[GV];
+      intptr_t Offset = GVOffset[GV];
+      
+      // If we have never seen the global before, it must be to a symbol
+      // defined in another module (N_UNDF).
+      if (!MOSPtr) {
+        // FIXME: need to append stub suffix
+        Extern = true;
+        TargetAddr = 0;
+        TargetIndex = GVOffset[GV];
+      } else {
+        Scattered = TargetSection != 0;
+        TargetSection = MOSPtr->Index;
+      }
+      MR.setResultPointer((void*)Offset);
+    }
+    
+    // If the symbol is locally defined, pass in the address of the section and
+    // the section index to the code which will generate the target relocation.
+    if (!Extern) {
+        MachOSection &To = *SectionList[TargetSection - 1];
+        TargetAddr = To.addr;
+        TargetIndex = To.Index;
+    }
+
+    OutputBuffer RelocOut(MOS.RelocBuffer, is64Bit, isLittleEndian);
+    OutputBuffer SecOut(MOS.SectionData, is64Bit, isLittleEndian);
+    
+    MOS.nreloc += GetTargetRelocation(MR, MOS.Index, TargetAddr, TargetIndex,
+                                      RelocOut, SecOut, Scattered, Extern);
   }
-  if (MOS.nreloc != 0)
-    MOS.reloff = RelOffset;
 }
 
-MachOSym::MachOSym(const GlobalValue *gv, std::string name, uint8_t sect) :
-  GV(gv), GVName(name), n_strx(0), n_type(sect == NO_SECT ? N_UNDF : N_SECT), 
-  n_sect(sect), n_desc(0), n_value(0) {
-  // FIXME: take a target machine, and then add the appropriate prefix for
-  //        the linkage type based on the TargetAsmInfo
+// InitMem - Write the value of a Constant to the specified memory location,
+// converting it into bytes and relocations.
+void MachOWriter::InitMem(const Constant *C, void *Addr, intptr_t Offset,
+                          const TargetData *TD, 
+                          std::vector<MachineRelocation> &MRs) {
+  typedef std::pair<const Constant*, intptr_t> CPair;
+  std::vector<CPair> WorkList;
+  
+  WorkList.push_back(CPair(C,(intptr_t)Addr + Offset));
+  
+  intptr_t ScatteredOffset = 0;
+  
+  while (!WorkList.empty()) {
+    const Constant *PC = WorkList.back().first;
+    intptr_t PA = WorkList.back().second;
+    WorkList.pop_back();
+    
+    if (isa<UndefValue>(PC)) {
+      continue;
+    } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(PC)) {
+      unsigned ElementSize = TD->getTypeSize(CP->getType()->getElementType());
+      for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
+        WorkList.push_back(CPair(CP->getOperand(i), PA+i*ElementSize));
+    } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(PC)) {
+      //
+      // FIXME: Handle ConstantExpression.  See EE::getConstantValue()
+      //
+      switch (CE->getOpcode()) {
+      case Instruction::GetElementPtr: {
+        SmallVector<Value*, 8> Indices(CE->op_begin()+1, CE->op_end());
+        ScatteredOffset = TD->getIndexedOffset(CE->getOperand(0)->getType(),
+                                               &Indices[0], Indices.size());
+        WorkList.push_back(CPair(CE->getOperand(0), PA));
+        break;
+      }
+      case Instruction::Add:
+      default:
+        cerr << "ConstantExpr not handled as global var init: " << *CE << "\n";
+        abort();
+        break;
+      }
+    } else if (PC->getType()->isFirstClassType()) {
+      unsigned char *ptr = (unsigned char *)PA;
+      switch (PC->getType()->getTypeID()) {
+      case Type::IntegerTyID: {
+        unsigned NumBits = cast<IntegerType>(PC->getType())->getBitWidth();
+        uint64_t val = cast<ConstantInt>(PC)->getZExtValue();
+        if (NumBits <= 8)
+          ptr[0] = val;
+        else if (NumBits <= 16) {
+          if (TD->isBigEndian())
+            val = ByteSwap_16(val);
+          ptr[0] = val;
+          ptr[1] = val >> 8;
+        } else if (NumBits <= 32) {
+          if (TD->isBigEndian())
+            val = ByteSwap_32(val);
+          ptr[0] = val;
+          ptr[1] = val >> 8;
+          ptr[2] = val >> 16;
+          ptr[3] = val >> 24;
+        } else if (NumBits <= 64) {
+          if (TD->isBigEndian())
+            val = ByteSwap_64(val);
+          ptr[0] = val;
+          ptr[1] = val >> 8;
+          ptr[2] = val >> 16;
+          ptr[3] = val >> 24;
+          ptr[4] = val >> 32;
+          ptr[5] = val >> 40;
+          ptr[6] = val >> 48;
+          ptr[7] = val >> 56;
+        } else {
+          assert(0 && "Not implemented: bit widths > 64");
+        }
+        break;
+      }
+      case Type::FloatTyID: {
+        uint32_t val = cast<ConstantFP>(PC)->getValueAPF().convertToAPInt().
