Let += and -= operators in BranchProbability have saturation behaviors.
[oota-llvm.git] / include / llvm / Support / BranchProbability.h
index 80da81b559721b6b3abcc8612767684d890a76a2..1ca94ca3196fc50b372e10712a6404eac853cdf1 100644 (file)
 #define LLVM_SUPPORT_BRANCHPROBABILITY_H
 
 #include "llvm/Support/DataTypes.h"
+#include <algorithm>
+#include <cassert>
+#include <climits>
+#include <numeric>
 
 namespace llvm {
 
 class raw_ostream;
 
-// This class represents Branch Probability as a non-negative fraction.
+// This class represents Branch Probability as a non-negative fraction that is
+// no greater than 1. It uses a fixed-point-like implementation, in which the
+// denominator is always a constant value (here we use 1<<31 for maximum
+// precision).
 class BranchProbability {
-
   // Numerator
   uint32_t N;
 
-  // Denominator
-  uint32_t D;
+  // Denominator, which is a constant value.
+  static const uint32_t D = 1u << 31;
+  static const uint32_t UnknownN = UINT32_MAX;
+
+  // Construct a BranchProbability with only numerator assuming the denominator
+  // is 1<<31. For internal use only.
+  explicit BranchProbability(uint32_t n) : N(n) {}
 
 public:
-  BranchProbability(uint32_t n, uint32_t d);
+  BranchProbability() : N(0) {}
+  BranchProbability(uint32_t Numerator, uint32_t Denominator);
+
+  bool isZero() const { return N == 0; }
+  bool isUnknown() const { return N == UnknownN; }
+
+  static BranchProbability getZero() { return BranchProbability(0); }
+  static BranchProbability getOne() { return BranchProbability(D); }
+  static BranchProbability getUnknown() { return BranchProbability(UnknownN); }
+  // Create a BranchProbability object with the given numerator and 1<<31
+  // as denominator.
+  static BranchProbability getRaw(uint32_t N) { return BranchProbability(N); }
+
+  // Normalize given probabilties so that the sum of them becomes approximate
+  // one.
+  template <class ProbabilityIter>
+  static void normalizeProbabilities(ProbabilityIter Begin,
+                                     ProbabilityIter End);
+
+  // Normalize a list of weights by scaling them down so that the sum of them
+  // doesn't exceed UINT32_MAX.
+  template <class WeightListIter>
+  static void normalizeEdgeWeights(WeightListIter Begin, WeightListIter End);
 
   uint32_t getNumerator() const { return N; }
-  uint32_t getDenominator() const { return D; }
+  static uint32_t getDenominator() { return D; }
 
   // Return (1 - Probability).
-  BranchProbability getCompl() {
-    return BranchProbability(D - N, D);
-  }
+  BranchProbability getCompl() const { return BranchProbability(D - N); }
 
   raw_ostream &print(raw_ostream &OS) const;
 
