Teach BasicAA::getModRefInfo(CallSite, CallSite) some
[oota-llvm.git] / lib / Analysis / BasicAliasAnalysis.cpp
index 8f7fcbf67a8ec2a22fcc17b9ef2730f6bd23f886..944d0e0d375669b205f0d67fc56b24bda1ef9fe8 100644 (file)
@@ -18,7 +18,6 @@
 #include "llvm/Constants.h"
 #include "llvm/DerivedTypes.h"
 #include "llvm/Function.h"
-#include "llvm/ParameterAttributes.h"
 #include "llvm/GlobalVariable.h"
 #include "llvm/Instructions.h"
 #include "llvm/IntrinsicInst.h"
 #include <algorithm>
 using namespace llvm;
 
+//===----------------------------------------------------------------------===//
+// Useful predicates
+//===----------------------------------------------------------------------===//
+
+// Determine if an AllocationInst instruction escapes from the function it is
+// contained in. If it does not escape, there is no way for another function to
+// mod/ref it.  We do this by looking at its uses and determining if the uses
+// can escape (recursively).
+static bool AddressMightEscape(const Value *V) {
+  for (Value::use_const_iterator UI = V->use_begin(), E = V->use_end();
+       UI != E; ++UI) {
+    const Instruction *I = cast<Instruction>(*UI);
+    switch (I->getOpcode()) {
+    case Instruction::Load: 
+      break; //next use.
+    case Instruction::Store:
+      if (I->getOperand(0) == V)
+        return true; // Escapes if the pointer is stored.
+      break; // next use.
+    case Instruction::GetElementPtr:
+      if (AddressMightEscape(I))
+        return true;
+      break; // next use.
+    case Instruction::BitCast:
+      if (AddressMightEscape(I))
+        return true;
+      break; // next use
+    case Instruction::Ret:
+      // If returned, the address will escape to calling functions, but no
+      // callees could modify it.
+      break; // next use
+    case Instruction::Call:
+      // If the call is to a few known safe intrinsics, we know that it does
+      // not escape.
+      // TODO: Eventually just check the 'nocapture' attribute.
+      if (!isa<MemIntrinsic>(I))
+        return true;
+      break;  // next use
+    default:
+      return true;
+    }
+  }
+  return false;
+}
+
+static const User *isGEP(const Value *V) {
+  if (isa<GetElementPtrInst>(V) ||
+      (isa<ConstantExpr>(V) &&
+       cast<ConstantExpr>(V)->getOpcode() == Instruction::GetElementPtr))
+    return cast<User>(V);
+  return 0;
+}
+
+static const Value *GetGEPOperands(const Value *V, 
+                                   SmallVector<Value*, 16> &GEPOps){
+  assert(GEPOps.empty() && "Expect empty list to populate!");
+  GEPOps.insert(GEPOps.end(), cast<User>(V)->op_begin()+1,
+                cast<User>(V)->op_end());
+
+  // Accumulate all of the chained indexes into the operand array
+  V = cast<User>(V)->getOperand(0);
+
+  while (const User *G = isGEP(V)) {
+    if (!isa<Constant>(GEPOps[0]) || isa<GlobalValue>(GEPOps[0]) ||
+        !cast<Constant>(GEPOps[0])->isNullValue())
+      break;  // Don't handle folding arbitrary pointer offsets yet...
+    GEPOps.erase(GEPOps.begin());   // Drop the zero index
+    GEPOps.insert(GEPOps.begin(), G->op_begin()+1, G->op_end());
+    V = G->getOperand(0);
+  }
+  return V;
+}
+
+/// isNoAliasCall - Return true if this pointer is returned by a noalias
+/// function.
+static bool isNoAliasCall(const Value *V) {
+  if (isa<CallInst>(V) || isa<InvokeInst>(V))
+    return CallSite(const_cast<Instruction*>(cast<Instruction>(V)))
+      .paramHasAttr(0, Attribute::NoAlias);
+  return false;
+}
+
+/// isIdentifiedObject - Return true if this pointer refers to a distinct and
+/// identifiable object.  This returns true for:
+///    Global Variables and Functions
+///    Allocas and Mallocs
+///    ByVal and NoAlias Arguments
+///    NoAlias returns
+///
+static bool isIdentifiedObject(const Value *V) {
+  if (isa<GlobalValue>(V) || isa<AllocationInst>(V) || isNoAliasCall(V))
+    return true;
+  if (const Argument *A = dyn_cast<Argument>(V))
+    return A->hasNoAliasAttr() || A->hasByValAttr();
+  return false;
+}
+
+/// isKnownNonNull - Return true if we know that the specified value is never
+/// null.
+static bool isKnownNonNull(const Value *V) {
+  // Alloca never returns null, malloc might.
+  if (isa<AllocaInst>(V)) return true;
+  
+  // A byval argument is never null.
+  if (const Argument *A = dyn_cast<Argument>(V))
+    return A->hasByValAttr();
+
+  // Global values are not null unless extern weak.
+  if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
+    return !GV->hasExternalWeakLinkage();
+  return false;
+}
+
+/// isNonEscapingLocalObject - Return true if the pointer is to a function-local
+/// object that never escapes from the function.
+static bool isNonEscapingLocalObject(const Value *V) {
+  // If this is a local allocation, check to see if it escapes.
+  if (isa<AllocationInst>(V) || isNoAliasCall(V))
+    return !AddressMightEscape(V);
+      
+  // If this is an argument that corresponds to a byval or noalias argument,
+  // it can't escape either.
+  if (const Argument *A = dyn_cast<Argument>(V))
+    if (A->hasByValAttr() || A->hasNoAliasAttr())
+      return !AddressMightEscape(V);
+  return false;
+}
+
+
+/// isObjectSmallerThan - Return true if we can prove that the object specified
+/// by V is smaller than Size.
+static bool isObjectSmallerThan(const Value *V, unsigned Size,
+                                const TargetData &TD) {
+  const Type *AccessTy;
+  if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
+    AccessTy = GV->getType()->getElementType();
+  } else if (const AllocationInst *AI = dyn_cast<AllocationInst>(V)) {
+    if (!AI->isArrayAllocation())
+      AccessTy = AI->getType()->getElementType();
+    else
+      return false;
+  } else if (const Argument *A = dyn_cast<Argument>(V)) {
+    if (A->hasByValAttr())
+      AccessTy = cast<PointerType>(A->getType())->getElementType();
+    else
+      return false;
+  } else {
+    return false;
+  }
+  
+  if (AccessTy->isSized())
+    return TD.getABITypeSize(AccessTy) < Size;
+  return false;
+}
+
+//===----------------------------------------------------------------------===//
+// NoAA Pass
+//===----------------------------------------------------------------------===//
+
 namespace {
   /// NoAA - This class implements the -no-aa pass, which always returns "I
   /// don't know" for alias queries.  NoAA is unlike other alias analysis
@@ -40,8 +198,8 @@ namespace {
   ///
   struct VISIBILITY_HIDDEN NoAA : public ImmutablePass, public AliasAnalysis {
     static char ID; // Class identification, replacement for typeinfo
-    NoAA() : ImmutablePass((intptr_t)&ID) {}
-    explicit NoAA(intptr_t PID) : ImmutablePass(PID) { }
+    NoAA() : ImmutablePass(&ID) {}
+    explicit NoAA(void *PID) : ImmutablePass(PID) { }
 