+                        getZExtValue();
+        if (TD->isBigEndian())
+          val = ByteSwap_32(val);
+        ptr[0] = val;
+        ptr[1] = val >> 8;
+        ptr[2] = val >> 16;
+        ptr[3] = val >> 24;
+        break;
+      }
+      case Type::DoubleTyID: {
+        uint64_t val = cast<ConstantFP>(PC)->getValueAPF().convertToAPInt().
+                         getZExtValue();
+        if (TD->isBigEndian())
+          val = ByteSwap_64(val);
+        ptr[0] = val;
+        ptr[1] = val >> 8;
+        ptr[2] = val >> 16;
+        ptr[3] = val >> 24;
+        ptr[4] = val >> 32;
+        ptr[5] = val >> 40;
+        ptr[6] = val >> 48;
+        ptr[7] = val >> 56;
+        break;
+      }
+      case Type::PointerTyID:
+        if (isa<ConstantPointerNull>(PC))
+          memset(ptr, 0, TD->getPointerSize());
+        else if (const GlobalValue* GV = dyn_cast<GlobalValue>(PC)) {
+          // FIXME: what about function stubs?
+          MRs.push_back(MachineRelocation::getGV(PA-(intptr_t)Addr, 
+                                                 MachineRelocation::VANILLA,
+                                                 const_cast<GlobalValue*>(GV),
+                                                 ScatteredOffset));
+          ScatteredOffset = 0;
+        } else
+          assert(0 && "Unknown constant pointer type!");
+        break;
+      default:
+        cerr << "ERROR: Constant unimp for type: " << *PC->getType() << "\n";
+        abort();
+      }
+    } else if (isa<ConstantAggregateZero>(PC)) {
+      memset((void*)PA, 0, (size_t)TD->getTypeSize(PC->getType()));
+    } else if (const ConstantArray *CPA = dyn_cast<ConstantArray>(PC)) {
+      unsigned ElementSize = TD->getTypeSize(CPA->getType()->getElementType());
+      for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i)
+        WorkList.push_back(CPair(CPA->getOperand(i), PA+i*ElementSize));
+    } else if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(PC)) {
+      const StructLayout *SL =
+        TD->getStructLayout(cast<StructType>(CPS->getType()));
+      for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i)
+        WorkList.push_back(CPair(CPS->getOperand(i),
+                                 PA+SL->getElementOffset(i)));
+    } else {
+      cerr << "Bad Type: " << *PC->getType() << "\n";
+      assert(0 && "Unknown constant type to initialize memory with!");
+    }
+  }
+}
+
+MachOSym::MachOSym(const GlobalValue *gv, std::string name, uint8_t sect,
+                   TargetMachine &TM) :
+  GV(gv), n_strx(0), n_type(sect == NO_SECT ? N_UNDF : N_SECT), n_sect(sect),
+  n_desc(0), n_value(0) {
+
+  const TargetAsmInfo *TAI = TM.getTargetAsmInfo();  
+  
   switch (GV->getLinkage()) {
   default:
     assert(0 && "Unexpected linkage type!");
@@ -607,9 +937,11 @@ MachOSym::MachOSym(const GlobalValue *gv, std::string name, uint8_t sect) :
   case GlobalValue::LinkOnceLinkage:
     assert(!isa<Function>(gv) && "Unexpected linkage type for Function!");
   case GlobalValue::ExternalLinkage:
-    n_type |= N_EXT;
+    GVName = TAI->getGlobalPrefix() + name;
+    n_type |= GV->hasHiddenVisibility() ? N_PEXT : N_EXT;
     break;
   case GlobalValue::InternalLinkage:
+    GVName = TAI->getGlobalPrefix() + name;
     break;
   }
 }