[C++11] Add range based accessors for the Use-Def chain of a Value.
[oota-llvm.git] / lib / Analysis / MemoryBuiltins.cpp
index cf2ad62b617e24f13add98d07aae9ba23c0a92be..1dba32356a8f184302de08ccab3185742f41a29e 100644 (file)
 //===----------------------------------------------------------------------===//
 //
 // This family of functions identifies calls to builtin functions that allocate
-// or free memory.  
+// or free memory.
 //
 //===----------------------------------------------------------------------===//
 
+#define DEBUG_TYPE "memory-builtins"
 #include "llvm/Analysis/MemoryBuiltins.h"
-#include "llvm/Constants.h"
-#include "llvm/Instructions.h"
-#include "llvm/Module.h"
-#include "llvm/Analysis/ConstantFolding.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/Metadata.h"
+#include "llvm/IR/Module.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetLibraryInfo.h"
+#include "llvm/Transforms/Utils/Local.h"
 using namespace llvm;
 
-//===----------------------------------------------------------------------===//
-//  malloc Call Utility Functions.
-//
+enum AllocType {
+  OpNewLike          = 1<<0, // allocates; never returns null
+  MallocLike         = 1<<1 | OpNewLike, // allocates; may return null
+  CallocLike         = 1<<2, // allocates + bzero
+  ReallocLike        = 1<<3, // reallocates
+  StrDupLike         = 1<<4,
+  AllocLike          = MallocLike | CallocLike | StrDupLike,
+  AnyAlloc           = AllocLike | ReallocLike
+};
+
+struct AllocFnsTy {
+  LibFunc::Func Func;
+  AllocType AllocTy;
+  unsigned char NumParams;
+  // First and Second size parameters (or -1 if unused)
+  signed char FstParam, SndParam;
+};
+
+// FIXME: certain users need more information. E.g., SimplifyLibCalls needs to
+// know which functions are nounwind, noalias, nocapture parameters, etc.
+static const AllocFnsTy AllocationFnData[] = {
+  {LibFunc::malloc,              MallocLike,  1, 0,  -1},
+  {LibFunc::valloc,              MallocLike,  1, 0,  -1},
+  {LibFunc::Znwj,                OpNewLike,   1, 0,  -1}, // new(unsigned int)
+  {LibFunc::ZnwjRKSt9nothrow_t,  MallocLike,  2, 0,  -1}, // new(unsigned int, nothrow)
+  {LibFunc::Znwm,                OpNewLike,   1, 0,  -1}, // new(unsigned long)
+  {LibFunc::ZnwmRKSt9nothrow_t,  MallocLike,  2, 0,  -1}, // new(unsigned long, nothrow)
+  {LibFunc::Znaj,                OpNewLike,   1, 0,  -1}, // new[](unsigned int)
+  {LibFunc::ZnajRKSt9nothrow_t,  MallocLike,  2, 0,  -1}, // new[](unsigned int, nothrow)
+  {LibFunc::Znam,                OpNewLike,   1, 0,  -1}, // new[](unsigned long)
+  {LibFunc::ZnamRKSt9nothrow_t,  MallocLike,  2, 0,  -1}, // new[](unsigned long, nothrow)
+  {LibFunc::calloc,              CallocLike,  2, 0,   1},
+  {LibFunc::realloc,             ReallocLike, 2, 1,  -1},
+  {LibFunc::reallocf,            ReallocLike, 2, 1,  -1},
+  {LibFunc::strdup,              StrDupLike,  1, -1, -1},
+  {LibFunc::strndup,             StrDupLike,  2, 1,  -1}
+  // TODO: Handle "int posix_memalign(void **, size_t, size_t)"
+};
+
+
+static Function *getCalledFunction(const Value *V, bool LookThroughBitCast) {
+  if (LookThroughBitCast)
+    V = V->stripPointerCasts();
+
+  CallSite CS(const_cast<Value*>(V));
+  if (!CS.getInstruction())
+    return 0;
+
+  if (CS.isNoBuiltin())
+    return 0;
+
+  Function *Callee = CS.getCalledFunction();
+  if (!Callee || !Callee->isDeclaration())
+    return 0;
+  return Callee;
+}
 
-/// isMalloc - Returns true if the the value is either a malloc call or a
-/// bitcast of the result of a malloc call.
-bool llvm::isMalloc(const Value* I) {
-  return extractMallocCall(I) || extractMallocCallFromBitCast(I);
+/// \brief Returns the allocation data for the given value if it is a call to a
+/// known allocation function, and NULL otherwise.
+static const AllocFnsTy *getAllocationData(const Value *V, AllocType AllocTy,
+                                           const TargetLibraryInfo *TLI,
+                                           bool LookThroughBitCast = false) {
+  // Skip intrinsics
+  if (isa<IntrinsicInst>(V))
+    return 0;
+
+  Function *Callee = getCalledFunction(V, LookThroughBitCast);
+  if (!Callee)
+    return 0;
+
+  // Make sure that the function is available.
+  StringRef FnName = Callee->getName();
+  LibFunc::Func TLIFn;
+  if (!TLI || !TLI->getLibFunc(FnName, TLIFn) || !TLI->has(TLIFn))
+    return 0;
+
+  unsigned i = 0;
+  bool found = false;
+  for ( ; i < array_lengthof(AllocationFnData); ++i) {
+    if (AllocationFnData[i].Func == TLIFn) {
+      found = true;
+      break;
+    }
+  }
+  if (!found)
+    return 0;
+
+  const AllocFnsTy *FnData = &AllocationFnData[i];
+  if ((FnData->AllocTy & AllocTy) != FnData->AllocTy)
+    return 0;
+
+  // Check function prototype.
+  int FstParam = FnData->FstParam;
+  int SndParam = FnData->SndParam;
+  FunctionType *FTy = Callee->getFunctionType();
+
+  if (FTy->getReturnType() == Type::getInt8PtrTy(FTy->getContext()) &&
+      FTy->getNumParams() == FnData->NumParams &&
+      (FstParam < 0 ||
+       (FTy->getParamType(FstParam)->isIntegerTy(32) ||
+        FTy->getParamType(FstParam)->isIntegerTy(64))) &&
+      (SndParam < 0 ||
+       FTy->getParamType(SndParam)->isIntegerTy(32) ||
+       FTy->getParamType(SndParam)->isIntegerTy(64)))
+    return FnData;
+  return 0;
 }
 
