[PM] Remove the old 'PassManager.h' header file at the top level of
[oota-llvm.git] / lib / Analysis / Lint.cpp
index 0e94df4a6a5fe40a8c6ce79d8d2c515a144fe05e..874ed0abb99a27e17f5a327935e0933fcb840c2d 100644 (file)
@@ -16,7 +16,7 @@
 // those aren't comprehensive either. Second, many conditions cannot be
 // checked statically. This pass does no dynamic instrumentation, so it
 // can't check for all possible problems.
-// 
+//
 // Another limitation is that it assumes all code will be executed. A store
 // through a null pointer in a basic block which is never reached is harmless,
 // but this pass will warn about it anyway. This is the main reason why most
 // less obvious. If an optimization pass appears to be introducing a warning,
 // it may be that the optimization pass is merely exposing an existing
 // condition in the code.
-// 
+//
 // This code may be run before instcombine. In many cases, instcombine checks
 // for the same kinds of things and turns instructions with undefined behavior
 // into unreachable (or equivalent). Because of this, this pass makes some
 // effort to look through bitcasts and so on.
-// 
+//
 //===----------------------------------------------------------------------===//
 
 #include "llvm/Analysis/Lint.h"
 #include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallSet.h"
 #include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/AssumptionCache.h"
 #include "llvm/Analysis/ConstantFolding.h"
-#include "llvm/Analysis/Dominators.h"
 #include "llvm/Analysis/InstructionSimplify.h"
 #include "llvm/Analysis/Loads.h"
 #include "llvm/Analysis/Passes.h"
+#include "llvm/Analysis/TargetLibraryInfo.h"
 #include "llvm/Analysis/ValueTracking.h"
+#include "llvm/IR/CallSite.h"
 #include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Dominators.h"
 #include "llvm/IR/Function.h"
+#include "llvm/IR/InstVisitor.h"
 #include "llvm/IR/IntrinsicInst.h"
-#include "llvm/InstVisitor.h"
+#include "llvm/IR/LegacyPassManager.h"
 #include "llvm/Pass.h"
-#include "llvm/PassManager.h"
-#include "llvm/Support/CallSite.h"
 #include "llvm/Support/Debug.h"
 #include "llvm/Support/raw_ostream.h"
-#include "llvm/Target/TargetLibraryInfo.h"
 using namespace llvm;
 
 namespace {
@@ -72,6 +74,8 @@ namespace {
     void visitMemoryReference(Instruction &I, Value *Ptr,
                               uint64_t Size, unsigned Align,
                               Type *Ty, unsigned Flags);
+    void visitEHBeginCatch(IntrinsicInst *II);
+    void visitEHEndCatch(IntrinsicInst *II);
 
     void visitCallInst(CallInst &I);
     void visitInvokeInst(InvokeInst &I);
@@ -96,13 +100,14 @@ namespace {
 
     Value *findValue(Value *V, bool OffsetOk) const;
     Value *findValueImpl(Value *V, bool OffsetOk,
-                         SmallPtrSet<Value *, 4> &Visited) const;
+                         SmallPtrSetImpl<Value *> &Visited) const;
 
   public:
     Module *Mod;
     AliasAnalysis *AA;
+    AssumptionCache *AC;
     DominatorTree *DT;
-    DataLayout *TD;
+    const DataLayout *DL;
     TargetLibraryInfo *TLI;
 
     std::string Messages;
@@ -113,15 +118,16 @@ namespace {
       initializeLintPass(*PassRegistry::getPassRegistry());
     }
 
-    virtual bool runOnFunction(Function &F);
+    bool runOnFunction(Function &F) override;
 
-    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+    void getAnalysisUsage(AnalysisUsage &AU) const override {
       AU.setPreservesAll();
       AU.addRequired<AliasAnalysis>();
-      AU.addRequired<TargetLibraryInfo>();
-      AU.addRequired<DominatorTree>();
+      AU.addRequired<AssumptionCacheTracker>();
+      AU.addRequired<TargetLibraryInfoWrapperPass>();
+      AU.addRequired<DominatorTreeWrapperPass>();
     }
-    virtual void print(raw_ostream &O, const Module *M) const {}
+    void print(raw_ostream &O, const Module *M) const override {}
 
