Use parameter attribute store (soon to be renamed) for
[oota-llvm.git] / lib / Bitcode / Writer / BitcodeWriter.cpp
index bfb1815f1291b893450554239043ad0e0050ac99..931e944a410d1dc13f9abe128a4b5b95771cfb2f 100644 (file)
@@ -1,9 +1,9 @@
-//===--- Bitcode/Writer/Writer.cpp - Bitcode Writer -----------------------===//
+//===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
 //
 //                     The LLVM Compiler Infrastructure
 //
-// This file was developed by Chris Lattner and is distributed under
-// the University of Illinois Open Source License. See LICENSE.TXT for details.
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
 //
 //===----------------------------------------------------------------------===//
 //
 #include "ValueEnumerator.h"
 #include "llvm/Constants.h"
 #include "llvm/DerivedTypes.h"
+#include "llvm/InlineAsm.h"
+#include "llvm/Instructions.h"
 #include "llvm/Module.h"
 #include "llvm/TypeSymbolTable.h"
 #include "llvm/ValueSymbolTable.h"
 #include "llvm/Support/MathExtras.h"
+#include "llvm/Support/Streams.h"
+#include "llvm/System/Program.h"
 using namespace llvm;
 
-static const unsigned CurVersion = 0;
+/// These are manifest constants used by the bitcode writer. They do not need to
+/// be kept in sync with the reader, but need to be consistent within this file.
+enum {
+  CurVersion = 0,
+  
+  // VALUE_SYMTAB_BLOCK abbrev id's.
+  VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
+  VST_ENTRY_7_ABBREV,
+  VST_ENTRY_6_ABBREV,
+  VST_BBENTRY_6_ABBREV,
+  
+  // CONSTANTS_BLOCK abbrev id's.
+  CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
+  CONSTANTS_INTEGER_ABBREV,
+  CONSTANTS_CE_CAST_Abbrev,
+  CONSTANTS_NULL_Abbrev,
+  
+  // FUNCTION_BLOCK abbrev id's.
+  FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
+  FUNCTION_INST_BINOP_ABBREV,
+  FUNCTION_INST_CAST_ABBREV,
+  FUNCTION_INST_RET_VOID_ABBREV,
+  FUNCTION_INST_RET_VAL_ABBREV,
+  FUNCTION_INST_UNREACHABLE_ABBREV
+};
+
 
 static unsigned GetEncodedCastOpcode(unsigned Opcode) {
   switch (Opcode) {
@@ -70,8 +99,7 @@ static void WriteStringRecord(unsigned Code, const std::string &Str,
                               unsigned AbbrevToUse, BitstreamWriter &Stream) {
   SmallVector<unsigned, 64> Vals;
   
-  // Code: [strlen, strchar x N]
-  Vals.push_back(Str.size());
+  // Code: [strchar x N]
   for (unsigned i = 0, e = Str.size(); i != e; ++i)
     Vals.push_back(Str[i]);
     
@@ -79,6 +107,29 @@ static void WriteStringRecord(unsigned Code, const std::string &Str,
   Stream.EmitRecord(Code, Vals, AbbrevToUse);
 }
 
+// Emit information about parameter attributes.
+static void WriteParamAttrTable(const ValueEnumerator &VE, 
+                                BitstreamWriter &Stream) {
+  const std::vector<PAListPtr> &Attrs = VE.getParamAttrs();
+  if (Attrs.empty()) return;
+  
+  Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
+
+  SmallVector<uint64_t, 64> Record;
+  for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
+    const PAListPtr &A = Attrs[i];
+    for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) {
+      const ParamAttrsWithIndex &PAWI = A.getSlot(i);
+      Record.push_back(PAWI.Index);
+      Record.push_back(PAWI.Attrs);
+    }
+    
+    Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
+    Record.clear();
+  }
+  
+  Stream.ExitBlock();
+}
 
 /// WriteTypeTable - Write out the type table for a module.
 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
@@ -87,7 +138,40 @@ static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
   Stream.EnterSubblock(bitc::TYPE_BLOCK_ID, 4 /*count from # abbrevs */);
   SmallVector<uint64_t, 64> TypeVals;
   
-  // FIXME: Set up abbrevs now that we know the width of the type fields, etc.
+  // Abbrev for TYPE_CODE_POINTER.
+  BitCodeAbbrev *Abbv = new BitCodeAbbrev();
+  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
+  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
+                            Log2_32_Ceil(VE.getTypes().size()+1)));
+  Abbv->Add(BitCodeAbbrevOp(0));  // Addrspace = 0
+  unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
+  
+  // Abbrev for TYPE_CODE_FUNCTION.
+  Abbv = new BitCodeAbbrev();
+  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
+  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
+  Abbv->Add(BitCodeAbbrevOp(0));  // FIXME: DEAD value, remove in LLVM 3.0
+  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
+                            Log2_32_Ceil(VE.getTypes().size()+1)));
+  unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
+  
+  // Abbrev for TYPE_CODE_STRUCT.
+  Abbv = new BitCodeAbbrev();
+  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT));
+  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
+  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
+                            Log2_32_Ceil(VE.getTypes().size()+1)));
+  unsigned StructAbbrev = Stream.EmitAbbrev(Abbv);
+  // Abbrev for TYPE_CODE_ARRAY.
+  Abbv = new BitCodeAbbrev();
+  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
+  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
+  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
+                            Log2_32_Ceil(VE.getTypes().size()+1)));
+  unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
   
