Fix comment typo.
[oota-llvm.git] / docs / WritingAnLLVMBackend.html
index 8826ee7706b8d207a02ca585d5a7c4a43bcec42e..43766b510174f9fc94cc4727fb70fc35ca9f74d8 100644 (file)
@@ -2,32 +2,62 @@
                       "http://www.w3.org/TR/html4/strict.dtd">
 <html>
 <head>
-  <title>Writing an LLVM backend</title>
+  <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
+  <title>Writing an LLVM Compiler Backend</title>
   <link rel="stylesheet" href="llvm.css" type="text/css">
 </head>
 
 <body>
 
 <div class="doc_title">
-  Writing an LLVM backend
+  Writing an LLVM Compiler Backend
 </div>
 
 <ol>
   <li><a href="#intro">Introduction</a>
-  <li><a href="#backends">Writing a backend</a>
-  <ol>
-    <li><a href="#machine">Machine backends</a>
-    <ol>
-      <li><a href="#machineTOC">Outline</a></li>
-      <li><a href="#machineDetails">Implementation details</a></li>
-    </ol></li>  
-    <li><a href="#lang">Language backends</a></li>
-  </ol></li>
-  <li><a href="#related">Related reading material</a>
+  <ul>
+    <li><a href="#Audience">Audience</a></li>
+    <li><a href="#Prerequisite">Prerequisite Reading</a></li>
+    <li><a href="#Basic">Basic Steps</a></li>
+    <li><a href="#Preliminaries">Preliminaries</a></li>
+  </ul>
+  <li><a href="#TargetMachine">Target Machine</a></li>
+  <li><a href="#TargetRegistration">Target Registration</a></li>
+  <li><a href="#RegisterSet">Register Set and Register Classes</a>
+  <ul>
+    <li><a href="#RegisterDef">Defining a Register</a></li>
+    <li><a href="#RegisterClassDef">Defining a Register Class</a></li>
+    <li><a href="#implementRegister">Implement a subclass of TargetRegisterInfo</a></li>
+  </ul></li>
+  <li><a href="#InstructionSet">Instruction Set</a>
+  <ul>  
+    <li><a href="#operandMapping">Instruction Operand Mapping</a></li>
+    <li><a href="#implementInstr">Implement a subclass of TargetInstrInfo</a></li>
+    <li><a href="#branchFolding">Branch Folding and If Conversion</a></li>
+  </ul></li>
+  <li><a href="#InstructionSelector">Instruction Selector</a>
+  <ul>
+    <li><a href="#LegalizePhase">The SelectionDAG Legalize Phase</a>
+    <ul>
+      <li><a href="#promote">Promote</a></li> 
+      <li><a href="#expand">Expand</a></li> 
+      <li><a href="#custom">Custom</a></li> 
+      <li><a href="#legal">Legal</a></li>       
+    </ul></li>
+    <li><a href="#callingConventions">Calling Conventions</a></li>     
+  </ul></li>
+  <li><a href="#assemblyPrinter">Assembly Printer</a></li> 
+  <li><a href="#subtargetSupport">Subtarget Support</a></li> 
+  <li><a href="#jitSupport">JIT Support</a>
+  <ul>  
+    <li><a href="#mce">Machine Code Emitter</a></li>   
+    <li><a href="#targetJITInfo">Target JIT Info</a></li>   
+  </ul></li>
 </ol>
 
 <div class="doc_author">    
-  <p>Written by <a href="http://misha.brukman.net">Misha Brukman</a></p>
+  <p>Written by <a href="http://www.woo.com">Mason Woo</a> and
+                <a href="http://misha.brukman.net">Misha Brukman</a></p>
 </div>
 
 <!-- *********************************************************************** -->
 
 <div class="doc_text">
 
-<p>This document describes techniques for writing backends for LLVM which
-convert the LLVM representation to machine assembly code or other languages.</p>
+<p>
+This document describes techniques for writing compiler backends that convert
+the LLVM Intermediate Representation (IR) to code for a specified machine or
+other languages. Code intended for a specific machine can take the form of
+either assembly code or binary code (usable for a JIT compiler).
+</p>
+
+<p>
+The backend of LLVM features a target-independent code generator that may create
+output for several types of target CPUs &mdash; including X86, PowerPC, Alpha,
+and SPARC. The backend may also be used to generate code targeted at SPUs of the
+Cell processor or GPUs to support the execution of compute kernels.
+</p>
+
+<p>
+The document focuses on existing examples found in subdirectories
+of <tt>llvm/lib/Target</tt> in a downloaded LLVM release. In particular, this
+document focuses on the example of creating a static compiler (one that emits
+text assembly) for a SPARC target, because SPARC has fairly standard
+characteristics, such as a RISC instruction set and straightforward calling
+conventions.
+</p>
+
+</div>
+
+<div class="doc_subsection">
+  <a name="Audience">Audience</a>
+</div>  
+
+<div class="doc_text">
+
+<p>
+The audience for this document is anyone who needs to write an LLVM backend to
+generate code for a specific hardware or software target.
+</p>
+
+</div>
+
+<div class="doc_subsection">
+  <a name="Prerequisite">Prerequisite Reading</a>
+</div>  
+
+<div class="doc_text">  
+
+<p>
+These essential documents must be read before reading this document:
+</p>
+
+<ul>
+<li><i><a href="http://www.llvm.org/docs/LangRef.html">LLVM Language Reference
+    Manual</a></i> &mdash; a reference manual for the LLVM assembly language.</li>
+
+<li><i><a href="http://www.llvm.org/docs/CodeGenerator.html">The LLVM
+    Target-Independent Code Generator</a></i> &mdash; a guide to the components
+    (classes and code generation algorithms) for translating the LLVM internal
+    representation into machine code for a specified target.  Pay particular
+    attention to the descriptions of code generation stages: Instruction
+    Selection, Scheduling and Formation, SSA-based Optimization, Register
+    Allocation, Prolog/Epilog Code Insertion, Late Machine Code Optimizations,
+    and Code Emission.</li>
+
+<li><i><a href="http://www.llvm.org/docs/TableGenFundamentals.html">TableGen
+    Fundamentals</a></i> &mdash;a document that describes the TableGen
+    (<tt>tblgen</tt>) application that manages domain-specific information to
+    support LLVM code generation. TableGen processes input from a target
+    description file (<tt>.td</tt> suffix) and generates C++ code that can be
+    used for code generation.</li>
+
+<li><i><a href="http://www.llvm.org/docs/WritingAnLLVMPass.html">Writing an LLVM
+    Pass</a></i> &mdash; The assembly printer is a <tt>FunctionPass</tt>, as are
+    several SelectionDAG processing steps.</li>
+</ul>
+
+<p>
+To follow the SPARC examples in this document, have a copy of
+<i><a href="http://www.sparc.org/standards/V8.pdf">The SPARC Architecture
+Manual, Version 8</a></i> for reference. For details about the ARM instruction
+set, refer to the <i><a href="http://infocenter.arm.com/">ARM Architecture
+Reference Manual</a></i>. For more about the GNU Assembler format
+(<tt>GAS</tt>), see
+<i><a href="http://sourceware.org/binutils/docs/as/index.html">Using As</a></i>,
+especially for the assembly printer. <i>Using As</i> contains a list of target
+machine dependent features.
+</p>
+
+</div>
+
+<div class="doc_subsection">
+  <a name="Basic">Basic Steps</a>
+</div>
+
+<div class="doc_text">
+
+<p>
+To write a compiler backend for LLVM that converts the LLVM IR to code for a
+specified target (machine or other language), follow these steps:
+</p>
+
+<ul>
+<li>Create a subclass of the TargetMachine class that describes characteristics
+    of your target machine. Copy existing examples of specific TargetMachine
+    class and header files; for example, start with
+    <tt>SparcTargetMachine.cpp</tt> and <tt>SparcTargetMachine.h</tt>, but
+    change the file names for your target. Similarly, change code that
+    references "Sparc" to reference your target. </li>
+
+<li>Describe the register set of the target. Use TableGen to generate code for
+    register definition, register aliases, and register classes from a
+    target-specific <tt>RegisterInfo.td</tt> input file. You should also write
+    additional code for a subclass of the TargetRegisterInfo class that
+    represents the class register file data used for register allocation and
+    also describes the interactions between registers.</li>
+
+<li>Describe the instruction set of the target. Use TableGen to generate code
+    for target-specific instructions from target-specific versions of
+    <tt>TargetInstrFormats.td</tt> and <tt>TargetInstrInfo.td</tt>. You should
+    write additional code for a subclass of the TargetInstrInfo class to
+    represent machine instructions supported by the target machine. </li>
+
+<li>Describe the selection and conversion of the LLVM IR from a Directed Acyclic
+    Graph (DAG) representation of instructions to native target-specific
+    instructions. Use TableGen to generate code that matches patterns and
+    selects instructions based on additional information in a target-specific
+    version of <tt>TargetInstrInfo.td</tt>. Write code
+    for <tt>XXXISelDAGToDAG.cpp</tt>, where XXX identifies the specific target,
+    to perform pattern matching and DAG-to-DAG instruction selection. Also write
+    code in <tt>XXXISelLowering.cpp</tt> to replace or remove operations and
+    data types that are not supported natively in a SelectionDAG. </li>
+
+<li>Write code for an assembly printer that converts LLVM IR to a GAS format for
+    your target machine.  You should add assembly strings to the instructions
+    defined in your target-specific version of <tt>TargetInstrInfo.td</tt>. You
+    should also write code for a subclass of AsmPrinter that performs the
+    LLVM-to-assembly conversion and a trivial subclass of TargetAsmInfo.</li>
+
+<li>Optionally, add support for subtargets (i.e., variants with different
+    capabilities). You should also write code for a subclass of the
+    TargetSubtarget class, which allows you to use the <tt>-mcpu=</tt>
+    and <tt>-mattr=</tt> command-line options.</li>
+
+<li>Optionally, add JIT support and create a machine code emitter (subclass of
+    TargetJITInfo) that is used to emit binary code directly into memory. </li>
+</ul>
+
+<p>
+In the <tt>.cpp</tt> and <tt>.h</tt>. files, initially stub up these methods and
+then implement them later. Initially, you may not know which private members
+that the class will need and which components will need to be subclassed.
+</p>
+
+</div>
+
+<div class="doc_subsection">
+  <a name="Preliminaries">Preliminaries</a>
+</div>
+
+<div class="doc_text">
+
+<p>
+To actually create your compiler backend, you need to create and modify a few
+files. The absolute minimum is discussed here. But to actually use the LLVM
+target-independent code generator, you must perform the steps described in
+the <a href="http://www.llvm.org/docs/CodeGenerator.html">LLVM
+Target-Independent Code Generator</a> document.
+</p>
+
+<p>
+First, you should create a subdirectory under <tt>lib/Target</tt> to hold all
+the files related to your target. If your target is called "Dummy," create the
+directory <tt>lib/Target/Dummy</tt>.
+</p>
+
+<p>
+In this new
+directory, create a <tt>Makefile</tt>. It is easiest to copy a
+<tt>Makefile</tt> of another target and modify it. It should at least contain
+the <tt>LEVEL</tt>, <tt>LIBRARYNAME</tt> and <tt>TARGET</tt> variables, and then
+include <tt>$(LEVEL)/Makefile.common</tt>. The library can be
+named <tt>LLVMDummy</tt> (for example, see the MIPS target). Alternatively, you
+can split the library into <tt>LLVMDummyCodeGen</tt>
+and <tt>LLVMDummyAsmPrinter</tt>, the latter of which should be implemented in a
+subdirectory below <tt>lib/Target/Dummy</tt> (for example, see the PowerPC
+target).
+</p>
+
+<p>
+Note that these two naming schemes are hardcoded into <tt>llvm-config</tt>.
+Using any other naming scheme will confuse <tt>llvm-config</tt> and produce a
+lot of (seemingly unrelated) linker errors when linking <tt>llc</tt>.
+</p>
+
+<p>
+To make your target actually do something, you need to implement a subclass of
+<tt>TargetMachine</tt>. This implementation should typically be in the file
+<tt>lib/Target/DummyTargetMachine.cpp</tt>, but any file in
+the <tt>lib/Target</tt> directory will be built and should work. To use LLVM's
+target independent code generator, you should do what all current machine
+backends do: create a subclass of <tt>LLVMTargetMachine</tt>. (To create a
+target from scratch, create a subclass of <tt>TargetMachine</tt>.)
+</p>
+
+<p>
+To get LLVM to actually build and link your target, you need to add it to
+the <tt>TARGETS_TO_BUILD</tt> variable. To do this, you modify the configure
+script to know about your target when parsing the <tt>--enable-targets</tt>
+option. Search the configure script for <tt>TARGETS_TO_BUILD</tt>, add your
+target to the lists there (some creativity required), and then
+reconfigure. Alternatively, you can change <tt>autotools/configure.ac</tt> and
+regenerate configure by running <tt>./autoconf/AutoRegen.sh</tt>.
+</p>
 
 </div>
 
 <!-- *********************************************************************** -->
 <div class="doc_section">
-  <a name="backends">Writing a backend</a>
+  <a name="TargetMachine">Target Machine</a>
 </div>
 <!-- *********************************************************************** -->
 
