Kill ModuleProvider and ghost linkage by inverting the relationship between
[oota-llvm.git] / lib / Bitcode / Writer / BitcodeWriter.cpp
index 0030aca3bc5a6d97b44f00734921fe4ee6bf9350..54f756f97735e0803a9fd938eb6a3463e5f66311 100644 (file)
 #include "llvm/InlineAsm.h"
 #include "llvm/Instructions.h"
 #include "llvm/Module.h"
+#include "llvm/Operator.h"
 #include "llvm/TypeSymbolTable.h"
 #include "llvm/ValueSymbolTable.h"
+#include "llvm/Support/ErrorHandling.h"
 #include "llvm/Support/MathExtras.h"
+#include "llvm/Support/raw_ostream.h"
 #include "llvm/System/Program.h"
 using namespace llvm;
 
@@ -30,22 +33,23 @@ using namespace llvm;
 /// be kept in sync with the reader, but need to be consistent within this file.
 enum {
   CurVersion = 0,
-  
+
   // VALUE_SYMTAB_BLOCK abbrev id's.
   VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
   VST_ENTRY_7_ABBREV,
   VST_ENTRY_6_ABBREV,
   VST_BBENTRY_6_ABBREV,
-  
+
   // CONSTANTS_BLOCK abbrev id's.
   CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
   CONSTANTS_INTEGER_ABBREV,
   CONSTANTS_CE_CAST_Abbrev,
   CONSTANTS_NULL_Abbrev,
-  
+
   // FUNCTION_BLOCK abbrev id's.
   FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
   FUNCTION_INST_BINOP_ABBREV,
+  FUNCTION_INST_BINOP_FLAGS_ABBREV,
   FUNCTION_INST_CAST_ABBREV,
   FUNCTION_INST_RET_VOID_ABBREV,
   FUNCTION_INST_RET_VAL_ABBREV,
@@ -55,7 +59,7 @@ enum {
 
 static unsigned GetEncodedCastOpcode(unsigned Opcode) {
   switch (Opcode) {
-  default: assert(0 && "Unknown cast instruction!");
+  default: llvm_unreachable("Unknown cast instruction!");
   case Instruction::Trunc   : return bitc::CAST_TRUNC;
   case Instruction::ZExt    : return bitc::CAST_ZEXT;
   case Instruction::SExt    : return bitc::CAST_SEXT;
@@ -73,10 +77,13 @@ static unsigned GetEncodedCastOpcode(unsigned Opcode) {
 
 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
   switch (Opcode) {
-  default: assert(0 && "Unknown binary instruction!");
-  case Instruction::Add:  return bitc::BINOP_ADD;
-  case Instruction::Sub:  return bitc::BINOP_SUB;
-  case Instruction::Mul:  return bitc::BINOP_MUL;
+  default: llvm_unreachable("Unknown binary instruction!");
+  case Instruction::Add:
+  case Instruction::FAdd: return bitc::BINOP_ADD;
+  case Instruction::Sub:
+  case Instruction::FSub: return bitc::BINOP_SUB;
+  case Instruction::Mul:
+  case Instruction::FMul: return bitc::BINOP_MUL;
   case Instruction::UDiv: return bitc::BINOP_UDIV;
   case Instruction::FDiv:
   case Instruction::SDiv: return bitc::BINOP_SDIV;
@@ -94,49 +101,59 @@ static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
 
 
 
-static void WriteStringRecord(unsigned Code, const std::string &Str, 
+static void WriteStringRecord(unsigned Code, const std::string &Str,
                               unsigned AbbrevToUse, BitstreamWriter &Stream) {
   SmallVector<unsigned, 64> Vals;
-  
+
   // Code: [strchar x N]
   for (unsigned i = 0, e = Str.size(); i != e; ++i)
     Vals.push_back(Str[i]);
-    
+
   // Emit the finished record.
   Stream.EmitRecord(Code, Vals, AbbrevToUse);
 }
 
 // Emit information about parameter attributes.
-static void WriteParamAttrTable(const ValueEnumerator &VE, 
+static void WriteAttributeTable(const ValueEnumerator &VE,
                                 BitstreamWriter &Stream) {
-  const std::vector<PAListPtr> &Attrs = VE.getParamAttrs();
+  const std::vector<AttrListPtr> &Attrs = VE.getAttributes();
   if (Attrs.empty()) return;
-  
+
   Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
 
   SmallVector<uint64_t, 64> Record;
   for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
-    const PAListPtr &A = Attrs[i];
+    const AttrListPtr &A = Attrs[i];
     for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) {
-      const ParamAttrsWithIndex &PAWI = A.getSlot(i);
+      const AttributeWithIndex &PAWI = A.getSlot(i);
       Record.push_back(PAWI.Index);
-      Record.push_back(PAWI.Attrs);
+
+      // FIXME: remove in LLVM 3.0
+      // Store the alignment in the bitcode as a 16-bit raw value instead of a
+      // 5-bit log2 encoded value. Shift the bits above the alignment up by
+      // 11 bits.
+      uint64_t FauxAttr = PAWI.Attrs & 0xffff;
+      if (PAWI.Attrs & Attribute::Alignment)
+        FauxAttr |= (1ull<<16)<<(((PAWI.Attrs & Attribute::Alignment)-1) >> 16);
+      FauxAttr |= (PAWI.Attrs & (0x3FFull << 21)) << 11;
+
+      Record.push_back(FauxAttr);
     }
-    
+
     Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
     Record.clear();
   }
-  
+
   Stream.ExitBlock();
 }
 