   // Emit an entry count so the reader can reserve space.
   TypeVals.push_back(TypeList.size());
@@ -101,11 +185,13 @@ static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
     unsigned Code = 0;
     
     switch (T->getTypeID()) {
-    case Type::PackedStructTyID: // FIXME: Delete Type::PackedStructTyID.
     default: assert(0 && "Unknown type!");
     case Type::VoidTyID:   Code = bitc::TYPE_CODE_VOID;   break;
     case Type::FloatTyID:  Code = bitc::TYPE_CODE_FLOAT;  break;
     case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break;
+    case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break;
+    case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break;
+    case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
     case Type::LabelTyID:  Code = bitc::TYPE_CODE_LABEL;  break;
     case Type::OpaqueTyID: Code = bitc::TYPE_CODE_OPAQUE; break;
     case Type::IntegerTyID:
@@ -113,34 +199,38 @@ static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
       Code = bitc::TYPE_CODE_INTEGER;
       TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
       break;
-    case Type::PointerTyID:
-      // POINTER: [pointee type]
+    case Type::PointerTyID: {
+      const PointerType *PTy = cast<PointerType>(T);
+      // POINTER: [pointee type, address space]
       Code = bitc::TYPE_CODE_POINTER;
-      TypeVals.push_back(VE.getTypeID(cast<PointerType>(T)->getElementType()));
+      TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
+      unsigned AddressSpace = PTy->getAddressSpace();
+      TypeVals.push_back(AddressSpace);
+      if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
       break;
-
+    }
     case Type::FunctionTyID: {
       const FunctionType *FT = cast<FunctionType>(T);
-      // FUNCTION: [isvararg, #pararms, paramty x N]
+      // FUNCTION: [isvararg, attrid, retty, paramty x N]
       Code = bitc::TYPE_CODE_FUNCTION;
       TypeVals.push_back(FT->isVarArg());
+      TypeVals.push_back(0);  // FIXME: DEAD: remove in llvm 3.0
       TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
-      // FIXME: PARAM ATTR ID!
-      TypeVals.push_back(FT->getNumParams());
       for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
         TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
+      AbbrevToUse = FunctionAbbrev;
       break;
     }
     case Type::StructTyID: {
       const StructType *ST = cast<StructType>(T);
-      // STRUCT: [ispacked, #elts, eltty x N]
+      // STRUCT: [ispacked, eltty x N]
       Code = bitc::TYPE_CODE_STRUCT;
       TypeVals.push_back(ST->isPacked());
-      TypeVals.push_back(ST->getNumElements());
-      // Output all of the element types...
+      // Output all of the element types.
       for (StructType::element_iterator I = ST->element_begin(),
            E = ST->element_end(); I != E; ++I)
         TypeVals.push_back(VE.getTypeID(*I));
+      AbbrevToUse = StructAbbrev;
       break;
     }
     case Type::ArrayTyID: {
@@ -149,6 +239,7 @@ static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
       Code = bitc::TYPE_CODE_ARRAY;
       TypeVals.push_back(AT->getNumElements());
       TypeVals.push_back(VE.getTypeID(AT->getElementType()));
+      AbbrevToUse = ArrayAbbrev;
       break;
     }
     case Type::VectorTyID: {
@@ -172,6 +263,7 @@ static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
 static unsigned getEncodedLinkage(const GlobalValue *GV) {
   switch (GV->getLinkage()) {
   default: assert(0 && "Invalid linkage!");
+  case GlobalValue::GhostLinkage:  // Map ghost linkage onto external.
   case GlobalValue::ExternalLinkage:     return 0;
   case GlobalValue::WeakLinkage:         return 1;
   case GlobalValue::AppendingLinkage:    return 2;
@@ -180,14 +272,16 @@ static unsigned getEncodedLinkage(const GlobalValue *GV) {
   case GlobalValue::DLLImportLinkage:    return 5;
   case GlobalValue::DLLExportLinkage:    return 6;
   case GlobalValue::ExternalWeakLinkage: return 7;
+  case GlobalValue::CommonLinkage:       return 8;
   }
 }
 
 static unsigned getEncodedVisibility(const GlobalValue *GV) {
   switch (GV->getVisibility()) {
   default: assert(0 && "Invalid visibility!");
-  case GlobalValue::DefaultVisibility: return 0;
-  case GlobalValue::HiddenVisibility:  return 1;
+  case GlobalValue::DefaultVisibility:   return 0;
+  case GlobalValue::HiddenVisibility:    return 1;
+  case GlobalValue::ProtectedVisibility: return 2;
   }
 }
 
@@ -210,9 +304,10 @@ static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
     WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
                       0/*TODO*/, Stream);
 
-  // Emit information about sections, computing how many there are.  Also
+  // Emit information about sections and GC, computing how many there are. Also
   // compute the maximum alignment value.
   std::map<std::string, unsigned> SectionMap;
+  std::map<std::string, unsigned> GCMap;
   unsigned MaxAlignment = 0;
   unsigned MaxGlobalType = 0;
   for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
@@ -230,13 +325,24 @@ static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
   }
   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
     MaxAlignment = std::max(MaxAlignment, F->getAlignment());
-    if (!F->hasSection()) continue;
-    // Give section names unique ID's.
-    unsigned &Entry = SectionMap[F->getSection()];
-    if (Entry != 0) continue;
-    WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(),
-                      0/*TODO*/, Stream);
-    Entry = SectionMap.size();
+    if (F->hasSection()) {
+      // Give section names unique ID's.
+      unsigned &Entry = SectionMap[F->getSection()];
+      if (!Entry) {
+        WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(),
+                          0/*TODO*/, Stream);
+        Entry = SectionMap.size();
+      }
+    }
+    if (F->hasGC()) {
+      // Same for GC names.
+      unsigned &Entry = GCMap[F->getGC()];
+      if (!Entry) {
+        WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(),
+                          0/*TODO*/, Stream);
+        Entry = GCMap.size();
+      }
+    }
   }
   
   // Emit abbrev for globals, now that we know # sections and max alignment.
@@ -245,22 +351,22 @@ static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
     // Add an abbrev for common globals with no visibility or thread localness.
     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
-    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::FixedWidth,
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
                               Log2_32_Ceil(MaxGlobalType+1)));
-    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::FixedWidth, 1)); // Constant.
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));      // Constant.
     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));        // Initializer.
-    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::FixedWidth, 3)); // Linkage.
-    if (MaxAlignment == 0)                                     // Alignment.
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));      // Linkage.
+    if (MaxAlignment == 0)                                      // Alignment.
       Abbv->Add(BitCodeAbbrevOp(0));
     else {
       unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
-      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::FixedWidth,
+      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
                                Log2_32_Ceil(MaxEncAlignment+1)));
     }
     if (SectionMap.empty())                                    // Section.
       Abbv->Add(BitCodeAbbrevOp(0));
     else
-      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::FixedWidth,
+      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
                                Log2_32_Ceil(SectionMap.size()+1)));
     // Don't bother emitting vis + thread local.
     SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
@@ -295,94 +401,77 @@ static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
 