-<!-- ======================================================================= -->
-<div class="doc_subsection">
-  <a name="machine">Machine backends</a>
+<div class="doc_text">
+
+<p>
+<tt>LLVMTargetMachine</tt> is designed as a base class for targets implemented
+with the LLVM target-independent code generator. The <tt>LLVMTargetMachine</tt>
+class should be specialized by a concrete target class that implements the
+various virtual methods. <tt>LLVMTargetMachine</tt> is defined as a subclass of
+<tt>TargetMachine</tt> in <tt>include/llvm/Target/TargetMachine.h</tt>. The
+<tt>TargetMachine</tt> class implementation (<tt>TargetMachine.cpp</tt>) also
+processes numerous command-line options.
+</p>
+
+<p>
+To create a concrete target-specific subclass of <tt>LLVMTargetMachine</tt>,
+start by copying an existing <tt>TargetMachine</tt> class and header.  You
+should name the files that you create to reflect your specific target. For
+instance, for the SPARC target, name the files <tt>SparcTargetMachine.h</tt> and
+<tt>SparcTargetMachine.cpp</tt>.
+</p>
+
+<p>
+For a target machine <tt>XXX</tt>, the implementation of
+<tt>XXXTargetMachine</tt> must have access methods to obtain objects that
+represent target components.  These methods are named <tt>get*Info</tt>, and are
+intended to obtain the instruction set (<tt>getInstrInfo</tt>), register set
+(<tt>getRegisterInfo</tt>), stack frame layout (<tt>getFrameInfo</tt>), and
+similar information. <tt>XXXTargetMachine</tt> must also implement the
+<tt>getTargetData</tt> method to access an object with target-specific data
+characteristics, such as data type size and alignment requirements.
+</p>
+
+<p>
+For instance, for the SPARC target, the header file
+<tt>SparcTargetMachine.h</tt> declares prototypes for several <tt>get*Info</tt>
+and <tt>getTargetData</tt> methods that simply return a class member.
+</p>
+
+<div class="doc_code">
+<pre>
+namespace llvm {
+
+class Module;
+
+class SparcTargetMachine : public LLVMTargetMachine {
+  const TargetData DataLayout;       // Calculates type size &amp; alignment
+  SparcSubtarget Subtarget;
+  SparcInstrInfo InstrInfo;
+  TargetFrameInfo FrameInfo;
+  
+protected:
+  virtual const TargetAsmInfo *createTargetAsmInfo() const;
+  
+public:
+  SparcTargetMachine(const Module &amp;M, const std::string &amp;FS);
+
+  virtual const SparcInstrInfo *getInstrInfo() const {return &amp;InstrInfo; }
+  virtual const TargetFrameInfo *getFrameInfo() const {return &amp;FrameInfo; }
+  virtual const TargetSubtarget *getSubtargetImpl() const{return &amp;Subtarget; }
+  virtual const TargetRegisterInfo *getRegisterInfo() const {
+    return &amp;InstrInfo.getRegisterInfo();
+  }
+  virtual const TargetData *getTargetData() const { return &amp;DataLayout; }
+  static unsigned getModuleMatchQuality(const Module &amp;M);
+
+  // Pass Pipeline Configuration
+  virtual bool addInstSelector(PassManagerBase &amp;PM, bool Fast);
+  virtual bool addPreEmitPass(PassManagerBase &amp;PM, bool Fast);
+};
+
+} // end namespace llvm
+</pre>
 </div>
-    
-<!-- _______________________________________________________________________ -->
-<div class="doc_subsubsection">
-  <a name="machineTOC">Outline</a>
+
 </div>
 
+
 <div class="doc_text">
 
-<p>In general, you want to follow the format of SPARC, X86 or PowerPC (in
-<tt>lib/Target</tt>).  SPARC is the simplest backend, and is RISC, so if
-you're working on a RISC target, it is a good one to start with.</p>
+<ul>
+<li><tt>getInstrInfo()</tt></li>
+<li><tt>getRegisterInfo()</tt></li>
+<li><tt>getFrameInfo()</tt></li>
+<li><tt>getTargetData()</tt></li>
+<li><tt>getSubtargetImpl()</tt></li>
+</ul>
 
-<p>To create a static compiler (one that emits text assembly), you need to
-implement the following:</p>
+<p>For some targets, you also need to support the following methods:</p>
 
 <ul>
-<li>Describe the register set.
-  <ul>
-  <li>Create a <a href="TableGenFundamentals.html">TableGen</a> description of
-      the register set and register classes</li>
-  <li>Implement a subclass of <tt><a
-      href="CodeGenerator.html#mregisterinfo">MRegisterInfo</a></tt></li>
-  </ul></li>
-<li>Describe the instruction set.
-  <ul>
-  <li>Create a <a href="TableGenFundamentals.html">TableGen</a> description of
-      the instruction set</li>
-  <li>Implement a subclass of <tt><a
-      href="CodeGenerator.html#targetinstrinfo">TargetInstrInfo</a></tt></li>
-  </ul></li>
-<li>Describe the target machine.
-  <ul>
-  <li>Create a <a href="TableGenFundamentals.html">TableGen</a> description of
-      the target that describes the pointer size and references the instruction
-      set</li>
-  <li>Implement a subclass of <tt><a
-      href="CodeGenerator.html#targetmachine">TargetMachine</a></tt>, which
-      configures <tt><a href="CodeGenerator.html#targetdata">TargetData</a></tt>
-      correctly</li>
-  <li>Register your new target using the <tt>RegisterTarget</tt>
-  template:<br><br>
-<div class="doc_code"><pre>
-RegisterTarget&lt;<em>MyTargetMachine</em>&gt; M("short_name", "  Target name");
-</pre></div>
-      <br>Here, <em>MyTargetMachine</em> is the name of your implemented
-      subclass of <tt><a
-      href="CodeGenerator.html#targetmachine">TargetMachine</a></tt>,
-      <em>short_name</em> is the option that will be active following
-      <tt>-march=</tt> to select a target in llc and lli, and the last string
-      is the description of your target to appear in <tt>-help</tt>
-      listing.</li>
-  </ul></li>
-<li>Implement the assembly printer for the architecture.
-  <ul>
-  <li>Define all of the assembly strings for your target, adding them to the
-      instructions in your *InstrInfo.td file.</li>
-  <li>Implement the <tt>llvm::AsmPrinter</tt> interface.</li>
-  </ul>
-</li>
-<li>Implement an instruction selector for the architecture.
-  <ul>
-  <li>The recommended method is the <a href="CodeGenerator.html#instselect">
-      pattern-matching DAG-to-DAG instruction selector</a> (for example, see
-      the PowerPC backend in PPCISelDAGtoDAG.cpp).  Parts of instruction
-      selector creation can be performed by adding patterns to the instructions
-      in your <tt>.td</tt> file.</li>
-  </ul>
-</li>
-<li>Optionally, add subtarget support.
-<ul>
-  <li>If your target has multiple subtargets (e.g. variants with different
-      capabilities), implement the <tt>llvm::TargetSubtarget</tt> interface
-      for your architecture.  This allows you to add <tt>-mcpu=</tt> and 
-      <tt>-mattr=</tt> options.</li>
-</ul>
-<li>Optionally, add JIT support.
-  <ul>
-  <li>Create a subclass of <tt><a
-      href="CodeGenerator.html#targetjitinfo">TargetJITInfo</a></tt></li>
-  <li>Create a machine code emitter that will be used to emit binary code
-      directly into memory, given <tt>MachineInstr</tt>s</li>
-  </ul>
+<li><tt>getTargetLowering()</tt></li>
+<li><tt>getJITInfo()</tt></li>
 </ul>
+
+<p>
+In addition, the <tt>XXXTargetMachine</tt> constructor should specify a
+<tt>TargetDescription</tt> string that determines the data layout for the target
+machine, including characteristics such as pointer size, alignment, and
+endianness. For example, the constructor for SparcTargetMachine contains the
+following:
+</p>
+
+<div class="doc_code">
+<pre>
+SparcTargetMachine::SparcTargetMachine(const Module &amp;M, const std::string &amp;FS)
+  : DataLayout("E-p:32:32-f128:128:128"),
+    Subtarget(M, FS), InstrInfo(Subtarget),
+    FrameInfo(TargetFrameInfo::StackGrowsDown, 8, 0) {
+}
+</pre>
 </div>
 
-<!-- _______________________________________________________________________ -->
-<div class="doc_subsubsection">
-  <a name="machineDetails">Implementation details</a>
 </div>
 
 <div class="doc_text">
 
+<p>Hyphens separate portions of the <tt>TargetDescription</tt> string.</p>
+
 <ul>
+<li>An upper-case "<tt>E</tt>" in the string indicates a big-endian target data
+    model. a lower-case "<tt>e</tt>" indicates little-endian.</li>
+
+<li>"<tt>p:</tt>" is followed by pointer information: size, ABI alignment, and
+    preferred alignment. If only two figures follow "<tt>p:</tt>", then the
+    first value is pointer size, and the second value is both ABI and preferred
+    alignment.</li>
+
+<li>Then a letter for numeric type alignment: "<tt>i</tt>", "<tt>f</tt>",
+    "<tt>v</tt>", or "<tt>a</tt>" (corresponding to integer, floating point,
+    vector, or aggregate). "<tt>i</tt>", "<tt>v</tt>", or "<tt>a</tt>" are
+    followed by ABI alignment and preferred alignment. "<tt>f</tt>" is followed
+    by three values: the first indicates the size of a long double, then ABI
+    alignment, and then ABI preferred alignment.</li>
+</ul>
+
+</div>
+
+<!-- *********************************************************************** -->
+<div class="doc_section">
+  <a name="TargetRegistration">Target Registration</a>
+</div>
+<!-- *********************************************************************** -->
 
-<li><p><b>TableGen register info description</b> - describe a class which
-will store the register's number in the binary encoding of the instruction
-(e.g., for JIT purposes).</p>
+<div class="doc_text">
+
+<p>
+You must also register your target with the <tt>TargetRegistry</tt>, which is
+what other LLVM tools use to be able to lookup and use your target at
+runtime. The <tt>TargetRegistry</tt> can be used directly, but for most targets
+there are helper templates which should take care of the work for you.</p>
 
-<p>You also need to define register classes to contain these registers, such as
-the integer register class and floating-point register class, so that you can
-allocate virtual registers to instructions from these sets, and let the
-target-independent register allocator automatically choose the actual
-architected registers.</p>
+<p>
+All targets should declare a global <tt>Target</tt> object which is used to
+represent the target during registration. Then, in the target's TargetInfo
+library, the target should define that object and use
+the <tt>RegisterTarget</tt> template to register the target. For example, the Sparc registration code looks like this:
+</p>
 
 <div class="doc_code">
 <pre>
-// class Register is defined in Target.td
-<b>class</b> <em>Target</em>Reg&lt;string name&gt; : Register&lt;name&gt; {
-  <b>let</b> Namespace = "<em>Target</em>";
+Target llvm::TheSparcTarget;
+
+extern "C" void LLVMInitializeSparcTargetInfo() { 
+  RegisterTarget&lt;Triple::sparc, /*HasJIT=*/false&gt;
+    X(TheSparcTarget, "sparc", "Sparc");
 }
+</pre>
+</div>
+
+<p>
+This allows the <tt>TargetRegistry</tt> to look up the target by name or by
+target triple. In addition, most targets will also register additional features
+which are available in separate libraries. These registration steps are
+separate, because some clients may wish to only link in some parts of the target
+-- the JIT code generator does not require the use of the assembler printer, for
+example. Here is an example of registering the Sparc assembly printer:
+</p>
 
-<b>class</b> IntReg&lt;<b>bits</b>&lt;5&gt; num, string name&gt; : <em>Target</em>Reg&lt;name&gt; {
-  <b>field</b> <b>bits</b>&lt;5&gt; Num = num;
+<div class="doc_code">
+<pre>
+extern "C" void LLVMInitializeSparcAsmPrinter() { 
+  RegisterAsmPrinter&lt;SparcAsmPrinter&gt; X(TheSparcTarget);
 }
+</pre>
+</div>
 
-<b>def</b> R0 : IntReg&lt;0, "%R0"&gt;;
-...
+<p>
+For more information, see
+"<a href="/doxygen/TargetRegistry_8h-source.html">llvm/Target/TargetRegistry.h</a>".
+</p>
+
+</div>
+
+<!-- *********************************************************************** -->
+<div class="doc_section">
+  <a name="RegisterSet">Register Set and Register Classes</a>
+</div>
+<!-- *********************************************************************** -->
+
+<div class="doc_text">
+
+<p>
+You should describe a concrete target-specific class that represents the
+register file of a target machine. This class is called <tt>XXXRegisterInfo</tt>
+(where <tt>XXX</tt> identifies the target) and represents the class register
+file data that is used for register allocation. It also describes the
+interactions between registers.
+</p>
+
+<p>
+You also need to define register classes to categorize related registers. A
+register class should be added for groups of registers that are all treated the
+same way for some instruction. Typical examples are register classes for
+integer, floating-point, or vector registers. A register allocator allows an
+instruction to use any register in a specified register class to perform the
+instruction in a similar manner. Register classes allocate virtual registers to
+instructions from these sets, and register classes let the target-independent
+register allocator automatically choose the actual registers.
+</p>
+
+<p>
+Much of the code for registers, including register definition, register aliases,
+and register classes, is generated by TableGen from <tt>XXXRegisterInfo.td</tt>
+input files and placed in <tt>XXXGenRegisterInfo.h.inc</tt> and
+<tt>XXXGenRegisterInfo.inc</tt> output files. Some of the code in the
+implementation of <tt>XXXRegisterInfo</tt> requires hand-coding.
+</p>
+
+</div>
+
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+  <a name="RegisterDef">Defining a Register</a>
+</div>
+
+<div class="doc_text">
+
+<p>
+The <tt>XXXRegisterInfo.td</tt> file typically starts with register definitions
+for a target machine. The <tt>Register</tt> class (specified
+in <tt>Target.td</tt>) is used to define an object for each register. The
+specified string <tt>n</tt> becomes the <tt>Name</tt> of the register. The
+basic <tt>Register</tt> object does not have any subregisters and does not
+specify any aliases.
+</p>
+
+<div class="doc_code">
+<pre>
+class Register&lt;string n&gt; {
+  string Namespace = "";
+  string AsmName = n;
+  string Name = n;
+  int SpillSize = 0;
+  int SpillAlignment = 0;
+  list&lt;Register&gt; Aliases = [];
+  list&lt;Register&gt; SubRegs = [];
+  list&lt;int&gt; DwarfNumbers = [];
+}
+</pre>
+</div>
+
+<p>
+For example, in the <tt>X86RegisterInfo.td</tt> file, there are register
+definitions that utilize the Register class, such as:
+</p>
+
+<div class="doc_code">
+<pre>
+def AL : Register&lt;"AL"&gt;, DwarfRegNum&lt;[0, 0, 0]&gt;;
+</pre>
+</div>
 
