explain that NumElements in alloca and malloc defaults to one
[oota-llvm.git] / docs / ProgrammersManual.html
index b4159bf39e17fca5f426381deab4411ae5d90e5c..7bec1b964dc85a9ca95caedfe790947e2f8d4e6d 100644 (file)
@@ -35,7 +35,7 @@ option</a>
 and the <tt>-debug-only</tt> option</a> </li>
         </ul>
       </li>
-      <li><a href="#Statistic">The <tt>Statistic</tt> template &amp; <tt>-stats</tt>
+      <li><a href="#Statistic">The <tt>Statistic</tt> class &amp; <tt>-stats</tt>
 option</a></li>
 <!--
       <li>The <tt>InstVisitor</tt> template
@@ -44,6 +44,47 @@ option</a></li>
       <li><a href="#ViewGraph">Viewing graphs while debugging code</a></li>
     </ul>
   </li>
+  <li><a href="#datastructure">Picking the Right Data Structure for a Task</a>
+    <ul>
+    <li><a href="#ds_sequential">Sequential Containers (std::vector, std::list, etc)</a>
+    <ul>
+      <li><a href="#dss_fixedarrays">Fixed Size Arrays</a></li>
+      <li><a href="#dss_heaparrays">Heap Allocated Arrays</a></li>
+      <li><a href="#dss_smallvector">"llvm/ADT/SmallVector.h"</a></li>
+      <li><a href="#dss_vector">&lt;vector&gt;</a></li>
+      <li><a href="#dss_deque">&lt;deque&gt;</a></li>
+      <li><a href="#dss_list">&lt;list&gt;</a></li>
+      <li><a href="#dss_ilist">llvm/ADT/ilist</a></li>
+      <li><a href="#dss_other">Other Sequential Container Options</a></li>
+    </ul></li>
+    <li><a href="#ds_set">Set-Like Containers (std::set, SmallSet, SetVector, etc)</a>
+    <ul>
+      <li><a href="#dss_sortedvectorset">A sorted 'vector'</a></li>
+      <li><a href="#dss_smallset">"llvm/ADT/SmallSet.h"</a></li>
+      <li><a href="#dss_smallptrset">"llvm/ADT/SmallPtrSet.h"</a></li>
+      <li><a href="#dss_denseset">"llvm/ADT/DenseSet.h"</a></li>
+      <li><a href="#dss_FoldingSet">"llvm/ADT/FoldingSet.h"</a></li>
+      <li><a href="#dss_set">&lt;set&gt;</a></li>
+      <li><a href="#dss_setvector">"llvm/ADT/SetVector.h"</a></li>
+      <li><a href="#dss_uniquevector">"llvm/ADT/UniqueVector.h"</a></li>
+      <li><a href="#dss_otherset">Other Set-Like ContainerOptions</a></li>
+    </ul></li>
+    <li><a href="#ds_map">Map-Like Containers (std::map, DenseMap, etc)</a>
+    <ul>
+      <li><a href="#dss_sortedvectormap">A sorted 'vector'</a></li>
+      <li><a href="#dss_stringmap">"llvm/ADT/StringMap.h"</a></li>
+      <li><a href="#dss_indexedmap">"llvm/ADT/IndexedMap.h"</a></li>
+      <li><a href="#dss_densemap">"llvm/ADT/DenseMap.h"</a></li>
+      <li><a href="#dss_map">&lt;map&gt;</a></li>
+      <li><a href="#dss_othermap">Other Map-Like Container Options</a></li>
+    </ul></li>
+    <li><a href="#ds_bit">BitVector-like containers</a>
+    <ul>
+      <li><a href="#dss_bitvector">A dense bitvector</a></li>
+      <li><a href="#dss_sparsebitvector">A sparse bitvector</a></li>
+    </ul></li>
+  </ul>
+  </li>
   <li><a href="#common">Helpful Hints for Common Operations</a>
     <ul>
       <li><a href="#inspection">Basic Inspection and Traversal Routines</a>
@@ -62,6 +103,8 @@ complex example</a> </li>
 the same way</a> </li>
           <li><a href="#iterate_chains">Iterating over def-use &amp;
 use-def chains</a> </li>
+          <li><a href="#iterate_preds">Iterating over predecessors &amp;
+successors of blocks</a></li>
         </ul>
       </li>
       <li><a href="#simplechanges">Making simple changes</a>
@@ -71,6 +114,7 @@ use-def chains</a> </li>
           <li><a href="#schanges_deleting">Deleting             <tt>Instruction</tt>s</a> </li>
           <li><a href="#schanges_replacing">Replacing an                <tt>Instruction</tt>
 with another <tt>Value</tt></a> </li>
+          <li><a href="#schanges_deletingGV">Deleting <tt>GlobalVariable</tt>s</a> </li>  
         </ul>
       </li>
 <!--
@@ -94,37 +138,33 @@ with another <tt>Value</tt></a> </li>
     <li><a href="#AbstractTypeUser">The AbstractTypeUser Class</a></li>
   </ul></li>
 
-  <li><a href="#SymbolTable">The <tt>SymbolTable</tt> class </a></li>
+  <li><a href="#SymbolTable">The <tt>ValueSymbolTable</tt> and <tt>TypeSymbolTable</tt> classes </a></li>
   </ul></li>
 
