InstSimplify: Optimize away pointless comparisons
[oota-llvm.git] / lib / Analysis / InstructionSimplify.cpp
index 1054c7935b5c581f2b3782657e6a07b087cf90dc..b7882651d36f7362df330baa143249deaf3522a4 100644 (file)
@@ -20,6 +20,7 @@
 #include "llvm/Analysis/InstructionSimplify.h"
 #include "llvm/ADT/SetVector.h"
 #include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/AliasAnalysis.h"
 #include "llvm/Analysis/ConstantFolding.h"
 #include "llvm/Analysis/MemoryBuiltins.h"
 #include "llvm/Analysis/ValueTracking.h"
@@ -31,6 +32,7 @@
 #include "llvm/IR/Operator.h"
 #include "llvm/IR/PatternMatch.h"
 #include "llvm/IR/ValueHandle.h"
+#include <algorithm>
 using namespace llvm;
 using namespace llvm::PatternMatch;
 
@@ -41,14 +43,20 @@ enum { RecursionLimit = 3 };
 STATISTIC(NumExpand,  "Number of expansions");
 STATISTIC(NumReassoc, "Number of reassociations");
 
+namespace {
 struct Query {
   const DataLayout *DL;
   const TargetLibraryInfo *TLI;
   const DominatorTree *DT;
+  AssumptionTracker *AT;
+  const Instruction *CxtI;
 
   Query(const DataLayout *DL, const TargetLibraryInfo *tli,
-        const DominatorTree *dt) : DL(DL), TLI(tli), DT(dt) {}
+        const DominatorTree *dt, AssumptionTracker *at = nullptr,
+        const Instruction *cxti = nullptr)
+    : DL(DL), TLI(tli), DT(dt), AT(at), CxtI(cxti) {}
 };
+} // end anonymous namespace
 
 static Value *SimplifyAndInst(Value *, Value *, const Query &, unsigned);
 static Value *SimplifyBinOp(unsigned, Value *, Value *, const Query &,
@@ -575,9 +583,10 @@ static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
 
 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
                              const DataLayout *DL, const TargetLibraryInfo *TLI,
-                             const DominatorTree *DT) {
-  return ::SimplifyAddInst(Op0, Op1, isNSW, isNUW, Query (DL, TLI, DT),
-                           RecursionLimit);
+                             const DominatorTree *DT, AssumptionTracker *AT,
+                             const Instruction *CxtI) {
+  return ::SimplifyAddInst(Op0, Op1, isNSW, isNUW,
+                           Query (DL, TLI, DT, AT, CxtI), RecursionLimit);
 }
 
 /// \brief Compute the base pointer and cumulative constant offsets for V.
@@ -624,7 +633,7 @@ static Constant *stripAndComputeConstantOffsets(const DataLayout *DL,
     }
     assert(V->getType()->getScalarType()->isPointerTy() &&
            "Unexpected operand type!");
-  } while (Visited.insert(V));
+  } while (Visited.insert(V).second);
 
   Constant *OffsetIntPtr = ConstantInt::get(IntPtrTy, Offset);
   if (V->getType()->isVectorTy())
@@ -676,6 +685,10 @@ static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
   if (Op0 == Op1)
     return Constant::getNullValue(Op0->getType());
 
+  // 0 - X -> 0 if the sub is NUW.
+  if (isNUW && match(Op0, m_Zero()))
+    return Op0;
+
   // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies.
   // For example, (X + Y) - Y -> X; (Y + X) - Y -> X
   Value *X = nullptr, *Y = nullptr, *Z = Op1;
@@ -769,9 +782,10 @@ static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
 
 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
                              const DataLayout *DL, const TargetLibraryInfo *TLI,
-                             const DominatorTree *DT) {
-  return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Query (DL, TLI, DT),
-                           RecursionLimit);
+                             const DominatorTree *DT, AssumptionTracker *AT,
+                             const Instruction *CxtI) {
+  return ::SimplifySubInst(Op0, Op1, isNSW, isNUW,
+                           Query (DL, TLI, DT, AT, CxtI), RecursionLimit);
 }
 
 /// Given operands for an FAdd, see if we can fold the result.  If not, this
@@ -947,28 +961,37 @@ static Value *SimplifyMulInst(Value *Op0, Value *Op1, const Query &Q,
 
 Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
                              const DataLayout *DL, const TargetLibraryInfo *TLI,
-                             const DominatorTree *DT) {
-  return ::SimplifyFAddInst(Op0, Op1, FMF, Query (DL, TLI, DT), RecursionLimit);
+                             const DominatorTree *DT, AssumptionTracker *AT,
+                             const Instruction *CxtI) {
+  return ::SimplifyFAddInst(Op0, Op1, FMF, Query (DL, TLI, DT, AT, CxtI),
+                            RecursionLimit);
 }
 
 Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
                              const DataLayout *DL, const TargetLibraryInfo *TLI,
-                             const DominatorTree *DT) {
-  return ::SimplifyFSubInst(Op0, Op1, FMF, Query (DL, TLI, DT), RecursionLimit);
+                             const DominatorTree *DT, AssumptionTracker *AT,
+                             const Instruction *CxtI) {
+  return ::SimplifyFSubInst(Op0, Op1, FMF, Query (DL, TLI, DT, AT, CxtI),
+                            RecursionLimit);
 }
 
 Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1,
                               FastMathFlags FMF,
                               const DataLayout *DL,
                               const TargetLibraryInfo *TLI,
-                              const DominatorTree *DT) {
-  return ::SimplifyFMulInst(Op0, Op1, FMF, Query (DL, TLI, DT), RecursionLimit);
+                              const DominatorTree *DT,
+                              AssumptionTracker *AT,
+                              const Instruction *CxtI) {
+  return ::SimplifyFMulInst(Op0, Op1, FMF, Query (DL, TLI, DT, AT, CxtI),
+                            RecursionLimit);
 }
 
 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const DataLayout *DL,
                              const TargetLibraryInfo *TLI,
-                             const DominatorTree *DT) {
-  return ::SimplifyMulInst(Op0, Op1, Query (DL, TLI, DT), RecursionLimit);
+                             const DominatorTree *DT, AssumptionTracker *AT,
+                             const Instruction *CxtI) {
+  return ::SimplifyMulInst(Op0, Op1, Query (DL, TLI, DT, AT, CxtI),
+                           RecursionLimit);
 }
 
 /// SimplifyDiv - Given operands for an SDiv or UDiv, see if we can
@@ -988,6 +1011,10 @@ static Value *SimplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
   if (match(Op1, m_Undef()))
     return Op1;
 
+  // X / 0 -> undef, we don't need to preserve faults!
+  if (match(Op1, m_Zero()))
+    return UndefValue::get(Op1->getType());
+
   // undef / X -> 0
   if (match(Op0, m_Undef()))
     return Constant::getNullValue(Op0->getType());
@@ -1028,6 +1055,16 @@ static Value *SimplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
       (!isSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
     return Constant::getNullValue(Op0->getType());
 
+  // (X /u C1) /u C2 -> 0 if C1 * C2 overflow
+  ConstantInt *C1, *C2;
+  if (!isSigned && match(Op0, m_UDiv(m_Value(X), m_ConstantInt(C1))) &&
+      match(Op1, m_ConstantInt(C2))) {
+    bool Overflow;
+    C1->getValue().umul_ov(C2->getValue(), Overflow);
+    if (Overflow)
+      return Constant::getNullValue(Op0->getType());
+  }
+
   // If the operation is with the result of a select instruction, check whether
   // operating on either branch of the select always yields the same value.
   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
@@ -1055,8 +1092,11 @@ static Value *SimplifySDivInst(Value *Op0, Value *Op1, const Query &Q,
 
 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const DataLayout *DL,
                               const TargetLibraryInfo *TLI,
-                              const DominatorTree *DT) {
-  return ::SimplifySDivInst(Op0, Op1, Query (DL, TLI, DT), RecursionLimit);
+                              const DominatorTree *DT,
+                              AssumptionTracker *AT,
+                              const Instruction *CxtI) {
+  return ::SimplifySDivInst(Op0, Op1, Query (DL, TLI, DT, AT, CxtI),
+                            RecursionLimit);
 }
 