 /// WriteTypeTable - Write out the type table for a module.
 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
   const ValueEnumerator::TypeList &TypeList = VE.getTypes();
-  
+
   Stream.EnterSubblock(bitc::TYPE_BLOCK_ID, 4 /*count from # abbrevs */);
   SmallVector<uint64_t, 64> TypeVals;
-  
+
   // Abbrev for TYPE_CODE_POINTER.
   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
@@ -144,7 +161,7 @@ static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
                             Log2_32_Ceil(VE.getTypes().size()+1)));
   Abbv->Add(BitCodeAbbrevOp(0));  // Addrspace = 0
   unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
-  
+
   // Abbrev for TYPE_CODE_FUNCTION.
   Abbv = new BitCodeAbbrev();
   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
@@ -154,7 +171,7 @@ static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
                             Log2_32_Ceil(VE.getTypes().size()+1)));
   unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
-  
+
   // Abbrev for TYPE_CODE_STRUCT.
   Abbv = new BitCodeAbbrev();
   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT));
@@ -163,7 +180,7 @@ static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
                             Log2_32_Ceil(VE.getTypes().size()+1)));
   unsigned StructAbbrev = Stream.EmitAbbrev(Abbv);
+
   // Abbrev for TYPE_CODE_ARRAY.
   Abbv = new BitCodeAbbrev();
   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
@@ -171,20 +188,20 @@ static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
                             Log2_32_Ceil(VE.getTypes().size()+1)));
   unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
-  
+
   // Emit an entry count so the reader can reserve space.
   TypeVals.push_back(TypeList.size());
   Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
   TypeVals.clear();
-  
+
   // Loop over all of the types, emitting each in turn.
   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
     const Type *T = TypeList[i].first;
     int AbbrevToUse = 0;
     unsigned Code = 0;
-    
+
     switch (T->getTypeID()) {
-    default: assert(0 && "Unknown type!");
+    default: llvm_unreachable("Unknown type!");
     case Type::VoidTyID:   Code = bitc::TYPE_CODE_VOID;   break;
     case Type::FloatTyID:  Code = bitc::TYPE_CODE_FLOAT;  break;
     case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break;
@@ -193,6 +210,7 @@ static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
     case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
     case Type::LabelTyID:  Code = bitc::TYPE_CODE_LABEL;  break;
     case Type::OpaqueTyID: Code = bitc::TYPE_CODE_OPAQUE; break;
+    case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break;
     case Type::IntegerTyID:
       // INTEGER: [width]
       Code = bitc::TYPE_CODE_INTEGER;
@@ -255,29 +273,33 @@ static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
     Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
     TypeVals.clear();
   }
-  
+
   Stream.ExitBlock();
 }
 
 static unsigned getEncodedLinkage(const GlobalValue *GV) {
   switch (GV->getLinkage()) {
-  default: assert(0 && "Invalid linkage!");
-  case GlobalValue::GhostLinkage:  // Map ghost linkage onto external.
-  case GlobalValue::ExternalLinkage:     return 0;
-  case GlobalValue::WeakLinkage:         return 1;
-  case GlobalValue::AppendingLinkage:    return 2;
-  case GlobalValue::InternalLinkage:     return 3;
-  case GlobalValue::LinkOnceLinkage:     return 4;
-  case GlobalValue::DLLImportLinkage:    return 5;
-  case GlobalValue::DLLExportLinkage:    return 6;
-  case GlobalValue::ExternalWeakLinkage: return 7;
-  case GlobalValue::CommonLinkage:       return 8;
+  default: llvm_unreachable("Invalid linkage!");
+  case GlobalValue::ExternalLinkage:            return 0;
+  case GlobalValue::WeakAnyLinkage:             return 1;
+  case GlobalValue::AppendingLinkage:           return 2;
+  case GlobalValue::InternalLinkage:            return 3;
+  case GlobalValue::LinkOnceAnyLinkage:         return 4;
+  case GlobalValue::DLLImportLinkage:           return 5;
+  case GlobalValue::DLLExportLinkage:           return 6;
+  case GlobalValue::ExternalWeakLinkage:        return 7;
+  case GlobalValue::CommonLinkage:              return 8;
+  case GlobalValue::PrivateLinkage:             return 9;
+  case GlobalValue::WeakODRLinkage:             return 10;
+  case GlobalValue::LinkOnceODRLinkage:         return 11;
+  case GlobalValue::AvailableExternallyLinkage: return 12;
+  case GlobalValue::LinkerPrivateLinkage:       return 13;
   }
 }
 
 static unsigned getEncodedVisibility(const GlobalValue *GV) {
   switch (GV->getVisibility()) {
-  default: assert(0 && "Invalid visibility!");
+  default: llvm_unreachable("Invalid visibility!");
   case GlobalValue::DefaultVisibility:   return 0;
   case GlobalValue::HiddenVisibility:    return 1;
   case GlobalValue::ProtectedVisibility: return 2;
@@ -303,17 +325,17 @@ static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
     WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
                       0/*TODO*/, Stream);
 
-  // Emit information about sections and collectors, computing how many there
-  // are.  Also compute the maximum alignment value.
+  // Emit information about sections and GC, computing how many there are. Also
+  // compute the maximum alignment value.
   std::map<std::string, unsigned> SectionMap;
-  std::map<std::string, unsigned> CollectorMap;
+  std::map<std::string, unsigned> GCMap;
   unsigned MaxAlignment = 0;
   unsigned MaxGlobalType = 0;
   for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
        GV != E; ++GV) {
     MaxAlignment = std::max(MaxAlignment, GV->getAlignment());
     MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType()));
-    
+
     if (!GV->hasSection()) continue;
     // Give section names unique ID's.
     unsigned &Entry = SectionMap[GV->getSection()];
@@ -333,20 +355,20 @@ static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
         Entry = SectionMap.size();
       }
     }
-    if (F->hasCollector()) {
-      // Same for collector names.
-      unsigned &Entry = CollectorMap[F->getCollector()];
+    if (F->hasGC()) {
+      // Same for GC names.
+      unsigned &Entry = GCMap[F->getGC()];
       if (!Entry) {
-        WriteStringRecord(bitc::MODULE_CODE_COLLECTORNAME, F->getCollector(),
+        WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(),
                           0/*TODO*/, Stream);
-        Entry = CollectorMap.size();
+        Entry = GCMap.size();
       }
     }
   }
-  
+
   // Emit abbrev for globals, now that we know # sections and max alignment.
   unsigned SimpleGVarAbbrev = 0;
-  if (!M->global_empty()) { 
+  if (!M->global_empty()) {
     // Add an abbrev for common globals with no visibility or thread localness.
     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
@@ -370,14 +392,14 @@ static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
     // Don't bother emitting vis + thread local.
     SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
   }
-  
+
   // Emit the global variable information.
   SmallVector<unsigned, 64> Vals;
   for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
        GV != E; ++GV) {
     unsigned AbbrevToUse = 0;
 
-    // GLOBALVAR: [type, isconst, initid, 
+    // GLOBALVAR: [type, isconst, initid,
     //             linkage, alignment, section, visibility, threadlocal]
     Vals.push_back(VE.getTypeID(GV->getType()));
     Vals.push_back(GV->isConstant());
@@ -386,14 +408,14 @@ static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
     Vals.push_back(getEncodedLinkage(GV));
     Vals.push_back(Log2_32(GV->getAlignment())+1);
     Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0);
-    if (GV->isThreadLocal() || 
+    if (GV->isThreadLocal() ||
         GV->getVisibility() != GlobalValue::DefaultVisibility) {
       Vals.push_back(getEncodedVisibility(GV));
       Vals.push_back(GV->isThreadLocal());
     } else {
       AbbrevToUse = SimpleGVarAbbrev;
     }
-    
+
     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
     Vals.clear();
   }
@@ -401,23 +423,23 @@ static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
   // Emit the function proto information.
   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
     // FUNCTION:  [type, callingconv, isproto, paramattr,
-    //             linkage, alignment, section, visibility, collector]
+    //             linkage, alignment, section, visibility, gc]
     Vals.push_back(VE.getTypeID(F->getType()));
     Vals.push_back(F->getCallingConv());
     Vals.push_back(F->isDeclaration());
     Vals.push_back(getEncodedLinkage(F));
-    Vals.push_back(VE.getParamAttrID(F->getParamAttrs()));
+    Vals.push_back(VE.getAttributeID(F->getAttributes()));
     Vals.push_back(Log2_32(F->getAlignment())+1);
     Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0);
     Vals.push_back(getEncodedVisibility(F));
-    Vals.push_back(F->hasCollector() ? CollectorMap[F->getCollector()] : 0);
-    
+    Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0);
+
     unsigned AbbrevToUse = 0;
     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
     Vals.clear();
   }
-  
-  
+
+
   // Emit the alias information.
   for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end();
        AI != E; ++AI) {
@@ -431,12 +453,194 @@ static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
   }
 }
 