     void WriteValue(const Value *V) {
       if (!V) return;
@@ -137,8 +143,8 @@ namespace {
     // that failed.  This provides a nice place to put a breakpoint if you want
     // to see why something is not correct.
     void CheckFailed(const Twine &Message,
-                     const Value *V1 = 0, const Value *V2 = 0,
-                     const Value *V3 = 0, const Value *V4 = 0) {
+                     const Value *V1 = nullptr, const Value *V2 = nullptr,
+                     const Value *V3 = nullptr, const Value *V4 = nullptr) {
       MessagesStr << Message.str() << "\n";
       WriteValue(V1);
       WriteValue(V2);
@@ -151,8 +157,9 @@ namespace {
 char Lint::ID = 0;
 INITIALIZE_PASS_BEGIN(Lint, "lint", "Statically lint-checks LLVM IR",
                       false, true)
-INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
-INITIALIZE_PASS_DEPENDENCY(DominatorTree)
+INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
+INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
 INITIALIZE_PASS_END(Lint, "lint", "Statically lint-checks LLVM IR",
                     false, true)
@@ -175,9 +182,11 @@ INITIALIZE_PASS_END(Lint, "lint", "Statically lint-checks LLVM IR",
 bool Lint::runOnFunction(Function &F) {
   Mod = F.getParent();
   AA = &getAnalysis<AliasAnalysis>();
-  DT = &getAnalysis<DominatorTree>();
-  TD = getAnalysisIfAvailable<DataLayout>();
-  TLI = &getAnalysis<TargetLibraryInfo>();
+  AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
+  DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
+  DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
+  DL = DLP ? &DLP->getDataLayout() : nullptr;
+  TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
   visit(F);
   dbgs() << MessagesStr.str();
   Messages.clear();
@@ -198,7 +207,7 @@ void Lint::visitCallSite(CallSite CS) {
   Value *Callee = CS.getCalledValue();
 
   visitMemoryReference(I, Callee, AliasAnalysis::UnknownSize,
-                       0, 0, MemRef::Callee);
+                       0, nullptr, MemRef::Callee);
 
   if (Function *F = dyn_cast<Function>(findValue(Callee, /*OffsetOk=*/false))) {
     Assert1(CS.getCallingConv() == F->getCallingConv(),
@@ -247,7 +256,7 @@ void Lint::visitCallSite(CallSite CS) {
           Type *Ty =
             cast<PointerType>(Formal->getType())->getElementType();
           visitMemoryReference(I, Actual, AA->getTypeStoreSize(Ty),
-                               TD ? TD->getABITypeAlignment(Ty) : 0,
+                               DL ? DL->getABITypeAlignment(Ty) : 0,
                                Ty, MemRef::Read | MemRef::Write);
         }
       }
@@ -274,10 +283,10 @@ void Lint::visitCallSite(CallSite CS) {
       MemCpyInst *MCI = cast<MemCpyInst>(&I);
       // TODO: If the size is known, use it.
       visitMemoryReference(I, MCI->getDest(), AliasAnalysis::UnknownSize,
-                           MCI->getAlignment(), 0,
+                           MCI->getAlignment(), nullptr,
                            MemRef::Write);
       visitMemoryReference(I, MCI->getSource(), AliasAnalysis::UnknownSize,
-                           MCI->getAlignment(), 0,
+                           MCI->getAlignment(), nullptr,
                            MemRef::Read);
 
       // Check that the memcpy arguments don't overlap. The AliasAnalysis API
@@ -298,10 +307,10 @@ void Lint::visitCallSite(CallSite CS) {
       MemMoveInst *MMI = cast<MemMoveInst>(&I);
       // TODO: If the size is known, use it.
       visitMemoryReference(I, MMI->getDest(), AliasAnalysis::UnknownSize,
-                           MMI->getAlignment(), 0,
+                           MMI->getAlignment(), nullptr,
                            MemRef::Write);
       visitMemoryReference(I, MMI->getSource(), AliasAnalysis::UnknownSize,
-                           MMI->getAlignment(), 0,
+                           MMI->getAlignment(), nullptr,
                            MemRef::Read);
       break;
     }
@@ -309,7 +318,7 @@ void Lint::visitCallSite(CallSite CS) {
       MemSetInst *MSI = cast<MemSetInst>(&I);
       // TODO: If the size is known, use it.
       visitMemoryReference(I, MSI->getDest(), AliasAnalysis::UnknownSize,
-                           MSI->getAlignment(), 0,
+                           MSI->getAlignment(), nullptr,
                            MemRef::Write);
       break;
     }
@@ -320,17 +329,17 @@ void Lint::visitCallSite(CallSite CS) {
               &I);
 
