Fix batch of converting RegisterPass<> to INTIALIZE_PASS().
[oota-llvm.git] / lib / Analysis / ScalarEvolution.cpp
index 24354d4028243f6a0f3b5a7e3606cff2f6704eb4..3c67a348fe84f735f705b93845411732f197e699 100644 (file)
@@ -103,8 +103,8 @@ MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
                                  "derived loop"),
                         cl::init(100));
 
-static RegisterPass<ScalarEvolution>
-R("scalar-evolution", "Scalar Evolution Analysis", false, true);
+INITIALIZE_PASS(ScalarEvolution, "scalar-evolution",
+                "Scalar Evolution Analysis", false, true);
 char ScalarEvolution::ID = 0;
 
 //===----------------------------------------------------------------------===//
@@ -845,9 +845,16 @@ const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
     return getAddRecExpr(Operands, AddRec->getLoop());
   }
 
-  // The cast wasn't folded; create an explicit cast node.
-  // Recompute the insert position, as it may have been invalidated.
-  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
+  // As a special case, fold trunc(undef) to undef. We don't want to
+  // know too much about SCEVUnknowns, but this special case is handy
+  // and harmless.
+  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
+    if (isa<UndefValue>(U->getValue()))
+      return getSCEV(UndefValue::get(Ty));
+
+  // The cast wasn't folded; create an explicit cast node. We can reuse
+  // the existing insert position since if we get here, we won't have
+  // made any changes which would invalidate it.
   SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
                                                  Op, Ty);
   UniqueSCEVs.InsertNode(S, IP);
@@ -863,12 +870,10 @@ const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
   Ty = getEffectiveSCEVType(Ty);
 
   // Fold if the operand is constant.
-  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
-    const Type *IntTy = getEffectiveSCEVType(Ty);
-    Constant *C = ConstantExpr::getZExt(SC->getValue(), IntTy);
-    if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
-    return getConstant(cast<ConstantInt>(C));
-  }
+  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
+    return getConstant(
+      cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(),
+                                              getEffectiveSCEVType(Ty))));
 
   // zext(zext(x)) --> zext(x)
   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
@@ -998,12 +1003,10 @@ const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
   Ty = getEffectiveSCEVType(Ty);
 
   // Fold if the operand is constant.
-  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
-    const Type *IntTy = getEffectiveSCEVType(Ty);
-    Constant *C = ConstantExpr::getSExt(SC->getValue(), IntTy);
-    if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
-    return getConstant(cast<ConstantInt>(C));
-  }
+  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
+    return getConstant(
+      cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(),
+                                              getEffectiveSCEVType(Ty))));
 
   // sext(sext(x)) --> sext(x)
   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
@@ -1167,6 +1170,13 @@ const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
     return getAddRecExpr(Ops, AR->getLoop());
   }
 
+  // As a special case, fold anyext(undef) to undef. We don't want to
+  // know too much about SCEVUnknowns, but this special case is handy
+  // and harmless.
+  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
+    if (isa<UndefValue>(U->getValue()))
+      return getSCEV(UndefValue::get(Ty));
+
   // If the expression is obviously signed, use the sext cast value.
   if (isa<SCEVSMaxExpr>(Op))
     return SExt;
@@ -1556,9 +1566,11 @@ const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
                                              AddRec->op_end());
       AddRecOps[0] = getAddExpr(LIOps);
 
-      // It's tempting to propagate NUW/NSW flags here, but nuw/nsw addition
-      // is not associative so this isn't necessarily safe.
-      const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop);
+      // Build the new addrec. Propagate the NUW and NSW flags if both the
+      // outer add and the inner addrec are guaranteed to have no overflow.
+      const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop,
+                                         HasNUW && AddRec->hasNoUnsignedWrap(),
+                                         HasNSW && AddRec->hasNoSignedWrap());
 
       // If all of the other operands were loop invariant, we are done.
       if (Ops.size() == 1) return NewRec;
@@ -1758,11 +1770,11 @@ const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
       for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
         NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
 
-      // It's tempting to propagate the NSW flag here, but nsw multiplication
-      // is not associative so this isn't necessarily safe.
+      // Build the new addrec. Propagate the NUW and NSW flags if both the
+      // outer mul and the inner addrec are guaranteed to have no overflow.
       const SCEV *NewRec = getAddRecExpr(NewOps, AddRec->getLoop(),
                                          HasNUW && AddRec->hasNoUnsignedWrap(),
-                                         /*HasNSW=*/false);
+                                         HasNSW && AddRec->hasNoSignedWrap());
 