     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
       AU.addRequired<TargetData>();
@@ -91,21 +249,23 @@ static RegisterAnalysisGroup<AliasAnalysis> V(U);
 
 ImmutablePass *llvm::createNoAAPass() { return new NoAA(); }
 
+//===----------------------------------------------------------------------===//
+// BasicAA Pass
+//===----------------------------------------------------------------------===//
+
 namespace {
   /// BasicAliasAnalysis - This is the default alias analysis implementation.
   /// Because it doesn't chain to a previous alias analysis (like -no-aa), it
   /// derives from the NoAA class.
   struct VISIBILITY_HIDDEN BasicAliasAnalysis : public NoAA {
     static char ID; // Class identification, replacement for typeinfo
-    BasicAliasAnalysis() : NoAA((intptr_t)&ID) { }
+    BasicAliasAnalysis() : NoAA(&ID) {}
     AliasResult alias(const Value *V1, unsigned V1Size,
                       const Value *V2, unsigned V2Size);
 
     ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size);
-    ModRefResult getModRefInfo(CallSite CS1, CallSite CS2) {
-      return NoAA::getModRefInfo(CS1,CS2);
-    }
-
+    ModRefResult getModRefInfo(CallSite CS1, CallSite CS2);
+    
     /// hasNoModRefInfoForCalls - We can provide mod/ref information against
     /// non-escaping allocations.
     virtual bool hasNoModRefInfoForCalls() const { return false; }
@@ -138,107 +298,16 @@ ImmutablePass *llvm::createBasicAliasAnalysisPass() {
   return new BasicAliasAnalysis();
 }
 