       visitMemoryReference(I, CS.getArgument(0), AliasAnalysis::UnknownSize,
-                           0, 0, MemRef::Read | MemRef::Write);
+                           0, nullptr, MemRef::Read | MemRef::Write);
       break;
     case Intrinsic::vacopy:
       visitMemoryReference(I, CS.getArgument(0), AliasAnalysis::UnknownSize,
-                           0, 0, MemRef::Write);
+                           0, nullptr, MemRef::Write);
       visitMemoryReference(I, CS.getArgument(1), AliasAnalysis::UnknownSize,
-                           0, 0, MemRef::Read);
+                           0, nullptr, MemRef::Read);
       break;
     case Intrinsic::vaend:
       visitMemoryReference(I, CS.getArgument(0), AliasAnalysis::UnknownSize,
-                           0, 0, MemRef::Read | MemRef::Write);
+                           0, nullptr, MemRef::Read | MemRef::Write);
       break;
 
     case Intrinsic::stackrestore:
@@ -338,7 +347,14 @@ void Lint::visitCallSite(CallSite CS) {
       // stack pointer, which the compiler may read from or write to
       // at any time, so check it for both readability and writeability.
       visitMemoryReference(I, CS.getArgument(0), AliasAnalysis::UnknownSize,
-                           0, 0, MemRef::Read | MemRef::Write);
+                           0, nullptr, MemRef::Read | MemRef::Write);
+      break;
+
+    case Intrinsic::eh_begincatch:
+      visitEHBeginCatch(II);
+      break;
+    case Intrinsic::eh_endcatch:
+      visitEHEndCatch(II);
       break;
     }
 }
@@ -414,7 +430,7 @@ void Lint::visitMemoryReference(Instruction &I,
   // Only handles memory references that read/write something simple like an
   // alloca instruction or a global variable.
   int64_t Offset = 0;
-  if (Value *Base = GetPointerBaseWithConstantOffset(Ptr, Offset, TD)) {
+  if (Value *Base = GetPointerBaseWithConstantOffset(Ptr, Offset, DL)) {
     // OK, so the access is to a constant offset from Ptr.  Check that Ptr is
     // something we can handle and if so extract the size of this base object
     // along with its alignment.
@@ -423,21 +439,21 @@ void Lint::visitMemoryReference(Instruction &I,
 
     if (AllocaInst *AI = dyn_cast<AllocaInst>(Base)) {
       Type *ATy = AI->getAllocatedType();
-      if (TD && !AI->isArrayAllocation() && ATy->isSized())
-        BaseSize = TD->getTypeAllocSize(ATy);
+      if (DL && !AI->isArrayAllocation() && ATy->isSized())
+        BaseSize = DL->getTypeAllocSize(ATy);
       BaseAlign = AI->getAlignment();
-      if (TD && BaseAlign == 0 && ATy->isSized())
-        BaseAlign = TD->getABITypeAlignment(ATy);
+      if (DL && BaseAlign == 0 && ATy->isSized())
+        BaseAlign = DL->getABITypeAlignment(ATy);
     } else if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Base)) {
       // If the global may be defined differently in another compilation unit
       // then don't warn about funky memory accesses.
       if (GV->hasDefinitiveInitializer()) {
         Type *GTy = GV->getType()->getElementType();
-        if (TD && GTy->isSized())
-          BaseSize = TD->getTypeAllocSize(GTy);
+        if (DL && GTy->isSized())
+          BaseSize = DL->getTypeAllocSize(GTy);
         BaseAlign = GV->getAlignment();
-        if (TD && BaseAlign == 0 && GTy->isSized())
-          BaseAlign = TD->getABITypeAlignment(GTy);
+        if (DL && BaseAlign == 0 && GTy->isSized())
+          BaseAlign = DL->getABITypeAlignment(GTy);
       }
     }
 