   // Emit the function proto information.
   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
-    // FUNCTION:  [type, callingconv, isproto, linkage, alignment, section,
-    //             visibility]
+    // FUNCTION:  [type, callingconv, isproto, paramattr,
+    //             linkage, alignment, section, visibility, gc]
     Vals.push_back(VE.getTypeID(F->getType()));
     Vals.push_back(F->getCallingConv());
     Vals.push_back(F->isDeclaration());
     Vals.push_back(getEncodedLinkage(F));
+    Vals.push_back(VE.getParamAttrID(F->getParamAttrs()));
     Vals.push_back(Log2_32(F->getAlignment())+1);
     Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0);
     Vals.push_back(getEncodedVisibility(F));
+    Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0);
     
     unsigned AbbrevToUse = 0;
     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
     Vals.clear();
   }
-}
-
-
-/// WriteTypeSymbolTable - Emit a block for the specified type symtab.
-static void WriteTypeSymbolTable(const TypeSymbolTable &TST,
-                                 const ValueEnumerator &VE,
-                                 BitstreamWriter &Stream) {
-  if (TST.empty()) return;
-  
-  Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID, 3);
   
-  // FIXME: Set up the abbrev, we know how many types there are!
-  // FIXME: We know if the type names can use 7-bit ascii.
-  
-  SmallVector<unsigned, 64> NameVals;
   
-  for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end(); 
-       TI != TE; ++TI) {
+  // Emit the alias information.
+  for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end();
+       AI != E; ++AI) {
+    Vals.push_back(VE.getTypeID(AI->getType()));
+    Vals.push_back(VE.getValueID(AI->getAliasee()));
+    Vals.push_back(getEncodedLinkage(AI));
+    Vals.push_back(getEncodedVisibility(AI));
     unsigned AbbrevToUse = 0;
-    
-    // TST_ENTRY: [typeid, namelen, namechar x N]
-    NameVals.push_back(VE.getTypeID(TI->second));
-    
-    const std::string &Str = TI->first;
-    NameVals.push_back(Str.size());
-    for (unsigned i = 0, e = Str.size(); i != e; ++i)
-      NameVals.push_back(Str[i]);
-    
-    // Emit the finished record.
-    Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, AbbrevToUse);
-    NameVals.clear();
+    Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
+    Vals.clear();
   }
-  
-  Stream.ExitBlock();
 }
 
-// Emit names for globals/functions etc.
-static void WriteValueSymbolTable(const ValueSymbolTable &VST,
-                                  const ValueEnumerator &VE,
-                                  BitstreamWriter &Stream) {
-  if (VST.empty()) return;
-  Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 3);
-
-  // FIXME: Set up the abbrev, we know how many values there are!
-  // FIXME: We know if the type names can use 7-bit ascii.
-  SmallVector<unsigned, 64> NameVals;
-
-  for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
-       SI != SE; ++SI) {
-    unsigned AbbrevToUse = 0;
-
-    // VST_ENTRY: [valueid, namelen, namechar x N]
-    NameVals.push_back(VE.getValueID(SI->getValue()));
-  
-    NameVals.push_back(SI->getKeyLength());
-    for (const char *P = SI->getKeyData(),
-         *E = SI->getKeyData()+SI->getKeyLength(); P != E; ++P)
-      NameVals.push_back((unsigned char)*P);
-    
-    // Emit the finished record.
-    Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, AbbrevToUse);
-    NameVals.clear();
-  }
-  Stream.ExitBlock();
-}
 
 static void WriteConstants(unsigned FirstVal, unsigned LastVal,
                            const ValueEnumerator &VE,
-                           BitstreamWriter &Stream) {
+                           BitstreamWriter &Stream, bool isGlobal) {
   if (FirstVal == LastVal) return;
   
-  Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 2);
+  Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
+
+  unsigned AggregateAbbrev = 0;
+  unsigned String8Abbrev = 0;
+  unsigned CString7Abbrev = 0;
+  unsigned CString6Abbrev = 0;
+  // If this is a constant pool for the module, emit module-specific abbrevs.
+  if (isGlobal) {
+    // Abbrev for CST_CODE_AGGREGATE.
+    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
+    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
+    AggregateAbbrev = Stream.EmitAbbrev(Abbv);
 
-  // FIXME: Install and use abbrevs to reduce size.
+    // Abbrev for CST_CODE_STRING.
+    Abbv = new BitCodeAbbrev();
+    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
+    String8Abbrev = Stream.EmitAbbrev(Abbv);
+    // Abbrev for CST_CODE_CSTRING.
+    Abbv = new BitCodeAbbrev();
+    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
+    CString7Abbrev = Stream.EmitAbbrev(Abbv);
+    // Abbrev for CST_CODE_CSTRING.
+    Abbv = new BitCodeAbbrev();
+    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
+    CString6Abbrev = Stream.EmitAbbrev(Abbv);
+  }  
   
   SmallVector<uint64_t, 64> Record;
 