 /// SimplifyUDivInst - Given operands for a UDiv, see if we can
@@ -1071,8 +1111,11 @@ static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const Query &Q,
 
 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const DataLayout *DL,
                               const TargetLibraryInfo *TLI,
-                              const DominatorTree *DT) {
-  return ::SimplifyUDivInst(Op0, Op1, Query (DL, TLI, DT), RecursionLimit);
+                              const DominatorTree *DT,
+                              AssumptionTracker *AT,
+                              const Instruction *CxtI) {
+  return ::SimplifyUDivInst(Op0, Op1, Query (DL, TLI, DT, AT, CxtI),
+                            RecursionLimit);
 }
 
 static Value *SimplifyFDivInst(Value *Op0, Value *Op1, const Query &Q,
@@ -1090,8 +1133,11 @@ static Value *SimplifyFDivInst(Value *Op0, Value *Op1, const Query &Q,
 
 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, const DataLayout *DL,
                               const TargetLibraryInfo *TLI,
-                              const DominatorTree *DT) {
-  return ::SimplifyFDivInst(Op0, Op1, Query (DL, TLI, DT), RecursionLimit);
+                              const DominatorTree *DT,
+                              AssumptionTracker *AT,
+                              const Instruction *CxtI) {
+  return ::SimplifyFDivInst(Op0, Op1, Query (DL, TLI, DT, AT, CxtI),
+                            RecursionLimit);
 }
 
 /// SimplifyRem - Given operands for an SRem or URem, see if we can
@@ -1133,6 +1179,13 @@ static Value *SimplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
   if (Op0 == Op1)
     return Constant::getNullValue(Op0->getType());
 
+  // (X % Y) % Y -> X % Y
+  if ((Opcode == Instruction::SRem &&
+       match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
+      (Opcode == Instruction::URem &&
+       match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
+    return Op0;
+
   // If the operation is with the result of a select instruction, check whether
   // operating on either branch of the select always yields the same value.
   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
@@ -1160,8 +1213,11 @@ static Value *SimplifySRemInst(Value *Op0, Value *Op1, const Query &Q,
 
 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const DataLayout *DL,
                               const TargetLibraryInfo *TLI,
-                              const DominatorTree *DT) {
-  return ::SimplifySRemInst(Op0, Op1, Query (DL, TLI, DT), RecursionLimit);
+                              const DominatorTree *DT,
+                              AssumptionTracker *AT,
+                              const Instruction *CxtI) {
+  return ::SimplifySRemInst(Op0, Op1, Query (DL, TLI, DT, AT, CxtI),
+                            RecursionLimit);
 }
 
 /// SimplifyURemInst - Given operands for a URem, see if we can
@@ -1176,8 +1232,11 @@ static Value *SimplifyURemInst(Value *Op0, Value *Op1, const Query &Q,
 
 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const DataLayout *DL,
                               const TargetLibraryInfo *TLI,
-                              const DominatorTree *DT) {
-  return ::SimplifyURemInst(Op0, Op1, Query (DL, TLI, DT), RecursionLimit);
+                              const DominatorTree *DT,
+                              AssumptionTracker *AT,
+                              const Instruction *CxtI) {
+  return ::SimplifyURemInst(Op0, Op1, Query (DL, TLI, DT, AT, CxtI),
+                            RecursionLimit);
 }
 
 static Value *SimplifyFRemInst(Value *Op0, Value *Op1, const Query &,
@@ -1195,8 +1254,11 @@ static Value *SimplifyFRemInst(Value *Op0, Value *Op1, const Query &,
 
 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, const DataLayout *DL,
                               const TargetLibraryInfo *TLI,
-                              const DominatorTree *DT) {
-  return ::SimplifyFRemInst(Op0, Op1, Query (DL, TLI, DT), RecursionLimit);
+                              const DominatorTree *DT,
+                              AssumptionTracker *AT,
+                              const Instruction *CxtI) {
+  return ::SimplifyFRemInst(Op0, Op1, Query (DL, TLI, DT, AT, CxtI),
+                            RecursionLimit);
 }
 
 /// isUndefShift - Returns true if a shift by \c Amount always yields undef.
@@ -1264,6 +1326,37 @@ static Value *SimplifyShift(unsigned Opcode, Value *Op0, Value *Op1,
   return nullptr;
 }
 
+/// \brief Given operands for an Shl, LShr or AShr, see if we can
+/// fold the result.  If not, this returns null.
+static Value *SimplifyRightShift(unsigned Opcode, Value *Op0, Value *Op1,
+                                 bool isExact, const Query &Q,
+                                 unsigned MaxRecurse) {
+  if (Value *V = SimplifyShift(Opcode, Op0, Op1, Q, MaxRecurse))
+    return V;
+
+  // X >> X -> 0
+  if (Op0 == Op1)
+    return Constant::getNullValue(Op0->getType());
+
+  // undef >> X -> 0
+  // undef >> X -> undef (if it's exact)
+  if (match(Op0, m_Undef()))
+    return isExact ? Op0 : Constant::getNullValue(Op0->getType());
+
+  // The low bit cannot be shifted out of an exact shift if it is set.
+  if (isExact) {
+    unsigned BitWidth = Op0->getType()->getScalarSizeInBits();
+    APInt Op0KnownZero(BitWidth, 0);
+    APInt Op0KnownOne(BitWidth, 0);
+    computeKnownBits(Op0, Op0KnownZero, Op0KnownOne, Q.DL, /*Depth=*/0, Q.AT, Q.CxtI,
+                     Q.DT);
+    if (Op0KnownOne[0])
+      return Op0;
+  }
+
+  return nullptr;
+}
+
 /// SimplifyShlInst - Given operands for an Shl, see if we can
 /// fold the result.  If not, this returns null.
 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
@@ -1272,8 +1365,9 @@ static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
     return V;
 
   // undef << X -> 0
+  // undef << X -> undef if (if it's NSW/NUW)
   if (match(Op0, m_Undef()))
-    return Constant::getNullValue(Op0->getType());
+    return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType());
 
   // (X >> A) << A -> X
   Value *X;
@@ -1284,8 +1378,9 @@ static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
 
 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
                              const DataLayout *DL, const TargetLibraryInfo *TLI,
-                             const DominatorTree *DT) {
-  return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Query (DL, TLI, DT),
+                             const DominatorTree *DT, AssumptionTracker *AT,
+                             const Instruction *CxtI) {
+  return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Query (DL, TLI, DT, AT, CxtI),
                            RecursionLimit);
 }
 
@@ -1293,21 +1388,13 @@ Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
 /// fold the result.  If not, this returns null.
 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
                                const Query &Q, unsigned MaxRecurse) {
-  if (Value *V = SimplifyShift(Instruction::LShr, Op0, Op1, Q, MaxRecurse))
-    return V;
-
-  // X >> X -> 0
-  if (Op0 == Op1)
-    return Constant::getNullValue(Op0->getType());
-
-  // undef >>l X -> 0
-  if (match(Op0, m_Undef()))
-    return Constant::getNullValue(Op0->getType());
+  if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q,
+                                    MaxRecurse))
+      return V;
 
   // (X << A) >> A -> X
   Value *X;
-  if (match(Op0, m_Shl(m_Value(X), m_Specific(Op1))) &&
-      cast<OverflowingBinaryOperator>(Op0)->hasNoUnsignedWrap())
+  if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1))))
     return X;
 
   return nullptr;
@@ -1316,8 +1403,10 @@ static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
                               const DataLayout *DL,
                               const TargetLibraryInfo *TLI,
-                              const DominatorTree *DT) {
-  return ::SimplifyLShrInst(Op0, Op1, isExact, Query (DL, TLI, DT),
+                              const DominatorTree *DT,
+                              AssumptionTracker *AT,
+                              const Instruction *CxtI) {
+  return ::SimplifyLShrInst(Op0, Op1, isExact, Query (DL, TLI, DT, AT, CxtI),
                             RecursionLimit);
 }
 