@@ -450,8 +466,8 @@ void Lint::visitMemoryReference(Instruction &I,
 
     // Accesses that say that the memory is more aligned than it is are not
     // defined.
-    if (TD && Align == 0 && Ty && Ty->isSized())
-      Align = TD->getABITypeAlignment(Ty);
+    if (DL && Align == 0 && Ty && Ty->isSized())
+      Align = DL->getABITypeAlignment(Ty);
     Assert1(!BaseAlign || Align <= MinAlign(BaseAlign, Offset),
             "Undefined behavior: Memory reference address is misaligned", &I);
   }
@@ -503,7 +519,190 @@ void Lint::visitShl(BinaryOperator &I) {
             "Undefined result: Shift count out of range", &I);
 }
 
-static bool isZero(Value *V, DataLayout *DL) {
+static bool
+allPredsCameFromLandingPad(BasicBlock *BB,
+                           SmallSet<BasicBlock *, 4> &VisitedBlocks) {
+  VisitedBlocks.insert(BB);
+  if (BB->isLandingPad())
+    return true;
+  // If we find a block with no predecessors, the search failed.
+  if (pred_empty(BB))
+    return false;
+  for (BasicBlock *Pred : predecessors(BB)) {
+    if (VisitedBlocks.count(Pred))
+      continue;
+    if (!allPredsCameFromLandingPad(Pred, VisitedBlocks))
+      return false;
+  }
+  return true;
+}
+
+static bool
+allSuccessorsReachEndCatch(BasicBlock *BB, BasicBlock::iterator InstBegin,
+                           IntrinsicInst **SecondBeginCatch,
+                           SmallSet<BasicBlock *, 4> &VisitedBlocks) {
+  VisitedBlocks.insert(BB);
+  for (BasicBlock::iterator I = InstBegin, E = BB->end(); I != E; ++I) {
+    IntrinsicInst *IC = dyn_cast<IntrinsicInst>(I);
+    if (IC && IC->getIntrinsicID() == Intrinsic::eh_endcatch)
+      return true;
+    // If we find another begincatch while looking for an endcatch,
+    // that's also an error.
+    if (IC && IC->getIntrinsicID() == Intrinsic::eh_begincatch) {
+      *SecondBeginCatch = IC;
+      return false;
+    }
+  }
+
+  // If we reach a block with no successors while searching, the
+  // search has failed.
+  if (succ_empty(BB))
+    return false;
+  // Otherwise, search all of the successors.
+  for (BasicBlock *Succ : successors(BB)) {
+    if (VisitedBlocks.count(Succ))
+      continue;
+    if (!allSuccessorsReachEndCatch(Succ, Succ->begin(), SecondBeginCatch,
+                                    VisitedBlocks))
+      return false;
+  }
+  return true;
+}
+
+void Lint::visitEHBeginCatch(IntrinsicInst *II) {
+  // The checks in this function make a potentially dubious assumption about
+  // the CFG, namely that any block involved in a catch is only used for the
+  // catch.  This will very likely be true of IR generated by a front end,
+  // but it may cease to be true, for example, if the IR is run through a
+  // pass which combines similar blocks.
+  //
+  // In general, if we encounter a block the isn't dominated by the catch
+  // block while we are searching the catch block's successors for a call
+  // to end catch intrinsic, then it is possible that it will be legal for
+  // a path through this block to never reach a call to llvm.eh.endcatch.
+  // An analogous statement could be made about our search for a landing
+  // pad among the catch block's predecessors.
+  //
+  // What is actually required is that no path is possible at runtime that
+  // reaches a call to llvm.eh.begincatch without having previously visited
+  // a landingpad instruction and that no path is possible at runtime that
+  // calls llvm.eh.begincatch and does not subsequently call llvm.eh.endcatch
+  // (mentally adjusting for the fact that in reality these calls will be
+  // removed before code generation).
+  //
+  // Because this is a lint check, we take a pessimistic approach and warn if
+  // the control flow is potentially incorrect.
+
+  SmallSet<BasicBlock *, 4> VisitedBlocks;
+  BasicBlock *CatchBB = II->getParent();
+
+  // The begin catch must occur in a landing pad block or all paths
+  // to it must have come from a landing pad.
+  Assert1(allPredsCameFromLandingPad(CatchBB, VisitedBlocks),
+          "llvm.eh.begincatch may be reachable without passing a landingpad", 
+          II);
+
+  // Reset the visited block list.
+  VisitedBlocks.clear();
+
+  IntrinsicInst *SecondBeginCatch = nullptr;
+
+  // This has to be called before it is asserted.  Otherwise, the first assert
+  // below can never be hit.
+  bool EndCatchFound = allSuccessorsReachEndCatch(