+static uint64_t GetOptimizationFlags(const Value *V) {
+  uint64_t Flags = 0;
+
+  if (const OverflowingBinaryOperator *OBO =
+        dyn_cast<OverflowingBinaryOperator>(V)) {
+    if (OBO->hasNoSignedWrap())
+      Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
+    if (OBO->hasNoUnsignedWrap())
+      Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
+  } else if (const SDivOperator *Div = dyn_cast<SDivOperator>(V)) {
+    if (Div->isExact())
+      Flags |= 1 << bitc::SDIV_EXACT;
+  }
+
+  return Flags;
+}
+
+static void WriteMDNode(const MDNode *N,
+                        const ValueEnumerator &VE,
+                        BitstreamWriter &Stream,
+                        SmallVector<uint64_t, 64> &Record) {
+  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
+    if (N->getOperand(i)) {
+      Record.push_back(VE.getTypeID(N->getOperand(i)->getType()));
+      Record.push_back(VE.getValueID(N->getOperand(i)));
+    } else {
+      Record.push_back(VE.getTypeID(Type::getVoidTy(N->getContext())));
+      Record.push_back(0);
+    }
+  }
+  unsigned MDCode = N->isFunctionLocal() ? bitc::METADATA_FN_NODE :
+                                           bitc::METADATA_NODE;
+  Stream.EmitRecord(MDCode, Record, 0);
+  Record.clear();
+}
+
+static void WriteModuleMetadata(const ValueEnumerator &VE,
+                                BitstreamWriter &Stream) {
+  const ValueEnumerator::ValueList &Vals = VE.getMDValues();
+  bool StartedMetadataBlock = false;
+  unsigned MDSAbbrev = 0;
+  SmallVector<uint64_t, 64> Record;
+  for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
+
+    if (const MDNode *N = dyn_cast<MDNode>(Vals[i].first)) {
+      if (!N->isFunctionLocal()) {
+        if (!StartedMetadataBlock) {
+          Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
+          StartedMetadataBlock = true;
+        }
+        WriteMDNode(N, VE, Stream, Record);
+      }
+    } else if (const MDString *MDS = dyn_cast<MDString>(Vals[i].first)) {
+      if (!StartedMetadataBlock)  {
+        Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
+
+        // Abbrev for METADATA_STRING.
+        BitCodeAbbrev *Abbv = new BitCodeAbbrev();
+        Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING));
+        Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+        Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
+        MDSAbbrev = Stream.EmitAbbrev(Abbv);
+        StartedMetadataBlock = true;
+      }
+
+      // Code: [strchar x N]
+      Record.append(MDS->begin(), MDS->end());
+
+      // Emit the finished record.
+      Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev);
+      Record.clear();
+    } else if (const NamedMDNode *NMD = dyn_cast<NamedMDNode>(Vals[i].first)) {
+      if (!StartedMetadataBlock)  {
+        Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
+        StartedMetadataBlock = true;
+      }
+
+      // Write name.
+      StringRef Str = NMD->getName();
+      for (unsigned i = 0, e = Str.size(); i != e; ++i)
+        Record.push_back(Str[i]);
+      Stream.EmitRecord(bitc::METADATA_NAME, Record, 0/*TODO*/);
+      Record.clear();
+
+      // Write named metadata operands.
+      for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
+        if (NMD->getOperand(i))
+          Record.push_back(VE.getValueID(NMD->getOperand(i)));
+        else
+          Record.push_back(~0U);
+      }
+      Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
+      Record.clear();
+    }
+  }
+
+  if (StartedMetadataBlock)
+    Stream.ExitBlock();
+}
+
+static void WriteFunctionLocalMetadata(const Function &F,
+                                       const ValueEnumerator &VE,
+                                       BitstreamWriter &Stream) {
+  bool StartedMetadataBlock = false;
+  SmallVector<uint64_t, 64> Record;
+  const ValueEnumerator::ValueList &Vals = VE.getMDValues();
+  
+  for (unsigned i = 0, e = Vals.size(); i != e; ++i)
+    if (const MDNode *N = dyn_cast<MDNode>(Vals[i].first))
+      if (N->getFunction() == &F) {
+        if (!StartedMetadataBlock) {
+          Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
+          StartedMetadataBlock = true;
+        }
+        WriteMDNode(N, VE, Stream, Record);
+      }
+
+  if (StartedMetadataBlock)
+    Stream.ExitBlock();
+}
+
+static void WriteMetadataAttachment(const Function &F,
+                                    const ValueEnumerator &VE,
+                                    BitstreamWriter &Stream) {
+  bool StartedMetadataBlock = false;
+  SmallVector<uint64_t, 64> Record;
+
+  // Write metadata attachments
+  // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
+  SmallVector<std::pair<unsigned, MDNode*>, 4> MDs;
+  
+  for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
+    for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
+         I != E; ++I) {
+      MDs.clear();
+      I->getAllMetadata(MDs);
+      
+      // If no metadata, ignore instruction.
+      if (MDs.empty()) continue;
+
+      Record.push_back(VE.getInstructionID(I));
+      
+      for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
+        Record.push_back(MDs[i].first);
+        Record.push_back(VE.getValueID(MDs[i].second));
+      }
+      if (!StartedMetadataBlock)  {
+        Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
+        StartedMetadataBlock = true;
+      }
+      Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
+      Record.clear();
+    }
+
+  if (StartedMetadataBlock)
+    Stream.ExitBlock();
+}
+
+static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) {
+  SmallVector<uint64_t, 64> Record;
+
+  // Write metadata kinds
+  // METADATA_KIND - [n x [id, name]]
+  SmallVector<StringRef, 4> Names;
+  M->getMDKindNames(Names);
+  
+  assert(Names[0] == "" && "MDKind #0 is invalid");
+  if (Names.size() == 1) return;
+
+  Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
+  
+  for (unsigned MDKindID = 1, e = Names.size(); MDKindID != e; ++MDKindID) {
+    Record.push_back(MDKindID);
+    StringRef KName = Names[MDKindID];
+    Record.append(KName.begin(), KName.end());
+    
+    Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
+    Record.clear();
+  }
+
+  Stream.ExitBlock();
+}
 