   <li><a href="#coreclasses">The Core LLVM Class Hierarchy Reference</a>
     <ul>
+      <li><a href="#Type">The <tt>Type</tt> class</a> </li>
+      <li><a href="#Module">The <tt>Module</tt> class</a></li>
       <li><a href="#Value">The <tt>Value</tt> class</a>
+      <ul>
+        <li><a href="#User">The <tt>User</tt> class</a>
         <ul>
-          <li><a href="#User">The <tt>User</tt> class</a>
+          <li><a href="#Instruction">The <tt>Instruction</tt> class</a></li>
+          <li><a href="#Constant">The <tt>Constant</tt> class</a>
+          <ul>
+            <li><a href="#GlobalValue">The <tt>GlobalValue</tt> class</a>
             <ul>
-              <li><a href="#Instruction">The <tt>Instruction</tt> class</a>
-                <ul>
-                  <li><a href="#GetElementPtrInst">The <tt>GetElementPtrInst</tt> class</a></li>
-                </ul>
-              </li>
-              <li><a href="#Module">The <tt>Module</tt> class</a></li>
-              <li><a href="#Constant">The <tt>Constant</tt> class</a>
-               <ul>
-                  <li><a href="#GlobalValue">The <tt>GlobalValue</tt> class</a>
-                    <ul>
-                      <li><a href="#BasicBlock">The <tt>BasicBlock</tt>class</a></li>
-                      <li><a href="#Function">The <tt>Function</tt> class</a></li>
-                      <li><a href="#GlobalVariable">The <tt>GlobalVariable</tt> class</a></li>
-                    </ul>
-                  </li>
-                </ul>
-              </li>
-           </ul>
-         </li>
-          <li><a href="#Type">The <tt>Type</tt> class</a> </li>
-          <li><a href="#Argument">The <tt>Argument</tt> class</a></li>
+              <li><a href="#Function">The <tt>Function</tt> class</a></li>
+              <li><a href="#GlobalVariable">The <tt>GlobalVariable</tt> class</a></li>
+            </ul>
+            </li>
+          </ul>
+          </li>
         </ul>
+        </li>
+        <li><a href="#BasicBlock">The <tt>BasicBlock</tt> class</a></li>
+        <li><a href="#Argument">The <tt>Argument</tt> class</a></li>
+      </ul>
       </li>
     </ul>
   </li>
@@ -303,7 +343,7 @@ static bool isLoopInvariant(const <a href="#Value">Value</a> *V, const Loop *L)
   if (isa&lt;<a href="#Constant">Constant</a>&gt;(V) || isa&lt;<a href="#Argument">Argument</a>&gt;(V) || isa&lt;<a href="#GlobalValue">GlobalValue</a>&gt;(V))
     return true;
 
-  <i>// Otherwise, it must be an instruction...</i>
+  // <i>Otherwise, it must be an instruction...</i>
   return !L-&gt;contains(cast&lt;<a href="#Instruction">Instruction</a>&gt;(V)-&gt;getParent());
 }
 </pre>
@@ -329,7 +369,7 @@ static bool isLoopInvariant(const <a href="#Value">Value</a> *V, const Loop *L)
 <div class="doc_code">
 <pre>
 if (<a href="#AllocationInst">AllocationInst</a> *AI = dyn_cast&lt;<a href="#AllocationInst">AllocationInst</a>&gt;(Val)) {
-  // ...
+  // <i>...</i>
 }
 </pre>
 </div>
@@ -395,7 +435,7 @@ tool) is run with the '<tt>-debug</tt>' command line argument:</p>
 
 <div class="doc_code">
 <pre>
-DEBUG(std::cerr &lt;&lt; "I am here!\n");
+DOUT &lt;&lt; "I am here!\n";
 </pre>
 </div>
 
@@ -404,7 +444,7 @@ DEBUG(std::cerr &lt;&lt; "I am here!\n");
 <div class="doc_code">
 <pre>
 $ opt &lt; a.bc &gt; /dev/null -mypass
-&lt;no output&gt;
+<i>&lt;no output&gt;</i>
 $ opt &lt; a.bc &gt; /dev/null -mypass -debug
 I am here!
 </pre>
@@ -440,16 +480,16 @@ option as follows:</p>
 
 <div class="doc_code">
 <pre>
-DEBUG(std::cerr &lt;&lt; "No debug type\n");
+DOUT &lt;&lt; "No debug type\n";
 #undef  DEBUG_TYPE
 #define DEBUG_TYPE "foo"
-DEBUG(std::cerr &lt;&lt; "'foo' debug type\n");
+DOUT &lt;&lt; "'foo' debug type\n";
 #undef  DEBUG_TYPE
 #define DEBUG_TYPE "bar"
-DEBUG(std::cerr &lt;&lt; "'bar' debug type\n");
+DOUT &lt;&lt; "'bar' debug type\n";
 #undef  DEBUG_TYPE
 #define DEBUG_TYPE ""
-DEBUG(std::cerr &lt;&lt; "No debug type (2)\n");
+DOUT &lt;&lt; "No debug type (2)\n";
 </pre>
 </div>
 
@@ -458,7 +498,7 @@ DEBUG(std::cerr &lt;&lt; "No debug type (2)\n");
 <div class="doc_code">
 <pre>
 $ opt &lt; a.bc &gt; /dev/null -mypass
-&lt;no output&gt;
+<i>&lt;no output&gt;</i>
 $ opt &lt; a.bc &gt; /dev/null -mypass -debug
 No debug type
 'foo' debug type
@@ -485,7 +525,7 @@ even if the source lives in multiple files.</p>
 
 <!-- ======================================================================= -->
 <div class="doc_subsection">
-  <a name="Statistic">The <tt>Statistic</tt> template &amp; <tt>-stats</tt>
+  <a name="Statistic">The <tt>Statistic</tt> class &amp; <tt>-stats</tt>
   option</a>
 </div>
 
@@ -493,7 +533,7 @@ even if the source lives in multiple files.</p>
 
 <p>The "<tt><a
 href="/doxygen/Statistic_8h-source.html">llvm/ADT/Statistic.h</a></tt>" file
-provides a template named <tt>Statistic</tt> that is used as a unified way to
+provides a class named <tt>Statistic</tt> that is used as a unified way to
 keep track of what the LLVM compiler is doing and how effective various
 optimizations are.  It is useful to see what optimizations are contributing to
 making a particular program run faster.</p>
@@ -501,7 +541,7 @@ making a particular program run faster.</p>
 <p>Often you may run your pass on some big program, and you're interested to see
 how many times it makes a certain transformation.  Although you can do this with
 hand inspection, or some ad-hoc method, this is a real pain and not very useful
-for big programs.  Using the <tt>Statistic</tt> template makes it very easy to
+for big programs.  Using the <tt>Statistic</tt> class makes it very easy to
 keep track of this information, and the calculated information is presented in a
 uniform manner with the rest of the passes being executed.</p>
 
@@ -513,19 +553,21 @@ it are as follows:</p>
 
 <div class="doc_code">
 <pre>
-static Statistic&lt;&gt; NumXForms("mypassname", "The # of times I did stuff");
+#define <a href="#DEBUG_TYPE">DEBUG_TYPE</a> "mypassname"   <i>// This goes before any #includes.</i>
+STATISTIC(NumXForms, "The # of times I did stuff");
 </pre>
 </div>
 
-      <p>The <tt>Statistic</tt> template can emulate just about any data-type,
-      but if you do not specify a template argument, it defaults to acting like
-      an unsigned int counter (this is usually what you want).</p></li>
+  <p>The <tt>STATISTIC</tt> macro defines a static variable, whose name is
+    specified by the first argument.  The pass name is taken from the DEBUG_TYPE
+    macro, and the description is taken from the second argument.  The variable
+    defined ("NumXForms" in this case) acts like an unsigned integer.</p></li>
 