       // If all of the other operands were loop invariant, we are done.
       if (Ops.size() == 1) return NewRec;
@@ -2430,6 +2442,10 @@ const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
 ///
 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS,
                                           const SCEV *RHS) {
+  // Fast path: X - X --> 0.
+  if (LHS == RHS)
+    return getConstant(LHS->getType(), 0);
+
   // X - Y --> X + -Y
   return getAddExpr(LHS, getNegativeSCEV(RHS));
 }
@@ -2767,7 +2783,11 @@ const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
 ///
 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
 
-  bool InBounds = GEP->isInBounds();
+  // Don't blindly transfer the inbounds flag from the GEP instruction to the
+  // Add expression, because the Instruction may be guarded by control flow
+  // and the no-overflow bits may not be valid for the expression in any
+  // context.
+
   const Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
   Value *Base = GEP->getOperand(0);
   // Don't attempt to analyze GEPs over unsized objects.
@@ -2783,23 +2803,30 @@ const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
     if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
       // For a struct, add the member offset.
       unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
-      TotalOffset = getAddExpr(TotalOffset,
-                               getOffsetOfExpr(STy, FieldNo),
-                               /*HasNUW=*/false, /*HasNSW=*/InBounds);
+      const SCEV *FieldOffset = getOffsetOfExpr(STy, FieldNo);
+
+      // Add the field offset to the running total offset.
+      TotalOffset = getAddExpr(TotalOffset, FieldOffset);
     } else {
       // For an array, add the element offset, explicitly scaled.
-      const SCEV *LocalOffset = getSCEV(Index);
+      const SCEV *ElementSize = getSizeOfExpr(*GTI);
+      const SCEV *IndexS = getSCEV(Index);
       // Getelementptr indices are signed.
-      LocalOffset = getTruncateOrSignExtend(LocalOffset, IntPtrTy);
-      // Lower "inbounds" GEPs to NSW arithmetic.
-      LocalOffset = getMulExpr(LocalOffset, getSizeOfExpr(*GTI),
-                               /*HasNUW=*/false, /*HasNSW=*/InBounds);
-      TotalOffset = getAddExpr(TotalOffset, LocalOffset,
-                               /*HasNUW=*/false, /*HasNSW=*/InBounds);
+      IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy);
+
+      // Multiply the index by the element size to compute the element offset.
+      const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize);
+
+      // Add the element offset to the running total offset.
+      TotalOffset = getAddExpr(TotalOffset, LocalOffset);
     }
   }
-  return getAddExpr(getSCEV(Base), TotalOffset,
-                    /*HasNUW=*/false, /*HasNSW=*/InBounds);
+
+  // Get the SCEV for the GEP base.
+  const SCEV *BaseS = getSCEV(Base);
+
+  // Add the total offset from all the GEP indices to the base.
+  return getAddExpr(BaseS, TotalOffset);
 }
 
 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
@@ -2958,7 +2985,8 @@ ScalarEvolution::getUnsignedRange(const SCEV *S) {
       if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
         if (!C->getValue()->isZero())
           ConservativeResult =
-            ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0));
+            ConservativeResult.intersectWith(
+              ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
 
     // TODO: non-affine addrec
     if (AddRec->isAffine()) {
@@ -3191,15 +3219,9 @@ const SCEV *ScalarEvolution::createSCEV(Value *V) {
   Operator *U = cast<Operator>(V);
   switch (Opcode) {
   case Instruction::Add:
-    // Don't transfer the NSW and NUW bits from the Add instruction to the
-    // Add expression, because the Instruction may be guarded by control
-    // flow and the no-overflow bits may not be valid for the expression in
-    // any context.
     return getAddExpr(getSCEV(U->getOperand(0)),
                       getSCEV(U->getOperand(1)));
   case Instruction::Mul:
-    // Don't transfer the NSW and NUW bits from the Mul instruction to the
-    // Mul expression, as with Add.
     return getMulExpr(getSCEV(U->getOperand(0)),
                       getSCEV(U->getOperand(1)));
   case Instruction::UDiv:
@@ -3653,6 +3675,26 @@ void ScalarEvolution::forgetValue(Value *V) {
         ConstantEvolutionLoopExitValue.erase(PN);
     }
 