 static void WriteConstants(unsigned FirstVal, unsigned LastVal,
                            const ValueEnumerator &VE,
                            BitstreamWriter &Stream, bool isGlobal) {
   if (FirstVal == LastVal) return;
-  
+
   Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
 
   unsigned AggregateAbbrev = 0;
@@ -470,8 +674,8 @@ static void WriteConstants(unsigned FirstVal, unsigned LastVal,
     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
     CString6Abbrev = Stream.EmitAbbrev(Abbv);
-  }  
-  
+  }
+
   SmallVector<uint64_t, 64> Record;
 
   const ValueEnumerator::ValueList &Vals = VE.getValues();
@@ -486,16 +690,17 @@ static void WriteConstants(unsigned FirstVal, unsigned LastVal,
                         CONSTANTS_SETTYPE_ABBREV);
       Record.clear();
     }
-    
+
     if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
-      Record.push_back(unsigned(IA->hasSideEffects()));
-      
+      Record.push_back(unsigned(IA->hasSideEffects()) |
+                       unsigned(IA->isAlignStack()) << 1);
+
       // Add the asm string.
       const std::string &AsmStr = IA->getAsmString();
       Record.push_back(AsmStr.size());
       for (unsigned i = 0, e = AsmStr.size(); i != e; ++i)
         Record.push_back(AsmStr[i]);
-      
+
       // Add the constraint string.
       const std::string &ConstraintStr = IA->getConstraintString();
       Record.push_back(ConstraintStr.size());
@@ -522,11 +727,11 @@ static void WriteConstants(unsigned FirstVal, unsigned LastVal,
         Code = bitc::CST_CODE_INTEGER;
         AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
       } else {                             // Wide integers, > 64 bits in size.
-        // We have an arbitrary precision integer value to write whose 
-        // bit width is > 64. However, in canonical unsigned integer 
+        // We have an arbitrary precision integer value to write whose
+        // bit width is > 64. However, in canonical unsigned integer
         // format it is likely that the high bits are going to be zero.
         // So, we only write the number of active words.
-        unsigned NWords = IV->getValue().getActiveWords(); 
+        unsigned NWords = IV->getValue().getActiveWords();
         const uint64_t *RawWords = IV->getValue().getRawData();
         for (unsigned i = 0; i != NWords; ++i) {
           int64_t V = RawWords[i];
@@ -540,16 +745,17 @@ static void WriteConstants(unsigned FirstVal, unsigned LastVal,
     } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
       Code = bitc::CST_CODE_FLOAT;
       const Type *Ty = CFP->getType();
-      if (Ty == Type::FloatTy || Ty == Type::DoubleTy) {
-        Record.push_back(CFP->getValueAPF().convertToAPInt().getZExtValue());
-      } else if (Ty == Type::X86_FP80Ty) {
+      if (Ty->isFloatTy() || Ty->isDoubleTy()) {
+        Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
+      } else if (Ty->isX86_FP80Ty()) {
         // api needed to prevent premature destruction
-        APInt api = CFP->getValueAPF().convertToAPInt();
+        // bits are not in the same order as a normal i80 APInt, compensate.
+        APInt api = CFP->getValueAPF().bitcastToAPInt();
         const uint64_t *p = api.getRawData();
-        Record.push_back(p[0]);
-        Record.push_back((uint16_t)p[1]);
-      } else if (Ty == Type::FP128Ty || Ty == Type::PPC_FP128Ty) {
-        APInt api = CFP->getValueAPF().convertToAPInt();
+        Record.push_back((p[1] << 48) | (p[0] >> 16));
+        Record.push_back(p[0] & 0xffffLL);
+      } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
+        APInt api = CFP->getValueAPF().bitcastToAPInt();
         const uint64_t *p = api.getRawData();
         Record.push_back(p[0]);
         Record.push_back(p[1]);
@@ -557,10 +763,11 @@ static void WriteConstants(unsigned FirstVal, unsigned LastVal,
         assert (0 && "Unknown FP type!");
       }
     } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) {
+      const ConstantArray *CA = cast<ConstantArray>(C);
       // Emit constant strings specially.
-      unsigned NumOps = C->getNumOperands();
+      unsigned NumOps = CA->getNumOperands();
       // If this is a null-terminated string, use the denser CSTRING encoding.
-      if (C->getOperand(NumOps-1)->isNullValue()) {
+      if (CA->getOperand(NumOps-1)->isNullValue()) {
         Code = bitc::CST_CODE_CSTRING;
         --NumOps;  // Don't encode the null, which isn't allowed by char6.
       } else {
@@ -570,13 +777,13 @@ static void WriteConstants(unsigned FirstVal, unsigned LastVal,
       bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
       bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
       for (unsigned i = 0; i != NumOps; ++i) {
-        unsigned char V = cast<ConstantInt>(C->getOperand(i))->getZExtValue();
+        unsigned char V = cast<ConstantInt>(CA->getOperand(i))->getZExtValue();
         Record.push_back(V);
         isCStr7 &= (V & 128) == 0;
-        if (isCStrChar6) 
+        if (isCStrChar6)
           isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
       }
-      
+
       if (isCStrChar6)
         AbbrevToUse = CString6Abbrev;
       else if (isCStr7)
@@ -602,35 +809,20 @@ static void WriteConstants(unsigned FirstVal, unsigned LastVal,
           Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
           Record.push_back(VE.getValueID(C->getOperand(0)));
           Record.push_back(VE.getValueID(C->getOperand(1)));
+          uint64_t Flags = GetOptimizationFlags(CE);
+          if (Flags != 0)
+            Record.push_back(Flags);
         }
         break;
       case Instruction::GetElementPtr:
         Code = bitc::CST_CODE_CE_GEP;
+        if (cast<GEPOperator>(C)->isInBounds())
+          Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
         for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
           Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
           Record.push_back(VE.getValueID(C->getOperand(i)));
         }
         break;
-      case Instruction::ExtractValue: {
-        Code = bitc::CST_CODE_CE_EXTRACTVAL;
-        Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
-        Record.push_back(VE.getValueID(C->getOperand(0)));
-        const SmallVector<unsigned, 4> &Indices = CE->getIndices();
-        for (unsigned i = 0, e = Indices.size(); i != e; ++i)
-          Record.push_back(Indices[i]);
-        break;
-      }
-      case Instruction::InsertValue: {
-        Code = bitc::CST_CODE_CE_INSERTVAL;
-        Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
-        Record.push_back(VE.getValueID(C->getOperand(0)));
-        Record.push_back(VE.getTypeID(C->getOperand(1)->getType()));
-        Record.push_back(VE.getValueID(C->getOperand(1)));
-        const SmallVector<unsigned, 4> &Indices = CE->getIndices();
-        for (unsigned i = 0, e = Indices.size(); i != e; ++i)
-          Record.push_back(Indices[i]);
-        break;
-      }
       case Instruction::Select:
         Code = bitc::CST_CODE_CE_SELECT;
         Record.push_back(VE.getValueID(C->getOperand(0)));
@@ -650,15 +842,22 @@ static void WriteConstants(unsigned FirstVal, unsigned LastVal,
         Record.push_back(VE.getValueID(C->getOperand(2)));
         break;
       case Instruction::ShuffleVector:
-        Code = bitc::CST_CODE_CE_SHUFFLEVEC;
+        // If the return type and argument types are the same, this is a
+        // standard shufflevector instruction.  If the types are different,
+        // then the shuffle is widening or truncating the input vectors, and
+        // the argument type must also be encoded.
+        if (C->getType() == C->getOperand(0)->getType()) {
+          Code = bitc::CST_CODE_CE_SHUFFLEVEC;
+        } else {
+          Code = bitc::CST_CODE_CE_SHUFVEC_EX;
+          Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
+        }
         Record.push_back(VE.getValueID(C->getOperand(0)));
         Record.push_back(VE.getValueID(C->getOperand(1)));
         Record.push_back(VE.getValueID(C->getOperand(2)));
         break;
       case Instruction::ICmp:
       case Instruction::FCmp:
-      case Instruction::VICmp:
-      case Instruction::VFCmp:
         Code = bitc::CST_CODE_CE_CMP;
         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
         Record.push_back(VE.getValueID(C->getOperand(0)));
@@ -666,8 +865,15 @@ static void WriteConstants(unsigned FirstVal, unsigned LastVal,
         Record.push_back(CE->getPredicate());
         break;
       }
+    } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
+      assert(BA->getFunction() == BA->getBasicBlock()->getParent() &&
+             "Malformed blockaddress");
+      Code = bitc::CST_CODE_BLOCKADDRESS;
+      Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
+      Record.push_back(VE.getValueID(BA->getFunction()));
+      Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
     } else {
-      assert(0 && "Unknown constant!");
+      llvm_unreachable("Unknown constant!");
     }
     Stream.EmitRecord(Code, Record, AbbrevToUse);
     Record.clear();
@@ -679,7 +885,7 @@ static void WriteConstants(unsigned FirstVal, unsigned LastVal,
 static void WriteModuleConstants(const ValueEnumerator &VE,
                                  BitstreamWriter &Stream) {
   const ValueEnumerator::ValueList &Vals = VE.getValues();
-  
+
   // Find the first constant to emit, which is the first non-globalvalue value.
   // We know globalvalues have been emitted by WriteModuleInfo.
   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
@@ -698,8 +904,8 @@ static void WriteModuleConstants(const ValueEnumerator &VE,
 /// This function adds V's value ID to Vals.  If the value ID is higher than the
 /// instruction ID, then it is a forward reference, and it also includes the
 /// type ID.
-static bool PushValueAndType(Value *V, unsigned InstID,
-                             SmallVector<unsigned, 64> &Vals, 
+static bool PushValueAndType(const Value *V, unsigned InstID,
+                             SmallVector<unsigned, 64> &Vals,
                              ValueEnumerator &VE) {
   unsigned ValID = VE.getValueID(V);
   Vals.push_back(ValID);
@@ -716,6 +922,7 @@ static void WriteInstruction(const Instruction &I, unsigned InstID,
                              SmallVector<unsigned, 64> &Vals) {
   unsigned Code = 0;
   unsigned AbbrevToUse = 0;
+  VE.setInstructionID(&I);
   switch (I.getOpcode()) {
   default:
     if (Instruction::isCast(I.getOpcode())) {
@@ -731,11 +938,19 @@ static void WriteInstruction(const Instruction &I, unsigned InstID,
         AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
       Vals.push_back(VE.getValueID(I.getOperand(1)));
       Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
+      uint64_t Flags = GetOptimizationFlags(&I);
+      if (Flags != 0) {
+        if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
+          AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
+        Vals.push_back(Flags);
+      }
     }
     break;
 