@@ -1325,38 +1414,130 @@ Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
 /// fold the result.  If not, this returns null.
 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
                                const Query &Q, unsigned MaxRecurse) {
-  if (Value *V = SimplifyShift(Instruction::AShr, Op0, Op1, Q, MaxRecurse))
+  if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q,
+                                    MaxRecurse))
     return V;
 
-  // X >> X -> 0
-  if (Op0 == Op1)
-    return Constant::getNullValue(Op0->getType());
-
   // all ones >>a X -> all ones
   if (match(Op0, m_AllOnes()))
     return Op0;
 
-  // undef >>a X -> all ones
-  if (match(Op0, m_Undef()))
-    return Constant::getAllOnesValue(Op0->getType());
-
   // (X << A) >> A -> X
   Value *X;
-  if (match(Op0, m_Shl(m_Value(X), m_Specific(Op1))) &&
-      cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap())
+  if (match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1))))
     return X;
 
+  // Arithmetic shifting an all-sign-bit value is a no-op.
+  unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AT, Q.CxtI, Q.DT);
+  if (NumSignBits == Op0->getType()->getScalarSizeInBits())
+    return Op0;
+
   return nullptr;
 }
 
 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
                               const DataLayout *DL,
                               const TargetLibraryInfo *TLI,
-                              const DominatorTree *DT) {
-  return ::SimplifyAShrInst(Op0, Op1, isExact, Query (DL, TLI, DT),
+                              const DominatorTree *DT,
+                              AssumptionTracker *AT,
+                              const Instruction *CxtI) {
+  return ::SimplifyAShrInst(Op0, Op1, isExact, Query (DL, TLI, DT, AT, CxtI),
                             RecursionLimit);
 }
 
+static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp,
+                                         ICmpInst *UnsignedICmp, bool IsAnd) {
+  Value *X, *Y;
+
+  ICmpInst::Predicate EqPred;
+  if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) ||
+      !ICmpInst::isEquality(EqPred))
+    return nullptr;
+
+  ICmpInst::Predicate UnsignedPred;
+  if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) &&
+      ICmpInst::isUnsigned(UnsignedPred))
+    ;
+  else if (match(UnsignedICmp,
+                 m_ICmp(UnsignedPred, m_Value(Y), m_Specific(X))) &&
+           ICmpInst::isUnsigned(UnsignedPred))
+    UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred);
+  else
+    return nullptr;
+
+  // X < Y && Y != 0  -->  X < Y
+  // X < Y || Y != 0  -->  Y != 0
+  if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE)
+    return IsAnd ? UnsignedICmp : ZeroICmp;
+
+  // X >= Y || Y != 0  -->  true
+  // X >= Y || Y == 0  -->  X >= Y
+  if (UnsignedPred == ICmpInst::ICMP_UGE && !IsAnd) {
+    if (EqPred == ICmpInst::ICMP_NE)
+      return getTrue(UnsignedICmp->getType());
+    return UnsignedICmp;
+  }
+
+  // X < Y && Y == 0  -->  false
+  if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ &&
+      IsAnd)
+    return getFalse(UnsignedICmp->getType());
+
+  return nullptr;
+}
+
+// Simplify (and (icmp ...) (icmp ...)) to true when we can tell that the range
+// of possible values cannot be satisfied.
+static Value *SimplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1) {
+  ICmpInst::Predicate Pred0, Pred1;
+  ConstantInt *CI1, *CI2;
+  Value *V;
+
+  if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true))
+    return X;
+
+  if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_ConstantInt(CI1)),
+                         m_ConstantInt(CI2))))
+   return nullptr;
+
+  if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Specific(CI1))))
+    return nullptr;
+
+  Type *ITy = Op0->getType();
+
+  auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0));
+  bool isNSW = AddInst->hasNoSignedWrap();
+  bool isNUW = AddInst->hasNoUnsignedWrap();
+
+  const APInt &CI1V = CI1->getValue();
+  const APInt &CI2V = CI2->getValue();
+  const APInt Delta = CI2V - CI1V;
+  if (CI1V.isStrictlyPositive()) {
+    if (Delta == 2) {
+      if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT)
+        return getFalse(ITy);
+      if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW)
+        return getFalse(ITy);
+    }
+    if (Delta == 1) {
+      if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT)
+        return getFalse(ITy);
+      if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW)
+        return getFalse(ITy);
+    }
+  }
+  if (CI1V.getBoolValue() && isNUW) {
+    if (Delta == 2)
+      if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)
+        return getFalse(ITy);
+    if (Delta == 1)
+      if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT)
+        return getFalse(ITy);
+  }
+
+  return nullptr;
+}
+
 /// SimplifyAndInst - Given operands for an And, see if we can
 /// fold the result.  If not, this returns null.
 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const Query &Q,
@@ -1407,12 +1588,21 @@ static Value *SimplifyAndInst(Value *Op0, Value *Op1, const Query &Q,
   // A & (-A) = A if A is a power of two or zero.
   if (match(Op0, m_Neg(m_Specific(Op1))) ||
       match(Op1, m_Neg(m_Specific(Op0)))) {
-    if (isKnownToBeAPowerOfTwo(Op0, /*OrZero*/true))
+    if (isKnownToBeAPowerOfTwo(Op0, /*OrZero*/true, 0, Q.AT, Q.CxtI, Q.DT))
       return Op0;
-    if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/true))
+    if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/true, 0, Q.AT, Q.CxtI, Q.DT))
       return Op1;
   }
 
+  if (auto *ICILHS = dyn_cast<ICmpInst>(Op0)) {
+    if (auto *ICIRHS = dyn_cast<ICmpInst>(Op1)) {
+      if (Value *V = SimplifyAndOfICmps(ICILHS, ICIRHS))
+        return V;
+      if (Value *V = SimplifyAndOfICmps(ICIRHS, ICILHS))
+        return V;
+    }
+  }
+
   // Try some generic simplifications for associative operations.
   if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q,
                                           MaxRecurse))
@@ -1447,8 +1637,62 @@ static Value *SimplifyAndInst(Value *Op0, Value *Op1, const Query &Q,
 
 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const DataLayout *DL,
                              const TargetLibraryInfo *TLI,
-                             const DominatorTree *DT) {
-  return ::SimplifyAndInst(Op0, Op1, Query (DL, TLI, DT), RecursionLimit);
+                             const DominatorTree *DT, AssumptionTracker *AT,
+                             const Instruction *CxtI) {
+  return ::SimplifyAndInst(Op0, Op1, Query (DL, TLI, DT, AT, CxtI),
+                           RecursionLimit);
+}
+
+// Simplify (or (icmp ...) (icmp ...)) to true when we can tell that the union
+// contains all possible values.
+static Value *SimplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1) {
+  ICmpInst::Predicate Pred0, Pred1;
+  ConstantInt *CI1, *CI2;
+  Value *V;
+
+  if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false))
+    return X;
+
+  if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_ConstantInt(CI1)),
+                         m_ConstantInt(CI2))))
+   return nullptr;
+
+  if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Specific(CI1))))
+    return nullptr;
+
+  Type *ITy = Op0->getType();
+
+  auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0));
+  bool isNSW = AddInst->hasNoSignedWrap();
+  bool isNUW = AddInst->hasNoUnsignedWrap();
+
+  const APInt &CI1V = CI1->getValue();
+  const APInt &CI2V = CI2->getValue();
+  const APInt Delta = CI2V - CI1V;
+  if (CI1V.isStrictlyPositive()) {
+    if (Delta == 2) {
+      if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE)
+        return getTrue(ITy);
+      if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW)
+        return getTrue(ITy);
+    }
+    if (Delta == 1) {
+      if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE)
+        return getTrue(ITy);
+      if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW)
+        return getTrue(ITy);
+    }
+  }
+  if (CI1V.getBoolValue() && isNUW) {
+    if (Delta == 2)
+      if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE)
+        return getTrue(ITy);
+    if (Delta == 1)
+      if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE)
+        return getTrue(ITy);
+  }
+
+  return nullptr;
 }
 
 /// SimplifyOrInst - Given operands for an Or, see if we can
@@ -1508,6 +1752,15 @@ static Value *SimplifyOrInst(Value *Op0, Value *Op1, const Query &Q,
       (A == Op0 || B == Op0))
     return Constant::getAllOnesValue(Op0->getType());
 