-static bool isMallocCall(const CallInst *CI) {
-  if (!CI)
-    return false;
+static bool hasNoAliasAttr(const Value *V, bool LookThroughBitCast) {
+  ImmutableCallSite CS(LookThroughBitCast ? V->stripPointerCasts() : V);
+  return CS && CS.hasFnAttr(Attribute::NoAlias);
+}
 
-  const Module* M = CI->getParent()->getParent()->getParent();
-  Function *MallocFunc = M->getFunction("malloc");
 
-  if (CI->getOperand(0) != MallocFunc)
-    return false;
+/// \brief Tests if a value is a call or invoke to a library function that
+/// allocates or reallocates memory (either malloc, calloc, realloc, or strdup
+/// like).
+bool llvm::isAllocationFn(const Value *V, const TargetLibraryInfo *TLI,
+                          bool LookThroughBitCast) {
+  return getAllocationData(V, AnyAlloc, TLI, LookThroughBitCast);
+}
 
-  // Check malloc prototype.
-  // FIXME: workaround for PR5130, this will be obsolete when a nobuiltin 
-  // attribute will exist.
-  const FunctionType *FTy = MallocFunc->getFunctionType();
-  if (FTy->getNumParams() != 1)
-    return false;
-  if (IntegerType *ITy = dyn_cast<IntegerType>(FTy->param_begin()->get())) {
-    if (ITy->getBitWidth() != 32 && ITy->getBitWidth() != 64)
-      return false;
-    return true;
-  }
+/// \brief Tests if a value is a call or invoke to a function that returns a
+/// NoAlias pointer (including malloc/calloc/realloc/strdup-like functions).
+bool llvm::isNoAliasFn(const Value *V, const TargetLibraryInfo *TLI,
+                       bool LookThroughBitCast) {
+  // it's safe to consider realloc as noalias since accessing the original
+  // pointer is undefined behavior
+  return isAllocationFn(V, TLI, LookThroughBitCast) ||
+         hasNoAliasAttr(V, LookThroughBitCast);
+}
+
+/// \brief Tests if a value is a call or invoke to a library function that
+/// allocates uninitialized memory (such as malloc).
+bool llvm::isMallocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
+                          bool LookThroughBitCast) {
+  return getAllocationData(V, MallocLike, TLI, LookThroughBitCast);
+}
+
+/// \brief Tests if a value is a call or invoke to a library function that
+/// allocates zero-filled memory (such as calloc).
+bool llvm::isCallocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
+                          bool LookThroughBitCast) {
+  return getAllocationData(V, CallocLike, TLI, LookThroughBitCast);
+}
 
-  return false;
+/// \brief Tests if a value is a call or invoke to a library function that
+/// allocates memory (either malloc, calloc, or strdup like).
+bool llvm::isAllocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
+                         bool LookThroughBitCast) {
+  return getAllocationData(V, AllocLike, TLI, LookThroughBitCast);
+}
+
+/// \brief Tests if a value is a call or invoke to a library function that
+/// reallocates memory (such as realloc).
+bool llvm::isReallocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
+                           bool LookThroughBitCast) {
+  return getAllocationData(V, ReallocLike, TLI, LookThroughBitCast);
+}
+
+/// \brief Tests if a value is a call or invoke to a library function that
+/// allocates memory and never returns null (such as operator new).
+bool llvm::isOperatorNewLikeFn(const Value *V, const TargetLibraryInfo *TLI,
+                               bool LookThroughBitCast) {
+  return getAllocationData(V, OpNewLike, TLI, LookThroughBitCast);
 }
 
 /// extractMallocCall - Returns the corresponding CallInst if the instruction
 /// is a malloc call.  Since CallInst::CreateMalloc() only creates calls, we
 /// ignore InvokeInst here.
-const CallInst* llvm::extractMallocCall(const Value* I) {
-  const CallInst *CI = dyn_cast<CallInst>(I);
-  return (isMallocCall(CI)) ? CI : NULL;
+const CallInst *llvm::extractMallocCall(const Value *I,
+                                        const TargetLibraryInfo *TLI) {
+  return isMallocLikeFn(I, TLI) ? dyn_cast<CallInst>(I) : 0;
 }
 
-CallInst* llvm::extractMallocCall(Value* I) {
-  CallInst *CI = dyn_cast<CallInst>(I);
-  return (isMallocCall(CI)) ? CI : NULL;
+static Value *computeArraySize(const CallInst *CI, const DataLayout *DL,
+                               const TargetLibraryInfo *TLI,
+                               bool LookThroughSExt = false) {
+  if (!CI)
+    return 0;
+
+  // The size of the malloc's result type must be known to determine array size.
+  Type *T = getMallocAllocatedType(CI, TLI);
+  if (!T || !T->isSized() || !DL)
+    return 0;
+
+  unsigned ElementSize = DL->getTypeAllocSize(T);
+  if (StructType *ST = dyn_cast<StructType>(T))
+    ElementSize = DL->getStructLayout(ST)->getSizeInBytes();
+
+  // If malloc call's arg can be determined to be a multiple of ElementSize,
+  // return the multiple.  Otherwise, return NULL.
+  Value *MallocArg = CI->getArgOperand(0);
+  Value *Multiple = 0;
+  if (ComputeMultiple(MallocArg, ElementSize, Multiple,
+                      LookThroughSExt))
+    return Multiple;
+
+  return 0;
 }
 