-// class RegisterClass is defined in Target.td
-<b>def</b> IReg : RegisterClass&lt;i64, 64, [R0, ... ]&gt;;
+<p>
+This defines the register <tt>AL</tt> and assigns it values (with
+<tt>DwarfRegNum</tt>) that are used by <tt>gcc</tt>, <tt>gdb</tt>, or a debug
+information writer (such as <tt>DwarfWriter</tt>
+in <tt>llvm/lib/CodeGen/AsmPrinter</tt>) to identify a register. For register
+<tt>AL</tt>, <tt>DwarfRegNum</tt> takes an array of 3 values representing 3
+different modes: the first element is for X86-64, the second for exception
+handling (EH) on X86-32, and the third is generic. -1 is a special Dwarf number
+that indicates the gcc number is undefined, and -2 indicates the register number
+is invalid for this mode.
+</p>
+
+<p>
+From the previously described line in the <tt>X86RegisterInfo.td</tt> file,
+TableGen generates this code in the <tt>X86GenRegisterInfo.inc</tt> file:
+</p>
+
+<div class="doc_code">
+<pre>
+static const unsigned GR8[] = { X86::AL, ... };
+
+const unsigned AL_AliasSet[] = { X86::AX, X86::EAX, X86::RAX, 0 };
+
+const TargetRegisterDesc RegisterDescriptors[] = { 
+  ...
+{ "AL", "AL", AL_AliasSet, Empty_SubRegsSet, Empty_SubRegsSet, AL_SuperRegsSet }, ...
 </pre>
 </div>
-</li>
 
-<li><p><b>TableGen instruction info description</b> - break up instructions into
-classes, usually that's already done by the manufacturer (see instruction
-manual).  Define a class for each instruction category.  Define each opcode as a
-subclass of the category, with appropriate parameters such as the fixed binary
-encoding of opcodes and extended opcodes, and map the register bits to the bits
-of the instruction which they are encoded in (for the JIT).  Also specify how
-the instruction should be printed so it can use the automatic assembly printer,
-e.g.:</p>
+<p>
+From the register info file, TableGen generates a <tt>TargetRegisterDesc</tt>
+object for each register. <tt>TargetRegisterDesc</tt> is defined in
+<tt>include/llvm/Target/TargetRegisterInfo.h</tt> with the following fields:
+</p>
+
+<div class="doc_code">
+<pre>
+struct TargetRegisterDesc {
+  const char     *AsmName;      // Assembly language name for the register
+  const char     *Name;         // Printable name for the reg (for debugging)
+  const unsigned *AliasSet;     // Register Alias Set
+  const unsigned *SubRegs;      // Sub-register set
+  const unsigned *ImmSubRegs;   // Immediate sub-register set
+  const unsigned *SuperRegs;    // Super-register set
+};</pre>
+</div>
+
+<p>
+TableGen uses the entire target description file (<tt>.td</tt>) to determine
+text names for the register (in the <tt>AsmName</tt> and <tt>Name</tt> fields of
+<tt>TargetRegisterDesc</tt>) and the relationships of other registers to the
+defined register (in the other <tt>TargetRegisterDesc</tt> fields). In this
+example, other definitions establish the registers "<tt>AX</tt>",
+"<tt>EAX</tt>", and "<tt>RAX</tt>" as aliases for one another, so TableGen
+generates a null-terminated array (<tt>AL_AliasSet</tt>) for this register alias
+set.
+</p>
+
+<p>
+The <tt>Register</tt> class is commonly used as a base class for more complex
+classes. In <tt>Target.td</tt>, the <tt>Register</tt> class is the base for the
+<tt>RegisterWithSubRegs</tt> class that is used to define registers that need to
+specify subregisters in the <tt>SubRegs</tt> list, as shown here:
+</p>
 
 <div class="doc_code">
 <pre>
-// class Instruction is defined in Target.td
-<b>class</b> Form&lt;<b>bits</b>&lt;6&gt; opcode, <b>dag</b> OL, <b>string</b> asmstr&gt; : Instruction {
-  <b>field</b> <b>bits</b>&lt;42&gt; Inst;
+class RegisterWithSubRegs&lt;string n,
+list&lt;Register&gt; subregs&gt; : Register&lt;n&gt; {
+  let SubRegs = subregs;
+}
+</pre>
+</div>
+
+<p>
+In <tt>SparcRegisterInfo.td</tt>, additional register classes are defined for
+SPARC: a Register subclass, SparcReg, and further subclasses: <tt>Ri</tt>,
+<tt>Rf</tt>, and <tt>Rd</tt>. SPARC registers are identified by 5-bit ID
+numbers, which is a feature common to these subclasses. Note the use of
+'<tt>let</tt>' expressions to override values that are initially defined in a
+superclass (such as <tt>SubRegs</tt> field in the <tt>Rd</tt> class).
+</p>
 
-  <b>let</b> Namespace = "<em>Target</em>";
-  <b>let</b> Inst{0-6} = opcode;
-  <b>let</b> OperandList = OL;
-  <b>let</b> AsmString = asmstr;
+<div class="doc_code">
+<pre>
+class SparcReg&lt;string n&gt; : Register&lt;n&gt; {
+  field bits&lt;5&gt; Num;
+  let Namespace = "SP";
+}
+// Ri - 32-bit integer registers
+class Ri&lt;bits&lt;5&gt; num, string n&gt; :
+SparcReg&lt;n&gt; {
+  let Num = num;
+}
+// Rf - 32-bit floating-point registers
+class Rf&lt;bits&lt;5&gt; num, string n&gt; :
+SparcReg&lt;n&gt; {
+  let Num = num;
 }
+// Rd - Slots in the FP register file for 64-bit
+floating-point values.
+class Rd&lt;bits&lt;5&gt; num, string n,
+list&lt;Register&gt; subregs&gt; : SparcReg&lt;n&gt; {
+  let Num = num;
+  let SubRegs = subregs;
+}
+</pre>
+</div>
+
+<p>
+In the <tt>SparcRegisterInfo.td</tt> file, there are register definitions that
+utilize these subclasses of <tt>Register</tt>, such as:
+</p>
+
+<div class="doc_code">
+<pre>
+def G0 : Ri&lt; 0, "G0"&gt;,
+DwarfRegNum&lt;[0]&gt;;
+def G1 : Ri&lt; 1, "G1"&gt;, DwarfRegNum&lt;[1]&gt;;
+...
+def F0 : Rf&lt; 0, "F0"&gt;,
+DwarfRegNum&lt;[32]&gt;;
+def F1 : Rf&lt; 1, "F1"&gt;,
+DwarfRegNum&lt;[33]&gt;;
+...
+def D0 : Rd&lt; 0, "F0", [F0, F1]&gt;,
+DwarfRegNum&lt;[32]&gt;;
+def D1 : Rd&lt; 2, "F2", [F2, F3]&gt;,
+DwarfRegNum&lt;[34]&gt;;
+</pre>
+</div>
+
+<p>
+The last two registers shown above (<tt>D0</tt> and <tt>D1</tt>) are
+double-precision floating-point registers that are aliases for pairs of
+single-precision floating-point sub-registers. In addition to aliases, the
+sub-register and super-register relationships of the defined register are in
+fields of a register's TargetRegisterDesc.
+</p>
 
-<b>def</b> ADD : Form&lt;42, (ops IReg:$rD, IReg:$rA, IReg:$rB), "add $rD, $rA, $rB"&gt;;
+</div>
+
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+  <a name="RegisterClassDef">Defining a Register Class</a>
+</div>
+
+<div class="doc_text">
+
+<p>
+The <tt>RegisterClass</tt> class (specified in <tt>Target.td</tt>) is used to
+define an object that represents a group of related registers and also defines
+the default allocation order of the registers. A target description file
+<tt>XXXRegisterInfo.td</tt> that uses <tt>Target.td</tt> can construct register
+classes using the following class:
+</p>
+
+<div class="doc_code">
+<pre>
+class RegisterClass&lt;string namespace,
+list&lt;ValueType&gt; regTypes, int alignment,
+                    list&lt;Register&gt; regList&gt; {
+  string Namespace = namespace;
+  list&lt;ValueType&gt; RegTypes = regTypes;
+  int Size = 0;  // spill size, in bits; zero lets tblgen pick the size
+  int Alignment = alignment;
+
+  // CopyCost is the cost of copying a value between two registers
+  // default value 1 means a single instruction
+  // A negative value means copying is extremely expensive or impossible
+  int CopyCost = 1;  
+  list&lt;Register&gt; MemberList = regList;
+  
+  // for register classes that are subregisters of this class
+  list&lt;RegisterClass&gt; SubRegClassList = [];  
+  
+  code MethodProtos = [{}];  // to insert arbitrary code
+  code MethodBodies = [{}];
+}
 </pre>
 </div>
-</li>
 
+<p>To define a RegisterClass, use the following 4 arguments:</p>
+
+<ul>
+<li>The first argument of the definition is the name of the namespace.</li>
+
+<li>The second argument is a list of <tt>ValueType</tt> register type values
+    that are defined in <tt>include/llvm/CodeGen/ValueTypes.td</tt>. Defined
+    values include integer types (such as <tt>i16</tt>, <tt>i32</tt>,
+    and <tt>i1</tt> for Boolean), floating-point types
+    (<tt>f32</tt>, <tt>f64</tt>), and vector types (for example, <tt>v8i16</tt>
+    for an <tt>8 x i16</tt> vector). All registers in a <tt>RegisterClass</tt>
+    must have the same <tt>ValueType</tt>, but some registers may store vector
+    data in different configurations. For example a register that can process a
+    128-bit vector may be able to handle 16 8-bit integer elements, 8 16-bit
+    integers, 4 32-bit integers, and so on. </li>
+
+<li>The third argument of the <tt>RegisterClass</tt> definition specifies the
+    alignment required of the registers when they are stored or loaded to
+    memory.</li>
+
+<li>The final argument, <tt>regList</tt>, specifies which registers are in this
+    class.  If an <tt>allocation_order_*</tt> method is not specified,
+    then <tt>regList</tt> also defines the order of allocation used by the
+    register allocator.</li>
 </ul>
 
+<p>
+In <tt>SparcRegisterInfo.td</tt>, three RegisterClass objects are defined:
+<tt>FPRegs</tt>, <tt>DFPRegs</tt>, and <tt>IntRegs</tt>. For all three register
+classes, the first argument defines the namespace with the string
+'<tt>SP</tt>'. <tt>FPRegs</tt> defines a group of 32 single-precision
+floating-point registers (<tt>F0</tt> to <tt>F31</tt>); <tt>DFPRegs</tt> defines
+a group of 16 double-precision registers
+(<tt>D0-D15</tt>). For <tt>IntRegs</tt>, the <tt>MethodProtos</tt>
+and <tt>MethodBodies</tt> methods are used by TableGen to insert the specified
+code into generated output.
+</p>
+
+<div class="doc_code">
+<pre>
+def FPRegs : RegisterClass&lt;"SP", [f32], 32,
+  [F0, F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, F11, F12, F13, F14, F15,
+   F16, F17, F18, F19, F20, F21, F22, F23, F24, F25, F26, F27, F28, F29, F30, F31]&gt;;
+
+def DFPRegs : RegisterClass&lt;"SP", [f64], 64,
+  [D0, D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, D11, D12, D13, D14, D15]&gt;;
+&nbsp;
+def IntRegs : RegisterClass&lt;"SP", [i32], 32,
+    [L0, L1, L2, L3, L4, L5, L6, L7,
+     I0, I1, I2, I3, I4, I5,
+     O0, O1, O2, O3, O4, O5, O7,
+     G1,
+     // Non-allocatable regs:
+     G2, G3, G4, 
+     O6,        // stack ptr
+    I6,        // frame ptr
+     I7,        // return address
+     G0,        // constant zero
+     G5, G6, G7 // reserved for kernel
+    ]&gt; {
+  let MethodProtos = [{
+    iterator allocation_order_end(const MachineFunction &amp;MF) const;
+  }];
+  let MethodBodies = [{
+    IntRegsClass::iterator
+    IntRegsClass::allocation_order_end(const MachineFunction &amp;MF) const {
+      return end() - 10  // Don't allocate special registers
+         -1;
+    }
+  }];
+}
+</pre>
+</div>
+
+<p>
+Using <tt>SparcRegisterInfo.td</tt> with TableGen generates several output files
+that are intended for inclusion in other source code that you write.
+<tt>SparcRegisterInfo.td</tt> generates <tt>SparcGenRegisterInfo.h.inc</tt>,
+which should be included in the header file for the implementation of the SPARC
+register implementation that you write (<tt>SparcRegisterInfo.h</tt>). In
+<tt>SparcGenRegisterInfo.h.inc</tt> a new structure is defined called
+<tt>SparcGenRegisterInfo</tt> that uses <tt>TargetRegisterInfo</tt> as its
+base. It also specifies types, based upon the defined register
+classes: <tt>DFPRegsClass</tt>, <tt>FPRegsClass</tt>, and <tt>IntRegsClass</tt>.
+</p>
+
+<p>
+<tt>SparcRegisterInfo.td</tt> also generates <tt>SparcGenRegisterInfo.inc</tt>,
+which is included at the bottom of <tt>SparcRegisterInfo.cpp</tt>, the SPARC
+register implementation. The code below shows only the generated integer
+registers and associated register classes. The order of registers
+in <tt>IntRegs</tt> reflects the order in the definition of <tt>IntRegs</tt> in
+the target description file. Take special note of the use
+of <tt>MethodBodies</tt> in <tt>SparcRegisterInfo.td</tt> to create code in
+<tt>SparcGenRegisterInfo.inc</tt>. <tt>MethodProtos</tt> generates similar code
+in <tt>SparcGenRegisterInfo.h.inc</tt>.
+</p>
+
+<div class="doc_code">
+<pre>  // IntRegs Register Class...
+  static const unsigned IntRegs[] = {
+    SP::L0, SP::L1, SP::L2, SP::L3, SP::L4, SP::L5,
+    SP::L6, SP::L7, SP::I0, SP::I1, SP::I2, SP::I3,
+    SP::I4, SP::I5, SP::O0, SP::O1, SP::O2, SP::O3,
+    SP::O4, SP::O5, SP::O7, SP::G1, SP::G2, SP::G3,
+    SP::G4, SP::O6, SP::I6, SP::I7, SP::G0, SP::G5,
+    SP::G6, SP::G7, 
+  };
+
+  // IntRegsVTs Register Class Value Types...
+  static const MVT::ValueType IntRegsVTs[] = {
+    MVT::i32, MVT::Other
+  };
+
+namespace SP {   // Register class instances
+  DFPRegsClass&nbsp;&nbsp;&nbsp; DFPRegsRegClass;
+  FPRegsClass&nbsp;&nbsp;&nbsp;&nbsp; FPRegsRegClass;
+  IntRegsClass&nbsp;&nbsp;&nbsp; IntRegsRegClass;
+...
+  // IntRegs Sub-register Classess...
+  static const TargetRegisterClass* const IntRegsSubRegClasses [] = {
+    NULL
+  };
+...
+  // IntRegs Super-register Classess...
+  static const TargetRegisterClass* const IntRegsSuperRegClasses [] = {
+    NULL
+  };
+...
+  // IntRegs Register Class sub-classes...
+  static const TargetRegisterClass* const IntRegsSubclasses [] = {
+    NULL
+  };
+...
+  // IntRegs Register Class super-classes...
+  static const TargetRegisterClass* const IntRegsSuperclasses [] = {
+    NULL
+  };
+...
+  IntRegsClass::iterator
+  IntRegsClass::allocation_order_end(const MachineFunction &amp;MF) const {
+     return end()-10  // Don't allocate special registers
+         -1;
+  }
+  
+  IntRegsClass::IntRegsClass() : TargetRegisterClass(IntRegsRegClassID, 
+    IntRegsVTs, IntRegsSubclasses, IntRegsSuperclasses, IntRegsSubRegClasses, 
+    IntRegsSuperRegClasses, 4, 4, 1, IntRegs, IntRegs + 32) {}
+}
+</pre>
+</div>
+
 </div>
 