   void dump() const;
+
+  /// \brief Scale a large integer.
+  ///
+  /// Scales \c Num.  Guarantees full precision.  Returns the floor of the
+  /// result.
+  ///
+  /// \return \c Num times \c this.
+  uint64_t scale(uint64_t Num) const;
+
+  /// \brief Scale a large integer by the inverse.
+  ///
+  /// Scales \c Num by the inverse of \c this.  Guarantees full precision.
+  /// Returns the floor of the result.
+  ///
+  /// \return \c Num divided by \c this.
+  uint64_t scaleByInverse(uint64_t Num) const;
+
+  BranchProbability &operator+=(BranchProbability RHS) {
+    // Saturate the result in case of overflow.
+    N = (uint64_t(N) + RHS.N > D) ? D : N + RHS.N;
+    return *this;
+  }
+
+  BranchProbability &operator-=(BranchProbability RHS) {
+    // Saturate the result in case of underflow.
+    N = N < RHS.N ? 0 : N - RHS.N;
+    return *this;
+  }
+
+  BranchProbability &operator*=(BranchProbability RHS) {
+    N = (static_cast<uint64_t>(N) * RHS.N + D / 2) / D;
+    return *this;
+  }
+
+  BranchProbability operator+(BranchProbability RHS) const {
+    BranchProbability Prob(*this);
+    return Prob += RHS;
+  }
+
+  BranchProbability operator-(BranchProbability RHS) const {
+    BranchProbability Prob(*this);
+    return Prob -= RHS;
+  }
+
+  BranchProbability operator*(BranchProbability RHS) const {
+    BranchProbability Prob(*this);
+    return Prob *= RHS;
+  }
+
+  bool operator==(BranchProbability RHS) const { return N == RHS.N; }
+  bool operator!=(BranchProbability RHS) const { return !(*this == RHS); }
+  bool operator<(BranchProbability RHS) const { return N < RHS.N; }
+  bool operator>(BranchProbability RHS) const { return RHS < *this; }
+  bool operator<=(BranchProbability RHS) const { return !(RHS < *this); }
+  bool operator>=(BranchProbability RHS) const { return !(*this < RHS); }
 };
 
-raw_ostream &operator<<(raw_ostream &OS, const BranchProbability &Prob);
+inline raw_ostream &operator<<(raw_ostream &OS, BranchProbability Prob) {
+  return Prob.print(OS);
+}
+
+inline BranchProbability operator/(BranchProbability LHS, uint32_t RHS) {
+  return BranchProbability::getRaw(LHS.getNumerator() / RHS);
+}
+
+template <class ProbabilityIter>
+void BranchProbability::normalizeProbabilities(ProbabilityIter Begin,
+                                               ProbabilityIter End) {
+  if (Begin == End)
+    return;
+
+  uint64_t Sum = 0;
+  for (auto I = Begin; I != End; ++I)
+    Sum += I->N;
+  assert(Sum > 0);
+  for (auto I = Begin; I != End; ++I)
+    I->N = (I->N * uint64_t(D) + Sum / 2) / Sum;
+}
+
+template <class WeightListIter>
+void BranchProbability::normalizeEdgeWeights(WeightListIter Begin,
+                                             WeightListIter End) {
+  // First we compute the sum with 64-bits of precision.
+  uint64_t Sum = std::accumulate(Begin, End, uint64_t(0));
+
+  if (Sum > UINT32_MAX) {
+    // Compute the scale necessary to cause the weights to fit, and re-sum with
+    // that scale applied.
+    assert(Sum / UINT32_MAX < UINT32_MAX &&
+           "The sum of weights exceeds UINT32_MAX^2!");
+    uint32_t Scale = Sum / UINT32_MAX + 1;
+    for (auto I = Begin; I != End; ++I)
+      *I /= Scale;
+    Sum = std::accumulate(Begin, End, uint64_t(0));
+  }
+
+  // Eliminate zero weights.
+  auto ZeroWeightNum = std::count(Begin, End, 0u);
+  if (ZeroWeightNum > 0) {
+    // If all weights are zeros, replace them by 1.
+    if (Sum == 0)
+      std::fill(Begin, End, 1u);
+    else {
+      // We are converting zeros into ones, and here we need to make sure that
+      // after this the sum won't exceed UINT32_MAX.
+      if (Sum + ZeroWeightNum > UINT32_MAX) {
+        for (auto I = Begin; I != End; ++I)
+          *I /= 2;
+        ZeroWeightNum = std::count(Begin, End, 0u);
+        Sum = std::accumulate(Begin, End, uint64_t(0));
+      }
+      // Scale up non-zero weights and turn zero weights into ones.
+      uint64_t ScalingFactor = (UINT32_MAX - ZeroWeightNum) / Sum;
+      assert(ScalingFactor >= 1);
+      if (ScalingFactor > 1)
+        for (auto I = Begin; I != End; ++I)
+          *I *= ScalingFactor;
+      std::replace(Begin, End, 0u, 1u);
+    }
+  }
+}
 
 }