@@ -394,12 +483,27 @@ static void WriteConstants(unsigned FirstVal, unsigned LastVal,
     if (V->getType() != LastTy) {
       LastTy = V->getType();
       Record.push_back(VE.getTypeID(LastTy));
-      Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record);
+      Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
+                        CONSTANTS_SETTYPE_ABBREV);
       Record.clear();
     }
     
     if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
-      assert(0 && IA && "FIXME: Inline asm writing unimp!");
+      Record.push_back(unsigned(IA->hasSideEffects()));
+      
+      // Add the asm string.
+      const std::string &AsmStr = IA->getAsmString();
+      Record.push_back(AsmStr.size());
+      for (unsigned i = 0, e = AsmStr.size(); i != e; ++i)
+        Record.push_back(AsmStr[i]);
+      
+      // Add the constraint string.
+      const std::string &ConstraintStr = IA->getConstraintString();
+      Record.push_back(ConstraintStr.size());
+      for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i)
+        Record.push_back(ConstraintStr[i]);
+      Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
+      Record.clear();
       continue;
     }
     const Constant *C = cast<Constant>(V);
@@ -417,6 +521,7 @@ static void WriteConstants(unsigned FirstVal, unsigned LastVal,
         else
           Record.push_back((-V << 1) | 1);
         Code = bitc::CST_CODE_INTEGER;
+        AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
       } else {                             // Wide integers, > 64 bits in size.
         // We have an arbitrary precision integer value to write whose 
         // bit width is > 64. However, in canonical unsigned integer 
@@ -424,7 +529,6 @@ static void WriteConstants(unsigned FirstVal, unsigned LastVal,
         // So, we only write the number of active words.
         unsigned NWords = IV->getValue().getActiveWords(); 
         const uint64_t *RawWords = IV->getValue().getRawData();
-        Record.push_back(NWords);
         for (unsigned i = 0; i != NWords; ++i) {
           int64_t V = RawWords[i];
           if (V >= 0)
@@ -436,18 +540,54 @@ static void WriteConstants(unsigned FirstVal, unsigned LastVal,
       }
     } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
       Code = bitc::CST_CODE_FLOAT;
-      if (CFP->getType() == Type::FloatTy) {
-        Record.push_back(FloatToBits((float)CFP->getValue()));
+      const Type *Ty = CFP->getType();
+      if (Ty == Type::FloatTy || Ty == Type::DoubleTy) {
+        Record.push_back(CFP->getValueAPF().convertToAPInt().getZExtValue());
+      } else if (Ty == Type::X86_FP80Ty) {
+        // api needed to prevent premature destruction
+        APInt api = CFP->getValueAPF().convertToAPInt();
+        const uint64_t *p = api.getRawData();
+        Record.push_back(p[0]);
+        Record.push_back((uint16_t)p[1]);
+      } else if (Ty == Type::FP128Ty || Ty == Type::PPC_FP128Ty) {
+        APInt api = CFP->getValueAPF().convertToAPInt();
+        const uint64_t *p = api.getRawData();
+        Record.push_back(p[0]);
+        Record.push_back(p[1]);
+      } else {
+        assert (0 && "Unknown FP type!");
+      }
+    } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) {
+      // Emit constant strings specially.
+      unsigned NumOps = C->getNumOperands();
+      // If this is a null-terminated string, use the denser CSTRING encoding.
+      if (C->getOperand(NumOps-1)->isNullValue()) {
+        Code = bitc::CST_CODE_CSTRING;
+        --NumOps;  // Don't encode the null, which isn't allowed by char6.
       } else {
-        assert (CFP->getType() == Type::DoubleTy && "Unknown FP type!");
-        Record.push_back(DoubleToBits((double)CFP->getValue()));
+        Code = bitc::CST_CODE_STRING;
+        AbbrevToUse = String8Abbrev;
       }
+      bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
+      bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
+      for (unsigned i = 0; i != NumOps; ++i) {
+        unsigned char V = cast<ConstantInt>(C->getOperand(i))->getZExtValue();
+        Record.push_back(V);
+        isCStr7 &= (V & 128) == 0;
+        if (isCStrChar6) 
+          isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
+      }
+      
+      if (isCStrChar6)
+        AbbrevToUse = CString6Abbrev;
+      else if (isCStr7)
+        AbbrevToUse = CString7Abbrev;
     } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) ||
                isa<ConstantVector>(V)) {
       Code = bitc::CST_CODE_AGGREGATE;
-      Record.push_back(C->getNumOperands());
       for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
         Record.push_back(VE.getValueID(C->getOperand(i)));
+      AbbrevToUse = AggregateAbbrev;
     } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
       switch (CE->getOpcode()) {
       default:
@@ -456,6 +596,7 @@ static void WriteConstants(unsigned FirstVal, unsigned LastVal,
           Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
           Record.push_back(VE.getValueID(C->getOperand(0)));
+          AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
         } else {
           assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
           Code = bitc::CST_CODE_CE_BINOP;
@@ -466,7 +607,6 @@ static void WriteConstants(unsigned FirstVal, unsigned LastVal,
         break;
       case Instruction::GetElementPtr:
         Code = bitc::CST_CODE_CE_GEP;
-        Record.push_back(CE->getNumOperands());
         for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
           Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
           Record.push_back(VE.getValueID(C->getOperand(i)));
@@ -498,7 +638,16 @@ static void WriteConstants(unsigned FirstVal, unsigned LastVal,
         break;
       case Instruction::ICmp:
       case Instruction::FCmp:
-        Code = bitc::CST_CODE_CE_CMP;
+      case Instruction::VICmp:
+      case Instruction::VFCmp:
+        if (isa<VectorType>(C->getOperand(0)->getType())
+            && (CE->getOpcode() == Instruction::ICmp
+                || CE->getOpcode() == Instruction::FCmp)) {
+          // compare returning vector of Int1Ty
+          assert(0 && "Unsupported constant!");
+        } else {
+          Code = bitc::CST_CODE_CE_CMP;
+        }
         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
         Record.push_back(VE.getValueID(C->getOperand(0)));
         Record.push_back(VE.getValueID(C->getOperand(1)));
@@ -523,25 +672,561 @@ static void WriteModuleConstants(const ValueEnumerator &VE,
   // We know globalvalues have been emitted by WriteModuleInfo.
   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
     if (!isa<GlobalValue>(Vals[i].first)) {
-      WriteConstants(i, Vals.size(), VE, Stream);
+      WriteConstants(i, Vals.size(), VE, Stream, true);
       return;
     }
   }
 }
 