-static bool isBitCastOfMallocCall(const BitCastInst* BCI) {
-  if (!BCI)
-    return false;
-    
-  return isMallocCall(dyn_cast<CallInst>(BCI->getOperand(0)));
+/// isArrayMalloc - Returns the corresponding CallInst if the instruction
+/// is a call to malloc whose array size can be determined and the array size
+/// is not constant 1.  Otherwise, return NULL.
+const CallInst *llvm::isArrayMalloc(const Value *I,
+                                    const DataLayout *DL,
+                                    const TargetLibraryInfo *TLI) {
+  const CallInst *CI = extractMallocCall(I, TLI);
+  Value *ArraySize = computeArraySize(CI, DL, TLI);
+
+  if (ConstantInt *ConstSize = dyn_cast_or_null<ConstantInt>(ArraySize))
+    if (ConstSize->isOne())
+      return CI;
+
+  // CI is a non-array malloc or we can't figure out that it is an array malloc.
+  return 0;
 }
 
-/// extractMallocCallFromBitCast - Returns the corresponding CallInst if the
-/// instruction is a bitcast of the result of a malloc call.
-CallInst* llvm::extractMallocCallFromBitCast(Value* I) {
-  BitCastInst *BCI = dyn_cast<BitCastInst>(I);
-  return (isBitCastOfMallocCall(BCI)) ? cast<CallInst>(BCI->getOperand(0))
-                                      : NULL;
+/// getMallocType - Returns the PointerType resulting from the malloc call.
+/// The PointerType depends on the number of bitcast uses of the malloc call:
+///   0: PointerType is the calls' return type.
+///   1: PointerType is the bitcast's result type.
+///  >1: Unique PointerType cannot be determined, return NULL.
+PointerType *llvm::getMallocType(const CallInst *CI,
+                                 const TargetLibraryInfo *TLI) {
+  assert(isMallocLikeFn(CI, TLI) && "getMallocType and not malloc call");
+
+  PointerType *MallocType = 0;
+  unsigned NumOfBitCastUses = 0;
+
+  // Determine if CallInst has a bitcast use.
+  for (Value::const_user_iterator UI = CI->user_begin(), E = CI->user_end();
+       UI != E;)
+    if (const BitCastInst *BCI = dyn_cast<BitCastInst>(*UI++)) {
+      MallocType = cast<PointerType>(BCI->getDestTy());
+      NumOfBitCastUses++;
+    }
+
+  // Malloc call has 1 bitcast use, so type is the bitcast's destination type.
+  if (NumOfBitCastUses == 1)
+    return MallocType;
+
+  // Malloc call was not bitcast, so type is the malloc function's return type.
+  if (NumOfBitCastUses == 0)
+    return cast<PointerType>(CI->getType());
+
+  // Type could not be determined.
+  return 0;
 }
 
-const CallInst* llvm::extractMallocCallFromBitCast(const Value* I) {
-  const BitCastInst *BCI = dyn_cast<BitCastInst>(I);
-  return (isBitCastOfMallocCall(BCI)) ? cast<CallInst>(BCI->getOperand(0))
-                                      : NULL;
+/// getMallocAllocatedType - Returns the Type allocated by malloc call.
+/// The Type depends on the number of bitcast uses of the malloc call:
+///   0: PointerType is the malloc calls' return type.
+///   1: PointerType is the bitcast's result type.
+///  >1: Unique PointerType cannot be determined, return NULL.
+Type *llvm::getMallocAllocatedType(const CallInst *CI,
+                                   const TargetLibraryInfo *TLI) {
+  PointerType *PT = getMallocType(CI, TLI);
+  return PT ? PT->getElementType() : 0;
 }
 
-static bool isArrayMallocHelper(const CallInst *CI, LLVMContext &Context,
-                                const TargetData* TD) {
-  if (!CI)
-    return false;
+/// getMallocArraySize - Returns the array size of a malloc call.  If the
+/// argument passed to malloc is a multiple of the size of the malloced type,
+/// then return that multiple.  For non-array mallocs, the multiple is
+/// constant 1.  Otherwise, return NULL for mallocs whose array size cannot be
+/// determined.
+Value *llvm::getMallocArraySize(CallInst *CI, const DataLayout *DL,
+                                const TargetLibraryInfo *TLI,
+                                bool LookThroughSExt) {
+  assert(isMallocLikeFn(CI, TLI) && "getMallocArraySize and not malloc call");
+  return computeArraySize(CI, DL, TLI, LookThroughSExt);
+}
+
+
+/// extractCallocCall - Returns the corresponding CallInst if the instruction
+/// is a calloc call.
+const CallInst *llvm::extractCallocCall(const Value *I,
+                                        const TargetLibraryInfo *TLI) {
+  return isCallocLikeFn(I, TLI) ? cast<CallInst>(I) : 0;
+}
+
+
+/// isFreeCall - Returns non-null if the value is a call to the builtin free()
+const CallInst *llvm::isFreeCall(const Value *I, const TargetLibraryInfo *TLI) {
+  const CallInst *CI = dyn_cast<CallInst>(I);
+  if (!CI || isa<IntrinsicInst>(CI))
+    return 0;
+  Function *Callee = CI->getCalledFunction();
+  if (Callee == 0 || !Callee->isDeclaration())
+    return 0;
+
+  StringRef FnName = Callee->getName();
+  LibFunc::Func TLIFn;
+  if (!TLI || !TLI->getLibFunc(FnName, TLIFn) || !TLI->has(TLIFn))
+    return 0;
+
+  unsigned ExpectedNumParams;
+  if (TLIFn == LibFunc::free ||
+      TLIFn == LibFunc::ZdlPv || // operator delete(void*)
+      TLIFn == LibFunc::ZdaPv)   // operator delete[](void*)
+    ExpectedNumParams = 1;
+  else if (TLIFn == LibFunc::ZdlPvRKSt9nothrow_t || // delete(void*, nothrow)
+           TLIFn == LibFunc::ZdaPvRKSt9nothrow_t)   // delete[](void*, nothrow)
+    ExpectedNumParams = 2;
+  else
+    return 0;
 