+  if (auto *ICILHS = dyn_cast<ICmpInst>(Op0)) {
+    if (auto *ICIRHS = dyn_cast<ICmpInst>(Op1)) {
+      if (Value *V = SimplifyOrOfICmps(ICILHS, ICIRHS))
+        return V;
+      if (Value *V = SimplifyOrOfICmps(ICIRHS, ICILHS))
+        return V;
+    }
+  }
+
   // Try some generic simplifications for associative operations.
   if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q,
                                           MaxRecurse))
@@ -1540,18 +1793,22 @@ static Value *SimplifyOrInst(Value *Op0, Value *Op1, const Query &Q,
       if ((C2->getValue() & (C2->getValue() + 1)) == 0 && // C2 == 0+1+
           match(A, m_Add(m_Value(V1), m_Value(V2)))) {
         // Add commutes, try both ways.
-        if (V1 == B && MaskedValueIsZero(V2, C2->getValue()))
+        if (V1 == B && MaskedValueIsZero(V2, C2->getValue(), Q.DL,
+                                         0, Q.AT, Q.CxtI, Q.DT))
           return A;
-        if (V2 == B && MaskedValueIsZero(V1, C2->getValue()))
+        if (V2 == B && MaskedValueIsZero(V1, C2->getValue(), Q.DL,
+                                         0, Q.AT, Q.CxtI, Q.DT))
           return A;
       }
       // Or commutes, try both ways.
       if ((C1->getValue() & (C1->getValue() + 1)) == 0 &&
           match(B, m_Add(m_Value(V1), m_Value(V2)))) {
         // Add commutes, try both ways.
-        if (V1 == A && MaskedValueIsZero(V2, C1->getValue()))
+        if (V1 == A && MaskedValueIsZero(V2, C1->getValue(), Q.DL,
+                                         0, Q.AT, Q.CxtI, Q.DT))
           return B;
-        if (V2 == A && MaskedValueIsZero(V1, C1->getValue()))
+        if (V2 == A && MaskedValueIsZero(V1, C1->getValue(), Q.DL,
+                                         0, Q.AT, Q.CxtI, Q.DT))
           return B;
       }
     }
@@ -1568,8 +1825,10 @@ static Value *SimplifyOrInst(Value *Op0, Value *Op1, const Query &Q,
 
 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const DataLayout *DL,
                             const TargetLibraryInfo *TLI,
-                            const DominatorTree *DT) {
-  return ::SimplifyOrInst(Op0, Op1, Query (DL, TLI, DT), RecursionLimit);
+                            const DominatorTree *DT, AssumptionTracker *AT,
+                            const Instruction *CxtI) {
+  return ::SimplifyOrInst(Op0, Op1, Query (DL, TLI, DT, AT, CxtI),
+                          RecursionLimit);
 }
 
 /// SimplifyXorInst - Given operands for a Xor, see if we can
@@ -1623,8 +1882,10 @@ static Value *SimplifyXorInst(Value *Op0, Value *Op1, const Query &Q,
 
 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const DataLayout *DL,
                              const TargetLibraryInfo *TLI,
-                             const DominatorTree *DT) {
-  return ::SimplifyXorInst(Op0, Op1, Query (DL, TLI, DT), RecursionLimit);
+                             const DominatorTree *DT, AssumptionTracker *AT,
+                             const Instruction *CxtI) {
+  return ::SimplifyXorInst(Op0, Op1, Query (DL, TLI, DT, AT, CxtI),
+                           RecursionLimit);
 }
 
 static Type *GetCompareTy(Value *Op) {
@@ -1799,6 +2060,50 @@ static Constant *computePointerICmp(const DataLayout *DL,
       return ConstantExpr::getICmp(Pred,
                                    ConstantExpr::getAdd(LHSOffset, LHSNoBound),
                                    ConstantExpr::getAdd(RHSOffset, RHSNoBound));
+
+    // If one side of the equality comparison must come from a noalias call
+    // (meaning a system memory allocation function), and the other side must
+    // come from a pointer that cannot overlap with dynamically-allocated
+    // memory within the lifetime of the current function (allocas, byval
+    // arguments, globals), then determine the comparison result here.
+    SmallVector<Value *, 8> LHSUObjs, RHSUObjs;
+    GetUnderlyingObjects(LHS, LHSUObjs, DL);
+    GetUnderlyingObjects(RHS, RHSUObjs, DL);
+
+    // Is the set of underlying objects all noalias calls?
+    auto IsNAC = [](SmallVectorImpl<Value *> &Objects) {
+      return std::all_of(Objects.begin(), Objects.end(),
+                         [](Value *V){ return isNoAliasCall(V); });
+    };
+
+    // Is the set of underlying objects all things which must be disjoint from
+    // noalias calls. For allocas, we consider only static ones (dynamic
+    // allocas might be transformed into calls to malloc not simultaneously
+    // live with the compared-to allocation). For globals, we exclude symbols
+    // that might be resolve lazily to symbols in another dynamically-loaded
+    // library (and, thus, could be malloc'ed by the implementation).
+    auto IsAllocDisjoint = [](SmallVectorImpl<Value *> &Objects) {
+      return std::all_of(Objects.begin(), Objects.end(),
+                         [](Value *V){
+                           if (const AllocaInst *AI = dyn_cast<AllocaInst>(V))
+                             return AI->getParent() && AI->getParent()->getParent() &&
+                                    AI->isStaticAlloca();
+                           if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
+                             return (GV->hasLocalLinkage() ||
+                                     GV->hasHiddenVisibility() ||
+                                     GV->hasProtectedVisibility() ||
+                                     GV->hasUnnamedAddr()) &&
+                                    !GV->isThreadLocal();
+                           if (const Argument *A = dyn_cast<Argument>(V))
+                             return A->hasByValAttr();
+                           return false;
+                         });
+    };
+
+    if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) ||
+        (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs)))
+        return ConstantInt::get(GetCompareTy(LHS),
+                                !CmpInst::isTrueWhenEqual(Pred));
   }
 