+/// PushValueAndType - The file has to encode both the value and type id for
+/// many values, because we need to know what type to create for forward
+/// references.  However, most operands are not forward references, so this type
+/// field is not needed.
+///
+/// This function adds V's value ID to Vals.  If the value ID is higher than the
+/// instruction ID, then it is a forward reference, and it also includes the
+/// type ID.
+static bool PushValueAndType(Value *V, unsigned InstID,
+                             SmallVector<unsigned, 64> &Vals, 
+                             ValueEnumerator &VE) {
+  unsigned ValID = VE.getValueID(V);
+  Vals.push_back(ValID);
+  if (ValID >= InstID) {
+    Vals.push_back(VE.getTypeID(V->getType()));
+    return true;
+  }
+  return false;
+}
+
+/// WriteInstruction - Emit an instruction to the specified stream.
+static void WriteInstruction(const Instruction &I, unsigned InstID,
+                             ValueEnumerator &VE, BitstreamWriter &Stream,
+                             SmallVector<unsigned, 64> &Vals) {
+  unsigned Code = 0;
+  unsigned AbbrevToUse = 0;
+  switch (I.getOpcode()) {
+  default:
+    if (Instruction::isCast(I.getOpcode())) {
+      Code = bitc::FUNC_CODE_INST_CAST;
+      if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
+        AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
+      Vals.push_back(VE.getTypeID(I.getType()));
+      Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
+    } else {
+      assert(isa<BinaryOperator>(I) && "Unknown instruction!");
+      Code = bitc::FUNC_CODE_INST_BINOP;
+      if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
+        AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
+      Vals.push_back(VE.getValueID(I.getOperand(1)));
+      Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
+    }
+    break;
+
+  case Instruction::GetElementPtr:
+    Code = bitc::FUNC_CODE_INST_GEP;
+    for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
+      PushValueAndType(I.getOperand(i), InstID, Vals, VE);
+    break;
+  case Instruction::ExtractValue: {
+    Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
+    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
+    const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
+    for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
+      Vals.push_back(*i);
+    break;
+  }
+  case Instruction::InsertValue: {
+    Code = bitc::FUNC_CODE_INST_INSERTVAL;
+    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
+    PushValueAndType(I.getOperand(1), InstID, Vals, VE);
+    const InsertValueInst *IVI = cast<InsertValueInst>(&I);
+    for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
+      Vals.push_back(*i);
+    break;
+  }
+  case Instruction::Select:
+    Code = bitc::FUNC_CODE_INST_VSELECT;
+    PushValueAndType(I.getOperand(1), InstID, Vals, VE);
+    Vals.push_back(VE.getValueID(I.getOperand(2)));
+    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
+    break;
+  case Instruction::ExtractElement:
+    Code = bitc::FUNC_CODE_INST_EXTRACTELT;
+    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
+    Vals.push_back(VE.getValueID(I.getOperand(1)));
+    break;
+  case Instruction::InsertElement:
+    Code = bitc::FUNC_CODE_INST_INSERTELT;
+    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
+    Vals.push_back(VE.getValueID(I.getOperand(1)));
+    Vals.push_back(VE.getValueID(I.getOperand(2)));
+    break;
+  case Instruction::ShuffleVector:
+    Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
+    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
+    Vals.push_back(VE.getValueID(I.getOperand(1)));
+    Vals.push_back(VE.getValueID(I.getOperand(2)));
+    break;
+  case Instruction::ICmp:
+  case Instruction::FCmp:
+  case Instruction::VICmp:
+  case Instruction::VFCmp:
+    if (I.getOpcode() == Instruction::ICmp
+        || I.getOpcode() == Instruction::FCmp) {
+      // compare returning Int1Ty or vector of Int1Ty
+      Code = bitc::FUNC_CODE_INST_CMP2;
+    } else {
+      Code = bitc::FUNC_CODE_INST_CMP;
+    }
+    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
+    Vals.push_back(VE.getValueID(I.getOperand(1)));
+    Vals.push_back(cast<CmpInst>(I).getPredicate());
+    break;
+
+  case Instruction::Ret: 
+    {
+      Code = bitc::FUNC_CODE_INST_RET;
+      unsigned NumOperands = I.getNumOperands();
+      if (NumOperands == 0)
+        AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
+      else if (NumOperands == 1) {
+        if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
+          AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
+      } else {
+        for (unsigned i = 0, e = NumOperands; i != e; ++i)
+          PushValueAndType(I.getOperand(i), InstID, Vals, VE);
+      }
+    }
+    break;
+  case Instruction::Br:
+    Code = bitc::FUNC_CODE_INST_BR;
+    Vals.push_back(VE.getValueID(I.getOperand(0)));
+    if (cast<BranchInst>(I).isConditional()) {
+      Vals.push_back(VE.getValueID(I.getOperand(1)));
+      Vals.push_back(VE.getValueID(I.getOperand(2)));
+    }
+    break;
+  case Instruction::Switch:
+    Code = bitc::FUNC_CODE_INST_SWITCH;
+    Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
+    for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
+      Vals.push_back(VE.getValueID(I.getOperand(i)));
+    break;
+  case Instruction::Invoke: {
+    const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType());
+    const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
+    Code = bitc::FUNC_CODE_INST_INVOKE;
+    
+    const InvokeInst *II = cast<InvokeInst>(&I);
+    Vals.push_back(VE.getParamAttrID(II->getParamAttrs()));
+    Vals.push_back(II->getCallingConv());
+    Vals.push_back(VE.getValueID(I.getOperand(1)));      // normal dest
+    Vals.push_back(VE.getValueID(I.getOperand(2)));      // unwind dest
+    PushValueAndType(I.getOperand(0), InstID, Vals, VE); // callee
+    
+    // Emit value #'s for the fixed parameters.
+    for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
+      Vals.push_back(VE.getValueID(I.getOperand(i+3)));  // fixed param.
+
+    // Emit type/value pairs for varargs params.
+    if (FTy->isVarArg()) {
+      for (unsigned i = 3+FTy->getNumParams(), e = I.getNumOperands();
+           i != e; ++i)
+        PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
+    }
+    break;
+  }
+  case Instruction::Unwind:
+    Code = bitc::FUNC_CODE_INST_UNWIND;
+    break;
+  case Instruction::Unreachable:
+    Code = bitc::FUNC_CODE_INST_UNREACHABLE;
+    AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
+    break;
+  