 <!-- ======================================================================= -->
 <div class="doc_subsection">
-  <a name="lang">Language backends</a>
+  <a name="implementRegister">Implement a subclass of</a> 
+  <a href="http://www.llvm.org/docs/CodeGenerator.html#targetregisterinfo">TargetRegisterInfo</a>
 </div>
 
 <div class="doc_text">
 
-<p>For now, just take a look at <tt>lib/Target/CBackend</tt> for an example of
-how the C backend is written.</p>
+<p>
+The final step is to hand code portions of <tt>XXXRegisterInfo</tt>, which
+implements the interface described in <tt>TargetRegisterInfo.h</tt>. These
+functions return <tt>0</tt>, <tt>NULL</tt>, or <tt>false</tt>, unless
+overridden. Here is a list of functions that are overridden for the SPARC
+implementation in <tt>SparcRegisterInfo.cpp</tt>:
+</p>
+
+<ul>
+<li><tt>getCalleeSavedRegs</tt> &mdash; Returns a list of callee-saved registers
+    in the order of the desired callee-save stack frame offset.</li>
+
+<li><tt>getCalleeSavedRegClasses</tt> &mdash; Returns a list of preferred
+    register classes with which to spill each callee saved register.</li>
+
+<li><tt>getReservedRegs</tt> &mdash; Returns a bitset indexed by physical
+    register numbers, indicating if a particular register is unavailable.</li>
+
+<li><tt>hasFP</tt> &mdash; Return a Boolean indicating if a function should have
+    a dedicated frame pointer register.</li>
+
+<li><tt>eliminateCallFramePseudoInstr</tt> &mdash; If call frame setup or
+    destroy pseudo instructions are used, this can be called to eliminate
+    them.</li>
+
+<li><tt>eliminateFrameIndex</tt> &mdash; Eliminate abstract frame indices from
+    instructions that may use them.</li>
+
+<li><tt>emitPrologue</tt> &mdash; Insert prologue code into the function.</li>
+
+<li><tt>emitEpilogue</tt> &mdash; Insert epilogue code into the function.</li>
+</ul>
 
 </div>
 
 <!-- *********************************************************************** -->
 <div class="doc_section">
-  <a name="related">Related reading material</a>
+  <a name="InstructionSet">Instruction Set</a>
 </div>
-<!-- *********************************************************************** -->
 
+<!-- *********************************************************************** -->
 <div class="doc_text">
 
+<p>
+During the early stages of code generation, the LLVM IR code is converted to a
+<tt>SelectionDAG</tt> with nodes that are instances of the <tt>SDNode</tt> class
+containing target instructions. An <tt>SDNode</tt> has an opcode, operands, type
+requirements, and operation properties. For example, is an operation
+commutative, does an operation load from memory. The various operation node
+types are described in the <tt>include/llvm/CodeGen/SelectionDAGNodes.h</tt>
+file (values of the <tt>NodeType</tt> enum in the <tt>ISD</tt> namespace).
+</p>
+
+<p>
+TableGen uses the following target description (<tt>.td</tt>) input files to
+generate much of the code for instruction definition:
+</p>
+
 <ul>
-<li><a href="CodeGenerator.html">Code generator</a> -
-    describes some of the classes in code generation at a high level, but
-    it is not (yet) complete</li>
-<li><a href="TableGenFundamentals.html">TableGen fundamentals</a> -
-    describes how to use TableGen to describe your target information
-    succinctly</li>
-<li><a href="HowToSubmitABug.html#codegen">Debugging code generation with
-    bugpoint</a> - shows bugpoint usage scenarios to simplify backend
-    development</li>
+<li><tt>Target.td</tt> &mdash; Where the <tt>Instruction</tt>, <tt>Operand</tt>,
+    <tt>InstrInfo</tt>, and other fundamental classes are defined.</li>
+
+<li><tt>TargetSelectionDAG.td</tt>&mdash; Used by <tt>SelectionDAG</tt>
+    instruction selection generators, contains <tt>SDTC*</tt> classes (selection
+    DAG type constraint), definitions of <tt>SelectionDAG</tt> nodes (such as
+    <tt>imm</tt>, <tt>cond</tt>, <tt>bb</tt>, <tt>add</tt>, <tt>fadd</tt>,
+    <tt>sub</tt>), and pattern support (<tt>Pattern</tt>, <tt>Pat</tt>,
+    <tt>PatFrag</tt>, <tt>PatLeaf</tt>, <tt>ComplexPattern</tt>.</li>
+
+<li><tt>XXXInstrFormats.td</tt> &mdash; Patterns for definitions of
+    target-specific instructions.</li>
+
+<li><tt>XXXInstrInfo.td</tt> &mdash; Target-specific definitions of instruction
+    templates, condition codes, and instructions of an instruction set. For
+    architecture modifications, a different file name may be used. For example,
+    for Pentium with SSE instruction, this file is <tt>X86InstrSSE.td</tt>, and
+    for Pentium with MMX, this file is <tt>X86InstrMMX.td</tt>.</li>
 </ul>
 