-  const Type* T = getMallocAllocatedType(CI);
+  // Check free prototype.
+  // FIXME: workaround for PR5130, this will be obsolete when a nobuiltin
+  // attribute will exist.
+  FunctionType *FTy = Callee->getFunctionType();
+  if (!FTy->getReturnType()->isVoidTy())
+    return 0;
+  if (FTy->getNumParams() != ExpectedNumParams)
+    return 0;
+  if (FTy->getParamType(0) != Type::getInt8PtrTy(Callee->getContext()))
+    return 0;
+
+  return CI;
+}
 
-  // We can only indentify an array malloc if we know the type of the malloc 
-  // call.
-  if (!T) return false;
 
-  Value* MallocArg = CI->getOperand(1);
-  Constant *ElementSize = ConstantExpr::getSizeOf(T);
-  ElementSize = ConstantExpr::getTruncOrBitCast(ElementSize, 
-                                                MallocArg->getType());
-  Constant *FoldedElementSize = ConstantFoldConstantExpression(
-                                       cast<ConstantExpr>(ElementSize), 
-                                       Context, TD);
 
+//===----------------------------------------------------------------------===//
+//  Utility functions to compute size of objects.
+//
 
-  if (isa<ConstantExpr>(MallocArg))
-    return (MallocArg != ElementSize);
 
-  BinaryOperator *BI = dyn_cast<BinaryOperator>(MallocArg);
-  if (!BI)
+/// \brief Compute the size of the object pointed by Ptr. Returns true and the
+/// object size in Size if successful, and false otherwise.
+/// If RoundToAlign is true, then Size is rounded up to the aligment of allocas,
+/// byval arguments, and global variables.
+bool llvm::getObjectSize(const Value *Ptr, uint64_t &Size, const DataLayout *DL,
+                         const TargetLibraryInfo *TLI, bool RoundToAlign) {
+  if (!DL)
     return false;
 
-  if (BI->getOpcode() == Instruction::Mul)
-    // ArraySize * ElementSize
-    if (BI->getOperand(1) == ElementSize ||
-        (FoldedElementSize && BI->getOperand(1) == FoldedElementSize))
-      return true;
+  ObjectSizeOffsetVisitor Visitor(DL, TLI, Ptr->getContext(), RoundToAlign);
+  SizeOffsetType Data = Visitor.compute(const_cast<Value*>(Ptr));
+  if (!Visitor.bothKnown(Data))
+    return false;
+
+  APInt ObjSize = Data.first, Offset = Data.second;
+  // check for overflow
+  if (Offset.slt(0) || ObjSize.ult(Offset))
+    Size = 0;
+  else
+    Size = (ObjSize - Offset).getZExtValue();
+  return true;
+}
 
-  // TODO: Detect case where MallocArg mul has been transformed to shl.
 
-  return false;
+STATISTIC(ObjectVisitorArgument,
+          "Number of arguments with unsolved size and offset");
+STATISTIC(ObjectVisitorLoad,
+          "Number of load instructions with unsolved size and offset");
+
+
+APInt ObjectSizeOffsetVisitor::align(APInt Size, uint64_t Align) {
+  if (RoundToAlign && Align)
+    return APInt(IntTyBits, RoundUpToAlignment(Size.getZExtValue(), Align));
+  return Size;
 }
 
-/// isArrayMalloc - Returns the corresponding CallInst if the instruction 
-/// matches the malloc call IR generated by CallInst::CreateMalloc().  This 
-/// means that it is a malloc call with one bitcast use AND the malloc call's 
-/// size argument is:
-///  1. a constant not equal to the size of the malloced type
-/// or
-///  2. the result of a multiplication by the size of the malloced type
-/// Otherwise it returns NULL.
-/// The unique bitcast is needed to determine the type/size of the array
-/// allocation.
-CallInst* llvm::isArrayMalloc(Value* I, LLVMContext &Context,
-                              const TargetData* TD) {
-  CallInst *CI = extractMallocCall(I);
-  return (isArrayMallocHelper(CI, Context, TD)) ? CI : NULL;
+ObjectSizeOffsetVisitor::ObjectSizeOffsetVisitor(const DataLayout *DL,
+                                                 const TargetLibraryInfo *TLI,
+                                                 LLVMContext &Context,
+                                                 bool RoundToAlign)
+: DL(DL), TLI(TLI), RoundToAlign(RoundToAlign) {
+  // Pointer size must be rechecked for each object visited since it could have
+  // a different address space.
 }
 