     <li><p>Whenever you make a transformation, bump the counter:</p>
 
 <div class="doc_code">
 <pre>
-++NumXForms;   // I did stuff!
+++NumXForms;   // <i>I did stuff!</i>
 </pre>
 </div>
 
@@ -538,18 +580,18 @@ static Statistic&lt;&gt; NumXForms("mypassname", "The # of times I did stuff");
 <div class="doc_code">
 <pre>
 $ opt -stats -mypassname &lt; program.bc &gt; /dev/null
-... statistic output ...
+<i>... statistics output ...</i>
 </pre>
 </div>
 
-  <p> When running <tt>gccas</tt> on a C file from the SPEC benchmark
+  <p> When running <tt>opt</tt> on a C file from the SPEC benchmark
 suite, it gives a report that looks like this:</p>
 
 <div class="doc_code">
 <pre>
-   7646 bytecodewriter  - Number of normal instructions
-    725 bytecodewriter  - Number of oversized instructions
- 129996 bytecodewriter  - Number of bytecode bytes written
+   7646 bitcodewriter   - Number of normal instructions
+    725 bitcodewriter   - Number of oversized instructions
+ 129996 bitcodewriter   - Number of bitcode bytes written
    2817 raise           - Number of insts DCEd or constprop'd
    3213 raise           - Number of cast-of-self removed
    5046 raise           - Number of expression trees converted
@@ -612,16 +654,16 @@ systems with X11, install the <a href="http://www.graphviz.org">graphviz</a>
 toolkit, and make sure 'dot' and 'gv' are in your path.  If you are running on
 Mac OS/X, download and install the Mac OS/X <a 
 href="http://www.pixelglow.com/graphviz/">Graphviz program</a>, and add
-<tt>/Applications/Graphviz.app/Contents/MacOS/</tt> (or whereever you install
+<tt>/Applications/Graphviz.app/Contents/MacOS/</tt> (or wherever you install
 it) to your path.  Once in your system and path are set up, rerun the LLVM
 configure script and rebuild LLVM to enable this functionality.</p>
 
 <p><tt>SelectionDAG</tt> has been extended to make it easier to locate
 <i>interesting</i> nodes in large complex graphs.  From gdb, if you
 <tt>call DAG.setGraphColor(<i>node</i>, "<i>color</i>")</tt>, then the
-next <tt>call DAG.viewGraph()</tt> would hilight the node in the
+next <tt>call DAG.viewGraph()</tt> would highlight the node in the
 specified color (choices of colors can be found at <a
-href="http://www.graphviz.org/doc/info/colors.html">Colors<a>.) More
+href="http://www.graphviz.org/doc/info/colors.html">colors</a>.) More
 complex node attributes can be provided with <tt>call
 DAG.setGraphAttrs(<i>node</i>, "<i>attributes</i>")</tt> (choices can be
 found at <a href="http://www.graphviz.org/doc/info/attrs.html">Graph
@@ -630,628 +672,1359 @@ attributes, then you can <tt>call DAG.clearGraphAttrs()</tt>. </p>
 
 </div>
 
-
 <!-- *********************************************************************** -->
 <div class="doc_section">
-  <a name="common">Helpful Hints for Common Operations</a>
+  <a name="datastructure">Picking the Right Data Structure for a Task</a>
 </div>
 <!-- *********************************************************************** -->
 
 <div class="doc_text">
 
-<p>This section describes how to perform some very simple transformations of
-LLVM code.  This is meant to give examples of common idioms used, showing the
-practical side of LLVM transformations.  <p> Because this is a "how-to" section,
-you should also read about the main classes that you will be working with.  The
-<a href="#coreclasses">Core LLVM Class Hierarchy Reference</a> contains details
-and descriptions of the main classes that you should know about.</p>
+<p>LLVM has a plethora of data structures in the <tt>llvm/ADT/</tt> directory,
+ and we commonly use STL data structures.  This section describes the trade-offs
+ you should consider when you pick one.</p>
+
+<p>
+The first step is a choose your own adventure: do you want a sequential
+container, a set-like container, or a map-like container?  The most important
+thing when choosing a container is the algorithmic properties of how you plan to
+access the container.  Based on that, you should use:</p>
+
+<ul>
+<li>a <a href="#ds_map">map-like</a> container if you need efficient look-up
+    of an value based on another value.  Map-like containers also support
+    efficient queries for containment (whether a key is in the map).  Map-like
+    containers generally do not support efficient reverse mapping (values to
+    keys).  If you need that, use two maps.  Some map-like containers also
+    support efficient iteration through the keys in sorted order.  Map-like
+    containers are the most expensive sort, only use them if you need one of
+    these capabilities.</li>
+
+<li>a <a href="#ds_set">set-like</a> container if you need to put a bunch of
+    stuff into a container that automatically eliminates duplicates.  Some
+    set-like containers support efficient iteration through the elements in
+    sorted order.  Set-like containers are more expensive than sequential
+    containers.
+</li>
+
+<li>a <a href="#ds_sequential">sequential</a> container provides
+    the most efficient way to add elements and keeps track of the order they are
+    added to the collection.  They permit duplicates and support efficient
+    iteration, but do not support efficient look-up based on a key.
+</li>
+
+<li>a <a href="#ds_bit">bit</a> container provides an efficient way to store and
+    perform set operations on sets of numeric id's, while automatically
+    eliminating duplicates.  Bit containers require a maximum of 1 bit for each
+    identifier you want to store.
+</li>
+</ul>
+
+<p>
+Once the proper category of container is determined, you can fine tune the
+memory use, constant factors, and cache behaviors of access by intelligently
+picking a member of the category.  Note that constant factors and cache behavior
+can be a big deal.  If you have a vector that usually only contains a few
+elements (but could contain many), for example, it's much better to use
+<a href="#dss_smallvector">SmallVector</a> than <a href="#dss_vector">vector</a>
+.  Doing so avoids (relatively) expensive malloc/free calls, which dwarf the
+cost of adding the elements to the container. </p>
 
 </div>
 
-<!-- NOTE: this section should be heavy on example code -->
 <!-- ======================================================================= -->
 <div class="doc_subsection">
-  <a name="inspection">Basic Inspection and Traversal Routines</a>
+  <a name="ds_sequential">Sequential Containers (std::vector, std::list, etc)</a>
 </div>
 