+  case Instruction::PHI:
+    Code = bitc::FUNC_CODE_INST_PHI;
+    Vals.push_back(VE.getTypeID(I.getType()));
+    for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
+      Vals.push_back(VE.getValueID(I.getOperand(i)));
+    break;
+    
+  case Instruction::Malloc:
+    Code = bitc::FUNC_CODE_INST_MALLOC;
+    Vals.push_back(VE.getTypeID(I.getType()));
+    Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
+    Vals.push_back(Log2_32(cast<MallocInst>(I).getAlignment())+1);
+    break;
+    
+  case Instruction::Free:
+    Code = bitc::FUNC_CODE_INST_FREE;
+    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
+    break;
+    
+  case Instruction::Alloca:
+    Code = bitc::FUNC_CODE_INST_ALLOCA;
+    Vals.push_back(VE.getTypeID(I.getType()));
+    Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
+    Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1);
+    break;
+    
+  case Instruction::Load:
+    Code = bitc::FUNC_CODE_INST_LOAD;
+    if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))  // ptr
+      AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
+      
+    Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
+    Vals.push_back(cast<LoadInst>(I).isVolatile());
+    break;
+  case Instruction::Store:
+    Code = bitc::FUNC_CODE_INST_STORE2;
+    PushValueAndType(I.getOperand(1), InstID, Vals, VE);  // ptrty + ptr
+    Vals.push_back(VE.getValueID(I.getOperand(0)));       // val.
+    Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
+    Vals.push_back(cast<StoreInst>(I).isVolatile());
+    break;
+  case Instruction::Call: {
+    const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType());
+    const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
+
+    Code = bitc::FUNC_CODE_INST_CALL;
+    
+    const CallInst *CI = cast<CallInst>(&I);
+    Vals.push_back(VE.getParamAttrID(CI->getParamAttrs()));
+    Vals.push_back((CI->getCallingConv() << 1) | unsigned(CI->isTailCall()));
+    PushValueAndType(CI->getOperand(0), InstID, Vals, VE);  // Callee
+    
+    // Emit value #'s for the fixed parameters.
+    for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
+      Vals.push_back(VE.getValueID(I.getOperand(i+1)));  // fixed param.
+      
+    // Emit type/value pairs for varargs params.
+    if (FTy->isVarArg()) {
+      unsigned NumVarargs = I.getNumOperands()-1-FTy->getNumParams();
+      for (unsigned i = I.getNumOperands()-NumVarargs, e = I.getNumOperands();
+           i != e; ++i)
+        PushValueAndType(I.getOperand(i), InstID, Vals, VE);  // varargs
+    }
+    break;
+  }
+  case Instruction::VAArg:
+    Code = bitc::FUNC_CODE_INST_VAARG;
+    Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
+    Vals.push_back(VE.getValueID(I.getOperand(0))); // valist.
+    Vals.push_back(VE.getTypeID(I.getType())); // restype.
+    break;
+  }
+  
+  Stream.EmitRecord(Code, Vals, AbbrevToUse);
+  Vals.clear();
+}
+
+// Emit names for globals/functions etc.
+static void WriteValueSymbolTable(const ValueSymbolTable &VST,
+                                  const ValueEnumerator &VE,
+                                  BitstreamWriter &Stream) {
+  if (VST.empty()) return;
+  Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
+
+  // FIXME: Set up the abbrev, we know how many values there are!
+  // FIXME: We know if the type names can use 7-bit ascii.
+  SmallVector<unsigned, 64> NameVals;
+  
+  for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
+       SI != SE; ++SI) {
+    
+    const ValueName &Name = *SI;
+    
+    // Figure out the encoding to use for the name.
+    bool is7Bit = true;
+    bool isChar6 = true;
+    for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
+         C != E; ++C) {
+      if (isChar6) 
+        isChar6 = BitCodeAbbrevOp::isChar6(*C);
+      if ((unsigned char)*C & 128) {
+        is7Bit = false;
+        break;  // don't bother scanning the rest.
+      }
+    }
+    
+    unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
+    
+    // VST_ENTRY:   [valueid, namechar x N]
+    // VST_BBENTRY: [bbid, namechar x N]
+    unsigned Code;
+    if (isa<BasicBlock>(SI->getValue())) {
+      Code = bitc::VST_CODE_BBENTRY;
+      if (isChar6)
+        AbbrevToUse = VST_BBENTRY_6_ABBREV;
+    } else {
+      Code = bitc::VST_CODE_ENTRY;
+      if (isChar6)
+        AbbrevToUse = VST_ENTRY_6_ABBREV;
+      else if (is7Bit)
+        AbbrevToUse = VST_ENTRY_7_ABBREV;
+    }
+    
+    NameVals.push_back(VE.getValueID(SI->getValue()));
+    for (const char *P = Name.getKeyData(),
+         *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
+      NameVals.push_back((unsigned char)*P);
+    
+    // Emit the finished record.
+    Stream.EmitRecord(Code, NameVals, AbbrevToUse);
+    NameVals.clear();
+  }
+  Stream.ExitBlock();
+}
+
+/// WriteFunction - Emit a function body to the module stream.
+static void WriteFunction(const Function &F, ValueEnumerator &VE, 
+                          BitstreamWriter &Stream) {
+  Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
+  VE.incorporateFunction(F);
+
+  SmallVector<unsigned, 64> Vals;
+  
+  // Emit the number of basic blocks, so the reader can create them ahead of
+  // time.
+  Vals.push_back(VE.getBasicBlocks().size());
+  Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
+  Vals.clear();
+  
+  // If there are function-local constants, emit them now.
+  unsigned CstStart, CstEnd;
+  VE.getFunctionConstantRange(CstStart, CstEnd);
+  WriteConstants(CstStart, CstEnd, VE, Stream, false);
+  
+  // Keep a running idea of what the instruction ID is. 
+  unsigned InstID = CstEnd;
+  
+  // Finally, emit all the instructions, in order.
+  for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
+    for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
+         I != E; ++I) {
+      WriteInstruction(*I, InstID, VE, Stream, Vals);
+      if (I->getType() != Type::VoidTy)
+        ++InstID;
+    }
+  
+  // Emit names for all the instructions etc.
+  WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
+    
+  VE.purgeFunction();
+  Stream.ExitBlock();
+}
+
+/// WriteTypeSymbolTable - Emit a block for the specified type symtab.
+static void WriteTypeSymbolTable(const TypeSymbolTable &TST,
+                                 const ValueEnumerator &VE,
+                                 BitstreamWriter &Stream) {
+  if (TST.empty()) return;
+  
+  Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID, 3);
+  
+  // 7-bit fixed width VST_CODE_ENTRY strings.
+  BitCodeAbbrev *Abbv = new BitCodeAbbrev();
+  Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
+  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