+      CatchBB, std::next(static_cast<BasicBlock::iterator>(II)),
+      &SecondBeginCatch, VisitedBlocks);
+  Assert2(
+      SecondBeginCatch == nullptr,
+      "llvm.eh.begincatch may be called a second time before llvm.eh.endcatch",
+      II, SecondBeginCatch);
+  Assert1(EndCatchFound,
+          "Some paths from llvm.eh.begincatch may not reach llvm.eh.endcatch",
+          II);
+}
+
+static bool allPredCameFromBeginCatch(
+    BasicBlock *BB, BasicBlock::reverse_iterator InstRbegin,
+    IntrinsicInst **SecondEndCatch, SmallSet<BasicBlock *, 4> &VisitedBlocks) {
+  VisitedBlocks.insert(BB);
+  // Look for a begincatch in this block.
+  for (BasicBlock::reverse_iterator RI = InstRbegin, RE = BB->rend(); RI != RE;
+       ++RI) {
+    IntrinsicInst *IC = dyn_cast<IntrinsicInst>(&*RI);
+    if (IC && IC->getIntrinsicID() == Intrinsic::eh_begincatch)
+      return true;
+    // If we find another end catch before we find a begin catch, that's
+    // an error.
+    if (IC && IC->getIntrinsicID() == Intrinsic::eh_endcatch) {
+      *SecondEndCatch = IC;
+      return false;
+    }
+    // If we encounter a landingpad instruction, the search failed.
+    if (isa<LandingPadInst>(*RI))
+      return false;
+  }
+  // If while searching we find a block with no predeccesors,
+  // the search failed.
+  if (pred_empty(BB))
+    return false;
+  // Search any predecessors we haven't seen before.
+  for (BasicBlock *Pred : predecessors(BB)) {
+    if (VisitedBlocks.count(Pred))
+      continue;
+    if (!allPredCameFromBeginCatch(Pred, Pred->rbegin(), SecondEndCatch,
+                                   VisitedBlocks))
+      return false;
+  }
+  return true;
+}
+
+void Lint::visitEHEndCatch(IntrinsicInst *II) {
+  // The check in this function makes a potentially dubious assumption about
+  // the CFG, namely that any block involved in a catch is only used for the
+  // catch.  This will very likely be true of IR generated by a front end,
+  // but it may cease to be true, for example, if the IR is run through a
+  // pass which combines similar blocks.
+  //
+  // In general, if we encounter a block the isn't post-dominated by the
+  // end catch block while we are searching the end catch block's predecessors
+  // for a call to the begin catch intrinsic, then it is possible that it will
+  // be legal for a path to reach the end catch block without ever having
+  // called llvm.eh.begincatch.
+  //
+  // What is actually required is that no path is possible at runtime that
+  // reaches a call to llvm.eh.endcatch without having previously visited
+  // a call to llvm.eh.begincatch (mentally adjusting for the fact that in
+  // reality these calls will be removed before code generation).
+  //
+  // Because this is a lint check, we take a pessimistic approach and warn if
+  // the control flow is potentially incorrect.
+
+  BasicBlock *EndCatchBB = II->getParent();
+
+  // Alls paths to the end catch call must pass through a begin catch call.
+
+  // If llvm.eh.begincatch wasn't called in the current block, we'll use this
+  // lambda to recursively look for it in predecessors.
+  SmallSet<BasicBlock *, 4> VisitedBlocks;
+  IntrinsicInst *SecondEndCatch = nullptr;
+
+  // This has to be called before it is asserted.  Otherwise, the first assert
+  // below can never be hit.
+  bool BeginCatchFound =
+      allPredCameFromBeginCatch(EndCatchBB, BasicBlock::reverse_iterator(II),
+                                &SecondEndCatch, VisitedBlocks);
+  Assert2(
+      SecondEndCatch == nullptr,
+      "llvm.eh.endcatch may be called a second time after llvm.eh.begincatch",
+      II, SecondEndCatch);
+  Assert1(
+      BeginCatchFound,
+      "llvm.eh.endcatch may be reachable without passing llvm.eh.begincatch",
+      II);
+}
+
+static bool isZero(Value *V, const DataLayout *DL, DominatorTree *DT,
+                   AssumptionCache *AC) {
   // Assume undef could be zero.
   if (isa<UndefValue>(V))
     return true;
@@ -512,7 +711,8 @@ static bool isZero(Value *V, DataLayout *DL) {
   if (!VecTy) {
     unsigned BitWidth = V->getType()->getIntegerBitWidth();
     APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
-    ComputeMaskedBits(V, KnownZero, KnownOne, DL);
+    computeKnownBits(V, KnownZero, KnownOne, DL, 0, AC,
+                     dyn_cast<Instruction>(V), DT);
     return KnownZero.isAllOnesValue();
   }
 