 <div class="doc_text">
-
-<p>The LLVM compiler infrastructure have many different data structures that may
-be traversed.  Following the example of the C++ standard template library, the
-techniques used to traverse these various data structures are all basically the
-same.  For a enumerable sequence of values, the <tt>XXXbegin()</tt> function (or
-method) returns an iterator to the start of the sequence, the <tt>XXXend()</tt>
-function returns an iterator pointing to one past the last valid element of the
-sequence, and there is some <tt>XXXiterator</tt> data type that is common
-between the two operations.</p>
-
-<p>Because the pattern for iteration is common across many different aspects of
-the program representation, the standard template library algorithms may be used
-on them, and it is easier to remember how to iterate. First we show a few common
-examples of the data structures that need to be traversed.  Other data
-structures are traversed in very similar ways.</p>
-
+There are a variety of sequential containers available for you, based on your
+needs.  Pick the first in this section that will do what you want.
 </div>
 
 <!-- _______________________________________________________________________ -->
 <div class="doc_subsubsection">
-  <a name="iterate_function">Iterating over the </a><a
-  href="#BasicBlock"><tt>BasicBlock</tt></a>s in a <a
-  href="#Function"><tt>Function</tt></a>
+  <a name="dss_fixedarrays">Fixed Size Arrays</a>
 </div>
 
 <div class="doc_text">
-
-<p>It's quite common to have a <tt>Function</tt> instance that you'd like to
-transform in some way; in particular, you'd like to manipulate its
-<tt>BasicBlock</tt>s.  To facilitate this, you'll need to iterate over all of
-the <tt>BasicBlock</tt>s that constitute the <tt>Function</tt>. The following is
-an example that prints the name of a <tt>BasicBlock</tt> and the number of
-<tt>Instruction</tt>s it contains:</p>
-
-<div class="doc_code">
-<pre>
-// func is a pointer to a Function instance
-for (Function::iterator i = func-&gt;begin(), e = func-&gt;end(); i != e; ++i) {
-  // print out the name of the basic block if it has one, and then the
-  // number of instructions that it contains
-  std::cerr &lt;&lt; "Basic block (name=" &lt;&lt; i-&gt;getName() &lt;&lt; ") has "
-            &lt;&lt; i-&gt;size() &lt;&lt; " instructions.\n";
-}
-</pre>
+<p>Fixed size arrays are very simple and very fast.  They are good if you know
+exactly how many elements you have, or you have a (low) upper bound on how many
+you have.</p>
 </div>
 
-<p>Note that i can be used as if it were a pointer for the purposes of
-invoking member functions of the <tt>Instruction</tt> class.  This is
-because the indirection operator is overloaded for the iterator
-classes.  In the above code, the expression <tt>i-&gt;size()</tt> is
-exactly equivalent to <tt>(*i).size()</tt> just like you'd expect.</p>
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+  <a name="dss_heaparrays">Heap Allocated Arrays</a>
+</div>
 
+<div class="doc_text">
+<p>Heap allocated arrays (new[] + delete[]) are also simple.  They are good if
+the number of elements is variable, if you know how many elements you will need
+before the array is allocated, and if the array is usually large (if not,
+consider a <a href="#dss_smallvector">SmallVector</a>).  The cost of a heap
+allocated array is the cost of the new/delete (aka malloc/free).  Also note that
+if you are allocating an array of a type with a constructor, the constructor and
+destructors will be run for every element in the array (re-sizable vectors only
+construct those elements actually used).</p>
 </div>
 
 <!-- _______________________________________________________________________ -->
 <div class="doc_subsubsection">
-  <a name="iterate_basicblock">Iterating over the </a><a
-  href="#Instruction"><tt>Instruction</tt></a>s in a <a
-  href="#BasicBlock"><tt>BasicBlock</tt></a>
+  <a name="dss_smallvector">"llvm/ADT/SmallVector.h"</a>
 </div>
 
 <div class="doc_text">
+<p><tt>SmallVector&lt;Type, N&gt;</tt> is a simple class that looks and smells
+just like <tt>vector&lt;Type&gt;</tt>:
+it supports efficient iteration, lays out elements in memory order (so you can
+do pointer arithmetic between elements), supports efficient push_back/pop_back
+operations, supports efficient random access to its elements, etc.</p>
 
-<p>Just like when dealing with <tt>BasicBlock</tt>s in <tt>Function</tt>s, it's
-easy to iterate over the individual instructions that make up
-<tt>BasicBlock</tt>s. Here's a code snippet that prints out each instruction in
-a <tt>BasicBlock</tt>:</p>
+<p>The advantage of SmallVector is that it allocates space for
+some number of elements (N) <b>in the object itself</b>.  Because of this, if
+the SmallVector is dynamically smaller than N, no malloc is performed.  This can
+be a big win in cases where the malloc/free call is far more expensive than the
+code that fiddles around with the elements.</p>
 
-<div class="doc_code">
-<pre>
-// blk is a pointer to a BasicBlock instance
-for (BasicBlock::iterator i = blk-&gt;begin(), e = blk-&gt;end(); i != e; ++i)
-   // the next statement works since operator&lt;&lt;(ostream&amp;,...)
-   // is overloaded for Instruction&amp;
-   std::cerr &lt;&lt; *i &lt;&lt; "\n";
-</pre>
-</div>
+<p>This is good for vectors that are "usually small" (e.g. the number of
+predecessors/successors of a block is usually less than 8).  On the other hand,
+this makes the size of the SmallVector itself large, so you don't want to
+allocate lots of them (doing so will waste a lot of space).  As such,
+SmallVectors are most useful when on the stack.</p>
 
-<p>However, this isn't really the best way to print out the contents of a
-<tt>BasicBlock</tt>!  Since the ostream operators are overloaded for virtually
-anything you'll care about, you could have just invoked the print routine on the
-basic block itself: <tt>std::cerr &lt;&lt; *blk &lt;&lt; "\n";</tt>.</p>
+<p>SmallVector also provides a nice portable and efficient replacement for
+<tt>alloca</tt>.</p>
 
 </div>
 
 <!-- _______________________________________________________________________ -->
 <div class="doc_subsubsection">
-  <a name="iterate_institer">Iterating over the </a><a
-  href="#Instruction"><tt>Instruction</tt></a>s in a <a
-  href="#Function"><tt>Function</tt></a>
+  <a name="dss_vector">&lt;vector&gt;</a>
 </div>
 
 <div class="doc_text">
+<p>
+std::vector is well loved and respected.  It is useful when SmallVector isn't:
+when the size of the vector is often large (thus the small optimization will
+rarely be a benefit) or if you will be allocating many instances of the vector
+itself (which would waste space for elements that aren't in the container).
+vector is also useful when interfacing with code that expects vectors :).
+</p>
 