   // Otherwise, fail.
@@ -1878,40 +2183,46 @@ static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
       return getTrue(ITy);
     case ICmpInst::ICMP_EQ:
     case ICmpInst::ICMP_ULE:
-      if (isKnownNonZero(LHS, Q.DL))
+      if (isKnownNonZero(LHS, Q.DL, 0, Q.AT, Q.CxtI, Q.DT))
         return getFalse(ITy);
       break;
     case ICmpInst::ICMP_NE:
     case ICmpInst::ICMP_UGT:
-      if (isKnownNonZero(LHS, Q.DL))
+      if (isKnownNonZero(LHS, Q.DL, 0, Q.AT, Q.CxtI, Q.DT))
         return getTrue(ITy);
       break;
     case ICmpInst::ICMP_SLT:
-      ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL);
+      ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL,
+                     0, Q.AT, Q.CxtI, Q.DT);
       if (LHSKnownNegative)
         return getTrue(ITy);
       if (LHSKnownNonNegative)
         return getFalse(ITy);
       break;
     case ICmpInst::ICMP_SLE:
-      ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL);
+      ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL,
+                     0, Q.AT, Q.CxtI, Q.DT);
       if (LHSKnownNegative)
         return getTrue(ITy);
-      if (LHSKnownNonNegative && isKnownNonZero(LHS, Q.DL))
+      if (LHSKnownNonNegative && isKnownNonZero(LHS, Q.DL,
+                                                0, Q.AT, Q.CxtI, Q.DT))
         return getFalse(ITy);
       break;
     case ICmpInst::ICMP_SGE:
-      ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL);
+      ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL,
+                     0, Q.AT, Q.CxtI, Q.DT);
       if (LHSKnownNegative)
         return getFalse(ITy);
       if (LHSKnownNonNegative)
         return getTrue(ITy);
       break;
     case ICmpInst::ICMP_SGT:
-      ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL);
+      ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL,
+                     0, Q.AT, Q.CxtI, Q.DT);
       if (LHSKnownNegative)
         return getFalse(ITy);
-      if (LHSKnownNonNegative && isKnownNonZero(LHS, Q.DL))
+      if (LHSKnownNonNegative && isKnownNonZero(LHS, Q.DL, 
+                                                0, Q.AT, Q.CxtI, Q.DT))
         return getTrue(ITy);
       break;
     }
@@ -1958,22 +2269,40 @@ static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
         Lower = (-Upper) + 1;
       }
     } else if (match(LHS, m_SDiv(m_Value(), m_ConstantInt(CI2)))) {
-      // 'sdiv x, CI2' produces [INT_MIN / CI2, INT_MAX / CI2].
       APInt IntMin = APInt::getSignedMinValue(Width);
       APInt IntMax = APInt::getSignedMaxValue(Width);
-      APInt Val = CI2->getValue().abs();
-      if (!Val.isMinValue()) {
+      APInt Val = CI2->getValue();
+      if (Val.isAllOnesValue()) {
+        // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX]
+        //    where CI2 != -1 and CI2 != 0 and CI2 != 1
+        Lower = IntMin + 1;
+        Upper = IntMax + 1;
+      } else if (Val.countLeadingZeros() < Width - 1) {
+        // 'sdiv x, CI2' produces [INT_MIN / CI2, INT_MAX / CI2]
+        //    where CI2 != -1 and CI2 != 0 and CI2 != 1
         Lower = IntMin.sdiv(Val);
-        APInt Rem;
-        APInt::sdivrem(IntMax, Val, Upper, Rem);
-        // We may need to round the result of the INT_MAX / CI2 calculation up
-        // if we see that the division was not exact.
-        if (Rem.isMinValue())
-          Upper = Upper + 1;
-        else
-          Upper = Upper + 2;
+        Upper = IntMax.sdiv(Val);
+        if (Lower.sgt(Upper))
+          std::swap(Lower, Upper);
+        Upper = Upper + 1;
         assert(Upper != Lower && "Upper part of range has wrapped!");
       }
+    } else if (match(LHS, m_NUWShl(m_ConstantInt(CI2), m_Value()))) {
+      // 'shl nuw CI2, x' produces [CI2, CI2 << CLZ(CI2)]
+      Lower = CI2->getValue();
+      Upper = Lower.shl(Lower.countLeadingZeros()) + 1;
+    } else if (match(LHS, m_NSWShl(m_ConstantInt(CI2), m_Value()))) {
+      if (CI2->isNegative()) {
+        // 'shl nsw CI2, x' produces [CI2 << CLO(CI2)-1, CI2]
+        unsigned ShiftAmount = CI2->getValue().countLeadingOnes() - 1;
+        Lower = CI2->getValue().shl(ShiftAmount);
+        Upper = CI2->getValue() + 1;
+      } else {
+        // 'shl nsw CI2, x' produces [CI2, CI2 << CLZ(CI2)-1]
+        unsigned ShiftAmount = CI2->getValue().countLeadingZeros() - 1;
+        Lower = CI2->getValue();
+        Upper = CI2->getValue().shl(ShiftAmount) + 1;
+      }
     } else if (match(LHS, m_LShr(m_Value(), m_ConstantInt(CI2)))) {
       // 'lshr x, CI2' produces [0, UINT_MAX >> CI2].
       APInt NegOne = APInt::getAllOnesValue(Width);
@@ -2182,25 +2511,6 @@ static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
     }
   }
 
-  // If a bit is known to be zero for A and known to be one for B,
-  // then A and B cannot be equal.
-  if (ICmpInst::isEquality(Pred)) {
-    if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
-      uint32_t BitWidth = CI->getBitWidth();
-      APInt LHSKnownZero(BitWidth, 0);
-      APInt LHSKnownOne(BitWidth, 0);
-      computeKnownBits(LHS, LHSKnownZero, LHSKnownOne);
-      APInt RHSKnownZero(BitWidth, 0);
-      APInt RHSKnownOne(BitWidth, 0);
-      computeKnownBits(RHS, RHSKnownZero, RHSKnownOne);
-      if (((LHSKnownOne & RHSKnownZero) != 0) ||
-          ((LHSKnownZero & RHSKnownOne) != 0))
-        return (Pred == ICmpInst::ICMP_EQ)
-                   ? ConstantInt::getFalse(CI->getContext())
-                   : ConstantInt::getTrue(CI->getContext());
-    }
-  }
-
   // Special logic for binary operators.
   BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS);
   BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS);
@@ -2264,6 +2574,40 @@ static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
     }
   }
 
+  // icmp pred (or X, Y), X
+  if (LBO && match(LBO, m_CombineOr(m_Or(m_Value(), m_Specific(RHS)),
+                                    m_Or(m_Specific(RHS), m_Value())))) {
+    if (Pred == ICmpInst::ICMP_ULT)
+      return getFalse(ITy);
+    if (Pred == ICmpInst::ICMP_UGE)
+      return getTrue(ITy);
+  }
+  // icmp pred X, (or X, Y)
+  if (RBO && match(RBO, m_CombineOr(m_Or(m_Value(), m_Specific(LHS)),
+                                    m_Or(m_Specific(LHS), m_Value())))) {
+    if (Pred == ICmpInst::ICMP_ULE)
+      return getTrue(ITy);
+    if (Pred == ICmpInst::ICMP_UGT)
+      return getFalse(ITy);
+  }
+
+  // icmp pred (and X, Y), X
+  if (LBO && match(LBO, m_CombineOr(m_And(m_Value(), m_Specific(RHS)),
+                                    m_And(m_Specific(RHS), m_Value())))) {
+    if (Pred == ICmpInst::ICMP_UGT)
+      return getFalse(ITy);
+    if (Pred == ICmpInst::ICMP_ULE)
+      return getTrue(ITy);
+  }
+  // icmp pred X, (and X, Y)
+  if (RBO && match(RBO, m_CombineOr(m_And(m_Value(), m_Specific(LHS)),
+                                    m_And(m_Specific(LHS), m_Value())))) {
+    if (Pred == ICmpInst::ICMP_UGE)
+      return getTrue(ITy);
+    if (Pred == ICmpInst::ICMP_ULT)
+      return getFalse(ITy);
+  }
+
   // 0 - (zext X) pred C
   if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) {
     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
@@ -2294,7 +2638,8 @@ static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
       break;
     case ICmpInst::ICMP_SGT:
     case ICmpInst::ICMP_SGE:
-      ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.DL);
+      ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.DL,
+                     0, Q.AT, Q.CxtI, Q.DT);
       if (!KnownNonNegative)
         break;
       // fall-through
@@ -2304,7 +2649,8 @@ static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
       return getFalse(ITy);
     case ICmpInst::ICMP_SLT:
     case ICmpInst::ICMP_SLE:
-      ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.DL);
+      ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.DL,
+                     0, Q.AT, Q.CxtI, Q.DT);
       if (!KnownNonNegative)
         break;
       // fall-through
@@ -2323,7 +2669,8 @@ static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
       break;
     case ICmpInst::ICMP_SGT:
     case ICmpInst::ICMP_SGE:
-      ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.DL);
+      ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.DL,
+                     0, Q.AT, Q.CxtI, Q.DT);
       if (!KnownNonNegative)
         break;
       // fall-through
@@ -2333,7 +2680,8 @@ static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
       return getTrue(ITy);
     case ICmpInst::ICMP_SLT:
     case ICmpInst::ICMP_SLE:
-      ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.DL);
+      ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.DL,
+                     0, Q.AT, Q.CxtI, Q.DT);
       if (!KnownNonNegative)
         break;
       // fall-through
@@ -2353,6 +2701,41 @@ static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
       return getTrue(ITy);
   }
 