+<p>
+There is also a target-specific <tt>XXX.td</tt> file, where <tt>XXX</tt> is the
+name of the target. The <tt>XXX.td</tt> file includes the other <tt>.td</tt>
+input files, but its contents are only directly important for subtargets.
+</p>
+
+<p>
+You should describe a concrete target-specific class <tt>XXXInstrInfo</tt> that
+represents machine instructions supported by a target machine.
+<tt>XXXInstrInfo</tt> contains an array of <tt>XXXInstrDescriptor</tt> objects,
+each of which describes one instruction. An instruction descriptor defines:</p>
+
+<ul>
+<li>Opcode mnemonic</li>
+
+<li>Number of operands</li>
+
+<li>List of implicit register definitions and uses</li>
+
+<li>Target-independent properties (such as memory access, is commutable)</li>
+
+<li>Target-specific flags </li>
+</ul>
+
+<p>
+The Instruction class (defined in <tt>Target.td</tt>) is mostly used as a base
+for more complex instruction classes.
+</p>
+
+<div class="doc_code">
+<pre>class Instruction {
+  string Namespace = "";
+  dag OutOperandList;       // An dag containing the MI def operand list.
+  dag InOperandList;        // An dag containing the MI use operand list.
+  string AsmString = "";    // The .s format to print the instruction with.
+  list&lt;dag&gt; Pattern;  // Set to the DAG pattern for this instruction
+  list&lt;Register&gt; Uses = []; 
+  list&lt;Register&gt; Defs = [];
+  list&lt;Predicate&gt; Predicates = [];  // predicates turned into isel match code
+  ... remainder not shown for space ...
+}
+</pre>
+</div>
+
+<p>
+A <tt>SelectionDAG</tt> node (<tt>SDNode</tt>) should contain an object
+representing a target-specific instruction that is defined
+in <tt>XXXInstrInfo.td</tt>. The instruction objects should represent
+instructions from the architecture manual of the target machine (such as the
+SPARC Architecture Manual for the SPARC target).
+</p>
+
+<p>
+A single instruction from the architecture manual is often modeled as multiple
+target instructions, depending upon its operands. For example, a manual might
+describe an add instruction that takes a register or an immediate operand. An
+LLVM target could model this with two instructions named <tt>ADDri</tt> and
+<tt>ADDrr</tt>.
+</p>
+
+<p>
+You should define a class for each instruction category and define each opcode
+as a subclass of the category with appropriate parameters such as the fixed
+binary encoding of opcodes and extended opcodes. You should map the register
+bits to the bits of the instruction in which they are encoded (for the
+JIT). Also you should specify how the instruction should be printed when the
+automatic assembly printer is used.
+</p>
+
+<p>
+As is described in the SPARC Architecture Manual, Version 8, there are three
+major 32-bit formats for instructions. Format 1 is only for the <tt>CALL</tt>
+instruction. Format 2 is for branch on condition codes and <tt>SETHI</tt> (set
+high bits of a register) instructions.  Format 3 is for other instructions.
+</p>
+
+<p>
+Each of these formats has corresponding classes in <tt>SparcInstrFormat.td</tt>.
+<tt>InstSP</tt> is a base class for other instruction classes. Additional base
+classes are specified for more precise formats: for example
+in <tt>SparcInstrFormat.td</tt>, <tt>F2_1</tt> is for <tt>SETHI</tt>,
+and <tt>F2_2</tt> is for branches. There are three other base
+classes: <tt>F3_1</tt> for register/register operations, <tt>F3_2</tt> for
+register/immediate operations, and <tt>F3_3</tt> for floating-point
+operations. <tt>SparcInstrInfo.td</tt> also adds the base class Pseudo for
+synthetic SPARC instructions.
+</p>
+
+<p>
+<tt>SparcInstrInfo.td</tt> largely consists of operand and instruction
+definitions for the SPARC target. In <tt>SparcInstrInfo.td</tt>, the following
+target description file entry, <tt>LDrr</tt>, defines the Load Integer
+instruction for a Word (the <tt>LD</tt> SPARC opcode) from a memory address to a
+register. The first parameter, the value 3 (<tt>11<sub>2</sub></tt>), is the
+operation value for this category of operation. The second parameter
+(<tt>000000<sub>2</sub></tt>) is the specific operation value
+for <tt>LD</tt>/Load Word. The third parameter is the output destination, which
+is a register operand and defined in the <tt>Register</tt> target description
+file (<tt>IntRegs</tt>).
+</p>
+
+<div class="doc_code">
+<pre>def LDrr : F3_1 &lt;3, 0b000000, (outs IntRegs:$dst), (ins MEMrr:$addr),
+                 "ld [$addr], $dst",
+                 [(set IntRegs:$dst, (load ADDRrr:$addr))]&gt;;
+</pre>
+</div>
+
+<p>
+The fourth parameter is the input source, which uses the address
+operand <tt>MEMrr</tt> that is defined earlier in <tt>SparcInstrInfo.td</tt>:
+</p>
+
+<div class="doc_code">
+<pre>def MEMrr : Operand&lt;i32&gt; {
+  let PrintMethod = "printMemOperand";
+  let MIOperandInfo = (ops IntRegs, IntRegs);
+}
+</pre>
+</div>
+
+<p>
+The fifth parameter is a string that is used by the assembly printer and can be
+left as an empty string until the assembly printer interface is implemented. The
+sixth and final parameter is the pattern used to match the instruction during
+the SelectionDAG Select Phase described in
+(<a href="http://www.llvm.org/docs/CodeGenerator.html">The LLVM
+Target-Independent Code Generator</a>).  This parameter is detailed in the next
+section, <a href="#InstructionSelector">Instruction Selector</a>.
+</p>
+
+<p>
+Instruction class definitions are not overloaded for different operand types, so
+separate versions of instructions are needed for register, memory, or immediate
+value operands. For example, to perform a Load Integer instruction for a Word
+from an immediate operand to a register, the following instruction class is
+defined:
+</p>
+
+<div class="doc_code">
+<pre>def LDri : F3_2 &lt;3, 0b000000, (outs IntRegs:$dst), (ins MEMri:$addr),
+                 "ld [$addr], $dst",
+                 [(set IntRegs:$dst, (load ADDRri:$addr))]&gt;;
+</pre>
+</div>
+
+<p>
+Writing these definitions for so many similar instructions can involve a lot of
+cut and paste. In td files, the <tt>multiclass</tt> directive enables the
+creation of templates to define several instruction classes at once (using
+the <tt>defm</tt> directive). For example in <tt>SparcInstrInfo.td</tt>, the
+<tt>multiclass</tt> pattern <tt>F3_12</tt> is defined to create 2 instruction
+classes each time <tt>F3_12</tt> is invoked:
+</p>
+
+<div class="doc_code">
+<pre>multiclass F3_12 &lt;string OpcStr, bits&lt;6&gt; Op3Val, SDNode OpNode&gt; {
+  def rr  : F3_1 &lt;2, Op3Val, 
+                 (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
+                 !strconcat(OpcStr, " $b, $c, $dst"),
+                 [(set IntRegs:$dst, (OpNode IntRegs:$b, IntRegs:$c))]&gt;;
+  def ri  : F3_2 &lt;2, Op3Val,
+                 (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
+                 !strconcat(OpcStr, " $b, $c, $dst"),
+                 [(set IntRegs:$dst, (OpNode IntRegs:$b, simm13:$c))]&gt;;
+}
+</pre>
+</div>
+
+<p>
+So when the <tt>defm</tt> directive is used for the <tt>XOR</tt>
+and <tt>ADD</tt> instructions, as seen below, it creates four instruction
+objects: <tt>XORrr</tt>, <tt>XORri</tt>, <tt>ADDrr</tt>, and <tt>ADDri</tt>.
+</p>
+
+<div class="doc_code">
+<pre>
+defm XOR   : F3_12&lt;"xor", 0b000011, xor&gt;;
+defm ADD   : F3_12&lt;"add", 0b000000, add&gt;;
+</pre>
+</div>
+
+<p>
+<tt>SparcInstrInfo.td</tt> also includes definitions for condition codes that
+are referenced by branch instructions. The following definitions
+in <tt>SparcInstrInfo.td</tt> indicate the bit location of the SPARC condition
+code. For example, the 10<sup>th</sup> bit represents the 'greater than'
+condition for integers, and the 22<sup>nd</sup> bit represents the 'greater
+than' condition for floats.
+</p>
+
+<div class="doc_code">
+<pre>
+def ICC_NE  : ICC_VAL&lt; 9&gt;;  // Not Equal
+def ICC_E   : ICC_VAL&lt; 1&gt;;  // Equal
+def ICC_G   : ICC_VAL&lt;10&gt;;  // Greater
+...
+def FCC_U   : FCC_VAL&lt;23&gt;;  // Unordered
+def FCC_G   : FCC_VAL&lt;22&gt;;  // Greater
+def FCC_UG  : FCC_VAL&lt;21&gt;;  // Unordered or Greater
+...
+</pre>
+</div>
+
+<p>
+(Note that <tt>Sparc.h</tt> also defines enums that correspond to the same SPARC
+condition codes. Care must be taken to ensure the values in <tt>Sparc.h</tt>
+correspond to the values in <tt>SparcInstrInfo.td</tt>. I.e.,
+<tt>SPCC::ICC_NE = 9</tt>, <tt>SPCC::FCC_U = 23</tt> and so on.)
+</p>
+
+</div>
+
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+  <a name="operandMapping">Instruction Operand Mapping</a>
+</div>
+
+<div class="doc_text">
+
+<p>
+The code generator backend maps instruction operands to fields in the
+instruction.  Operands are assigned to unbound fields in the instruction in the
+order they are defined. Fields are bound when they are assigned a value.  For
+example, the Sparc target defines the <tt>XNORrr</tt> instruction as
+a <tt>F3_1</tt> format instruction having three operands.
+</p>
+
+<div class="doc_code">
+<pre>
+def XNORrr  : F3_1&lt;2, 0b000111,
+                   (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
+                   "xnor $b, $c, $dst",
+                   [(set IntRegs:$dst, (not (xor IntRegs:$b, IntRegs:$c)))]&gt;;
+</pre>
+</div>
+
+<p>
+The instruction templates in <tt>SparcInstrFormats.td</tt> show the base class
+for <tt>F3_1</tt> is <tt>InstSP</tt>.
+</p>
+
+<div class="doc_code">
+<pre>
+class InstSP&lt;dag outs, dag ins, string asmstr, list&lt;dag&gt; pattern&gt; : Instruction {
+  field bits&lt;32&gt; Inst;
+  let Namespace = "SP";
+  bits&lt;2&gt; op;
+  let Inst{31-30} = op;       
+  dag OutOperandList = outs;
+  dag InOperandList = ins;
+  let AsmString   = asmstr;
+  let Pattern = pattern;
+}
+</pre>
+</div>
+
+<p><tt>InstSP</tt> leaves the <tt>op</tt> field unbound.</p>
+
+<div class="doc_code">
+<pre>
+class F3&lt;dag outs, dag ins, string asmstr, list&lt;dag&gt; pattern&gt;
+    : InstSP&lt;outs, ins, asmstr, pattern&gt; {
+  bits&lt;5&gt; rd;
+  bits&lt;6&gt; op3;
+  bits&lt;5&gt; rs1;
+  let op{1} = 1;   // Op = 2 or 3
+  let Inst{29-25} = rd;
+  let Inst{24-19} = op3;
+  let Inst{18-14} = rs1;
+}
+</pre>
+</div>
+
+<p>
+<tt>F3</tt> binds the <tt>op</tt> field and defines the <tt>rd</tt>,
+<tt>op3</tt>, and <tt>rs1</tt> fields.  <tt>F3</tt> format instructions will
+bind the operands <tt>rd</tt>, <tt>op3</tt>, and <tt>rs1</tt> fields.
+</p>
+
+<div class="doc_code">
+<pre>
+class F3_1&lt;bits&lt;2&gt; opVal, bits&lt;6&gt; op3val, dag outs, dag ins,
+           string asmstr, list&lt;dag&gt; pattern&gt; : F3&lt;outs, ins, asmstr, pattern&gt; {
+  bits&lt;8&gt; asi = 0; // asi not currently used
+  bits&lt;5&gt; rs2;
+  let op         = opVal;
+  let op3        = op3val;
+  let Inst{13}   = 0;     // i field = 0
+  let Inst{12-5} = asi;   // address space identifier
+  let Inst{4-0}  = rs2;
+}
+</pre>
+</div>
+
+<p>
+<tt>F3_1</tt> binds the <tt>op3</tt> field and defines the <tt>rs2</tt>
+fields.  <tt>F3_1</tt> format instructions will bind the operands to the <tt>rd</tt>,
+<tt>rs1</tt>, and <tt>rs2</tt> fields. This results in the <tt>XNORrr</tt>
+instruction binding <tt>$dst</tt>, <tt>$b</tt>, and <tt>$c</tt> operands to
+the <tt>rd</tt>, <tt>rs1</tt>, and <tt>rs2</tt> fields respectively.
+</p>
+
+</div>
+
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+  <a name="implementInstr">Implement a subclass of </a>
+  <a href="http://www.llvm.org/docs/CodeGenerator.html#targetinstrinfo">TargetInstrInfo</a>
+</div>
+
+<div class="doc_text">
+
+<p>
+The final step is to hand code portions of <tt>XXXInstrInfo</tt>, which
+implements the interface described in <tt>TargetInstrInfo.h</tt>. These
+functions return <tt>0</tt> or a Boolean or they assert, unless
+overridden. Here's a list of functions that are overridden for the SPARC
+implementation in <tt>SparcInstrInfo.cpp</tt>:
+</p>
+
+<ul>
+<li><tt>isMoveInstr</tt> &mdash; Return true if the instruction is a register to
+    register move; false, otherwise.</li>
+
+<li><tt>isLoadFromStackSlot</tt> &mdash; If the specified machine instruction is
+    a direct load from a stack slot, return the register number of the
+    destination and the <tt>FrameIndex</tt> of the stack slot.</li>
+
+<li><tt>isStoreToStackSlot</tt> &mdash; If the specified machine instruction is
+    a direct store to a stack slot, return the register number of the
+    destination and the <tt>FrameIndex</tt> of the stack slot.</li>
+
+<li><tt>copyRegToReg</tt> &mdash; Copy values between a pair of registers.</li>
+
+<li><tt>storeRegToStackSlot</tt> &mdash; Store a register value to a stack
+    slot.</li>
+
+<li><tt>loadRegFromStackSlot</tt> &mdash; Load a register value from a stack
+    slot.</li>
+
+<li><tt>storeRegToAddr</tt> &mdash; Store a register value to memory.</li>
+
+<li><tt>loadRegFromAddr</tt> &mdash; Load a register value from memory.</li>
+
+<li><tt>foldMemoryOperand</tt> &mdash; Attempt to combine instructions of any
+    load or store instruction for the specified operand(s).</li>
+</ul>
+
+</div>
+
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+  <a name="branchFolding">Branch Folding and If Conversion</a>
+</div>
+<div class="doc_text">
+
+<p>
+Performance can be improved by combining instructions or by eliminating
+instructions that are never reached. The <tt>AnalyzeBranch</tt> method
+in <tt>XXXInstrInfo</tt> may be implemented to examine conditional instructions
+and remove unnecessary instructions. <tt>AnalyzeBranch</tt> looks at the end of
+a machine basic block (MBB) for opportunities for improvement, such as branch
+folding and if conversion. The <tt>BranchFolder</tt> and <tt>IfConverter</tt>
+machine function passes (see the source files <tt>BranchFolding.cpp</tt> and
+<tt>IfConversion.cpp</tt> in the <tt>lib/CodeGen</tt> directory) call
+<tt>AnalyzeBranch</tt> to improve the control flow graph that represents the
+instructions.
+</p>
+
+<p>
+Several implementations of <tt>AnalyzeBranch</tt> (for ARM, Alpha, and X86) can
+be examined as models for your own <tt>AnalyzeBranch</tt> implementation. Since
+SPARC does not implement a useful <tt>AnalyzeBranch</tt>, the ARM target
+implementation is shown below.
+</p>
+
+<p><tt>AnalyzeBranch</tt> returns a Boolean value and takes four parameters:</p>
+
+<ul>
+<li><tt>MachineBasicBlock &amp;MBB</tt> &mdash; The incoming block to be
+    examined.</li>
+
+<li><tt>MachineBasicBlock *&amp;TBB</tt> &mdash; A destination block that is