@@ -533,7 +733,7 @@ static bool isZero(Value *V, DataLayout *DL) {
       return true;
 
     APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
-    ComputeMaskedBits(Elem, KnownZero, KnownOne, DL);
+    computeKnownBits(Elem, KnownZero, KnownOne, DL);
     if (KnownZero.isAllOnesValue())
       return true;
   }
@@ -542,22 +742,22 @@ static bool isZero(Value *V, DataLayout *DL) {
 }
 
 void Lint::visitSDiv(BinaryOperator &I) {
-  Assert1(!isZero(I.getOperand(1), TD),
+  Assert1(!isZero(I.getOperand(1), DL, DT, AC),
           "Undefined behavior: Division by zero", &I);
 }
 
 void Lint::visitUDiv(BinaryOperator &I) {
-  Assert1(!isZero(I.getOperand(1), TD),
+  Assert1(!isZero(I.getOperand(1), DL, DT, AC),
           "Undefined behavior: Division by zero", &I);
 }
 
 void Lint::visitSRem(BinaryOperator &I) {
-  Assert1(!isZero(I.getOperand(1), TD),
+  Assert1(!isZero(I.getOperand(1), DL, DT, AC),
           "Undefined behavior: Division by zero", &I);
 }
 
 void Lint::visitURem(BinaryOperator &I) {
-  Assert1(!isZero(I.getOperand(1), TD),
+  Assert1(!isZero(I.getOperand(1), DL, DT, AC),
           "Undefined behavior: Division by zero", &I);
 }
 
@@ -571,13 +771,13 @@ void Lint::visitAllocaInst(AllocaInst &I) {
 }
 
 void Lint::visitVAArgInst(VAArgInst &I) {
-  visitMemoryReference(I, I.getOperand(0), AliasAnalysis::UnknownSize, 0, 0,
-                       MemRef::Read | MemRef::Write);
+  visitMemoryReference(I, I.getOperand(0), AliasAnalysis::UnknownSize, 0,
+                       nullptr, MemRef::Read | MemRef::Write);
 }
 
 void Lint::visitIndirectBrInst(IndirectBrInst &I) {
-  visitMemoryReference(I, I.getAddress(), AliasAnalysis::UnknownSize, 0, 0,
-                       MemRef::Branchee);
+  visitMemoryReference(I, I.getAddress(), AliasAnalysis::UnknownSize, 0,
+                       nullptr, MemRef::Branchee);
 
   Assert1(I.getNumDestinations() != 0,
           "Undefined behavior: indirectbr with no destinations", &I);
@@ -602,7 +802,7 @@ void Lint::visitInsertElementInst(InsertElementInst &I) {
 void Lint::visitUnreachableInst(UnreachableInst &I) {
   // This isn't undefined behavior, it's merely suspicious.
   Assert1(&I == I.getParent()->begin() ||
-          prior(BasicBlock::iterator(&I))->mayHaveSideEffects(),
+          std::prev(BasicBlock::iterator(&I))->mayHaveSideEffects(),
           "Unusual: unreachable immediately preceded by instruction without "
           "side effects", &I);
 }
@@ -621,9 +821,9 @@ Value *Lint::findValue(Value *V, bool OffsetOk) const {
 