+  // handle:
+  //   CI2 << X == CI
+  //   CI2 << X != CI
+  //
+  //   where CI2 is a power of 2 and CI isn't
+  if (auto *CI = dyn_cast<ConstantInt>(RHS)) {
+    const APInt *CI2Val, *CIVal = &CI->getValue();
+    if (LBO && match(LBO, m_Shl(m_APInt(CI2Val), m_Value())) &&
+        CI2Val->isPowerOf2()) {
+      if (!CIVal->isPowerOf2()) {
+        // CI2 << X can equal zero in some circumstances,
+        // this simplification is unsafe if CI is zero.
+        //
+        // We know it is safe if:
+        // - The shift is nsw, we can't shift out the one bit.
+        // - The shift is nuw, we can't shift out the one bit.
+        // - CI2 is one
+        // - CI isn't zero
+        if (LBO->hasNoSignedWrap() || LBO->hasNoUnsignedWrap() ||
+            *CI2Val == 1 || !CI->isZero()) {
+          if (Pred == ICmpInst::ICMP_EQ)
+            return ConstantInt::getFalse(RHS->getContext());
+          if (Pred == ICmpInst::ICMP_NE)
+            return ConstantInt::getTrue(RHS->getContext());
+        }
+      }
+      if (CIVal->isSignBit() && *CI2Val == 1) {
+        if (Pred == ICmpInst::ICMP_UGT)
+          return ConstantInt::getFalse(RHS->getContext());
+        if (Pred == ICmpInst::ICMP_ULE)
+          return ConstantInt::getTrue(RHS->getContext());
+      }
+    }
+  }
+
   if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() &&
       LBO->getOperand(1) == RBO->getOperand(1)) {
     switch (LBO->getOpcode()) {
@@ -2600,6 +2983,23 @@ static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
     }
   }
 
+  // If a bit is known to be zero for A and known to be one for B,
+  // then A and B cannot be equal.
+  if (ICmpInst::isEquality(Pred)) {
+    if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
+      uint32_t BitWidth = CI->getBitWidth();
+      APInt LHSKnownZero(BitWidth, 0);
+      APInt LHSKnownOne(BitWidth, 0);
+      computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, Q.DL, /*Depth=*/0, Q.AT,
+                       Q.CxtI, Q.DT);
+      const APInt &RHSVal = CI->getValue();
+      if (((LHSKnownZero & RHSVal) != 0) || ((LHSKnownOne & ~RHSVal) != 0))
+        return Pred == ICmpInst::ICMP_EQ
+                   ? ConstantInt::getFalse(CI->getContext())
+                   : ConstantInt::getTrue(CI->getContext());
+    }
+  }
+
   // If the comparison is with the result of a select instruction, check whether
   // comparing with either branch of the select always yields the same value.
   if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
@@ -2618,8 +3018,10 @@ static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
                               const DataLayout *DL,
                               const TargetLibraryInfo *TLI,
-                              const DominatorTree *DT) {
-  return ::SimplifyICmpInst(Predicate, LHS, RHS, Query (DL, TLI, DT),
+                              const DominatorTree *DT,
+                              AssumptionTracker *AT,
+                              Instruction *CxtI) {
+  return ::SimplifyICmpInst(Predicate, LHS, RHS, Query (DL, TLI, DT, AT, CxtI),
                             RecursionLimit);
 }
 
@@ -2715,8 +3117,10 @@ static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
                               const DataLayout *DL,
                               const TargetLibraryInfo *TLI,
-                              const DominatorTree *DT) {
-  return ::SimplifyFCmpInst(Predicate, LHS, RHS, Query (DL, TLI, DT),
+                              const DominatorTree *DT,
+                              AssumptionTracker *AT,
+                              const Instruction *CxtI) {
+  return ::SimplifyFCmpInst(Predicate, LHS, RHS, Query (DL, TLI, DT, AT, CxtI),
                             RecursionLimit);
 }
 
@@ -2748,15 +3152,87 @@ static Value *SimplifySelectInst(Value *CondVal, Value *TrueVal,
   if (isa<UndefValue>(FalseVal))   // select C, X, undef -> X
     return TrueVal;
 
+  if (const auto *ICI = dyn_cast<ICmpInst>(CondVal)) {
+    Value *X;
+    const APInt *Y;
+    ICmpInst::Predicate Pred = ICI->getPredicate();
+    if (ICmpInst::isEquality(Pred) &&
+        match(ICI->getOperand(0), m_And(m_Value(X), m_APInt(Y))) &&
+        match(ICI->getOperand(1), m_Zero())) {
+      const APInt *C;
+      // (X & Y) == 0 ? X & ~Y : X  --> X
+      // (X & Y) != 0 ? X & ~Y : X  --> X & ~Y
+      if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) &&
+          *Y == ~*C)
+        return Pred == ICmpInst::ICMP_EQ ? FalseVal : TrueVal;
+      // (X & Y) == 0 ? X : X & ~Y  --> X & ~Y
+      // (X & Y) != 0 ? X : X & ~Y  --> X
+      if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) &&
+          *Y == ~*C)
+        return Pred == ICmpInst::ICMP_EQ ? FalseVal : TrueVal;
+
+      if (Y->isPowerOf2()) {
+        // (X & Y) == 0 ? X | Y : X  --> X | Y
+        // (X & Y) != 0 ? X | Y : X  --> X
+        if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) &&
+            *Y == *C)
+          return Pred == ICmpInst::ICMP_EQ ? TrueVal : FalseVal;
+        // (X & Y) == 0 ? X : X | Y  --> X
+        // (X & Y) != 0 ? X : X | Y  --> X | Y
+        if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) &&
+            *Y == *C)
+          return Pred == ICmpInst::ICMP_EQ ? TrueVal : FalseVal;
+      }
+    }
+    if (Pred == ICmpInst::ICMP_SLT && match(ICI->getOperand(1), m_Zero())) {
+      // (X < 0) ? X : X | SignBit  --> X | SignBit
+      if (TrueVal == ICI->getOperand(0) &&
+          match(FalseVal, m_Or(m_Specific(TrueVal), m_SignBit())))
+        return FalseVal;
+      // (X < 0) ? X | SignBit : X  --> X
+      if (FalseVal == ICI->getOperand(0) &&
+          match(TrueVal, m_Or(m_Specific(FalseVal), m_SignBit())))
+        return FalseVal;
+      // (X < 0) ? X & INT_MAX : X  --> X & INT_MAX
+      if (FalseVal == ICI->getOperand(0) &&
+          match(TrueVal, m_And(m_Specific(FalseVal), m_MaxSignedValue())))
+        return TrueVal;
+      // (X < 0) ? X : X & INT_MAX  --> X
+      if (TrueVal == ICI->getOperand(0) &&
+          match(FalseVal, m_And(m_Specific(TrueVal), m_MaxSignedValue())))
+        return TrueVal;
+    }
+    if (Pred == ICmpInst::ICMP_SGT && match(ICI->getOperand(1), m_AllOnes())) {
+      // (X > -1) ? X : X | SignBit  --> X
+      if (TrueVal == ICI->getOperand(0) &&
+          match(FalseVal, m_Or(m_Specific(TrueVal), m_SignBit())))
+        return TrueVal;
+      // (X > -1) ? X | SignBit : X  --> X | SignBit
+      if (FalseVal == ICI->getOperand(0) &&
+          match(TrueVal, m_Or(m_Specific(FalseVal), m_SignBit())))
+        return TrueVal;
+      // (X > -1) ? X & INT_MAX : X  --> X
+      if (FalseVal == ICI->getOperand(0) &&
+          match(TrueVal, m_And(m_Specific(FalseVal), m_MaxSignedValue())))
+        return FalseVal;
+      // (X > -1) ? X : X & INT_MAX  --> X & INT_MAX
+      if (TrueVal == ICI->getOperand(0) &&
+          match(FalseVal, m_And(m_Specific(TrueVal), m_MaxSignedValue())))
+        return FalseVal;
+    }
+  }
+
   return nullptr;
 }
 
 Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
                                 const DataLayout *DL,
                                 const TargetLibraryInfo *TLI,
-                                const DominatorTree *DT) {
-  return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Query (DL, TLI, DT),
-                              RecursionLimit);
+                                const DominatorTree *DT,
+                                AssumptionTracker *AT,
+                                const Instruction *CxtI) {
+  return ::SimplifySelectInst(Cond, TrueVal, FalseVal,
+                              Query (DL, TLI, DT, AT, CxtI), RecursionLimit);
 }
 
 /// SimplifyGEPInst - Given operands for an GetElementPtrInst, see if we can
@@ -2764,29 +3240,72 @@ Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
 static Value *SimplifyGEPInst(ArrayRef<Value *> Ops, const Query &Q, unsigned) {
   // The type of the GEP pointer operand.
   PointerType *PtrTy = cast<PointerType>(Ops[0]->getType()->getScalarType());
+  unsigned AS = PtrTy->getAddressSpace();
 