+    returned. For a conditional branch that evaluates to true, <tt>TBB</tt> is
+    the destination.</li>
+
+<li><tt>MachineBasicBlock *&amp;FBB</tt> &mdash; For a conditional branch that
+    evaluates to false, <tt>FBB</tt> is returned as the destination.</li>
+
+<li><tt>std::vector&lt;MachineOperand&gt; &amp;Cond</tt> &mdash; List of
+    operands to evaluate a condition for a conditional branch.</li>
+</ul>
+
+<p>
+In the simplest case, if a block ends without a branch, then it falls through to
+the successor block. No destination blocks are specified for either <tt>TBB</tt>
+or <tt>FBB</tt>, so both parameters return <tt>NULL</tt>. The start of
+the <tt>AnalyzeBranch</tt> (see code below for the ARM target) shows the
+function parameters and the code for the simplest case.
+</p>
+
+<div class="doc_code">
+<pre>bool ARMInstrInfo::AnalyzeBranch(MachineBasicBlock &amp;MBB,
+        MachineBasicBlock *&amp;TBB, MachineBasicBlock *&amp;FBB,
+        std::vector&lt;MachineOperand&gt; &amp;Cond) const
+{
+  MachineBasicBlock::iterator I = MBB.end();
+  if (I == MBB.begin() || !isUnpredicatedTerminator(--I))
+    return false;
+</pre>
+</div>
+
+<p>
+If a block ends with a single unconditional branch instruction, then
+<tt>AnalyzeBranch</tt> (shown below) should return the destination of that
+branch in the <tt>TBB</tt> parameter.
+</p>
+
+<div class="doc_code">
+<pre>
+  if (LastOpc == ARM::B || LastOpc == ARM::tB) {
+    TBB = LastInst-&gt;getOperand(0).getMBB();
+    return false;
+  }
+</pre>
+</div>
+
+<p>
+If a block ends with two unconditional branches, then the second branch is never
+reached. In that situation, as shown below, remove the last branch instruction
+and return the penultimate branch in the <tt>TBB</tt> parameter.
+</p>
+
+<div class="doc_code">
+<pre>
+  if ((SecondLastOpc == ARM::B || SecondLastOpc==ARM::tB) &amp;&amp;
+      (LastOpc == ARM::B || LastOpc == ARM::tB)) {
+    TBB = SecondLastInst-&gt;getOperand(0).getMBB();
+    I = LastInst;
+    I-&gt;eraseFromParent();
+    return false;
+  }
+</pre>
+</div>
+
+<p>
+A block may end with a single conditional branch instruction that falls through
+to successor block if the condition evaluates to false. In that case,
+<tt>AnalyzeBranch</tt> (shown below) should return the destination of that
+conditional branch in the <tt>TBB</tt> parameter and a list of operands in
+the <tt>Cond</tt> parameter to evaluate the condition.
+</p>
+
+<div class="doc_code">
+<pre>
+  if (LastOpc == ARM::Bcc || LastOpc == ARM::tBcc) {
+    // Block ends with fall-through condbranch.
+    TBB = LastInst-&gt;getOperand(0).getMBB();
+    Cond.push_back(LastInst-&gt;getOperand(1));
+    Cond.push_back(LastInst-&gt;getOperand(2));
+    return false;
+  }
+</pre>
+</div>
+
+<p>
+If a block ends with both a conditional branch and an ensuing unconditional
+branch, then <tt>AnalyzeBranch</tt> (shown below) should return the conditional
+branch destination (assuming it corresponds to a conditional evaluation of
+'<tt>true</tt>') in the <tt>TBB</tt> parameter and the unconditional branch
+destination in the <tt>FBB</tt> (corresponding to a conditional evaluation of
+'<tt>false</tt>').  A list of operands to evaluate the condition should be
+returned in the <tt>Cond</tt> parameter.
+</p>
+
+<div class="doc_code">
+<pre>
+  unsigned SecondLastOpc = SecondLastInst-&gt;getOpcode();
+
+  if ((SecondLastOpc == ARM::Bcc &amp;&amp; LastOpc == ARM::B) ||
+      (SecondLastOpc == ARM::tBcc &amp;&amp; LastOpc == ARM::tB)) {
+    TBB =  SecondLastInst-&gt;getOperand(0).getMBB();
+    Cond.push_back(SecondLastInst-&gt;getOperand(1));
+    Cond.push_back(SecondLastInst-&gt;getOperand(2));
+    FBB = LastInst-&gt;getOperand(0).getMBB();
+    return false;
+  }
+</pre>
+</div>
+
+<p>
+For the last two cases (ending with a single conditional branch or ending with
+one conditional and one unconditional branch), the operands returned in
+the <tt>Cond</tt> parameter can be passed to methods of other instructions to
+create new branches or perform other operations. An implementation
+of <tt>AnalyzeBranch</tt> requires the helper methods <tt>RemoveBranch</tt>
+and <tt>InsertBranch</tt> to manage subsequent operations.
+</p>
+
+<p>
+<tt>AnalyzeBranch</tt> should return false indicating success in most circumstances.
+<tt>AnalyzeBranch</tt> should only return true when the method is stumped about what to
+do, for example, if a block has three terminating branches. <tt>AnalyzeBranch</tt> may
+return true if it encounters a terminator it cannot handle, such as an indirect
+branch.
+</p>
+
+</div>
+
+<!-- *********************************************************************** -->
+<div class="doc_section">
+  <a name="InstructionSelector">Instruction Selector</a>
+</div>
+<!-- *********************************************************************** -->
+
+<div class="doc_text">
+
+<p>
+LLVM uses a <tt>SelectionDAG</tt> to represent LLVM IR instructions, and nodes
+of the <tt>SelectionDAG</tt> ideally represent native target
+instructions. During code generation, instruction selection passes are performed
+to convert non-native DAG instructions into native target-specific
+instructions. The pass described in <tt>XXXISelDAGToDAG.cpp</tt> is used to
+match patterns and perform DAG-to-DAG instruction selection. Optionally, a pass
+may be defined (in <tt>XXXBranchSelector.cpp</tt>) to perform similar DAG-to-DAG
+operations for branch instructions. Later, the code in
+<tt>XXXISelLowering.cpp</tt> replaces or removes operations and data types not
+supported natively (legalizes) in a <tt>SelectionDAG</tt>.
+</p>
+
+<p>
+TableGen generates code for instruction selection using the following target
+description input files:
+</p>
+
+<ul>
+<li><tt>XXXInstrInfo.td</tt> &mdash; Contains definitions of instructions in a
+    target-specific instruction set, generates <tt>XXXGenDAGISel.inc</tt>, which
+    is included in <tt>XXXISelDAGToDAG.cpp</tt>.</li>
+
+<li><tt>XXXCallingConv.td</tt> &mdash; Contains the calling and return value
+    conventions for the target architecture, and it generates
+    <tt>XXXGenCallingConv.inc</tt>, which is included in
+    <tt>XXXISelLowering.cpp</tt>.</li>
+</ul>
+
+<p>
+The implementation of an instruction selection pass must include a header that
+declares the <tt>FunctionPass</tt> class or a subclass of <tt>FunctionPass</tt>. In
+<tt>XXXTargetMachine.cpp</tt>, a Pass Manager (PM) should add each instruction
+selection pass into the queue of passes to run.
+</p>
+
+<p>
+The LLVM static compiler (<tt>llc</tt>) is an excellent tool for visualizing the
+contents of DAGs. To display the <tt>SelectionDAG</tt> before or after specific
+processing phases, use the command line options for <tt>llc</tt>, described
+at <a href="http://llvm.org/docs/CodeGenerator.html#selectiondag_process">
+SelectionDAG Instruction Selection Process</a>.
+</p>
+
+<p>
+To describe instruction selector behavior, you should add patterns for lowering
+LLVM code into a <tt>SelectionDAG</tt> as the last parameter of the instruction
+definitions in <tt>XXXInstrInfo.td</tt>. For example, in
+<tt>SparcInstrInfo.td</tt>, this entry defines a register store operation, and
+the last parameter describes a pattern with the store DAG operator.
+</p>
+
+<div class="doc_code">
+<pre>
+def STrr  : F3_1&lt; 3, 0b000100, (outs), (ins MEMrr:$addr, IntRegs:$src),
+                 "st $src, [$addr]", [(store IntRegs:$src, ADDRrr:$addr)]&gt;;
+</pre>
+</div>
+
+<p>
+<tt>ADDRrr</tt> is a memory mode that is also defined in
+<tt>SparcInstrInfo.td</tt>:
+</p>
+
+<div class="doc_code">
+<pre>
+def ADDRrr : ComplexPattern&lt;i32, 2, "SelectADDRrr", [], []&gt;;
+</pre>
+</div>
+
+<p>
+The definition of <tt>ADDRrr</tt> refers to <tt>SelectADDRrr</tt>, which is a
+function defined in an implementation of the Instructor Selector (such
+as <tt>SparcISelDAGToDAG.cpp</tt>).
+</p>
+
+<p>
+In <tt>lib/Target/TargetSelectionDAG.td</tt>, the DAG operator for store is
+defined below:
+</p>
+
+<div class="doc_code">
+<pre>
+def store : PatFrag&lt;(ops node:$val, node:$ptr),
+                    (st node:$val, node:$ptr), [{
+  if (StoreSDNode *ST = dyn_cast&lt;StoreSDNode&gt;(N))
+    return !ST-&gt;isTruncatingStore() &amp;&amp; 
+           ST-&gt;getAddressingMode() == ISD::UNINDEXED;
+  return false;
+}]&gt;;
+</pre>
+</div>
+
+<p>
+<tt>XXXInstrInfo.td</tt> also generates (in <tt>XXXGenDAGISel.inc</tt>) the
+<tt>SelectCode</tt> method that is used to call the appropriate processing
+method for an instruction. In this example, <tt>SelectCode</tt>
+calls <tt>Select_ISD_STORE</tt> for the <tt>ISD::STORE</tt> opcode.
+</p>
+
+<div class="doc_code">
+<pre>
+SDNode *SelectCode(SDValue N) {
+  ... 
+  MVT::ValueType NVT = N.getNode()-&gt;getValueType(0);
+  switch (N.getOpcode()) {
+  case ISD::STORE: {
+    switch (NVT) {
+    default:
+      return Select_ISD_STORE(N);
+      break;
+    }
+    break;
+  }
+  ...
+</pre>
+</div>
+
+<p>
+The pattern for <tt>STrr</tt> is matched, so elsewhere in
+<tt>XXXGenDAGISel.inc</tt>, code for <tt>STrr</tt> is created for
+<tt>Select_ISD_STORE</tt>. The <tt>Emit_22</tt> method is also generated
+in <tt>XXXGenDAGISel.inc</tt> to complete the processing of this
+instruction.
+</p>
+
+<div class="doc_code">
+<pre>
+SDNode *Select_ISD_STORE(const SDValue &amp;N) {
+  SDValue Chain = N.getOperand(0);
+  if (Predicate_store(N.getNode())) {
+    SDValue N1 = N.getOperand(1);
+    SDValue N2 = N.getOperand(2);
+    SDValue CPTmp0;
+    SDValue CPTmp1;
+
+    // Pattern: (st:void IntRegs:i32:$src, 
+    //           ADDRrr:i32:$addr)&lt;&lt;P:Predicate_store&gt;&gt;
+    // Emits: (STrr:void ADDRrr:i32:$addr, IntRegs:i32:$src)
+    // Pattern complexity = 13  cost = 1  size = 0
+    if (SelectADDRrr(N, N2, CPTmp0, CPTmp1) &amp;&amp;
+        N1.getNode()-&gt;getValueType(0) == MVT::i32 &amp;&amp;
+        N2.getNode()-&gt;getValueType(0) == MVT::i32) {
+      return Emit_22(N, SP::STrr, CPTmp0, CPTmp1);
+    }
+...
+</pre>
+</div>
+
+</div>
+
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+  <a name="LegalizePhase">The SelectionDAG Legalize Phase</a>
+</div>
+
+<div class="doc_text">
+
+<p>
+The Legalize phase converts a DAG to use types and operations that are natively
+supported by the target. For natively unsupported types and operations, you need
+to add code to the target-specific XXXTargetLowering implementation to convert
+unsupported types and operations to supported ones.
+</p>
+
+<p>
+In the constructor for the <tt>XXXTargetLowering</tt> class, first use the
+<tt>addRegisterClass</tt> method to specify which types are supports and which
+register classes are associated with them. The code for the register classes are
+generated by TableGen from <tt>XXXRegisterInfo.td</tt> and placed
+in <tt>XXXGenRegisterInfo.h.inc</tt>. For example, the implementation of the
+constructor for the SparcTargetLowering class (in
+<tt>SparcISelLowering.cpp</tt>) starts with the following code:
+</p>
+
+<div class="doc_code">
+<pre>
+addRegisterClass(MVT::i32, SP::IntRegsRegisterClass);
+addRegisterClass(MVT::f32, SP::FPRegsRegisterClass);
+addRegisterClass(MVT::f64, SP::DFPRegsRegisterClass); 
+</pre>
+</div>
+
+<p>
+You should examine the node types in the <tt>ISD</tt> namespace
+(<tt>include/llvm/CodeGen/SelectionDAGNodes.h</tt>) and determine which
+operations the target natively supports. For operations that do <b>not</b> have
+native support, add a callback to the constructor for the XXXTargetLowering
+class, so the instruction selection process knows what to do. The TargetLowering
+class callback methods (declared in <tt>llvm/Target/TargetLowering.h</tt>) are:
+</p>
+
+<ul>
+<li><tt>setOperationAction</tt> &mdash; General operation.</li>
+
+<li><tt>setLoadExtAction</tt> &mdash; Load with extension.</li>
+
+<li><tt>setTruncStoreAction</tt> &mdash; Truncating store.</li>
+
+<li><tt>setIndexedLoadAction</tt> &mdash; Indexed load.</li>
+
+<li><tt>setIndexedStoreAction</tt> &mdash; Indexed store.</li>
+
+<li><tt>setConvertAction</tt> &mdash; Type conversion.</li>
+
+<li><tt>setCondCodeAction</tt> &mdash; Support for a given condition code.</li>
+</ul>
+
+<p>
+Note: on older releases, <tt>setLoadXAction</tt> is used instead
+of <tt>setLoadExtAction</tt>.  Also, on older releases,
+<tt>setCondCodeAction</tt> may not be supported. Examine your release
+to see what methods are specifically supported.
+</p>
+
+<p>
+These callbacks are used to determine that an operation does or does not work
+with a specified type (or types). And in all cases, the third parameter is
+a <tt>LegalAction</tt> type enum value: <tt>Promote</tt>, <tt>Expand</tt>,
+<tt>Custom</tt>, or <tt>Legal</tt>. <tt>SparcISelLowering.cpp</tt>
+contains examples of all four <tt>LegalAction</tt> values.
+</p>
+
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+  <a name="promote">Promote</a>
+</div>
+
+<div class="doc_text">
+
+<p>
+For an operation without native support for a given type, the specified type may
+be promoted to a larger type that is supported. For example, SPARC does not
+support a sign-extending load for Boolean values (<tt>i1</tt> type), so
+in <tt>SparcISelLowering.cpp</tt> the third parameter below, <tt>Promote</tt>,
+changes <tt>i1</tt> type values to a large type before loading.
+</p>
+
+<div class="doc_code">
+<pre>
+setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
+</pre>
+</div>
+
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+  <a name="expand">Expand</a>
+</div>
+
+<div class="doc_text">
+
+<p>
+For a type without native support, a value may need to be broken down further,
+rather than promoted. For an operation without native support, a combination of
+other operations may be used to similar effect. In SPARC, the floating-point
+sine and cosine trig operations are supported by expansion to other operations,
+as indicated by the third parameter, <tt>Expand</tt>, to
+<tt>setOperationAction</tt>:
+</p>
+
+<div class="doc_code">
+<pre>
+setOperationAction(ISD::FSIN, MVT::f32, Expand);
+setOperationAction(ISD::FCOS, MVT::f32, Expand);
+</pre>
+</div>
+
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+  <a name="custom">Custom</a>
+</div>
+
+<div class="doc_text">
+
+<p>
+For some operations, simple type promotion or operation expansion may be
+insufficient. In some cases, a special intrinsic function must be implemented.
+</p>
+
+<p>
+For example, a constant value may require special treatment, or an operation may