-<p>If you're finding that you commonly iterate over a <tt>Function</tt>'s
-<tt>BasicBlock</tt>s and then that <tt>BasicBlock</tt>'s <tt>Instruction</tt>s,
-<tt>InstIterator</tt> should be used instead. You'll need to include <a
-href="/doxygen/InstIterator_8h-source.html"><tt>llvm/Support/InstIterator.h</tt></a>,
-and then instantiate <tt>InstIterator</tt>s explicitly in your code.  Here's a
-small example that shows how to dump all instructions in a function to the standard error stream:<p>
+<p>One worthwhile note about std::vector: avoid code like this:</p>
 
 <div class="doc_code">
 <pre>
-#include "<a href="/doxygen/InstIterator_8h-source.html">llvm/Support/InstIterator.h</a>"
-
-// Suppose F is a ptr to a function
-for (inst_iterator i = inst_begin(F), e = inst_end(F); i != e; ++i)
-  std::cerr &lt;&lt; *i &lt;&lt; "\n";
+for ( ... ) {
+   std::vector&lt;foo&gt; V;
+   use V;
+}
 </pre>
 </div>
 
-<p>Easy, isn't it?  You can also use <tt>InstIterator</tt>s to fill a
-worklist with its initial contents.  For example, if you wanted to
-initialize a worklist to contain all instructions in a <tt>Function</tt>
-F, all you would need to do is something like:</p>
+<p>Instead, write this as:</p>
 
 <div class="doc_code">
 <pre>
-std::set&lt;Instruction*&gt; worklist;
-worklist.insert(inst_begin(F), inst_end(F));
+std::vector&lt;foo&gt; V;
+for ( ... ) {
+   use V;
+   V.clear();
+}
 </pre>
 </div>
 
-<p>The STL set <tt>worklist</tt> would now contain all instructions in the
-<tt>Function</tt> pointed to by F.</p>
+<p>Doing so will save (at least) one heap allocation and free per iteration of
+the loop.</p>
 
 </div>
 
 <!-- _______________________________________________________________________ -->
 <div class="doc_subsubsection">
-  <a name="iterate_convert">Turning an iterator into a class pointer (and
-  vice-versa)</a>
+  <a name="dss_deque">&lt;deque&gt;</a>
 </div>
 
 <div class="doc_text">
+<p>std::deque is, in some senses, a generalized version of std::vector.  Like
+std::vector, it provides constant time random access and other similar
+properties, but it also provides efficient access to the front of the list.  It
+does not guarantee continuity of elements within memory.</p>
 
-<p>Sometimes, it'll be useful to grab a reference (or pointer) to a class
-instance when all you've got at hand is an iterator.  Well, extracting
-a reference or a pointer from an iterator is very straight-forward.
-Assuming that <tt>i</tt> is a <tt>BasicBlock::iterator</tt> and <tt>j</tt>
-is a <tt>BasicBlock::const_iterator</tt>:</p>
-
-<div class="doc_code">
-<pre>
-Instruction&amp; inst = *i;   // grab reference to instruction reference
-Instruction* pinst = &amp;*i; // grab pointer to instruction reference
-const Instruction&amp; inst = *j;
-</pre>
+<p>In exchange for this extra flexibility, std::deque has significantly higher
+constant factor costs than std::vector.  If possible, use std::vector or
+something cheaper.</p>
 </div>
 
-<p>However, the iterators you'll be working with in the LLVM framework are
-special: they will automatically convert to a ptr-to-instance type whenever they
-need to.  Instead of dereferencing the iterator and then taking the address of
-the result, you can simply assign the iterator to the proper pointer type and
-you get the dereference and address-of operation as a result of the assignment
-(behind the scenes, this is a result of overloading casting mechanisms).  Thus
-the last line of the last example,</p>
-
-<div class="doc_code">
-<pre>
-Instruction* pinst = &amp;*i;
-</pre>
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+  <a name="dss_list">&lt;list&gt;</a>
 </div>
 
-<p>is semantically equivalent to</p>
+<div class="doc_text">
+<p>std::list is an extremely inefficient class that is rarely useful.
+It performs a heap allocation for every element inserted into it, thus having an
+extremely high constant factor, particularly for small data types.  std::list
+also only supports bidirectional iteration, not random access iteration.</p>
 
-<div class="doc_code">
-<pre>
-Instruction* pinst = i;
-</pre>
+<p>In exchange for this high cost, std::list supports efficient access to both
+ends of the list (like std::deque, but unlike std::vector or SmallVector).  In
+addition, the iterator invalidation characteristics of std::list are stronger
+than that of a vector class: inserting or removing an element into the list does
+not invalidate iterator or pointers to other elements in the list.</p>
 </div>
 
-<p>It's also possible to turn a class pointer into the corresponding iterator,
-and this is a constant time operation (very efficient).  The following code
-snippet illustrates use of the conversion constructors provided by LLVM
-iterators.  By using these, you can explicitly grab the iterator of something
-without actually obtaining it via iteration over some structure:</p>
-
-<div class="doc_code">
-<pre>
-void printNextInstruction(Instruction* inst) {
-  BasicBlock::iterator it(inst);
-  ++it; // after this line, it refers to the instruction after *inst.
-  if (it != inst-&gt;getParent()-&gt;end()) std::cerr &lt;&lt; *it &lt;&lt; "\n";
-}
-</pre>
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+  <a name="dss_ilist">llvm/ADT/ilist</a>
 </div>
 
+<div class="doc_text">
+<p><tt>ilist&lt;T&gt;</tt> implements an 'intrusive' doubly-linked list.  It is
+intrusive, because it requires the element to store and provide access to the
+prev/next pointers for the list.</p>
+
+<p>ilist has the same drawbacks as std::list, and additionally requires an
+ilist_traits implementation for the element type, but it provides some novel
+characteristics.  In particular, it can efficiently store polymorphic objects,
+the traits class is informed when an element is inserted or removed from the
+list, and ilists are guaranteed to support a constant-time splice operation.
+</p>
+
+<p>These properties are exactly what we want for things like Instructions and
+basic blocks, which is why these are implemented with ilists.</p>
 </div>
 
-<!--_______________________________________________________________________-->
+<!-- _______________________________________________________________________ -->
 <div class="doc_subsubsection">
-  <a name="iterate_complex">Finding call sites: a slightly more complex
-  example</a>
+  <a name="dss_other">Other Sequential Container options</a>
 </div>
 