   case Instruction::GetElementPtr:
     Code = bitc::FUNC_CODE_INST_GEP;
+    if (cast<GEPOperator>(&I)->isInBounds())
+      Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP;
     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
       PushValueAndType(I.getOperand(i), InstID, Vals, VE);
     break;
@@ -757,10 +972,10 @@ static void WriteInstruction(const Instruction &I, unsigned InstID,
     break;
   }
   case Instruction::Select:
-    Code = bitc::FUNC_CODE_INST_SELECT;
+    Code = bitc::FUNC_CODE_INST_VSELECT;
     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
     Vals.push_back(VE.getValueID(I.getOperand(2)));
-    Vals.push_back(VE.getValueID(I.getOperand(0)));
+    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
     break;
   case Instruction::ExtractElement:
     Code = bitc::FUNC_CODE_INST_EXTRACTELT;
@@ -781,20 +996,14 @@ static void WriteInstruction(const Instruction &I, unsigned InstID,
     break;
   case Instruction::ICmp:
   case Instruction::FCmp:
-  case Instruction::VICmp:
-  case Instruction::VFCmp:
-    Code = bitc::FUNC_CODE_INST_CMP;
+    // compare returning Int1Ty or vector of Int1Ty
+    Code = bitc::FUNC_CODE_INST_CMP2;
     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
     Vals.push_back(VE.getValueID(I.getOperand(1)));
     Vals.push_back(cast<CmpInst>(I).getPredicate());
     break;
-  case Instruction::GetResult:
-    Code = bitc::FUNC_CODE_INST_GETRESULT;
-    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
-    Vals.push_back(cast<GetResultInst>(I).getIndex());
-    break;
 