-/// getUnderlyingObject - This traverses the use chain to figure out what object
-/// the specified value points to.  If the value points to, or is derived from,
-/// a unique object or an argument, return it.  This returns:
-///    Arguments, GlobalVariables, Functions, Allocas, Mallocs.
-static const Value *getUnderlyingObject(const Value *V) {
-  if (!isa<PointerType>(V->getType())) return V;
-
-  // If we are at some type of object, return it. GlobalValues and Allocations
-  // have unique addresses. 
-  if (isa<GlobalValue>(V) || isa<AllocationInst>(V) || isa<Argument>(V))
-    return V;
-
-  // Traverse through different addressing mechanisms...
-  if (const Instruction *I = dyn_cast<Instruction>(V)) {
-    if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I))
-      return getUnderlyingObject(I->getOperand(0));
-  } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
-    if (CE->getOpcode() == Instruction::BitCast || 
-        CE->getOpcode() == Instruction::GetElementPtr)
-      return getUnderlyingObject(CE->getOperand(0));
-  }
-  return V;
-}
-
-static const User *isGEP(const Value *V) {
-  if (isa<GetElementPtrInst>(V) ||
-      (isa<ConstantExpr>(V) &&
-       cast<ConstantExpr>(V)->getOpcode() == Instruction::GetElementPtr))
-    return cast<User>(V);
-  return 0;
-}
-
-static const Value *GetGEPOperands(const Value *V, 
-                                   SmallVector<Value*, 16> &GEPOps){
-  assert(GEPOps.empty() && "Expect empty list to populate!");
-  GEPOps.insert(GEPOps.end(), cast<User>(V)->op_begin()+1,
-                cast<User>(V)->op_end());
-
-  // Accumulate all of the chained indexes into the operand array
-  V = cast<User>(V)->getOperand(0);
-
-  while (const User *G = isGEP(V)) {
-    if (!isa<Constant>(GEPOps[0]) || isa<GlobalValue>(GEPOps[0]) ||
-        !cast<Constant>(GEPOps[0])->isNullValue())
-      break;  // Don't handle folding arbitrary pointer offsets yet...
-    GEPOps.erase(GEPOps.begin());   // Drop the zero index
-    GEPOps.insert(GEPOps.begin(), G->op_begin()+1, G->op_end());
-    V = G->getOperand(0);
-  }
-  return V;
-}
 
 /// pointsToConstantMemory - Chase pointers until we find a (constant
 /// global) or not.
 bool BasicAliasAnalysis::pointsToConstantMemory(const Value *P) {
   if (const GlobalVariable *GV = 
-        dyn_cast<GlobalVariable>(getUnderlyingObject(P)))
+        dyn_cast<GlobalVariable>(P->getUnderlyingObject()))
     return GV->isConstant();
   return false;
 }
 
-// Determine if an AllocationInst instruction escapes from the function it is
-// contained in. If it does not escape, there is no way for another function to
-// mod/ref it.  We do this by looking at its uses and determining if the uses
-// can escape (recursively).
-static bool AddressMightEscape(const Value *V) {
-  for (Value::use_const_iterator UI = V->use_begin(), E = V->use_end();
-       UI != E; ++UI) {
-    const Instruction *I = cast<Instruction>(*UI);
-    switch (I->getOpcode()) {
-    case Instruction::Load: 
-      break; //next use.
-    case Instruction::Store:
-      if (I->getOperand(0) == V)
-        return true; // Escapes if the pointer is stored.
-      break; // next use.
-    case Instruction::GetElementPtr:
-      if (AddressMightEscape(I))
-        return true;
-      break; // next use.
-    case Instruction::BitCast:
-      if (AddressMightEscape(I))
-        return true;
-      break; // next use
-    case Instruction::Ret:
-      // If returned, the address will escape to calling functions, but no
-      // callees could modify it.
-      break; // next use
-    case Instruction::Call:
-      // If the call is to a few known safe intrinsics, we know that it does
-      // not escape
-      if (!isa<MemIntrinsic>(I))
-        return true;
-      break;  // next use
-    default:
-      return true;
-    }
-  }
-  return false;
-}
-
 // getModRefInfo - Check to see if the specified callsite can clobber the
 // specified memory object.  Since we only look at local properties of this
 // function, we really can't say much about this query.  We do, however, use
@@ -247,7 +316,7 @@ static bool AddressMightEscape(const Value *V) {
 AliasAnalysis::ModRefResult
 BasicAliasAnalysis::getModRefInfo(CallSite CS, Value *P, unsigned Size) {
   if (!isa<Constant>(P)) {
-    const Value *Object = getUnderlyingObject(P);
+    const Value *Object = P->getUnderlyingObject();
     