+                            Log2_32_Ceil(VE.getTypes().size()+1)));
+  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
+  unsigned V7Abbrev = Stream.EmitAbbrev(Abbv);
+  
+  SmallVector<unsigned, 64> NameVals;
+  
+  for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end(); 
+       TI != TE; ++TI) {
+    // TST_ENTRY: [typeid, namechar x N]
+    NameVals.push_back(VE.getTypeID(TI->second));
+    
+    const std::string &Str = TI->first;
+    bool is7Bit = true;
+    for (unsigned i = 0, e = Str.size(); i != e; ++i) {
+      NameVals.push_back((unsigned char)Str[i]);
+      if (Str[i] & 128)
+        is7Bit = false;
+    }
+    
+    // Emit the finished record.
+    Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0);
+    NameVals.clear();
+  }
+  
+  Stream.ExitBlock();
+}
+
+// Emit blockinfo, which defines the standard abbreviations etc.
+static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
+  // We only want to emit block info records for blocks that have multiple
+  // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.  Other
+  // blocks can defined their abbrevs inline.
+  Stream.EnterBlockInfoBlock(2);
+  
+  { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
+    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
+    if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 
+                                   Abbv) != VST_ENTRY_8_ABBREV)
+      assert(0 && "Unexpected abbrev ordering!");
+  }
+  
+  { // 7-bit fixed width VST_ENTRY strings.
+    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
+    Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
+    if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
+                                   Abbv) != VST_ENTRY_7_ABBREV)
+      assert(0 && "Unexpected abbrev ordering!");
+  }
+  { // 6-bit char6 VST_ENTRY strings.
+    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
+    Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
+    if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
+                                   Abbv) != VST_ENTRY_6_ABBREV)
+      assert(0 && "Unexpected abbrev ordering!");
+  }
+  { // 6-bit char6 VST_BBENTRY strings.
+    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
+    Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
+    if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
+                                   Abbv) != VST_BBENTRY_6_ABBREV)
+      assert(0 && "Unexpected abbrev ordering!");
+  }
+  
+  
+  
+  { // SETTYPE abbrev for CONSTANTS_BLOCK.
+    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
+    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
+                              Log2_32_Ceil(VE.getTypes().size()+1)));
+    if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
+                                   Abbv) != CONSTANTS_SETTYPE_ABBREV)
+      assert(0 && "Unexpected abbrev ordering!");
+  }
+  
+  { // INTEGER abbrev for CONSTANTS_BLOCK.
+    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
+    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
+    if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
+                                   Abbv) != CONSTANTS_INTEGER_ABBREV)
+      assert(0 && "Unexpected abbrev ordering!");
+  }
+  
+  { // CE_CAST abbrev for CONSTANTS_BLOCK.
+    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
+    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
+                              Log2_32_Ceil(VE.getTypes().size()+1)));
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
+
+    if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
+                                   Abbv) != CONSTANTS_CE_CAST_Abbrev)
+      assert(0 && "Unexpected abbrev ordering!");
+  }
+  { // NULL abbrev for CONSTANTS_BLOCK.
+    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
+    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
+    if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
+                                   Abbv) != CONSTANTS_NULL_Abbrev)
+      assert(0 && "Unexpected abbrev ordering!");
+  }
+  
+  // FIXME: This should only use space for first class types!
+  { // INST_LOAD abbrev for FUNCTION_BLOCK.
+    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
+    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
+    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
+                                   Abbv) != FUNCTION_INST_LOAD_ABBREV)
+      assert(0 && "Unexpected abbrev ordering!");
+  }
+  { // INST_BINOP abbrev for FUNCTION_BLOCK.
+    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
+    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
+    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
+                                   Abbv) != FUNCTION_INST_BINOP_ABBREV)
+      assert(0 && "Unexpected abbrev ordering!");
+  }
+  { // INST_CAST abbrev for FUNCTION_BLOCK.
+    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
+    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
+                              Log2_32_Ceil(VE.getTypes().size()+1)));
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
+    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
+                                   Abbv) != FUNCTION_INST_CAST_ABBREV)
+      assert(0 && "Unexpected abbrev ordering!");
+  }
+  
+  { // INST_RET abbrev for FUNCTION_BLOCK.
+    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
+    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
+    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
+                                   Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
+      assert(0 && "Unexpected abbrev ordering!");
+  }
+  { // INST_RET abbrev for FUNCTION_BLOCK.
+    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
+    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
+    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
+                                   Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
+      assert(0 && "Unexpected abbrev ordering!");
+  }
+  { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
+    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
+    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
+    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
+                                   Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
+      assert(0 && "Unexpected abbrev ordering!");
+  }
+  
+  Stream.ExitBlock();
+}
+
+
 /// WriteModule - Emit the specified module to the bitstream.
 static void WriteModule(const Module *M, BitstreamWriter &Stream) {
   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
   