-  case Instruction::Ret: 
+  case Instruction::Ret:
     {
       Code = bitc::FUNC_CODE_INST_RET;
       unsigned NumOperands = I.getNumOperands();
@@ -810,11 +1019,14 @@ static void WriteInstruction(const Instruction &I, unsigned InstID,
     }
     break;
   case Instruction::Br:
-    Code = bitc::FUNC_CODE_INST_BR;
-    Vals.push_back(VE.getValueID(I.getOperand(0)));
-    if (cast<BranchInst>(I).isConditional()) {
-      Vals.push_back(VE.getValueID(I.getOperand(1)));
-      Vals.push_back(VE.getValueID(I.getOperand(2)));
+    {
+      Code = bitc::FUNC_CODE_INST_BR;
+      BranchInst &II = cast<BranchInst>(I);
+      Vals.push_back(VE.getValueID(II.getSuccessor(0)));
+      if (II.isConditional()) {
+        Vals.push_back(VE.getValueID(II.getSuccessor(1)));
+        Vals.push_back(VE.getValueID(II.getCondition()));
+      }
     }
     break;
   case Instruction::Switch:
@@ -823,18 +1035,26 @@ static void WriteInstruction(const Instruction &I, unsigned InstID,
     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
       Vals.push_back(VE.getValueID(I.getOperand(i)));
     break;
+  case Instruction::IndirectBr:
+    Code = bitc::FUNC_CODE_INST_INDIRECTBR;
+    Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
+    for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
+      Vals.push_back(VE.getValueID(I.getOperand(i)));
+    break;
+      
   case Instruction::Invoke: {
-    const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType());
+    const InvokeInst *II = cast<InvokeInst>(&I);
+    const Value *Callee(II->getCalledValue());
+    const PointerType *PTy = cast<PointerType>(Callee->getType());
     const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
     Code = bitc::FUNC_CODE_INST_INVOKE;
-    
-    const InvokeInst *II = cast<InvokeInst>(&I);
-    Vals.push_back(VE.getParamAttrID(II->getParamAttrs()));
+
+    Vals.push_back(VE.getAttributeID(II->getAttributes()));
     Vals.push_back(II->getCallingConv());
-    Vals.push_back(VE.getValueID(I.getOperand(1)));      // normal dest
-    Vals.push_back(VE.getValueID(I.getOperand(2)));      // unwind dest
-    PushValueAndType(I.getOperand(0), InstID, Vals, VE); // callee
-    
+    Vals.push_back(VE.getValueID(II->getNormalDest()));
+    Vals.push_back(VE.getValueID(II->getUnwindDest()));
+    PushValueAndType(Callee, InstID, Vals, VE);
+
     // Emit value #'s for the fixed parameters.
     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
       Vals.push_back(VE.getValueID(I.getOperand(i+3)));  // fixed param.
@@ -854,38 +1074,26 @@ static void WriteInstruction(const Instruction &I, unsigned InstID,
     Code = bitc::FUNC_CODE_INST_UNREACHABLE;
     AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
     break;
-  
+
   case Instruction::PHI:
     Code = bitc::FUNC_CODE_INST_PHI;
     Vals.push_back(VE.getTypeID(I.getType()));
     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
       Vals.push_back(VE.getValueID(I.getOperand(i)));
     break;
-    
-  case Instruction::Malloc:
-    Code = bitc::FUNC_CODE_INST_MALLOC;
-    Vals.push_back(VE.getTypeID(I.getType()));
-    Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
-    Vals.push_back(Log2_32(cast<MallocInst>(I).getAlignment())+1);
-    break;
-    
-  case Instruction::Free:
-    Code = bitc::FUNC_CODE_INST_FREE;
-    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
-    break;
-    
+
   case Instruction::Alloca:
     Code = bitc::FUNC_CODE_INST_ALLOCA;
     Vals.push_back(VE.getTypeID(I.getType()));
     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
     Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1);
     break;
-    
+
   case Instruction::Load:
     Code = bitc::FUNC_CODE_INST_LOAD;
     if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))  // ptr
       AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
-      
+
     Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
     Vals.push_back(cast<LoadInst>(I).isVolatile());
     break;
@@ -901,16 +1109,16 @@ static void WriteInstruction(const Instruction &I, unsigned InstID,
     const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
 
     Code = bitc::FUNC_CODE_INST_CALL;
-    
+
     const CallInst *CI = cast<CallInst>(&I);
-    Vals.push_back(VE.getParamAttrID(CI->getParamAttrs()));
+    Vals.push_back(VE.getAttributeID(CI->getAttributes()));
     Vals.push_back((CI->getCallingConv() << 1) | unsigned(CI->isTailCall()));
     PushValueAndType(CI->getOperand(0), InstID, Vals, VE);  // Callee
-    
+
     // Emit value #'s for the fixed parameters.
     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
       Vals.push_back(VE.getValueID(I.getOperand(i+1)));  // fixed param.
-      
+
     // Emit type/value pairs for varargs params.
     if (FTy->isVarArg()) {
       unsigned NumVarargs = I.getNumOperands()-1-FTy->getNumParams();
@@ -927,7 +1135,7 @@ static void WriteInstruction(const Instruction &I, unsigned InstID,
     Vals.push_back(VE.getTypeID(I.getType())); // restype.
     break;
   }
-  
+
   Stream.EmitRecord(Code, Vals, AbbrevToUse);
   Vals.clear();
 }
@@ -942,27 +1150,27 @@ static void WriteValueSymbolTable(const ValueSymbolTable &VST,
   // FIXME: Set up the abbrev, we know how many values there are!
   // FIXME: We know if the type names can use 7-bit ascii.
   SmallVector<unsigned, 64> NameVals;
-  
+
   for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
        SI != SE; ++SI) {
-    
+
     const ValueName &Name = *SI;
-    
+
     // Figure out the encoding to use for the name.
     bool is7Bit = true;
     bool isChar6 = true;
     for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
          C != E; ++C) {
-      if (isChar6) 
+      if (isChar6)
         isChar6 = BitCodeAbbrevOp::isChar6(*C);
       if ((unsigned char)*C & 128) {
         is7Bit = false;
         break;  // don't bother scanning the rest.
       }
     }
-    
+
     unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
-    
+
     // VST_ENTRY:   [valueid, namechar x N]
     // VST_BBENTRY: [bbid, namechar x N]
     unsigned Code;
@@ -977,12 +1185,12 @@ static void WriteValueSymbolTable(const ValueSymbolTable &VST,
       else if (is7Bit)
         AbbrevToUse = VST_ENTRY_7_ABBREV;
     }
-    
+
     NameVals.push_back(VE.getValueID(SI->getValue()));
     for (const char *P = Name.getKeyData(),
          *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
       NameVals.push_back((unsigned char)*P);
-    
+
     // Emit the finished record.
     Stream.EmitRecord(Code, NameVals, AbbrevToUse);
     NameVals.clear();
@@ -991,39 +1199,43 @@ static void WriteValueSymbolTable(const ValueSymbolTable &VST,
 }
 
 /// WriteFunction - Emit a function body to the module stream.
-static void WriteFunction(const Function &F, ValueEnumerator &VE, 
+static void WriteFunction(const Function &F, ValueEnumerator &VE,
                           BitstreamWriter &Stream) {
   Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
   VE.incorporateFunction(F);
 