 <div class="doc_text">
+<p>Other STL containers are available, such as std::string.</p>
 
-<p>Say that you're writing a FunctionPass and would like to count all the
-locations in the entire module (that is, across every <tt>Function</tt>) where a
-certain function (i.e., some <tt>Function</tt>*) is already in scope.  As you'll
-learn later, you may want to use an <tt>InstVisitor</tt> to accomplish this in a
-much more straight-forward manner, but this example will allow us to explore how
-you'd do it if you didn't have <tt>InstVisitor</tt> around. In pseudocode, this
-is what we want to do:</p>
+<p>There are also various STL adapter classes such as std::queue,
+std::priority_queue, std::stack, etc.  These provide simplified access to an
+underlying container but don't affect the cost of the container itself.</p>
 
-<div class="doc_code">
-<pre>
-initialize callCounter to zero
-for each Function f in the Module
-  for each BasicBlock b in f
-    for each Instruction i in b
-      if (i is a CallInst and calls the given function)
-        increment callCounter
-</pre>
 </div>
 
-<p>And the actual code is (remember, because we're writing a
-<tt>FunctionPass</tt>, our <tt>FunctionPass</tt>-derived class simply has to
-override the <tt>runOnFunction</tt> method):</p>
 
-<div class="doc_code">
-<pre>
-Function* targetFunc = ...;
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+  <a name="ds_set">Set-Like Containers (std::set, SmallSet, SetVector, etc)</a>
+</div>
 
-class OurFunctionPass : public FunctionPass {
-  public:
-    OurFunctionPass(): callCounter(0) { }
+<div class="doc_text">
 
-    virtual runOnFunction(Function&amp; F) {
-      for (Function::iterator b = F.begin(), be = F.end(); b != be; ++b) {
-        for (BasicBlock::iterator i = b-&gt;begin(); ie = b-&gt;end(); i != ie; ++i) {
-          if (<a href="#CallInst">CallInst</a>* callInst = <a href="#isa">dyn_cast</a>&lt;<a
- href="#CallInst">CallInst</a>&gt;(&amp;*i)) {
-            // we know we've encountered a call instruction, so we
-            // need to determine if it's a call to the
-            // function pointed to by m_func or not.
+<p>Set-like containers are useful when you need to canonicalize multiple values
+into a single representation.  There are several different choices for how to do
+this, providing various trade-offs.</p>
 
-            if (callInst-&gt;getCalledFunction() == targetFunc)
-              ++callCounter;
-          }
-        }
-      }
+</div>
 
 
-  private:
-    unsigned  callCounter;
-};
-</pre>
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+  <a name="dss_sortedvectorset">A sorted 'vector'</a>
 </div>
 
+<div class="doc_text">
+
+<p>If you intend to insert a lot of elements, then do a lot of queries, a
+great approach is to use a vector (or other sequential container) with
+std::sort+std::unique to remove duplicates.  This approach works really well if
+your usage pattern has these two distinct phases (insert then query), and can be
+coupled with a good choice of <a href="#ds_sequential">sequential container</a>.
+</p>
+
+<p>
+This combination provides the several nice properties: the result data is
+contiguous in memory (good for cache locality), has few allocations, is easy to
+address (iterators in the final vector are just indices or pointers), and can be
+efficiently queried with a standard binary or radix search.</p>
+
 </div>
 
-<!--_______________________________________________________________________-->
+<!-- _______________________________________________________________________ -->
 <div class="doc_subsubsection">
-  <a name="calls_and_invokes">Treating calls and invokes the same way</a>
+  <a name="dss_smallset">"llvm/ADT/SmallSet.h"</a>
 </div>
 
 <div class="doc_text">
 
-<p>You may have noticed that the previous example was a bit oversimplified in
-that it did not deal with call sites generated by 'invoke' instructions. In
-this, and in other situations, you may find that you want to treat
-<tt>CallInst</tt>s and <tt>InvokeInst</tt>s the same way, even though their
-most-specific common base class is <tt>Instruction</tt>, which includes lots of
-less closely-related things. For these cases, LLVM provides a handy wrapper
-class called <a
-href="http://llvm.org/doxygen/classllvm_1_1CallSite.html"><tt>CallSite</tt></a>.
-It is essentially a wrapper around an <tt>Instruction</tt> pointer, with some
-methods that provide functionality common to <tt>CallInst</tt>s and
-<tt>InvokeInst</tt>s.</p>
+<p>If you have a set-like data structure that is usually small and whose elements
+are reasonably small, a <tt>SmallSet&lt;Type, N&gt;</tt> is a good choice.  This set
+has space for N elements in place (thus, if the set is dynamically smaller than
+N, no malloc traffic is required) and accesses them with a simple linear search.
+When the set grows beyond 'N' elements, it allocates a more expensive representation that
+guarantees efficient access (for most types, it falls back to std::set, but for
+pointers it uses something far better, <a
+href="#dss_smallptrset">SmallPtrSet</a>).</p>
 
-<p>This class has "value semantics": it should be passed by value, not by
-reference and it should not be dynamically allocated or deallocated using
-<tt>operator new</tt> or <tt>operator delete</tt>. It is efficiently copyable,
-assignable and constructable, with costs equivalents to that of a bare pointer.
-If you look at its definition, it has only a single pointer member.</p>
+<p>The magic of this class is that it handles small sets extremely efficiently,
+but gracefully handles extremely large sets without loss of efficiency.  The
+drawback is that the interface is quite small: it supports insertion, queries
+and erasing, but does not support iteration.</p>
 
 </div>
 
-<!--_______________________________________________________________________-->
+<!-- _______________________________________________________________________ -->
 <div class="doc_subsubsection">
-  <a name="iterate_chains">Iterating over def-use &amp; use-def chains</a>
+  <a name="dss_smallptrset">"llvm/ADT/SmallPtrSet.h"</a>
 </div>
 
 <div class="doc_text">
 
-<p>Frequently, we might have an instance of the <a
-href="/doxygen/structllvm_1_1Value.html">Value Class</a> and we want to
-determine which <tt>User</tt>s use the <tt>Value</tt>.  The list of all
-<tt>User</tt>s of a particular <tt>Value</tt> is called a <i>def-use</i> chain.
-For example, let's say we have a <tt>Function*</tt> named <tt>F</tt> to a
-particular function <tt>foo</tt>. Finding all of the instructions that
-<i>use</i> <tt>foo</tt> is as simple as iterating over the <i>def-use</i> chain
-of <tt>F</tt>:</p>
+<p>SmallPtrSet has all the advantages of SmallSet (and a SmallSet of pointers is 
+transparently implemented with a SmallPtrSet), but also supports iterators.  If
+more than 'N' insertions are performed, a single quadratically
+probed hash table is allocated and grows as needed, providing extremely
+efficient access (constant time insertion/deleting/queries with low constant
+factors) and is very stingy with malloc traffic.</p>
 