-const CallInst* llvm::isArrayMalloc(const Value* I, LLVMContext &Context,
-                                    const TargetData* TD) {
-  const CallInst *CI = extractMallocCall(I);
-  return (isArrayMallocHelper(CI, Context, TD)) ? CI : NULL;
+SizeOffsetType ObjectSizeOffsetVisitor::compute(Value *V) {
+  IntTyBits = DL->getPointerTypeSizeInBits(V->getType());
+  Zero = APInt::getNullValue(IntTyBits);
+
+  V = V->stripPointerCasts();
+  if (Instruction *I = dyn_cast<Instruction>(V)) {
+    // If we have already seen this instruction, bail out. Cycles can happen in
+    // unreachable code after constant propagation.
+    if (!SeenInsts.insert(I))
+      return unknown();
+
+    if (GEPOperator *GEP = dyn_cast<GEPOperator>(V))
+      return visitGEPOperator(*GEP);
+    return visit(*I);
+  }
+  if (Argument *A = dyn_cast<Argument>(V))
+    return visitArgument(*A);
+  if (ConstantPointerNull *P = dyn_cast<ConstantPointerNull>(V))
+    return visitConstantPointerNull(*P);
+  if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
+    return visitGlobalAlias(*GA);
+  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
+    return visitGlobalVariable(*GV);
+  if (UndefValue *UV = dyn_cast<UndefValue>(V))
+    return visitUndefValue(*UV);
+  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
+    if (CE->getOpcode() == Instruction::IntToPtr)
+      return unknown(); // clueless
+    if (CE->getOpcode() == Instruction::GetElementPtr)
+      return visitGEPOperator(cast<GEPOperator>(*CE));
+  }
+
+  DEBUG(dbgs() << "ObjectSizeOffsetVisitor::compute() unhandled value: " << *V
+        << '\n');
+  return unknown();
 }
 
-/// getMallocType - Returns the PointerType resulting from the malloc call.
-/// This PointerType is the result type of the call's only bitcast use.
-/// If there is no unique bitcast use, then return NULL.
-const PointerType* llvm::getMallocType(const CallInst* CI) {
-  assert(isMalloc(CI) && "GetMallocType and not malloc call");
-  
-  const BitCastInst* BCI = NULL;
-  
-  // Determine if CallInst has a bitcast use.
-  for (Value::use_const_iterator UI = CI->use_begin(), E = CI->use_end();
-       UI != E; )
-    if ((BCI = dyn_cast<BitCastInst>(cast<Instruction>(*UI++))))
-      break;
+SizeOffsetType ObjectSizeOffsetVisitor::visitAllocaInst(AllocaInst &I) {
+  if (!I.getAllocatedType()->isSized())
+    return unknown();
 
-  // Malloc call has 1 bitcast use and no other uses, so type is the bitcast's
-  // destination type.
-  if (BCI && CI->hasOneUse())
-    return cast<PointerType>(BCI->getDestTy());
+  APInt Size(IntTyBits, DL->getTypeAllocSize(I.getAllocatedType()));
+  if (!I.isArrayAllocation())
+    return std::make_pair(align(Size, I.getAlignment()), Zero);
 
-  // Malloc call was not bitcast, so type is the malloc function's return type.
-  if (!BCI)
-    return cast<PointerType>(CI->getType());
+  Value *ArraySize = I.getArraySize();
+  if (const ConstantInt *C = dyn_cast<ConstantInt>(ArraySize)) {
+    Size *= C->getValue().zextOrSelf(IntTyBits);
+    return std::make_pair(align(Size, I.getAlignment()), Zero);
+  }
+  return unknown();
+}
 
-  // Type could not be determined.
-  return NULL;
-}
-
-/// getMallocAllocatedType - Returns the Type allocated by malloc call. This
-/// Type is the result type of the call's only bitcast use. If there is no
-/// unique bitcast use, then return NULL.
-const Type* llvm::getMallocAllocatedType(const CallInst* CI) {
-  const PointerType* PT = getMallocType(CI);
-  return PT ? PT->getElementType() : NULL;
-}
-
-/// isSafeToGetMallocArraySize - Returns true if the array size of a malloc can
-/// be determined.  It can be determined in these 3 cases of malloc codegen:
-/// 1. non-array malloc: The malloc's size argument is a constant and equals the ///    size of the type being malloced.
-/// 2. array malloc: This is a malloc call with one bitcast use AND the malloc
-///    call's size argument is a constant multiple of the size of the malloced
-///    type.
-/// 3. array malloc: This is a malloc call with one bitcast use AND the malloc
-///    call's size argument is the result of a multiplication by the size of the
-///    malloced type.
-/// Otherwise returns false.
-static bool isSafeToGetMallocArraySize(const CallInst *CI,
-                                       LLVMContext &Context,
-                                       const TargetData* TD) {
-  if (!CI)
-    return false;
+SizeOffsetType ObjectSizeOffsetVisitor::visitArgument(Argument &A) {
+  // no interprocedural analysis is done at the moment
+  if (!A.hasByValOrInAllocaAttr()) {
+    ++ObjectVisitorArgument;
+    return unknown();
+  }
+  PointerType *PT = cast<PointerType>(A.getType());
+  APInt Size(IntTyBits, DL->getTypeAllocSize(PT->getElementType()));
+  return std::make_pair(align(Size, A.getParamAlignment()), Zero);
+}
 
-  // Type must be known to determine array size.
-  const Type* T = getMallocAllocatedType(CI);
-  if (!T) return false;
+SizeOffsetType ObjectSizeOffsetVisitor::visitCallSite(CallSite CS) {
+  const AllocFnsTy *FnData = getAllocationData(CS.getInstruction(), AnyAlloc,
+                                               TLI);
+  if (!FnData)
+    return unknown();
+
+  // handle strdup-like functions separately
+  if (FnData->AllocTy == StrDupLike) {
+    APInt Size(IntTyBits, GetStringLength(CS.getArgument(0)));
+    if (!Size)
+      return unknown();
+
+    // strndup limits strlen
+    if (FnData->FstParam > 0) {
+      ConstantInt *Arg= dyn_cast<ConstantInt>(CS.getArgument(FnData->FstParam));
+      if (!Arg)
+        return unknown();
+
+      APInt MaxSize = Arg->getValue().zextOrSelf(IntTyBits);
+      if (Size.ugt(MaxSize))
+        Size = MaxSize + 1;
+    }
+    return std::make_pair(Size, Zero);
+  }
 