+    // If there's a SCEVUnknown tying this value into the SCEV
+    // space, remove it from the folding set map. The SCEVUnknown
+    // object and any other SCEV objects which reference it
+    // (transitively) remain allocated, effectively leaked until
+    // the underlying BumpPtrAllocator is freed.
+    //
+    // This permits SCEV pointers to be used as keys in maps
+    // such as the ValuesAtScopes map.
+    FoldingSetNodeID ID;
+    ID.AddInteger(scUnknown);
+    ID.AddPointer(I);
+    void *IP;
+    if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
+      UniqueSCEVs.RemoveNode(S);
+
+      // This isn't necessary, but we might as well remove the
+      // value from the ValuesAtScopes map too.
+      ValuesAtScopes.erase(S);
+    }
+
     PushDefUseChildren(I, Worklist);
   }
 }
@@ -4337,54 +4379,51 @@ const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
       // the arguments into constants, and if so, try to constant propagate the
       // result.  This is particularly useful for computing loop exit values.
       if (CanConstantFold(I)) {
-        std::vector<Constant*> Operands;
-        Operands.reserve(I->getNumOperands());
+        SmallVector<Constant *, 4> Operands;
+        bool MadeImprovement = false;
         for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
           Value *Op = I->getOperand(i);
           if (Constant *C = dyn_cast<Constant>(Op)) {
             Operands.push_back(C);
-          } else {
-            // If any of the operands is non-constant and if they are
-            // non-integer and non-pointer, don't even try to analyze them
-            // with scev techniques.
-            if (!isSCEVable(Op->getType()))
-              return V;
-
-            const SCEV *OpV = getSCEVAtScope(Op, L);
-            if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) {
-              Constant *C = SC->getValue();
-              if (C->getType() != Op->getType())
-                C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
-                                                                  Op->getType(),
-                                                                  false),
-                                          C, Op->getType());
-              Operands.push_back(C);
-            } else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) {
-              if (Constant *C = dyn_cast<Constant>(SU->getValue())) {
-                if (C->getType() != Op->getType())
-                  C =
-                    ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
-                                                                  Op->getType(),
-                                                                  false),
-                                          C, Op->getType());
-                Operands.push_back(C);
-              } else
-                return V;
-            } else {
-              return V;
-            }
+            continue;
           }
+
+          // If any of the operands is non-constant and if they are
+          // non-integer and non-pointer, don't even try to analyze them
+          // with scev techniques.
+          if (!isSCEVable(Op->getType()))
+            return V;
+
+          const SCEV *OrigV = getSCEV(Op);
+          const SCEV *OpV = getSCEVAtScope(OrigV, L);
+          MadeImprovement |= OrigV != OpV;
+
+          Constant *C = 0;
+          if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV))
+            C = SC->getValue();
+          if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV))
+            C = dyn_cast<Constant>(SU->getValue());
+          if (!C) return V;
+          if (C->getType() != Op->getType())
+            C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
+                                                              Op->getType(),
+                                                              false),
+                                      C, Op->getType());
+          Operands.push_back(C);
         }
 
-        Constant *C = 0;
-        if (const CmpInst *CI = dyn_cast<CmpInst>(I))
-          C = ConstantFoldCompareInstOperands(CI->getPredicate(),
-                                              Operands[0], Operands[1], TD);
-        else
-          C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
-                                       &Operands[0], Operands.size(), TD);
-        if (C)
+        // Check to see if getSCEVAtScope actually made an improvement.
+        if (MadeImprovement) {
+          Constant *C = 0;
+          if (const CmpInst *CI = dyn_cast<CmpInst>(I))
+            C = ConstantFoldCompareInstOperands(CI->getPredicate(),
+                                                Operands[0], Operands[1], TD);
+          else
+            C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
+                                         &Operands[0], Operands.size(), TD);
+          if (!C) return V;
           return getSCEV(C);
+        }
       }
     }
 
@@ -4434,7 +4473,29 @@ const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
   // If this is a loop recurrence for a loop that does not contain L, then we
   // are dealing with the final value computed by the loop.
   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
-    if (!L || !AddRec->getLoop()->contains(L)) {
+    // First, attempt to evaluate each operand.
+    // Avoid performing the look-up in the common case where the specified
+    // expression has no loop-variant portions.
+    for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
+      const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
+      if (OpAtScope == AddRec->getOperand(i))
+        continue;
+
+      // Okay, at least one of these operands is loop variant but might be
+      // foldable.  Build a new instance of the folded commutative expression.
+      SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
+                                          AddRec->op_begin()+i);
+      NewOps.push_back(OpAtScope);
+      for (++i; i != e; ++i)
+        NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
+
+      AddRec = cast<SCEVAddRecExpr>(getAddRecExpr(NewOps, AddRec->getLoop()));
+      break;
+    }
+
+    // If the scope is outside the addrec's loop, evaluate it by using the
+    // loop exit value of the addrec.
+    if (!AddRec->getLoop()->contains(L)) {
       // To evaluate this recurrence, we need to know how many times the AddRec
       // loop iterates.  Compute this now.
       const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
@@ -4443,6 +4504,7 @@ const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
       // Then, evaluate the AddRec.
       return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
     }
+
     return AddRec;
   }