-<div class="doc_code">
-<pre>
-Function* F = ...;
+<p>Note that, unlike std::set, the iterators of SmallPtrSet are invalidated
+whenever an insertion occurs.  Also, the values visited by the iterators are not
+visited in sorted order.</p>
 
-for (Value::use_iterator i = F-&gt;use_begin(), e = F-&gt;use_end(); i != e; ++i) {
-  if (Instruction *Inst = dyn_cast&lt;Instruction&gt;(*i)) {
-    std::cerr &lt;&lt; "F is used in instruction:\n";
-    std::cerr &lt;&lt; *Inst &lt;&lt; "\n";
-  }
-}
-</pre>
 </div>
 
-<p>Alternately, it's common to have an instance of the <a
-href="/doxygen/classllvm_1_1User.html">User Class</a> and need to know what
-<tt>Value</tt>s are used by it.  The list of all <tt>Value</tt>s used by a
-<tt>User</tt> is known as a <i>use-def</i> chain.  Instances of class
-<tt>Instruction</tt> are common <tt>User</tt>s, so we might want to iterate over
-all of the values that a particular instruction uses (that is, the operands of
-the particular <tt>Instruction</tt>):</p>
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+  <a name="dss_denseset">"llvm/ADT/DenseSet.h"</a>
+</div>
 
-<div class="doc_code">
-<pre>
-Instruction* pi = ...;
+<div class="doc_text">
+
+<p>
+DenseSet is a simple quadratically probed hash table.  It excels at supporting
+small values: it uses a single allocation to hold all of the pairs that
+are currently inserted in the set.  DenseSet is a great way to unique small
+values that are not simple pointers (use <a 
+href="#dss_smallptrset">SmallPtrSet</a> for pointers).  Note that DenseSet has
+the same requirements for the value type that <a 
+href="#dss_densemap">DenseMap</a> has.
+</p>
 
-for (User::op_iterator i = pi-&gt;op_begin(), e = pi-&gt;op_end(); i != e; ++i) {
-  Value* v = *i;
-  ...
-}
-</pre>
 </div>
 
-<!--
-  def-use chains ("finding all users of"): Value::use_begin/use_end
-  use-def chains ("finding all values used"): User::op_begin/op_end [op=operand]
--->
-
-</div>
-
-<!-- ======================================================================= -->
-<div class="doc_subsection">
-  <a name="simplechanges">Making simple changes</a>
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+  <a name="dss_FoldingSet">"llvm/ADT/FoldingSet.h"</a>
 </div>
 
 <div class="doc_text">
 
-<p>There are some primitive transformation operations present in the LLVM
-infrastructure that are worth knowing about.  When performing
-transformations, it's fairly common to manipulate the contents of basic
-blocks. This section describes some of the common methods for doing so
-and gives example code.</p>
+<p>
+FoldingSet is an aggregate class that is really good at uniquing
+expensive-to-create or polymorphic objects.  It is a combination of a chained
+hash table with intrusive links (uniqued objects are required to inherit from
+FoldingSetNode) that uses <a href="#dss_smallvector">SmallVector</a> as part of
+its ID process.</p>
+
+<p>Consider a case where you want to implement a "getOrCreateFoo" method for
+a complex object (for example, a node in the code generator).  The client has a
+description of *what* it wants to generate (it knows the opcode and all the
+operands), but we don't want to 'new' a node, then try inserting it into a set
+only to find out it already exists, at which point we would have to delete it
+and return the node that already exists.
+</p>
+
+<p>To support this style of client, FoldingSet perform a query with a
+FoldingSetNodeID (which wraps SmallVector) that can be used to describe the
+element that we want to query for.  The query either returns the element
+matching the ID or it returns an opaque ID that indicates where insertion should
+take place.  Construction of the ID usually does not require heap traffic.</p>
+
+<p>Because FoldingSet uses intrusive links, it can support polymorphic objects
+in the set (for example, you can have SDNode instances mixed with LoadSDNodes).
+Because the elements are individually allocated, pointers to the elements are
+stable: inserting or removing elements does not invalidate any pointers to other
+elements.
+</p>
 
 </div>
 
-<!--_______________________________________________________________________-->
+<!-- _______________________________________________________________________ -->
 <div class="doc_subsubsection">
-  <a name="schanges_creating">Creating and inserting new
-  <tt>Instruction</tt>s</a>
+  <a name="dss_set">&lt;set&gt;</a>
 </div>
 
 <div class="doc_text">
 
-<p><i>Instantiating Instructions</i></p>
+<p><tt>std::set</tt> is a reasonable all-around set class, which is decent at
+many things but great at nothing.  std::set allocates memory for each element
+inserted (thus it is very malloc intensive) and typically stores three pointers
+per element in the set (thus adding a large amount of per-element space
+overhead).  It offers guaranteed log(n) performance, which is not particularly
+fast from a complexity standpoint (particularly if the elements of the set are
+expensive to compare, like strings), and has extremely high constant factors for
+lookup, insertion and removal.</p>
 
-<p>Creation of <tt>Instruction</tt>s is straight-forward: simply call the
-constructor for the kind of instruction to instantiate and provide the necessary
-parameters. For example, an <tt>AllocaInst</tt> only <i>requires</i> a
-(const-ptr-to) <tt>Type</tt>. Thus:</p> 
+<p>The advantages of std::set are that its iterators are stable (deleting or
+inserting an element from the set does not affect iterators or pointers to other
+elements) and that iteration over the set is guaranteed to be in sorted order.
+If the elements in the set are large, then the relative overhead of the pointers
+and malloc traffic is not a big deal, but if the elements of the set are small,
+std::set is almost never a good choice.</p>
 
-<div class="doc_code">
-<pre>
-AllocaInst* ai = new AllocaInst(Type::IntTy);
-</pre>
 </div>
 
-<p>will create an <tt>AllocaInst</tt> instance that represents the allocation of
-one integer in the current stack frame, at runtime. Each <tt>Instruction</tt>
-subclass is likely to have varying default parameters which change the semantics
-of the instruction, so refer to the <a
-href="/doxygen/classllvm_1_1Instruction.html">doxygen documentation for the subclass of
-Instruction</a> that you're interested in instantiating.</p>
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+  <a name="dss_setvector">"llvm/ADT/SetVector.h"</a>
+</div>
 