-  Value* MallocArg = CI->getOperand(1);
-  Constant *ElementSize = ConstantExpr::getSizeOf(T);
-  ElementSize = ConstantExpr::getTruncOrBitCast(ElementSize, 
-                                                MallocArg->getType());
+  ConstantInt *Arg = dyn_cast<ConstantInt>(CS.getArgument(FnData->FstParam));
+  if (!Arg)
+    return unknown();
+
+  APInt Size = Arg->getValue().zextOrSelf(IntTyBits);
+  // size determined by just 1 parameter
+  if (FnData->SndParam < 0)
+    return std::make_pair(Size, Zero);
+
+  Arg = dyn_cast<ConstantInt>(CS.getArgument(FnData->SndParam));
+  if (!Arg)
+    return unknown();
+
+  Size *= Arg->getValue().zextOrSelf(IntTyBits);
+  return std::make_pair(Size, Zero);
+
+  // TODO: handle more standard functions (+ wchar cousins):
+  // - strdup / strndup
+  // - strcpy / strncpy
+  // - strcat / strncat
+  // - memcpy / memmove
+  // - strcat / strncat
+  // - memset
+}
 
-  // First, check if it is a non-array malloc.
-  if (isa<ConstantExpr>(MallocArg) && (MallocArg == ElementSize))
-    return true;
+SizeOffsetType
+ObjectSizeOffsetVisitor::visitConstantPointerNull(ConstantPointerNull&) {
+  return std::make_pair(Zero, Zero);
+}
 
-  // Second, check if it can be determined that this is an array malloc.
-  return isArrayMallocHelper(CI, Context, TD);
+SizeOffsetType
+ObjectSizeOffsetVisitor::visitExtractElementInst(ExtractElementInst&) {
+  return unknown();
 }
 
-/// isConstantOne - Return true only if val is constant int 1.
-static bool isConstantOne(Value *val) {
-  return isa<ConstantInt>(val) && cast<ConstantInt>(val)->isOne();
+SizeOffsetType
+ObjectSizeOffsetVisitor::visitExtractValueInst(ExtractValueInst&) {
+  // Easy cases were already folded by previous passes.
+  return unknown();
 }
 
-/// getMallocArraySize - Returns the array size of a malloc call.  For array
-/// mallocs, the size is computated in 1 of 3 ways:
-///  1. If the element type is of size 1, then array size is the argument to 
-///     malloc.
-///  2. Else if the malloc's argument is a constant, the array size is that
-///     argument divided by the element type's size.
-///  3. Else the malloc argument must be a multiplication and the array size is
-///     the first operand of the multiplication.
-/// For non-array mallocs, the computed size is constant 1. 
-/// This function returns NULL for all mallocs whose array size cannot be
-/// determined.
-Value* llvm::getMallocArraySize(CallInst* CI, LLVMContext &Context,
-                                const TargetData* TD) {
-  if (!isSafeToGetMallocArraySize(CI, Context, TD))
-    return NULL;
-
-  // Match CreateMalloc's use of constant 1 array-size for non-array mallocs.
-  if (!isArrayMalloc(CI, Context, TD))
-    return ConstantInt::get(CI->getOperand(1)->getType(), 1);
-
-  Value* MallocArg = CI->getOperand(1);
-  assert(getMallocAllocatedType(CI) && "getMallocArraySize and no type");
-  Constant *ElementSize = ConstantExpr::getSizeOf(getMallocAllocatedType(CI));
-  ElementSize = ConstantExpr::getTruncOrBitCast(ElementSize, 
-                                                MallocArg->getType());
-
-  Constant* CO = dyn_cast<Constant>(MallocArg);
-  BinaryOperator* BO = dyn_cast<BinaryOperator>(MallocArg);
-  assert((isConstantOne(ElementSize) || CO || BO) &&
-         "getMallocArraySize and malformed malloc IR");
-      
-  if (isConstantOne(ElementSize))
-    return MallocArg;
-    
-  if (CO)
-    return CO->getOperand(0);
-    
-  // TODO: Detect case where MallocArg mul has been transformed to shl.
-
-  assert(BO && "getMallocArraySize not constant but not multiplication either");
-  return BO->getOperand(0);
+SizeOffsetType ObjectSizeOffsetVisitor::visitGEPOperator(GEPOperator &GEP) {
+  SizeOffsetType PtrData = compute(GEP.getPointerOperand());
+  APInt Offset(IntTyBits, 0);
+  if (!bothKnown(PtrData) || !GEP.accumulateConstantOffset(*DL, Offset))
+    return unknown();
+
+  return std::make_pair(PtrData.first, PtrData.second + Offset);
 }
 
-//===----------------------------------------------------------------------===//
-//  free Call Utility Functions.
-//
+SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalAlias(GlobalAlias &GA) {
+  if (GA.mayBeOverridden())
+    return unknown();
+  return compute(GA.getAliasee());
+}
 
-/// isFreeCall - Returns true if the the value is a call to the builtin free()
-bool llvm::isFreeCall(const Value* I) {
-  const CallInst *CI = dyn_cast<CallInst>(I);
-  if (!CI)
-    return false;
+SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalVariable(GlobalVariable &GV){
+  if (!GV.hasDefinitiveInitializer())
+    return unknown();
 