   // getelementptr P -> P.
   if (Ops.size() == 1)
     return Ops[0];
 
-  if (isa<UndefValue>(Ops[0])) {
-    // Compute the (pointer) type returned by the GEP instruction.
-    Type *LastType = GetElementPtrInst::getIndexedType(PtrTy, Ops.slice(1));
-    Type *GEPTy = PointerType::get(LastType, PtrTy->getAddressSpace());
-    if (VectorType *VT = dyn_cast<VectorType>(Ops[0]->getType()))
-      GEPTy = VectorType::get(GEPTy, VT->getNumElements());
+  // Compute the (pointer) type returned by the GEP instruction.
+  Type *LastType = GetElementPtrInst::getIndexedType(PtrTy, Ops.slice(1));
+  Type *GEPTy = PointerType::get(LastType, AS);
+  if (VectorType *VT = dyn_cast<VectorType>(Ops[0]->getType()))
+    GEPTy = VectorType::get(GEPTy, VT->getNumElements());
+
+  if (isa<UndefValue>(Ops[0]))
     return UndefValue::get(GEPTy);
-  }
 
   if (Ops.size() == 2) {
     // getelementptr P, 0 -> P.
     if (match(Ops[1], m_Zero()))
       return Ops[0];
-    // getelementptr P, N -> P if P points to a type of zero size.
-    if (Q.DL) {
-      Type *Ty = PtrTy->getElementType();
-      if (Ty->isSized() && Q.DL->getTypeAllocSize(Ty) == 0)
+
+    Type *Ty = PtrTy->getElementType();
+    if (Q.DL && Ty->isSized()) {
+      Value *P;
+      uint64_t C;
+      uint64_t TyAllocSize = Q.DL->getTypeAllocSize(Ty);
+      // getelementptr P, N -> P if P points to a type of zero size.
+      if (TyAllocSize == 0)
         return Ops[0];
+
+      // The following transforms are only safe if the ptrtoint cast
+      // doesn't truncate the pointers.
+      if (Ops[1]->getType()->getScalarSizeInBits() ==
+          Q.DL->getPointerSizeInBits(AS)) {
+        auto PtrToIntOrZero = [GEPTy](Value *P) -> Value * {
+          if (match(P, m_Zero()))
+            return Constant::getNullValue(GEPTy);
+          Value *Temp;
+          if (match(P, m_PtrToInt(m_Value(Temp))))
+            if (Temp->getType() == GEPTy)
+              return Temp;
+          return nullptr;
+        };
+
+        // getelementptr V, (sub P, V) -> P if P points to a type of size 1.
+        if (TyAllocSize == 1 &&
+            match(Ops[1], m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0])))))
+          if (Value *R = PtrToIntOrZero(P))
+            return R;
+
+        // getelementptr V, (ashr (sub P, V), C) -> Q
+        // if P points to a type of size 1 << C.
+        if (match(Ops[1],
+                  m_AShr(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))),
+                         m_ConstantInt(C))) &&
+            TyAllocSize == 1ULL << C)
+          if (Value *R = PtrToIntOrZero(P))
+            return R;
+
+        // getelementptr V, (sdiv (sub P, V), C) -> Q
+        // if P points to a type of size C.
+        if (match(Ops[1],
+                  m_SDiv(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))),
+                         m_SpecificInt(TyAllocSize))))
+          if (Value *R = PtrToIntOrZero(P))
+            return R;
+      }
     }
   }
 
@@ -2800,8 +3319,9 @@ static Value *SimplifyGEPInst(ArrayRef<Value *> Ops, const Query &Q, unsigned) {
 
 Value *llvm::SimplifyGEPInst(ArrayRef<Value *> Ops, const DataLayout *DL,
                              const TargetLibraryInfo *TLI,
-                             const DominatorTree *DT) {
-  return ::SimplifyGEPInst(Ops, Query (DL, TLI, DT), RecursionLimit);
+                             const DominatorTree *DT, AssumptionTracker *AT,
+                             const Instruction *CxtI) {
+  return ::SimplifyGEPInst(Ops, Query (DL, TLI, DT, AT, CxtI), RecursionLimit);
 }
 
 /// SimplifyInsertValueInst - Given operands for an InsertValueInst, see if we
@@ -2837,8 +3357,11 @@ Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val,
                                      ArrayRef<unsigned> Idxs,
                                      const DataLayout *DL,
                                      const TargetLibraryInfo *TLI,
-                                     const DominatorTree *DT) {
-  return ::SimplifyInsertValueInst(Agg, Val, Idxs, Query (DL, TLI, DT),
+                                     const DominatorTree *DT,
+                                     AssumptionTracker *AT,
+                                     const Instruction *CxtI) {
+  return ::SimplifyInsertValueInst(Agg, Val, Idxs,
+                                   Query (DL, TLI, DT, AT, CxtI),
                                    RecursionLimit);
 }
 
@@ -2885,8 +3408,11 @@ static Value *SimplifyTruncInst(Value *Op, Type *Ty, const Query &Q, unsigned) {
 
 Value *llvm::SimplifyTruncInst(Value *Op, Type *Ty, const DataLayout *DL,
                                const TargetLibraryInfo *TLI,
-                               const DominatorTree *DT) {
-  return ::SimplifyTruncInst(Op, Ty, Query (DL, TLI, DT), RecursionLimit);
+                               const DominatorTree *DT,
+                               AssumptionTracker *AT,
+                               const Instruction *CxtI) {
+  return ::SimplifyTruncInst(Op, Ty, Query (DL, TLI, DT, AT, CxtI),
+                             RecursionLimit);
 }
 
 //=== Helper functions for higher up the class hierarchy.
@@ -2958,8 +3484,10 @@ static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
 
 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
                            const DataLayout *DL, const TargetLibraryInfo *TLI,
-                           const DominatorTree *DT) {
-  return ::SimplifyBinOp(Opcode, LHS, RHS, Query (DL, TLI, DT), RecursionLimit);
+                           const DominatorTree *DT, AssumptionTracker *AT,
+                           const Instruction *CxtI) {
+  return ::SimplifyBinOp(Opcode, LHS, RHS, Query (DL, TLI, DT, AT, CxtI),
+                         RecursionLimit);
 }
 
 /// SimplifyCmpInst - Given operands for a CmpInst, see if we can
@@ -2973,8 +3501,9 @@ static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
 
 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
                              const DataLayout *DL, const TargetLibraryInfo *TLI,
-                             const DominatorTree *DT) {
-  return ::SimplifyCmpInst(Predicate, LHS, RHS, Query (DL, TLI, DT),
+                             const DominatorTree *DT, AssumptionTracker *AT,
+                             const Instruction *CxtI) {
+  return ::SimplifyCmpInst(Predicate, LHS, RHS, Query (DL, TLI, DT, AT, CxtI),
                            RecursionLimit);
 }
 
@@ -3049,23 +3578,26 @@ static Value *SimplifyCall(Value *V, IterTy ArgBegin, IterTy ArgEnd,
 Value *llvm::SimplifyCall(Value *V, User::op_iterator ArgBegin,
                           User::op_iterator ArgEnd, const DataLayout *DL,
                           const TargetLibraryInfo *TLI,
-                          const DominatorTree *DT) {
-  return ::SimplifyCall(V, ArgBegin, ArgEnd, Query(DL, TLI, DT),
+                          const DominatorTree *DT, AssumptionTracker *AT,
+                          const Instruction *CxtI) {
+  return ::SimplifyCall(V, ArgBegin, ArgEnd, Query(DL, TLI, DT, AT, CxtI),
                         RecursionLimit);
 }
 
 Value *llvm::SimplifyCall(Value *V, ArrayRef<Value *> Args,
                           const DataLayout *DL, const TargetLibraryInfo *TLI,
-                          const DominatorTree *DT) {
-  return ::SimplifyCall(V, Args.begin(), Args.end(), Query(DL, TLI, DT),
-                        RecursionLimit);
+                          const DominatorTree *DT, AssumptionTracker *AT,
+                          const Instruction *CxtI) {
+  return ::SimplifyCall(V, Args.begin(), Args.end(),
+                        Query(DL, TLI, DT, AT, CxtI), RecursionLimit);
 }
 