     // If this is a tail call and P points to a stack location, we know that
     // the tail call cannot access or modify the local stack.
@@ -259,27 +328,20 @@ BasicAliasAnalysis::getModRefInfo(CallSite CS, Value *P, unsigned Size) {
         if (CI->isTailCall())
           return NoModRef;
     
-    // Allocations and byval arguments are "new" objects.
-    if (isa<AllocationInst>(Object) || isa<Argument>(Object)) {
-      // Okay, the pointer is to a stack allocated (or effectively so, for 
-      // for noalias parameters) object.  If the address of this object doesn't
-      // escape from this function body to a callee, then we know that no
-      // callees can mod/ref it unless they are actually passed it.
-      if (isa<AllocationInst>(Object) ||
-          cast<Argument>(Object)->hasByValAttr() ||
-          cast<Argument>(Object)->hasNoAliasAttr())
-        if (!AddressMightEscape(Object)) {
-          bool passedAsArg = false;
-          for (CallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end();
-              CI != CE; ++CI)
-            if (isa<PointerType>((*CI)->getType()) &&
-                (getUnderlyingObject(*CI) == P ||
-                 alias(cast<Value>(CI), ~0U, P, ~0U) != NoAlias))
-              passedAsArg = true;
-          
-          if (!passedAsArg)
-            return NoModRef;
-        }
+    // If the pointer is to a locally allocated object that does not escape,
+    // then the call can not mod/ref the pointer unless the call takes the
+    // argument without capturing it.
+    if (isNonEscapingLocalObject(Object)) {
+      bool passedAsArg = false;
+      // TODO: Eventually only check 'nocapture' arguments.
+      for (CallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end();
+           CI != CE; ++CI)
+        if (isa<PointerType>((*CI)->getType()) &&
+            alias(cast<Value>(CI), ~0U, P, ~0U) != NoAlias)
+          passedAsArg = true;
+      
+      if (!passedAsArg)
+        return NoModRef;
     }
   }
 
@@ -287,73 +349,25 @@ BasicAliasAnalysis::getModRefInfo(CallSite CS, Value *P, unsigned Size) {
   return AliasAnalysis::getModRefInfo(CS, P, Size);
 }
 
-/// isIdentifiedObject - Return true if this pointer refers to a distinct and
-/// identifiable object.  This returns true for:
-///    Global Variables and Functions
-///    Allocas and Mallocs
-///    ByVal and NoAlias Arguments
-///
-static bool isIdentifiedObject(const Value *V) {
-  if (isa<GlobalValue>(V) || isa<AllocationInst>(V))
-    return true;
-  if (const Argument *A = dyn_cast<Argument>(V))
-    return A->hasNoAliasAttr() || A->hasByValAttr();
-  return false;
-}
 
-/// isKnownNonNull - Return true if we know that the specified value is never
-/// null.
-static bool isKnownNonNull(const Value *V) {
-  // Alloca never returns null, malloc might.
-  if (isa<AllocaInst>(V)) return true;
+AliasAnalysis::ModRefResult 
+BasicAliasAnalysis::getModRefInfo(CallSite CS1, CallSite CS2) {
+  // If CS1 or CS2 are readnone, they don't interact.
+  ModRefBehavior CS1B = AliasAnalysis::getModRefBehavior(CS1);
+  if (CS1B == DoesNotAccessMemory) return NoModRef;
   