 /// findValueImpl - Implementation helper for findValue.
 Value *Lint::findValueImpl(Value *V, bool OffsetOk,
-                           SmallPtrSet<Value *, 4> &Visited) const {
+                           SmallPtrSetImpl<Value *> &Visited) const {
   // Detect self-referential values.
-  if (!Visited.insert(V))
+  if (!Visited.insert(V).second)
     return UndefValue::get(V->getType());
 
   // TODO: Look through sext or zext cast, when the result is known to
@@ -631,13 +831,14 @@ Value *Lint::findValueImpl(Value *V, bool OffsetOk,
   // TODO: Look through eliminable cast pairs.
   // TODO: Look through calls with unique return values.
   // TODO: Look through vector insert/extract/shuffle.
-  V = OffsetOk ? GetUnderlyingObject(V, TD) : V->stripPointerCasts();
+  V = OffsetOk ? GetUnderlyingObject(V, DL) : V->stripPointerCasts();
   if (LoadInst *L = dyn_cast<LoadInst>(V)) {
     BasicBlock::iterator BBI = L;
     BasicBlock *BB = L->getParent();
     SmallPtrSet<BasicBlock *, 4> VisitedBlocks;
     for (;;) {
-      if (!VisitedBlocks.insert(BB)) break;
+      if (!VisitedBlocks.insert(BB).second)
+        break;
       if (Value *U = FindAvailableLoadedValue(L->getPointerOperand(),
                                               BB, BBI, 6, AA))
         return findValueImpl(U, OffsetOk, Visited);
@@ -651,8 +852,7 @@ Value *Lint::findValueImpl(Value *V, bool OffsetOk,
       if (W != V)
         return findValueImpl(W, OffsetOk, Visited);
   } else if (CastInst *CI = dyn_cast<CastInst>(V)) {
-    if (CI->isNoopCast(TD ? TD->getIntPtrType(V->getContext()) :
-                            Type::getInt64Ty(V->getContext())))
+    if (CI->isNoopCast(DL))
       return findValueImpl(CI->getOperand(0), OffsetOk, Visited);
   } else if (ExtractValueInst *Ex = dyn_cast<ExtractValueInst>(V)) {
     if (Value *W = FindInsertedValue(Ex->getAggregateOperand(),
@@ -665,7 +865,7 @@ Value *Lint::findValueImpl(Value *V, bool OffsetOk,
       if (CastInst::isNoopCast(Instruction::CastOps(CE->getOpcode()),
                                CE->getOperand(0)->getType(),
                                CE->getType(),
-                               TD ? TD->getIntPtrType(V->getContext()) :
+                               DL ? DL->getIntPtrType(V->getType()) :
                                     Type::getInt64Ty(V->getContext())))
         return findValueImpl(CE->getOperand(0), OffsetOk, Visited);
     } else if (CE->getOpcode() == Instruction::ExtractValue) {
@@ -678,10 +878,10 @@ Value *Lint::findValueImpl(Value *V, bool OffsetOk,
 
   // As a last resort, try SimplifyInstruction or constant folding.
   if (Instruction *Inst = dyn_cast<Instruction>(V)) {
-    if (Value *W = SimplifyInstruction(Inst, TD, TLI, DT))
+    if (Value *W = SimplifyInstruction(Inst, DL, TLI, DT, AC))
       return findValueImpl(W, OffsetOk, Visited);
   } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
-    if (Value *W = ConstantFoldConstantExpression(CE, TD, TLI))
+    if (Value *W = ConstantFoldConstantExpression(CE, DL, TLI))
       if (W != V)
         return findValueImpl(W, OffsetOk, Visited);
   }
@@ -703,7 +903,7 @@ void llvm::lintFunction(const Function &f) {
   Function &F = const_cast<Function&>(f);
   assert(!F.isDeclaration() && "Cannot lint external functions");
 
-  FunctionPassManager FPM(F.getParent());
+  legacy::FunctionPassManager FPM(F.getParent());
   Lint *V = new Lint();
   FPM.add(V);
   FPM.run(F);
@@ -712,7 +912,7 @@ void llvm::lintFunction(const Function &f) {
 /// lintModule - Check a module for errors, printing messages on stderr.
 ///
 void llvm::lintModule(const Module &M) {
-  PassManager PM;
+  legacy::PassManager PM;
   Lint *V = new Lint();
   PM.add(V);
   PM.run(const_cast<Module&>(M));