 /// SimplifyInstruction - See if we can compute a simplified version of this
 /// instruction.  If not, this returns null.
 Value *llvm::SimplifyInstruction(Instruction *I, const DataLayout *DL,
                                  const TargetLibraryInfo *TLI,
-                                 const DominatorTree *DT) {
+                                 const DominatorTree *DT,
+                                 AssumptionTracker *AT) {
   Value *Result;
 
   switch (I->getOpcode()) {
@@ -3074,109 +3606,122 @@ Value *llvm::SimplifyInstruction(Instruction *I, const DataLayout *DL,
     break;
   case Instruction::FAdd:
     Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1),
-                              I->getFastMathFlags(), DL, TLI, DT);
+                              I->getFastMathFlags(), DL, TLI, DT, AT, I);
     break;
   case Instruction::Add:
     Result = SimplifyAddInst(I->getOperand(0), I->getOperand(1),
                              cast<BinaryOperator>(I)->hasNoSignedWrap(),
                              cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
-                             DL, TLI, DT);
+                             DL, TLI, DT, AT, I);
     break;
   case Instruction::FSub:
     Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1),
-                              I->getFastMathFlags(), DL, TLI, DT);
+                              I->getFastMathFlags(), DL, TLI, DT, AT, I);
     break;
   case Instruction::Sub:
     Result = SimplifySubInst(I->getOperand(0), I->getOperand(1),
                              cast<BinaryOperator>(I)->hasNoSignedWrap(),
                              cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
-                             DL, TLI, DT);
+                             DL, TLI, DT, AT, I);
     break;
   case Instruction::FMul:
     Result = SimplifyFMulInst(I->getOperand(0), I->getOperand(1),
-                              I->getFastMathFlags(), DL, TLI, DT);
+                              I->getFastMathFlags(), DL, TLI, DT, AT, I);
     break;
   case Instruction::Mul:
-    Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT);
+    Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1),
+                             DL, TLI, DT, AT, I);
     break;
   case Instruction::SDiv:
-    Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT);
+    Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1),
+                              DL, TLI, DT, AT, I);
     break;
   case Instruction::UDiv:
-    Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT);
+    Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1),
+                              DL, TLI, DT, AT, I);
     break;
   case Instruction::FDiv:
-    Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT);
+    Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1),
+                              DL, TLI, DT, AT, I);
     break;
   case Instruction::SRem:
-    Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT);
+    Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1),
+                              DL, TLI, DT, AT, I);
     break;
   case Instruction::URem:
-    Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT);
+    Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1),
+                              DL, TLI, DT, AT, I);
     break;
   case Instruction::FRem:
-    Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT);
+    Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1),
+                              DL, TLI, DT, AT, I);
     break;
   case Instruction::Shl:
     Result = SimplifyShlInst(I->getOperand(0), I->getOperand(1),
                              cast<BinaryOperator>(I)->hasNoSignedWrap(),
                              cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
-                             DL, TLI, DT);
+                             DL, TLI, DT, AT, I);
     break;
   case Instruction::LShr:
     Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1),
                               cast<BinaryOperator>(I)->isExact(),
-                              DL, TLI, DT);
+                              DL, TLI, DT, AT, I);
     break;
   case Instruction::AShr:
     Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1),
                               cast<BinaryOperator>(I)->isExact(),
-                              DL, TLI, DT);
+                              DL, TLI, DT, AT, I);
     break;
   case Instruction::And:
-    Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT);
+    Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1),
+                             DL, TLI, DT, AT, I);
     break;
   case Instruction::Or:
-    Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT);
+    Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT,
+                            AT, I);
     break;
   case Instruction::Xor:
-    Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT);
+    Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1),
+                             DL, TLI, DT, AT, I);
     break;
   case Instruction::ICmp:
     Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(),
-                              I->getOperand(0), I->getOperand(1), DL, TLI, DT);
+                              I->getOperand(0), I->getOperand(1),
+                              DL, TLI, DT, AT, I);
     break;
   case Instruction::FCmp:
     Result = SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(),
-                              I->getOperand(0), I->getOperand(1), DL, TLI, DT);
+                              I->getOperand(0), I->getOperand(1),
+                              DL, TLI, DT, AT, I);
     break;
   case Instruction::Select:
     Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1),
-                                I->getOperand(2), DL, TLI, DT);
+                                I->getOperand(2), DL, TLI, DT, AT, I);
     break;
   case Instruction::GetElementPtr: {
     SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
-    Result = SimplifyGEPInst(Ops, DL, TLI, DT);
+    Result = SimplifyGEPInst(Ops, DL, TLI, DT, AT, I);
     break;
   }
   case Instruction::InsertValue: {
     InsertValueInst *IV = cast<InsertValueInst>(I);
     Result = SimplifyInsertValueInst(IV->getAggregateOperand(),
                                      IV->getInsertedValueOperand(),
-                                     IV->getIndices(), DL, TLI, DT);
+                                     IV->getIndices(), DL, TLI, DT, AT, I);
     break;
   }
   case Instruction::PHI:
-    Result = SimplifyPHINode(cast<PHINode>(I), Query (DL, TLI, DT));
+    Result = SimplifyPHINode(cast<PHINode>(I), Query (DL, TLI, DT, AT, I));
     break;
   case Instruction::Call: {
     CallSite CS(cast<CallInst>(I));
     Result = SimplifyCall(CS.getCalledValue(), CS.arg_begin(), CS.arg_end(),
-                          DL, TLI, DT);
+                          DL, TLI, DT, AT, I);
     break;
   }
   case Instruction::Trunc:
-    Result = SimplifyTruncInst(I->getOperand(0), I->getType(), DL, TLI, DT);
+    Result = SimplifyTruncInst(I->getOperand(0), I->getType(), DL, TLI, DT,
+                               AT, I);
     break;
   }
 
@@ -3200,7 +3745,8 @@ Value *llvm::SimplifyInstruction(Instruction *I, const DataLayout *DL,
 static bool replaceAndRecursivelySimplifyImpl(Instruction *I, Value *SimpleV,
                                               const DataLayout *DL,
                                               const TargetLibraryInfo *TLI,
-                                              const DominatorTree *DT) {
+                                              const DominatorTree *DT,
+                                              AssumptionTracker *AT) {
   bool Simplified = false;
   SmallSetVector<Instruction *, 8> Worklist;
 
@@ -3227,7 +3773,7 @@ static bool replaceAndRecursivelySimplifyImpl(Instruction *I, Value *SimpleV,
     I = Worklist[Idx];
 
     // See if this instruction simplifies.
-    SimpleV = SimplifyInstruction(I, DL, TLI, DT);
+    SimpleV = SimplifyInstruction(I, DL, TLI, DT, AT);
     if (!SimpleV)
       continue;
 
@@ -3253,15 +3799,17 @@ static bool replaceAndRecursivelySimplifyImpl(Instruction *I, Value *SimpleV,
 bool llvm::recursivelySimplifyInstruction(Instruction *I,
                                           const DataLayout *DL,
                                           const TargetLibraryInfo *TLI,
-                                          const DominatorTree *DT) {
-  return replaceAndRecursivelySimplifyImpl(I, nullptr, DL, TLI, DT);
+                                          const DominatorTree *DT,
+                                          AssumptionTracker *AT) {
+  return replaceAndRecursivelySimplifyImpl(I, nullptr, DL, TLI, DT, AT);
 }
 
 bool llvm::replaceAndRecursivelySimplify(Instruction *I, Value *SimpleV,
                                          const DataLayout *DL,
                                          const TargetLibraryInfo *TLI,
-                                         const DominatorTree *DT) {
+                                         const DominatorTree *DT,
+                                         AssumptionTracker *AT) {
   assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!");
   assert(SimpleV && "Must provide a simplified value.");
-  return replaceAndRecursivelySimplifyImpl(I, SimpleV, DL, TLI, DT);
+  return replaceAndRecursivelySimplifyImpl(I, SimpleV, DL, TLI, DT, AT);
 }