   SmallVector<unsigned, 64> Vals;
-  
+
   // Emit the number of basic blocks, so the reader can create them ahead of
   // time.
   Vals.push_back(VE.getBasicBlocks().size());
   Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
   Vals.clear();
-  
+
   // If there are function-local constants, emit them now.
   unsigned CstStart, CstEnd;
   VE.getFunctionConstantRange(CstStart, CstEnd);
   WriteConstants(CstStart, CstEnd, VE, Stream, false);
-  
-  // Keep a running idea of what the instruction ID is. 
+
+  // If there is function-local metadata, emit it now.
+  WriteFunctionLocalMetadata(F, VE, Stream);
+
+  // Keep a running idea of what the instruction ID is.
   unsigned InstID = CstEnd;
-  
+
   // Finally, emit all the instructions, in order.
   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
          I != E; ++I) {
       WriteInstruction(*I, InstID, VE, Stream, Vals);
-      if (I->getType() != Type::VoidTy)
+      if (!I->getType()->isVoidTy())
         ++InstID;
     }
-  
+
   // Emit names for all the instructions etc.
   WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
-    
+
+  WriteMetadataAttachment(F, VE, Stream);
   VE.purgeFunction();
   Stream.ExitBlock();
 }
@@ -1033,9 +1245,9 @@ static void WriteTypeSymbolTable(const TypeSymbolTable &TST,
                                  const ValueEnumerator &VE,
                                  BitstreamWriter &Stream) {
   if (TST.empty()) return;
-  
+
   Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID, 3);
-  
+
   // 7-bit fixed width VST_CODE_ENTRY strings.
   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
@@ -1044,14 +1256,14 @@ static void WriteTypeSymbolTable(const TypeSymbolTable &TST,
   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
   unsigned V7Abbrev = Stream.EmitAbbrev(Abbv);
-  
+
   SmallVector<unsigned, 64> NameVals;
-  
-  for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end(); 
+
+  for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end();
        TI != TE; ++TI) {
     // TST_ENTRY: [typeid, namechar x N]
     NameVals.push_back(VE.getTypeID(TI->second));
-    
+
     const std::string &Str = TI->first;
     bool is7Bit = true;
     for (unsigned i = 0, e = Str.size(); i != e; ++i) {
@@ -1059,12 +1271,12 @@ static void WriteTypeSymbolTable(const TypeSymbolTable &TST,
       if (Str[i] & 128)
         is7Bit = false;
     }
-    
+
     // Emit the finished record.
     Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0);
     NameVals.clear();
   }
-  
+
   Stream.ExitBlock();
 }
 
@@ -1074,18 +1286,18 @@ static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
   // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.  Other
   // blocks can defined their abbrevs inline.
   Stream.EnterBlockInfoBlock(2);
-  
+
   { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
-    if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 
+    if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
                                    Abbv) != VST_ENTRY_8_ABBREV)
-      assert(0 && "Unexpected abbrev ordering!");
+      llvm_unreachable("Unexpected abbrev ordering!");
   }
-  
+
   { // 7-bit fixed width VST_ENTRY strings.
     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
@@ -1094,7 +1306,7 @@ static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
                                    Abbv) != VST_ENTRY_7_ABBREV)
-      assert(0 && "Unexpected abbrev ordering!");
+      llvm_unreachable("Unexpected abbrev ordering!");
   }
   { // 6-bit char6 VST_ENTRY strings.
     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
@@ -1104,7 +1316,7 @@ static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
                                    Abbv) != VST_ENTRY_6_ABBREV)
-      assert(0 && "Unexpected abbrev ordering!");
+      llvm_unreachable("Unexpected abbrev ordering!");
   }
   { // 6-bit char6 VST_BBENTRY strings.
     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
@@ -1114,11 +1326,11 @@ static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
                                    Abbv) != VST_BBENTRY_6_ABBREV)
-      assert(0 && "Unexpected abbrev ordering!");
+      llvm_unreachable("Unexpected abbrev ordering!");
   }
-  
-  
-  
+
+
+
   { // SETTYPE abbrev for CONSTANTS_BLOCK.
     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
@@ -1126,18 +1338,18 @@ static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
                               Log2_32_Ceil(VE.getTypes().size()+1)));
     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
                                    Abbv) != CONSTANTS_SETTYPE_ABBREV)
-      assert(0 && "Unexpected abbrev ordering!");
+      llvm_unreachable("Unexpected abbrev ordering!");
   }
-  
+
   { // INTEGER abbrev for CONSTANTS_BLOCK.
     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
                                    Abbv) != CONSTANTS_INTEGER_ABBREV)
-      assert(0 && "Unexpected abbrev ordering!");
+      llvm_unreachable("Unexpected abbrev ordering!");
   }
-  
+
   { // CE_CAST abbrev for CONSTANTS_BLOCK.
     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
@@ -1148,18 +1360,18 @@ static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
 
     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
                                    Abbv) != CONSTANTS_CE_CAST_Abbrev)
-      assert(0 && "Unexpected abbrev ordering!");
+      llvm_unreachable("Unexpected abbrev ordering!");
   }
   { // NULL abbrev for CONSTANTS_BLOCK.
     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
                                    Abbv) != CONSTANTS_NULL_Abbrev)
-      assert(0 && "Unexpected abbrev ordering!");
+      llvm_unreachable("Unexpected abbrev ordering!");
   }
-  
+
   // FIXME: This should only use space for first class types!
+
   { // INST_LOAD abbrev for FUNCTION_BLOCK.
     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
@@ -1168,7 +1380,7 @@ static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
                                    Abbv) != FUNCTION_INST_LOAD_ABBREV)
-      assert(0 && "Unexpected abbrev ordering!");
+      llvm_unreachable("Unexpected abbrev ordering!");
   }
   { // INST_BINOP abbrev for FUNCTION_BLOCK.
     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
@@ -1178,7 +1390,18 @@ static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
                                    Abbv) != FUNCTION_INST_BINOP_ABBREV)
-      assert(0 && "Unexpected abbrev ordering!");
+      llvm_unreachable("Unexpected abbrev ordering!");
+  }
+  { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
+    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
+    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
+    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
+                                   Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV)
+      llvm_unreachable("Unexpected abbrev ordering!");
   }
   { // INST_CAST abbrev for FUNCTION_BLOCK.
     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
@@ -1189,15 +1412,15 @@ static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
                                    Abbv) != FUNCTION_INST_CAST_ABBREV)
-      assert(0 && "Unexpected abbrev ordering!");
+      llvm_unreachable("Unexpected abbrev ordering!");
   }
-  
+
   { // INST_RET abbrev for FUNCTION_BLOCK.
     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
                                    Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
-      assert(0 && "Unexpected abbrev ordering!");
+      llvm_unreachable("Unexpected abbrev ordering!");
   }
   { // INST_RET abbrev for FUNCTION_BLOCK.
     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
@@ -1205,16 +1428,16 @@ static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
                                    Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
-      assert(0 && "Unexpected abbrev ordering!");
+      llvm_unreachable("Unexpected abbrev ordering!");
   }
   { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
                                    Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
-      assert(0 && "Unexpected abbrev ordering!");
+      llvm_unreachable("Unexpected abbrev ordering!");
   }
-  
+
   Stream.ExitBlock();
 }
 