+require spilling and restoring registers in the stack and working with register
+allocators.
+</p>
+
+<p>
+As seen in <tt>SparcISelLowering.cpp</tt> code below, to perform a type
+conversion from a floating point value to a signed integer, first the
+<tt>setOperationAction</tt> should be called with <tt>Custom</tt> as the third
+parameter:
+</p>
+
+<div class="doc_code">
+<pre>
+setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
+</pre>
+</div>    
+
+<p>
+In the <tt>LowerOperation</tt> method, for each <tt>Custom</tt> operation, a
+case statement should be added to indicate what function to call. In the
+following code, an <tt>FP_TO_SINT</tt> opcode will call
+the <tt>LowerFP_TO_SINT</tt> method:
+</p>
+
+<div class="doc_code">
+<pre>
+SDValue SparcTargetLowering::LowerOperation(SDValue Op, SelectionDAG &amp;DAG) {
+  switch (Op.getOpcode()) {
+  case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
+  ...
+  }
+}
+</pre>
+</div>
+
+<p>
+Finally, the <tt>LowerFP_TO_SINT</tt> method is implemented, using an FP
+register to convert the floating-point value to an integer.
+</p>
+
+<div class="doc_code">
+<pre>
+static SDValue LowerFP_TO_SINT(SDValue Op, SelectionDAG &amp;DAG) {
+  assert(Op.getValueType() == MVT::i32);
+  Op = DAG.getNode(SPISD::FTOI, MVT::f32, Op.getOperand(0));
+  return DAG.getNode(ISD::BIT_CONVERT, MVT::i32, Op);
+}
+</pre>
+</div>    
+
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+  <a name="legal">Legal</a>
+</div>
+
+<div class="doc_text">
+
+<p>
+The <tt>Legal</tt> LegalizeAction enum value simply indicates that an
+operation <b>is</b> natively supported. <tt>Legal</tt> represents the default
+condition, so it is rarely used. In <tt>SparcISelLowering.cpp</tt>, the action
+for <tt>CTPOP</tt> (an operation to count the bits set in an integer) is
+natively supported only for SPARC v9. The following code enables
+the <tt>Expand</tt> conversion technique for non-v9 SPARC implementations.
+</p>
+
+<div class="doc_code">
+<pre>
+setOperationAction(ISD::CTPOP, MVT::i32, Expand);
+...
+if (TM.getSubtarget&lt;SparcSubtarget&gt;().isV9())
+  setOperationAction(ISD::CTPOP, MVT::i32, Legal);
+  case ISD::SETULT: return SPCC::ICC_CS;
+  case ISD::SETULE: return SPCC::ICC_LEU;
+  case ISD::SETUGT: return SPCC::ICC_GU;
+  case ISD::SETUGE: return SPCC::ICC_CC;
+  }
+}
+</pre>
+</div>
+
+</div>
+
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+  <a name="callingConventions">Calling Conventions</a>
+</div>
+
+<div class="doc_text">
+
+<p>
+To support target-specific calling conventions, <tt>XXXGenCallingConv.td</tt>
+uses interfaces (such as CCIfType and CCAssignToReg) that are defined in
+<tt>lib/Target/TargetCallingConv.td</tt>. TableGen can take the target
+descriptor file <tt>XXXGenCallingConv.td</tt> and generate the header
+file <tt>XXXGenCallingConv.inc</tt>, which is typically included
+in <tt>XXXISelLowering.cpp</tt>. You can use the interfaces in
+<tt>TargetCallingConv.td</tt> to specify:
+</p>
+
+<ul>
+<li>The order of parameter allocation.</li>
+
+<li>Where parameters and return values are placed (that is, on the stack or in
+    registers).</li>
+
+<li>Which registers may be used.</li>
+
+<li>Whether the caller or callee unwinds the stack.</li>
+</ul>
+
+<p>
+The following example demonstrates the use of the <tt>CCIfType</tt> and
+<tt>CCAssignToReg</tt> interfaces. If the <tt>CCIfType</tt> predicate is true
+(that is, if the current argument is of type <tt>f32</tt> or <tt>f64</tt>), then
+the action is performed. In this case, the <tt>CCAssignToReg</tt> action assigns
+the argument value to the first available register: either <tt>R0</tt>
+or <tt>R1</tt>.
+</p>
+
+<div class="doc_code">
+<pre>
+CCIfType&lt;[f32,f64], CCAssignToReg&lt;[R0, R1]&gt;&gt;
+</pre>
+</div>
+
+<p>
+<tt>SparcCallingConv.td</tt> contains definitions for a target-specific
+return-value calling convention (RetCC_Sparc32) and a basic 32-bit C calling
+convention (<tt>CC_Sparc32</tt>). The definition of <tt>RetCC_Sparc32</tt>
+(shown below) indicates which registers are used for specified scalar return
+types. A single-precision float is returned to register <tt>F0</tt>, and a
+double-precision float goes to register <tt>D0</tt>. A 32-bit integer is
+returned in register <tt>I0</tt> or <tt>I1</tt>.
+</p>
+
+<div class="doc_code">
+<pre>
+def RetCC_Sparc32 : CallingConv&lt;[
+  CCIfType&lt;[i32], CCAssignToReg&lt;[I0, I1]&gt;&gt;,
+  CCIfType&lt;[f32], CCAssignToReg&lt;[F0]&gt;&gt;,
+  CCIfType&lt;[f64], CCAssignToReg&lt;[D0]&gt;&gt;
+]&gt;;
+</pre>
+</div>
+
+<p>
+The definition of <tt>CC_Sparc32</tt> in <tt>SparcCallingConv.td</tt> introduces
+<tt>CCAssignToStack</tt>, which assigns the value to a stack slot with the
+specified size and alignment. In the example below, the first parameter, 4,
+indicates the size of the slot, and the second parameter, also 4, indicates the
+stack alignment along 4-byte units. (Special cases: if size is zero, then the
+ABI size is used; if alignment is zero, then the ABI alignment is used.)
+</p>
+
+<div class="doc_code">
+<pre>
+def CC_Sparc32 : CallingConv&lt;[
+  // All arguments get passed in integer registers if there is space.
+  CCIfType&lt;[i32, f32, f64], CCAssignToReg&lt;[I0, I1, I2, I3, I4, I5]&gt;&gt;,
+  CCAssignToStack&lt;4, 4&gt;
+]&gt;;
+</pre>
+</div>
+
+<p>
+<tt>CCDelegateTo</tt> is another commonly used interface, which tries to find a
+specified sub-calling convention, and, if a match is found, it is invoked. In
+the following example (in <tt>X86CallingConv.td</tt>), the definition of
+<tt>RetCC_X86_32_C</tt> ends with <tt>CCDelegateTo</tt>. After the current value
+is assigned to the register <tt>ST0</tt> or <tt>ST1</tt>,
+the <tt>RetCC_X86Common</tt> is invoked.
+</p>
+
+<div class="doc_code">
+<pre>
+def RetCC_X86_32_C : CallingConv&lt;[
+  CCIfType&lt;[f32], CCAssignToReg&lt;[ST0, ST1]&gt;&gt;,
+  CCIfType&lt;[f64], CCAssignToReg&lt;[ST0, ST1]&gt;&gt;,
+  CCDelegateTo&lt;RetCC_X86Common&gt;
+]&gt;;
+</pre>
+</div>
+
+<p>
+<tt>CCIfCC</tt> is an interface that attempts to match the given name to the
+current calling convention. If the name identifies the current calling
+convention, then a specified action is invoked. In the following example (in
+<tt>X86CallingConv.td</tt>), if the <tt>Fast</tt> calling convention is in use,
+then <tt>RetCC_X86_32_Fast</tt> is invoked. If the <tt>SSECall</tt> calling
+convention is in use, then <tt>RetCC_X86_32_SSE</tt> is invoked.
+</p>
+
+<div class="doc_code">
+<pre>
+def RetCC_X86_32 : CallingConv&lt;[
+  CCIfCC&lt;"CallingConv::Fast", CCDelegateTo&lt;RetCC_X86_32_Fast&gt;&gt;,
+  CCIfCC&lt;"CallingConv::X86_SSECall", CCDelegateTo&lt;RetCC_X86_32_SSE&gt;&gt;,
+  CCDelegateTo&lt;RetCC_X86_32_C&gt;
+]&gt;;
+</pre>
+</div>
+
+<p>Other calling convention interfaces include:</p>
+
+<ul>
+<li><tt>CCIf &lt;predicate, action&gt;</tt> &mdash; If the predicate matches,
+    apply the action.</li>
+
+<li><tt>CCIfInReg &lt;action&gt;</tt> &mdash; If the argument is marked with the
+    '<tt>inreg</tt>' attribute, then apply the action.</li>
+
+<li><tt>CCIfNest &lt;action&gt;</tt> &mdash; Inf the argument is marked with the
+    '<tt>nest</tt>' attribute, then apply the action.</li>
+
+<li><tt>CCIfNotVarArg &lt;action&gt;</tt> &mdash; If the current function does
+    not take a variable number of arguments, apply the action.</li>
+
+<li><tt>CCAssignToRegWithShadow &lt;registerList, shadowList&gt;</tt> &mdash;
+    similar to <tt>CCAssignToReg</tt>, but with a shadow list of registers.</li>
+
+<li><tt>CCPassByVal &lt;size, align&gt;</tt> &mdash; Assign value to a stack
+    slot with the minimum specified size and alignment.</li>
+
+<li><tt>CCPromoteToType &lt;type&gt;</tt> &mdash; Promote the current value to
+    the specified type.</li>
+
+<li><tt>CallingConv &lt;[actions]&gt;</tt> &mdash; Define each calling
+    convention that is supported.</li>
+</ul>
+
+</div>
+
+<!-- *********************************************************************** -->
+<div class="doc_section">
+  <a name="assemblyPrinter">Assembly Printer</a>
+</div>
+<!-- *********************************************************************** -->
+
+<div class="doc_text">
+
+<p>
+During the code emission stage, the code generator may utilize an LLVM pass to
+produce assembly output. To do this, you want to implement the code for a
+printer that converts LLVM IR to a GAS-format assembly language for your target
+machine, using the following steps:
+</p>
+
+<ul>
+<li>Define all the assembly strings for your target, adding them to the
+    instructions defined in the <tt>XXXInstrInfo.td</tt> file.
+    (See <a href="#InstructionSet">Instruction Set</a>.)  TableGen will produce
+    an output file (<tt>XXXGenAsmWriter.inc</tt>) with an implementation of
+    the <tt>printInstruction</tt> method for the XXXAsmPrinter class.</li>
+
+<li>Write <tt>XXXTargetAsmInfo.h</tt>, which contains the bare-bones declaration
+    of the <tt>XXXTargetAsmInfo</tt> class (a subclass
+    of <tt>TargetAsmInfo</tt>).</li>
+
+<li>Write <tt>XXXTargetAsmInfo.cpp</tt>, which contains target-specific values
+    for <tt>TargetAsmInfo</tt> properties and sometimes new implementations for
+    methods.</li>
+
+<li>Write <tt>XXXAsmPrinter.cpp</tt>, which implements the <tt>AsmPrinter</tt>
+    class that performs the LLVM-to-assembly conversion.</li>
+</ul>
+
+<p>
+The code in <tt>XXXTargetAsmInfo.h</tt> is usually a trivial declaration of the
+<tt>XXXTargetAsmInfo</tt> class for use in <tt>XXXTargetAsmInfo.cpp</tt>.
+Similarly, <tt>XXXTargetAsmInfo.cpp</tt> usually has a few declarations of
+<tt>XXXTargetAsmInfo</tt> replacement values that override the default values
+in <tt>TargetAsmInfo.cpp</tt>. For example in <tt>SparcTargetAsmInfo.cpp</tt>:
+</p>
+
+<div class="doc_code">
+<pre>
+SparcTargetAsmInfo::SparcTargetAsmInfo(const SparcTargetMachine &amp;TM) {
+  Data16bitsDirective = "\t.half\t";
+  Data32bitsDirective = "\t.word\t";
+  Data64bitsDirective = 0;  // .xword is only supported by V9.
+  ZeroDirective = "\t.skip\t";
+  CommentString = "!";
+  ConstantPoolSection = "\t.section \".rodata\",#alloc\n";
+}
+</pre>
+</div>
+
+<p>
+The X86 assembly printer implementation (<tt>X86TargetAsmInfo</tt>) is an
+example where the target specific <tt>TargetAsmInfo</tt> class uses an 
+overridden methods: <tt>ExpandInlineAsm</tt>.
+</p>
+
+<p>
+A target-specific implementation of AsmPrinter is written in
+<tt>XXXAsmPrinter.cpp</tt>, which implements the <tt>AsmPrinter</tt> class that
+converts the LLVM to printable assembly. The implementation must include the
+following headers that have declarations for the <tt>AsmPrinter</tt> and
+<tt>MachineFunctionPass</tt> classes. The <tt>MachineFunctionPass</tt> is a
+subclass of <tt>FunctionPass</tt>.
+</p>
+
+<div class="doc_code">
+<pre>
+#include "llvm/CodeGen/AsmPrinter.h"
+#include "llvm/CodeGen/MachineFunctionPass.h" 
+</pre>
+</div>
+
+<p>
+As a <tt>FunctionPass</tt>, <tt>AsmPrinter</tt> first
+calls <tt>doInitialization</tt> to set up the <tt>AsmPrinter</tt>. In
+<tt>SparcAsmPrinter</tt>, a <tt>Mangler</tt> object is instantiated to process
+variable names.
+</p>
+
+<p>
+In <tt>XXXAsmPrinter.cpp</tt>, the <tt>runOnMachineFunction</tt> method
+(declared in <tt>MachineFunctionPass</tt>) must be implemented
+for <tt>XXXAsmPrinter</tt>. In <tt>MachineFunctionPass</tt>,
+the <tt>runOnFunction</tt> method invokes <tt>runOnMachineFunction</tt>.
+Target-specific implementations of <tt>runOnMachineFunction</tt> differ, but
+generally do the following to process each machine function:
+</p>
+
+<ul>
+<li>Call <tt>SetupMachineFunction</tt> to perform initialization.</li>
+
+<li>Call <tt>EmitConstantPool</tt> to print out (to the output stream) constants
+    which have been spilled to memory.</li>
+
+<li>Call <tt>EmitJumpTableInfo</tt> to print out jump tables used by the current
+    function.</li>
+
+<li>Print out the label for the current function.</li>
+
+<li>Print out the code for the function, including basic block labels and the
+    assembly for the instruction (using <tt>printInstruction</tt>)</li>
+</ul>
+
+<p>
+The <tt>XXXAsmPrinter</tt> implementation must also include the code generated
+by TableGen that is output in the <tt>XXXGenAsmWriter.inc</tt> file. The code
+in <tt>XXXGenAsmWriter.inc</tt> contains an implementation of the
+<tt>printInstruction</tt> method that may call these methods:
+</p>
+
+<ul>
+<li><tt>printOperand</tt></li>
+
+<li><tt>printMemOperand</tt></li>
+
+<li><tt>printCCOperand (for conditional statements)</tt></li>
+
+<li><tt>printDataDirective</tt></li>
+
+<li><tt>printDeclare</tt></li>
+
+<li><tt>printImplicitDef</tt></li>
+
+<li><tt>printInlineAsm</tt></li>
+</ul>
+
+<p>
+The implementations of <tt>printDeclare</tt>, <tt>printImplicitDef</tt>,
+<tt>printInlineAsm</tt>, and <tt>printLabel</tt> in <tt>AsmPrinter.cpp</tt> are
+generally adequate for printing assembly and do not need to be
+overridden.
+</p>
+
+<p>
+The <tt>printOperand</tt> method is implemented with a long switch/case
+statement for the type of operand: register, immediate, basic block, external
+symbol, global address, constant pool index, or jump table index. For an
+instruction with a memory address operand, the <tt>printMemOperand</tt> method
+should be implemented to generate the proper output. Similarly,
+<tt>printCCOperand</tt> should be used to print a conditional operand.
+</p>
+
+<p><tt>doFinalization</tt> should be overridden in <tt>XXXAsmPrinter</tt>, and
+it should be called to shut down the assembly printer. During
+<tt>doFinalization</tt>, global variables and constants are printed to
+output.
+</p>
+
+</div>
+
+<!-- *********************************************************************** -->
+<div class="doc_section">
+  <a name="subtargetSupport">Subtarget Support</a>
+</div>
+<!-- *********************************************************************** -->
+
+<div class="doc_text">
+
+<p>
+Subtarget support is used to inform the code generation process of instruction
+set variations for a given chip set.  For example, the LLVM SPARC implementation
+provided covers three major versions of the SPARC microprocessor architecture:
+Version 8 (V8, which is a 32-bit architecture), Version 9 (V9, a 64-bit
+architecture), and the UltraSPARC architecture. V8 has 16 double-precision
+floating-point registers that are also usable as either 32 single-precision or 8
+quad-precision registers.  V8 is also purely big-endian. V9 has 32