-  const Module* M = CI->getParent()->getParent()->getParent();
-  Function *FreeFunc = M->getFunction("free");
+  APInt Size(IntTyBits, DL->getTypeAllocSize(GV.getType()->getElementType()));
+  return std::make_pair(align(Size, GV.getAlignment()), Zero);
+}
 
-  if (CI->getOperand(0) != FreeFunc)
-    return false;
+SizeOffsetType ObjectSizeOffsetVisitor::visitIntToPtrInst(IntToPtrInst&) {
+  // clueless
+  return unknown();
+}
 
-  // Check free prototype.
-  // FIXME: workaround for PR5130, this will be obsolete when a nobuiltin 
-  // attribute will exist.
-  const FunctionType *FTy = FreeFunc->getFunctionType();
-  if (FTy->getReturnType() != Type::getVoidTy(M->getContext()))
-    return false;
-  if (FTy->getNumParams() != 1)
-    return false;
-  if (FTy->param_begin()->get() != Type::getInt8PtrTy(M->getContext()))
-    return false;
+SizeOffsetType ObjectSizeOffsetVisitor::visitLoadInst(LoadInst&) {
+  ++ObjectVisitorLoad;
+  return unknown();
+}
 
-  return true;
+SizeOffsetType ObjectSizeOffsetVisitor::visitPHINode(PHINode&) {
+  // too complex to analyze statically.
+  return unknown();
+}
+
+SizeOffsetType ObjectSizeOffsetVisitor::visitSelectInst(SelectInst &I) {
+  SizeOffsetType TrueSide  = compute(I.getTrueValue());
+  SizeOffsetType FalseSide = compute(I.getFalseValue());
+  if (bothKnown(TrueSide) && bothKnown(FalseSide) && TrueSide == FalseSide)
+    return TrueSide;
+  return unknown();
+}
+
+SizeOffsetType ObjectSizeOffsetVisitor::visitUndefValue(UndefValue&) {
+  return std::make_pair(Zero, Zero);
+}
+
+SizeOffsetType ObjectSizeOffsetVisitor::visitInstruction(Instruction &I) {
+  DEBUG(dbgs() << "ObjectSizeOffsetVisitor unknown instruction:" << I << '\n');
+  return unknown();
+}
+
+ObjectSizeOffsetEvaluator::ObjectSizeOffsetEvaluator(const DataLayout *DL,
+                                                     const TargetLibraryInfo *TLI,
+                                                     LLVMContext &Context,
+                                                     bool RoundToAlign)
+: DL(DL), TLI(TLI), Context(Context), Builder(Context, TargetFolder(DL)),
+  RoundToAlign(RoundToAlign) {
+  // IntTy and Zero must be set for each compute() since the address space may
+  // be different for later objects.
+}
+
+SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute(Value *V) {
+  // XXX - Are vectors of pointers possible here?
+  IntTy = cast<IntegerType>(DL->getIntPtrType(V->getType()));
+  Zero = ConstantInt::get(IntTy, 0);
+
+  SizeOffsetEvalType Result = compute_(V);
+
+  if (!bothKnown(Result)) {
+    // erase everything that was computed in this iteration from the cache, so
+    // that no dangling references are left behind. We could be a bit smarter if
+    // we kept a dependency graph. It's probably not worth the complexity.
+    for (PtrSetTy::iterator I=SeenVals.begin(), E=SeenVals.end(); I != E; ++I) {
+      CacheMapTy::iterator CacheIt = CacheMap.find(*I);
+      // non-computable results can be safely cached
+      if (CacheIt != CacheMap.end() && anyKnown(CacheIt->second))
+        CacheMap.erase(CacheIt);
+    }
+  }
+
+  SeenVals.clear();
+  return Result;
+}
+
+SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute_(Value *V) {
+  ObjectSizeOffsetVisitor Visitor(DL, TLI, Context, RoundToAlign);
+  SizeOffsetType Const = Visitor.compute(V);
+  if (Visitor.bothKnown(Const))
+    return std::make_pair(ConstantInt::get(Context, Const.first),
+                          ConstantInt::get(Context, Const.second));
+
+  V = V->stripPointerCasts();
+
+  // check cache
+  CacheMapTy::iterator CacheIt = CacheMap.find(V);
+  if (CacheIt != CacheMap.end())
+    return CacheIt->second;
+
+  // always generate code immediately before the instruction being
+  // processed, so that the generated code dominates the same BBs
+  Instruction *PrevInsertPoint = Builder.GetInsertPoint();
+  if (Instruction *I = dyn_cast<Instruction>(V))
+    Builder.SetInsertPoint(I);
+
+  // now compute the size and offset
+  SizeOffsetEvalType Result;
+
+  // Record the pointers that were handled in this run, so that they can be
+  // cleaned later if something fails. We also use this set to break cycles that
+  // can occur in dead code.
+  if (!SeenVals.insert(V)) {
+    Result = unknown();
+  } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
+    Result = visitGEPOperator(*GEP);
+  } else if (Instruction *I = dyn_cast<Instruction>(V)) {
+    Result = visit(*I);
+  } else if (isa<Argument>(V) ||
+             (isa<ConstantExpr>(V) &&
+              cast<ConstantExpr>(V)->getOpcode() == Instruction::IntToPtr) ||
+             isa<GlobalAlias>(V) ||
+             isa<GlobalVariable>(V)) {
+    // ignore values where we cannot do more than what ObjectSizeVisitor can
+    Result = unknown();
+  } else {
+    DEBUG(dbgs() << "ObjectSizeOffsetEvaluator::compute() unhandled value: "