-  // A byval argument is never null.
-  if (const Argument *A = dyn_cast<Argument>(V))
-    return A->hasByValAttr();
-
-  // Global values are not null unless extern weak.
-  if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
-    return !GV->hasExternalWeakLinkage();
-  return false;
-}
-
-/// isNonEscapingLocalObject - Return true if the pointer is to a function-local
-/// object that never escapes from the function.
-static bool isNonEscapingLocalObject(const Value *V) {
-  // If this is a local allocation, check to see if it escapes.
-  if (isa<AllocationInst>(V))
-    return !AddressMightEscape(V);
-      
-  // If this is an argument that corresponds to a byval or noalias argument,
-  // it can't escape either.
-  if (const Argument *A = dyn_cast<Argument>(V))
-    if (A->hasByValAttr() || A->hasNoAliasAttr())
-      return !AddressMightEscape(V);
-  return false;
-}
-
-
-/// isObjectSmallerThan - Return true if we can prove that the object specified
-/// by V is smaller than Size.
-static bool isObjectSmallerThan(const Value *V, unsigned Size,
-                                const TargetData &TD) {
-  const Type *AccessTy = 0;
-  if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
-    AccessTy = GV->getType()->getElementType();
+  ModRefBehavior CS2B = AliasAnalysis::getModRefBehavior(CS2);
+  if (CS2B == DoesNotAccessMemory) return NoModRef;
   
-  if (const AllocationInst *AI = dyn_cast<AllocationInst>(V))
-    if (!AI->isArrayAllocation())
-      AccessTy = AI->getType()->getElementType();
-
-  if (const Argument *A = dyn_cast<Argument>(V))
-    if (A->hasByValAttr())
-      AccessTy = cast<PointerType>(A->getType())->getElementType();
+  // If they both only read from memory, just return ref.
+  if (CS1B == OnlyReadsMemory && CS2B == OnlyReadsMemory)
+    return Ref;
   
-  if (AccessTy && AccessTy->isSized())
-    return TD.getABITypeSize(AccessTy) < Size;
-  return false;
+  // Otherwise, fall back to NoAA (mod+ref).
+  return NoAA::getModRefInfo(CS1, CS2);
 }
 
+
 // alias - Provide a bunch of ad-hoc rules to disambiguate in common cases, such
 // as array references.  Note that this function is heavily tail recursive.
 // Hopefully we have a smart C++ compiler.  :)
@@ -372,8 +386,7 @@ BasicAliasAnalysis::alias(const Value *V1, unsigned V1Size,
   // Are we checking for alias of the same value?
   if (V1 == V2) return MustAlias;
 
-  if ((!isa<PointerType>(V1->getType()) || !isa<PointerType>(V2->getType())) &&
-      V1->getType() != Type::Int64Ty && V2->getType() != Type::Int64Ty)
+  if (!isa<PointerType>(V1->getType()) || !isa<PointerType>(V2->getType()))
     return NoAlias;  // Scalars cannot alias each other
 
   // Strip off cast instructions...
@@ -383,19 +396,19 @@ BasicAliasAnalysis::alias(const Value *V1, unsigned V1Size,
     return alias(V1, V1Size, I->getOperand(0), V2Size);
 
   // Figure out what objects these things are pointing to if we can...
-  const Value *O1 = getUnderlyingObject(V1);
-  const Value *O2 = getUnderlyingObject(V2);
+  const Value *O1 = V1->getUnderlyingObject();
+  const Value *O2 = V2->getUnderlyingObject();
 
   if (O1 != O2) {
     // If V1/V2 point to two different objects we know that we have no alias.
     if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
       return NoAlias;
   
-    // Incoming argument cannot alias locally allocated object!
-    if ((isa<Argument>(O1) && isa<AllocationInst>(O2)) ||
-        (isa<Argument>(O2) && isa<AllocationInst>(O1)))
+    // Arguments can't alias with local allocations or noalias calls.
+    if ((isa<Argument>(O1) && (isa<AllocationInst>(O2) || isNoAliasCall(O2))) ||
+        (isa<Argument>(O2) && (isa<AllocationInst>(O1) || isNoAliasCall(O1))))
       return NoAlias;
-    
+
     // Most objects can't alias null.
     if ((isa<ConstantPointerNull>(V2) && isKnownNonNull(O1)) ||
         (isa<ConstantPointerNull>(V1) && isKnownNonNull(O2)))
@@ -533,7 +546,7 @@ BasicAliasAnalysis::alias(const Value *V1, unsigned V1Size,
   return MayAlias;
 }
 
-// This function is used to determin if the indices of two GEP instructions are
+// This function is used to determine if the indices of two GEP instructions are
 // equal. V1 and V2 are the indices.
 static bool IndexOperandsEqual(Value *V1, Value *V2) {
   if (V1->getType() == V2->getType())