+double-precision floating-point registers that are also usable as 16
+quad-precision registers, but cannot be used as single-precision registers. The
+UltraSPARC architecture combines V9 with UltraSPARC Visual Instruction Set
+extensions.
+</p>
+
+<p>
+If subtarget support is needed, you should implement a target-specific
+XXXSubtarget class for your architecture. This class should process the
+command-line options <tt>-mcpu=</tt> and <tt>-mattr=</tt>.
+</p>
+
+<p>
+TableGen uses definitions in the <tt>Target.td</tt> and <tt>Sparc.td</tt> files
+to generate code in <tt>SparcGenSubtarget.inc</tt>. In <tt>Target.td</tt>, shown
+below, the <tt>SubtargetFeature</tt> interface is defined. The first 4 string
+parameters of the <tt>SubtargetFeature</tt> interface are a feature name, an
+attribute set by the feature, the value of the attribute, and a description of
+the feature. (The fifth parameter is a list of features whose presence is
+implied, and its default value is an empty array.)
+</p>
+
+<div class="doc_code">
+<pre>
+class SubtargetFeature&lt;string n, string a,  string v, string d,
+                       list&lt;SubtargetFeature&gt; i = []&gt; {
+  string Name = n;
+  string Attribute = a;
+  string Value = v;
+  string Desc = d;
+  list&lt;SubtargetFeature&gt; Implies = i;
+}
+</pre>
+</div>
+
+<p>
+In the <tt>Sparc.td</tt> file, the SubtargetFeature is used to define the
+following features.
+</p>
+
+<div class="doc_code">
+<pre>
+def FeatureV9 : SubtargetFeature&lt;"v9", "IsV9", "true",
+                     "Enable SPARC-V9 instructions"&gt;;
+def FeatureV8Deprecated : SubtargetFeature&lt;"deprecated-v8", 
+                     "V8DeprecatedInsts", "true",
+                     "Enable deprecated V8 instructions in V9 mode"&gt;;
+def FeatureVIS : SubtargetFeature&lt;"vis", "IsVIS", "true",
+                     "Enable UltraSPARC Visual Instruction Set extensions"&gt;;
+</pre>
+</div>
+
+<p>
+Elsewhere in <tt>Sparc.td</tt>, the Proc class is defined and then is used to
+define particular SPARC processor subtypes that may have the previously
+described features.
+</p>
+
+<div class="doc_code">
+<pre>
+class Proc&lt;string Name, list&lt;SubtargetFeature&gt; Features&gt;
+  : Processor&lt;Name, NoItineraries, Features&gt;;
+&nbsp;
+def : Proc&lt;"generic",         []&gt;;
+def : Proc&lt;"v8",              []&gt;;
+def : Proc&lt;"supersparc",      []&gt;;
+def : Proc&lt;"sparclite",       []&gt;;
+def : Proc&lt;"f934",            []&gt;;
+def : Proc&lt;"hypersparc",      []&gt;;
+def : Proc&lt;"sparclite86x",    []&gt;;
+def : Proc&lt;"sparclet",        []&gt;;
+def : Proc&lt;"tsc701",          []&gt;;
+def : Proc&lt;"v9",              [FeatureV9]&gt;;
+def : Proc&lt;"ultrasparc",      [FeatureV9, FeatureV8Deprecated]&gt;;
+def : Proc&lt;"ultrasparc3",     [FeatureV9, FeatureV8Deprecated]&gt;;
+def : Proc&lt;"ultrasparc3-vis", [FeatureV9, FeatureV8Deprecated, FeatureVIS]&gt;;
+</pre>
+</div>
+
+<p>
+From <tt>Target.td</tt> and <tt>Sparc.td</tt> files, the resulting
+SparcGenSubtarget.inc specifies enum values to identify the features, arrays of
+constants to represent the CPU features and CPU subtypes, and the
+ParseSubtargetFeatures method that parses the features string that sets
+specified subtarget options. The generated <tt>SparcGenSubtarget.inc</tt> file
+should be included in the <tt>SparcSubtarget.cpp</tt>. The target-specific
+implementation of the XXXSubtarget method should follow this pseudocode:
+</p>
+
+<div class="doc_code">
+<pre>
+XXXSubtarget::XXXSubtarget(const Module &amp;M, const std::string &amp;FS) {
+  // Set the default features
+  // Determine default and user specified characteristics of the CPU
+  // Call ParseSubtargetFeatures(FS, CPU) to parse the features string
+  // Perform any additional operations
+}
+</pre>
+</div>
+
+</div>
+
+<!-- *********************************************************************** -->
+<div class="doc_section">
+  <a name="jitSupport">JIT Support</a>
+</div>
+<!-- *********************************************************************** -->
+
+<div class="doc_text">
+
+<p>
+The implementation of a target machine optionally includes a Just-In-Time (JIT)
+code generator that emits machine code and auxiliary structures as binary output
+that can be written directly to memory.  To do this, implement JIT code
+generation by performing the following steps:
+</p>
+
+<ul>
+<li>Write an <tt>XXXCodeEmitter.cpp</tt> file that contains a machine function
+    pass that transforms target-machine instructions into relocatable machine
+    code.</li>
+
+<li>Write an <tt>XXXJITInfo.cpp</tt> file that implements the JIT interfaces for
+    target-specific code-generation activities, such as emitting machine code
+    and stubs.</li>
+
+<li>Modify <tt>XXXTargetMachine</tt> so that it provides a
+    <tt>TargetJITInfo</tt> object through its <tt>getJITInfo</tt> method.</li>
+</ul>
+
+<p>
+There are several different approaches to writing the JIT support code. For
+instance, TableGen and target descriptor files may be used for creating a JIT
+code generator, but are not mandatory. For the Alpha and PowerPC target
+machines, TableGen is used to generate <tt>XXXGenCodeEmitter.inc</tt>, which
+contains the binary coding of machine instructions and the
+<tt>getBinaryCodeForInstr</tt> method to access those codes. Other JIT
+implementations do not.
+</p>
+
+<p>
+Both <tt>XXXJITInfo.cpp</tt> and <tt>XXXCodeEmitter.cpp</tt> must include the
+<tt>llvm/CodeGen/MachineCodeEmitter.h</tt> header file that defines the
+<tt>MachineCodeEmitter</tt> class containing code for several callback functions
+that write data (in bytes, words, strings, etc.) to the output stream.
+</p>
+
+</div>
+
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+  <a name="mce">Machine Code Emitter</a>
+</div>
+
+<div class="doc_text">
+
+<p>
+In <tt>XXXCodeEmitter.cpp</tt>, a target-specific of the <tt>Emitter</tt> class
+is implemented as a function pass (subclass
+of <tt>MachineFunctionPass</tt>). The target-specific implementation
+of <tt>runOnMachineFunction</tt> (invoked by
+<tt>runOnFunction</tt> in <tt>MachineFunctionPass</tt>) iterates through the
+<tt>MachineBasicBlock</tt> calls <tt>emitInstruction</tt> to process each
+instruction and emit binary code. <tt>emitInstruction</tt> is largely
+implemented with case statements on the instruction types defined in
+<tt>XXXInstrInfo.h</tt>. For example, in <tt>X86CodeEmitter.cpp</tt>,
+the <tt>emitInstruction</tt> method is built around the following switch/case
+statements:
+</p>
+
+<div class="doc_code">
+<pre>
+switch (Desc-&gt;TSFlags &amp; X86::FormMask) {
+case X86II::Pseudo:  // for not yet implemented instructions 
+   ...               // or pseudo-instructions
+   break;
+case X86II::RawFrm:  // for instructions with a fixed opcode value
+   ...
+   break;
+case X86II::AddRegFrm: // for instructions that have one register operand 
+   ...                 // added to their opcode
+   break;
+case X86II::MRMDestReg:// for instructions that use the Mod/RM byte
+   ...                 // to specify a destination (register)
+   break;
+case X86II::MRMDestMem:// for instructions that use the Mod/RM byte
+   ...                 // to specify a destination (memory)
+   break;
+case X86II::MRMSrcReg: // for instructions that use the Mod/RM byte
+   ...                 // to specify a source (register)
+   break;
+case X86II::MRMSrcMem: // for instructions that use the Mod/RM byte
+   ...                 // to specify a source (memory)
+   break;
+case X86II::MRM0r: case X86II::MRM1r:  // for instructions that operate on 
+case X86II::MRM2r: case X86II::MRM3r:  // a REGISTER r/m operand and
+case X86II::MRM4r: case X86II::MRM5r:  // use the Mod/RM byte and a field
+case X86II::MRM6r: case X86II::MRM7r:  // to hold extended opcode data
+   ...  
+   break;
+case X86II::MRM0m: case X86II::MRM1m:  // for instructions that operate on
+case X86II::MRM2m: case X86II::MRM3m:  // a MEMORY r/m operand and
+case X86II::MRM4m: case X86II::MRM5m:  // use the Mod/RM byte and a field
+case X86II::MRM6m: case X86II::MRM7m:  // to hold extended opcode data
+   ...  
+   break;
+case X86II::MRMInitReg: // for instructions whose source and
+   ...                  // destination are the same register
+   break;
+}
+</pre>
+</div>
+
+<p>
+The implementations of these case statements often first emit the opcode and
+then get the operand(s). Then depending upon the operand, helper methods may be
+called to process the operand(s). For example, in <tt>X86CodeEmitter.cpp</tt>,
+for the <tt>X86II::AddRegFrm</tt> case, the first data emitted
+(by <tt>emitByte</tt>) is the opcode added to the register operand. Then an
+object representing the machine operand, <tt>MO1</tt>, is extracted. The helper
+methods such as <tt>isImmediate</tt>,
+<tt>isGlobalAddress</tt>, <tt>isExternalSymbol</tt>, <tt>isConstantPoolIndex</tt>, and 
+<tt>isJumpTableIndex</tt> determine the operand
+type. (<tt>X86CodeEmitter.cpp</tt> also has private methods such
+as <tt>emitConstant</tt>, <tt>emitGlobalAddress</tt>,
+<tt>emitExternalSymbolAddress</tt>, <tt>emitConstPoolAddress</tt>,
+and <tt>emitJumpTableAddress</tt> that emit the data into the output stream.)
+</p>
+
+<div class="doc_code">
+<pre>
+case X86II::AddRegFrm:
+  MCE.emitByte(BaseOpcode + getX86RegNum(MI.getOperand(CurOp++).getReg()));
+  
+  if (CurOp != NumOps) {
+    const MachineOperand &amp;MO1 = MI.getOperand(CurOp++);
+    unsigned Size = X86InstrInfo::sizeOfImm(Desc);
+    if (MO1.isImmediate())
+      emitConstant(MO1.getImm(), Size);
+    else {
+      unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
+        : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
+      if (Opcode == X86::MOV64ri) 
+        rt = X86::reloc_absolute_dword;  // FIXME: add X86II flag?
+      if (MO1.isGlobalAddress()) {
+        bool NeedStub = isa&lt;Function&gt;(MO1.getGlobal());
+        bool isLazy = gvNeedsLazyPtr(MO1.getGlobal());
+        emitGlobalAddress(MO1.getGlobal(), rt, MO1.getOffset(), 0,
+                          NeedStub, isLazy);
+      } else if (MO1.isExternalSymbol())
+        emitExternalSymbolAddress(MO1.getSymbolName(), rt);
+      else if (MO1.isConstantPoolIndex())
+        emitConstPoolAddress(MO1.getIndex(), rt);
+      else if (MO1.isJumpTableIndex())
+        emitJumpTableAddress(MO1.getIndex(), rt);
+    }
+  }
+  break;
+</pre>
+</div>
+
+<p>
+In the previous example, <tt>XXXCodeEmitter.cpp</tt> uses the
+variable <tt>rt</tt>, which is a RelocationType enum that may be used to
+relocate addresses (for example, a global address with a PIC base offset). The
+<tt>RelocationType</tt> enum for that target is defined in the short
+target-specific <tt>XXXRelocations.h</tt> file. The <tt>RelocationType</tt> is used by
+the <tt>relocate</tt> method defined in <tt>XXXJITInfo.cpp</tt> to rewrite
+addresses for referenced global symbols.
+</p>
+
+<p>
+For example, <tt>X86Relocations.h</tt> specifies the following relocation types
+for the X86 addresses. In all four cases, the relocated value is added to the
+value already in memory. For <tt>reloc_pcrel_word</tt>
+and <tt>reloc_picrel_word</tt>, there is an additional initial adjustment.
+</p>
+
+<div class="doc_code">
+<pre>
+enum RelocationType {
+  reloc_pcrel_word = 0,    // add reloc value after adjusting for the PC loc
+  reloc_picrel_word = 1,   // add reloc value after adjusting for the PIC base
+  reloc_absolute_word = 2, // absolute relocation; no additional adjustment 
+  reloc_absolute_dword = 3 // absolute relocation; no additional adjustment
+};
+</pre>
+</div>
+
+</div>
+
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+  <a name="targetJITInfo">Target JIT Info</a>
+</div>
+
+<div class="doc_text">
+
+<p>
+<tt>XXXJITInfo.cpp</tt> implements the JIT interfaces for target-specific
+code-generation activities, such as emitting machine code and stubs. At minimum,
+a target-specific version of <tt>XXXJITInfo</tt> implements the following:
+</p>
+
+<ul>
+<li><tt>getLazyResolverFunction</tt> &mdash; Initializes the JIT, gives the
+    target a function that is used for compilation.</li>
+
+<li><tt>emitFunctionStub</tt> &mdash; Returns a native function with a specified
+    address for a callback function.</li>
+
+<li><tt>relocate</tt> &mdash; Changes the addresses of referenced globals, based
+    on relocation types.</li>
+
+<li>Callback function that are wrappers to a function stub that is used when the
+    real target is not initially known.</li>
+</ul>
+
+<p>
+<tt>getLazyResolverFunction</tt> is generally trivial to implement. It makes the
+incoming parameter as the global <tt>JITCompilerFunction</tt> and returns the
+callback function that will be used a function wrapper. For the Alpha target
+(in <tt>AlphaJITInfo.cpp</tt>), the <tt>getLazyResolverFunction</tt>
+implementation is simply:
+</p>
+
+<div class="doc_code">
+<pre>
+TargetJITInfo::LazyResolverFn AlphaJITInfo::getLazyResolverFunction(  
+                                            JITCompilerFn F) {
+  JITCompilerFunction = F;
+  return AlphaCompilationCallback;
+}
+</pre>
+</div>
+
+<p>
+For the X86 target, the <tt>getLazyResolverFunction</tt> implementation is a
+little more complication, because it returns a different callback function for
+processors with SSE instructions and XMM registers.
+</p>
+
+<p>
+The callback function initially saves and later restores the callee register
+values, incoming arguments, and frame and return address. The callback function
+needs low-level access to the registers or stack, so it is typically implemented
+with assembler.
+</p>
+
 </div>
 
 <!-- *********************************************************************** -->
@@ -246,11 +2548,11 @@ how the C backend is written.</p>
 <hr>
 <address>
   <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
-  src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
+  src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
   <a href="http://validator.w3.org/check/referer"><img
-  src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!" /></a>
+  src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
 
-  <a href="http://misha.brukman.net">Misha Brukman</a><br>
+  <a href="http://www.woo.com">Mason Woo</a> and <a href="http://misha.brukman.net">Misha Brukman</a><br>
   <a href="http://llvm.org">The LLVM Compiler Infrastructure</a>
   <br>
   Last modified: $Date$