+          << *V << '\n');
+    Result = unknown();
+  }
+
+  if (PrevInsertPoint)
+    Builder.SetInsertPoint(PrevInsertPoint);
+
+  // Don't reuse CacheIt since it may be invalid at this point.
+  CacheMap[V] = Result;
+  return Result;
+}
+
+SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitAllocaInst(AllocaInst &I) {
+  if (!I.getAllocatedType()->isSized())
+    return unknown();
+
+  // must be a VLA
+  assert(I.isArrayAllocation());
+  Value *ArraySize = I.getArraySize();
+  Value *Size = ConstantInt::get(ArraySize->getType(),
+                                 DL->getTypeAllocSize(I.getAllocatedType()));
+  Size = Builder.CreateMul(Size, ArraySize);
+  return std::make_pair(Size, Zero);
+}
+
+SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitCallSite(CallSite CS) {
+  const AllocFnsTy *FnData = getAllocationData(CS.getInstruction(), AnyAlloc,
+                                               TLI);
+  if (!FnData)
+    return unknown();
+
+  // handle strdup-like functions separately
+  if (FnData->AllocTy == StrDupLike) {
+    // TODO
+    return unknown();
+  }
+
+  Value *FirstArg = CS.getArgument(FnData->FstParam);
+  FirstArg = Builder.CreateZExt(FirstArg, IntTy);
+  if (FnData->SndParam < 0)
+    return std::make_pair(FirstArg, Zero);
+
+  Value *SecondArg = CS.getArgument(FnData->SndParam);
+  SecondArg = Builder.CreateZExt(SecondArg, IntTy);
+  Value *Size = Builder.CreateMul(FirstArg, SecondArg);
+  return std::make_pair(Size, Zero);
+
+  // TODO: handle more standard functions (+ wchar cousins):
+  // - strdup / strndup
+  // - strcpy / strncpy
+  // - strcat / strncat
+  // - memcpy / memmove
+  // - strcat / strncat
+  // - memset
+}
+
+SizeOffsetEvalType
+ObjectSizeOffsetEvaluator::visitExtractElementInst(ExtractElementInst&) {
+  return unknown();
+}
+
+SizeOffsetEvalType
+ObjectSizeOffsetEvaluator::visitExtractValueInst(ExtractValueInst&) {
+  return unknown();
+}
+
+SizeOffsetEvalType
+ObjectSizeOffsetEvaluator::visitGEPOperator(GEPOperator &GEP) {
+  SizeOffsetEvalType PtrData = compute_(GEP.getPointerOperand());
+  if (!bothKnown(PtrData))
+    return unknown();
+
+  Value *Offset = EmitGEPOffset(&Builder, *DL, &GEP, /*NoAssumptions=*/true);
+  Offset = Builder.CreateAdd(PtrData.second, Offset);
+  return std::make_pair(PtrData.first, Offset);
+}
+
+SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitIntToPtrInst(IntToPtrInst&) {
+  // clueless
+  return unknown();
+}
+
+SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitLoadInst(LoadInst&) {
+  return unknown();
+}
+
+SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitPHINode(PHINode &PHI) {
+  // create 2 PHIs: one for size and another for offset
+  PHINode *SizePHI   = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues());
+  PHINode *OffsetPHI = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues());
+
+  // insert right away in the cache to handle recursive PHIs
+  CacheMap[&PHI] = std::make_pair(SizePHI, OffsetPHI);
+
+  // compute offset/size for each PHI incoming pointer
+  for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) {
+    Builder.SetInsertPoint(PHI.getIncomingBlock(i)->getFirstInsertionPt());
+    SizeOffsetEvalType EdgeData = compute_(PHI.getIncomingValue(i));
+
+    if (!bothKnown(EdgeData)) {
+      OffsetPHI->replaceAllUsesWith(UndefValue::get(IntTy));
+      OffsetPHI->eraseFromParent();
+      SizePHI->replaceAllUsesWith(UndefValue::get(IntTy));
+      SizePHI->eraseFromParent();
+      return unknown();
+    }
+    SizePHI->addIncoming(EdgeData.first, PHI.getIncomingBlock(i));
+    OffsetPHI->addIncoming(EdgeData.second, PHI.getIncomingBlock(i));
+  }
+
+  Value *Size = SizePHI, *Offset = OffsetPHI, *Tmp;
+  if ((Tmp = SizePHI->hasConstantValue())) {
+    Size = Tmp;
+    SizePHI->replaceAllUsesWith(Size);
+    SizePHI->eraseFromParent();
+  }
+  if ((Tmp = OffsetPHI->hasConstantValue())) {
+    Offset = Tmp;
+    OffsetPHI->replaceAllUsesWith(Offset);
+    OffsetPHI->eraseFromParent();
+  }
+  return std::make_pair(Size, Offset);
+}
+
+SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitSelectInst(SelectInst &I) {
+  SizeOffsetEvalType TrueSide  = compute_(I.getTrueValue());
+  SizeOffsetEvalType FalseSide = compute_(I.getFalseValue());
+
+  if (!bothKnown(TrueSide) || !bothKnown(FalseSide))
+    return unknown();
+  if (TrueSide == FalseSide)
+    return TrueSide;
+
+  Value *Size = Builder.CreateSelect(I.getCondition(), TrueSide.first,
+                                     FalseSide.first);
+  Value *Offset = Builder.CreateSelect(I.getCondition(), TrueSide.second,
+                                       FalseSide.second);
+  return std::make_pair(Size, Offset);
+}
+
+SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitInstruction(Instruction &I) {
+  DEBUG(dbgs() << "ObjectSizeOffsetEvaluator unknown instruction:" << I <<'\n');
+  return unknown();
 }