@@ -1222,66 +1445,147 @@ static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
 /// WriteModule - Emit the specified module to the bitstream.
 static void WriteModule(const Module *M, BitstreamWriter &Stream) {
   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
-  
+
   // Emit the version number if it is non-zero.
   if (CurVersion) {
     SmallVector<unsigned, 1> Vals;
     Vals.push_back(CurVersion);
     Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
   }
-  
+
   // Analyze the module, enumerating globals, functions, etc.
   ValueEnumerator VE(M);
 
   // Emit blockinfo, which defines the standard abbreviations etc.
   WriteBlockInfo(VE, Stream);
-  
+
   // Emit information about parameter attributes.
-  WriteParamAttrTable(VE, Stream);
-  
+  WriteAttributeTable(VE, Stream);
+
   // Emit information describing all of the types in the module.
   WriteTypeTable(VE, Stream);
-  
+
   // Emit top-level description of module, including target triple, inline asm,
   // descriptors for global variables, and function prototype info.
   WriteModuleInfo(M, VE, Stream);
-  
+
   // Emit constants.
   WriteModuleConstants(VE, Stream);
-  
-  // If we have any aggregate values in the value table, purge them - these can
-  // only be used to initialize global variables.  Doing so makes the value
-  // namespace smaller for code in functions.
-  int NumNonAggregates = VE.PurgeAggregateValues();
-  if (NumNonAggregates != -1) {
-    SmallVector<unsigned, 1> Vals;
-    Vals.push_back(NumNonAggregates);
-    Stream.EmitRecord(bitc::MODULE_CODE_PURGEVALS, Vals);
-  }
-  
+
+  // Emit metadata.
+  WriteModuleMetadata(VE, Stream);
+
   // Emit function bodies.
   for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
     if (!I->isDeclaration())
       WriteFunction(*I, VE, Stream);
-  
+
+  // Emit metadata.
+  WriteModuleMetadataStore(M, Stream);
+
   // Emit the type symbol table information.
   WriteTypeSymbolTable(M->getTypeSymbolTable(), VE, Stream);
-  
+
   // Emit names for globals/functions etc.
   WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
-  
+
   Stream.ExitBlock();
 }
 
+/// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a
+/// header and trailer to make it compatible with the system archiver.  To do
+/// this we emit the following header, and then emit a trailer that pads the
+/// file out to be a multiple of 16 bytes.
+///
+/// struct bc_header {
+///   uint32_t Magic;         // 0x0B17C0DE
+///   uint32_t Version;       // Version, currently always 0.
+///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
+///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
+///   uint32_t CPUType;       // CPU specifier.
+///   ... potentially more later ...
+/// };
+enum {
+  DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size.
+  DarwinBCHeaderSize = 5*4
+};
+
+static void EmitDarwinBCHeader(BitstreamWriter &Stream,
+                               const std::string &TT) {
+  unsigned CPUType = ~0U;
+
+  // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*.  The CPUType is a
+  // magic number from /usr/include/mach/machine.h.  It is ok to reproduce the
+  // specific constants here because they are implicitly part of the Darwin ABI.
+  enum {
+    DARWIN_CPU_ARCH_ABI64      = 0x01000000,
+    DARWIN_CPU_TYPE_X86        = 7,
+    DARWIN_CPU_TYPE_POWERPC    = 18
+  };
+
+  if (TT.find("x86_64-") == 0)
+    CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
+  else if (TT.size() >= 5 && TT[0] == 'i' && TT[2] == '8' && TT[3] == '6' &&
+           TT[4] == '-' && TT[1] - '3' < 6)
+    CPUType = DARWIN_CPU_TYPE_X86;
+  else if (TT.find("powerpc-") == 0)
+    CPUType = DARWIN_CPU_TYPE_POWERPC;
+  else if (TT.find("powerpc64-") == 0)
+    CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
+
+  // Traditional Bitcode starts after header.
+  unsigned BCOffset = DarwinBCHeaderSize;
+
+  Stream.Emit(0x0B17C0DE, 32);
+  Stream.Emit(0         , 32);  // Version.
+  Stream.Emit(BCOffset  , 32);
+  Stream.Emit(0         , 32);  // Filled in later.
+  Stream.Emit(CPUType   , 32);
+}
+
+/// EmitDarwinBCTrailer - Emit the darwin epilog after the bitcode file and
+/// finalize the header.
+static void EmitDarwinBCTrailer(BitstreamWriter &Stream, unsigned BufferSize) {
+  // Update the size field in the header.
+  Stream.BackpatchWord(DarwinBCSizeFieldOffset, BufferSize-DarwinBCHeaderSize);
+
+  // If the file is not a multiple of 16 bytes, insert dummy padding.
+  while (BufferSize & 15) {
+    Stream.Emit(0, 8);
+    ++BufferSize;
+  }
+}
+
 
 /// WriteBitcodeToFile - Write the specified module to the specified output
 /// stream.
-void llvm::WriteBitcodeToFile(const Module *M, std::ostream &Out) {
+void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) {
   std::vector<unsigned char> Buffer;
   BitstreamWriter Stream(Buffer);
-  
+
   Buffer.reserve(256*1024);
-  
+
+  WriteBitcodeToStream( M, Stream );
+
+  // If writing to stdout, set binary mode.
+  if (&llvm::outs() == &Out)
+    sys::Program::ChangeStdoutToBinary();
+
+  // Write the generated bitstream to "Out".
+  Out.write((char*)&Buffer.front(), Buffer.size());
+
+  // Make sure it hits disk now.
+  Out.flush();
+}
+
+/// WriteBitcodeToStream - Write the specified module to the specified output
+/// stream.
+void llvm::WriteBitcodeToStream(const Module *M, BitstreamWriter &Stream) {
+  // If this is darwin, emit a file header and trailer if needed.
+  bool isDarwin = M->getTargetTriple().find("-darwin") != std::string::npos;
+  if (isDarwin)
+    EmitDarwinBCHeader(Stream, M->getTargetTriple());
+
   // Emit the file header.
   Stream.Emit((unsigned)'B', 8);
   Stream.Emit((unsigned)'C', 8);
@@ -1292,14 +1596,7 @@ void llvm::WriteBitcodeToFile(const Module *M, std::ostream &Out) {
 
   // Emit the module.
   WriteModule(M, Stream);
-  
-  // If writing to stdout, set binary mode.
-  if (llvm::cout == Out)
-      sys::Program::ChangeStdoutToBinary();
 
-  // Write the generated bitstream to "Out".
-  Out.write((char*)&Buffer.front(), Buffer.size());
-  
-  // Make sure it hits disk now.
-  Out.flush();
+  if (isDarwin)
+    EmitDarwinBCTrailer(Stream, Stream.getBuffer().size());
 }