   // Emit the version number if it is non-zero.
   if (CurVersion) {
-    SmallVector<unsigned, 1> VersionVals;
-    VersionVals.push_back(CurVersion);
-    Stream.EmitRecord(bitc::MODULE_CODE_VERSION, VersionVals);
+    SmallVector<unsigned, 1> Vals;
+    Vals.push_back(CurVersion);
+    Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
   }
   
   // Analyze the module, enumerating globals, functions, etc.
   ValueEnumerator VE(M);
+
+  // Emit blockinfo, which defines the standard abbreviations etc.
+  WriteBlockInfo(VE, Stream);
+  
+  // Emit information about parameter attributes.
+  WriteParamAttrTable(VE, Stream);
   
   // Emit information describing all of the types in the module.
   WriteTypeTable(VE, Stream);
@@ -553,6 +1238,21 @@ static void WriteModule(const Module *M, BitstreamWriter &Stream) {
   // Emit constants.
   WriteModuleConstants(VE, Stream);
   
+  // If we have any aggregate values in the value table, purge them - these can
+  // only be used to initialize global variables.  Doing so makes the value
+  // namespace smaller for code in functions.
+  int NumNonAggregates = VE.PurgeAggregateValues();
+  if (NumNonAggregates != -1) {
+    SmallVector<unsigned, 1> Vals;
+    Vals.push_back(NumNonAggregates);
+    Stream.EmitRecord(bitc::MODULE_CODE_PURGEVALS, Vals);
+  }
+  
+  // Emit function bodies.
+  for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
+    if (!I->isDeclaration())
+      WriteFunction(*I, VE, Stream);
+  
   // Emit the type symbol table information.
   WriteTypeSymbolTable(M->getTypeSymbolTable(), VE, Stream);
   
@@ -562,6 +1262,71 @@ static void WriteModule(const Module *M, BitstreamWriter &Stream) {
   Stream.ExitBlock();
 }
 
+/// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a
+/// header and trailer to make it compatible with the system archiver.  To do
+/// this we emit the following header, and then emit a trailer that pads the
+/// file out to be a multiple of 16 bytes.
+/// 
+/// struct bc_header {
+///   uint32_t Magic;         // 0x0B17C0DE
+///   uint32_t Version;       // Version, currently always 0.
+///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
+///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
+///   uint32_t CPUType;       // CPU specifier.
+///   ... potentially more later ...
+/// };
+enum {
+  DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size.
+  DarwinBCHeaderSize = 5*4
+};
+
+static void EmitDarwinBCHeader(BitstreamWriter &Stream,
+                               const std::string &TT) {
+  unsigned CPUType = ~0U;
+  
+  // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*.  The CPUType is a
+  // magic number from /usr/include/mach/machine.h.  It is ok to reproduce the
+  // specific constants here because they are implicitly part of the Darwin ABI.
+  enum {
+    DARWIN_CPU_ARCH_ABI64      = 0x01000000,
+    DARWIN_CPU_TYPE_X86        = 7,
+    DARWIN_CPU_TYPE_POWERPC    = 18
+  };
+  
+  if (TT.find("x86_64-") == 0)
+    CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
+  else if (TT.size() >= 5 && TT[0] == 'i' && TT[2] == '8' && TT[3] == '6' &&
+           TT[4] == '-' && TT[1] - '3' < 6)
+    CPUType = DARWIN_CPU_TYPE_X86;
+  else if (TT.find("powerpc-") == 0)
+    CPUType = DARWIN_CPU_TYPE_POWERPC;
+  else if (TT.find("powerpc64-") == 0)
+    CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
+  
+  // Traditional Bitcode starts after header.
+  unsigned BCOffset = DarwinBCHeaderSize;
+  
+  Stream.Emit(0x0B17C0DE, 32);
+  Stream.Emit(0         , 32);  // Version.
+  Stream.Emit(BCOffset  , 32);
+  Stream.Emit(0         , 32);  // Filled in later.
+  Stream.Emit(CPUType   , 32);
+}
+
+/// EmitDarwinBCTrailer - Emit the darwin epilog after the bitcode file and
+/// finalize the header.
+static void EmitDarwinBCTrailer(BitstreamWriter &Stream, unsigned BufferSize) {
+  // Update the size field in the header.
+  Stream.BackpatchWord(DarwinBCSizeFieldOffset, BufferSize-DarwinBCHeaderSize);
+  
+  // If the file is not a multiple of 16 bytes, insert dummy padding.
+  while (BufferSize & 15) {
+    Stream.Emit(0, 8);
+    ++BufferSize;
+  }
+}
+
+
 /// WriteBitcodeToFile - Write the specified module to the specified output
 /// stream.
 void llvm::WriteBitcodeToFile(const Module *M, std::ostream &Out) {
@@ -570,6 +1335,11 @@ void llvm::WriteBitcodeToFile(const Module *M, std::ostream &Out) {
   
   Buffer.reserve(256*1024);
   
+  // If this is darwin, emit a file header and trailer if needed.
+  bool isDarwin = M->getTargetTriple().find("-darwin") != std::string::npos;
+  if (isDarwin)
+    EmitDarwinBCHeader(Stream, M->getTargetTriple());
+  
   // Emit the file header.
   Stream.Emit((unsigned)'B', 8);
   Stream.Emit((unsigned)'C', 8);
@@ -580,7 +1350,18 @@ void llvm::WriteBitcodeToFile(const Module *M, std::ostream &Out) {
 
   // Emit the module.
   WriteModule(M, Stream);
+
+  if (isDarwin)
+    EmitDarwinBCTrailer(Stream, Buffer.size());
+
   
+  // If writing to stdout, set binary mode.
+  if (llvm::cout == Out)
+    sys::Program::ChangeStdoutToBinary();
+
   // Write the generated bitstream to "Out".
   Out.write((char*)&Buffer.front(), Buffer.size());
+  
+  // Make sure it hits disk now.
+  Out.flush();
 }