-<p><i>Naming values</i></p>
+<div class="doc_text">
+<p>LLVM's SetVector&lt;Type&gt; is an adapter class that combines your choice of
+a set-like container along with a <a href="#ds_sequential">Sequential 
+Container</a>.  The important property
+that this provides is efficient insertion with uniquing (duplicate elements are
+ignored) with iteration support.  It implements this by inserting elements into
+both a set-like container and the sequential container, using the set-like
+container for uniquing and the sequential container for iteration.
+</p>
 
-<p>It is very useful to name the values of instructions when you're able to, as
-this facilitates the debugging of your transformations.  If you end up looking
-at generated LLVM machine code, you definitely want to have logical names
-associated with the results of instructions!  By supplying a value for the
-<tt>Name</tt> (default) parameter of the <tt>Instruction</tt> constructor, you
-associate a logical name with the result of the instruction's execution at
-runtime.  For example, say that I'm writing a transformation that dynamically
-allocates space for an integer on the stack, and that integer is going to be
-used as some kind of index by some other code.  To accomplish this, I place an
-<tt>AllocaInst</tt> at the first point in the first <tt>BasicBlock</tt> of some
-<tt>Function</tt>, and I'm intending to use it within the same
-<tt>Function</tt>. I might do:</p>
+<p>The difference between SetVector and other sets is that the order of
+iteration is guaranteed to match the order of insertion into the SetVector.
+This property is really important for things like sets of pointers.  Because
+pointer values are non-deterministic (e.g. vary across runs of the program on
+different machines), iterating over the pointers in the set will
+not be in a well-defined order.</p>
+
+<p>
+The drawback of SetVector is that it requires twice as much space as a normal
+set and has the sum of constant factors from the set-like container and the 
+sequential container that it uses.  Use it *only* if you need to iterate over 
+the elements in a deterministic order.  SetVector is also expensive to delete
+elements out of (linear time), unless you use it's "pop_back" method, which is
+faster.
+</p>
+
+<p>SetVector is an adapter class that defaults to using std::vector and std::set
+for the underlying containers, so it is quite expensive.  However,
+<tt>"llvm/ADT/SetVector.h"</tt> also provides a SmallSetVector class, which
+defaults to using a SmallVector and SmallSet of a specified size.  If you use
+this, and if your sets are dynamically smaller than N, you will save a lot of 
+heap traffic.</p>
 
-<div class="doc_code">
-<pre>
-AllocaInst* pa = new AllocaInst(Type::IntTy, 0, "indexLoc");
-</pre>
 </div>
 
-<p>where <tt>indexLoc</tt> is now the logical name of the instruction's
-execution value, which is a pointer to an integer on the runtime stack.</p>
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+  <a name="dss_uniquevector">"llvm/ADT/UniqueVector.h"</a>
+</div>
 
-<p><i>Inserting instructions</i></p>
+<div class="doc_text">
 
-<p>There are essentially two ways to insert an <tt>Instruction</tt>
-into an existing sequence of instructions that form a <tt>BasicBlock</tt>:</p>
+<p>
+UniqueVector is similar to <a href="#dss_setvector">SetVector</a>, but it
+retains a unique ID for each element inserted into the set.  It internally
+contains a map and a vector, and it assigns a unique ID for each value inserted
+into the set.</p>
 
-<ul>
-  <li>Insertion into an explicit instruction list
+<p>UniqueVector is very expensive: its cost is the sum of the cost of
+maintaining both the map and vector, it has high complexity, high constant
+factors, and produces a lot of malloc traffic.  It should be avoided.</p>
 
-    <p>Given a <tt>BasicBlock* pb</tt>, an <tt>Instruction* pi</tt> within that
-    <tt>BasicBlock</tt>, and a newly-created instruction we wish to insert
-    before <tt>*pi</tt>, we do the following: </p>
+</div>
 
-<div class="doc_code">
-<pre>
-BasicBlock *pb = ...;
-Instruction *pi = ...;
-Instruction *newInst = new Instruction(...);
 
-pb-&gt;getInstList().insert(pi, newInst); // inserts newInst before pi in pb
-</pre>
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+  <a name="dss_otherset">Other Set-Like Container Options</a>
 </div>
 
-    <p>Appending to the end of a <tt>BasicBlock</tt> is so common that
-    the <tt>Instruction</tt> class and <tt>Instruction</tt>-derived
-    classes provide constructors which take a pointer to a
-    <tt>BasicBlock</tt> to be appended to. For example code that
-    looked like: </p>
+<div class="doc_text">
 
-<div class="doc_code">
-<pre>
-BasicBlock *pb = ...;
-Instruction *newInst = new Instruction(...);
+<p>
+The STL provides several other options, such as std::multiset and the various 
+"hash_set" like containers (whether from C++ TR1 or from the SGI library).</p>
 
-pb-&gt;getInstList().push_back(newInst); // appends newInst to pb
-</pre>
-</div>
+<p>std::multiset is useful if you're not interested in elimination of
+duplicates, but has all the drawbacks of std::set.  A sorted vector (where you 
+don't delete duplicate entries) or some other approach is almost always
+better.</p>
 
-    <p>becomes: </p>
+<p>The various hash_set implementations (exposed portably by
+"llvm/ADT/hash_set") is a simple chained hashtable.  This algorithm is as malloc
+intensive as std::set (performing an allocation for each element inserted,
+thus having really high constant factors) but (usually) provides O(1)
+insertion/deletion of elements.  This can be useful if your elements are large
+(thus making the constant-factor cost relatively low) or if comparisons are
+expensive.  Element iteration does not visit elements in a useful order.</p>
 
-<div class="doc_code">
-<pre>
-BasicBlock *pb = ...;
-Instruction *newInst = new Instruction(..., pb);
-</pre>
 </div>
 
-    <p>which is much cleaner, especially if you are creating
-    long instruction streams.</p></li>
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+  <a name="ds_map">Map-Like Containers (std::map, DenseMap, etc)</a>
+</div>
 
-  <li>Insertion into an implicit instruction list
+<div class="doc_text">
+Map-like containers are useful when you want to associate data to a key.  As
+usual, there are a lot of different ways to do this. :)
+</div>
 
-    <p><tt>Instruction</tt> instances that are already in <tt>BasicBlock</tt>s
-    are implicitly associated with an existing instruction list: the instruction
-    list of the enclosing basic block. Thus, we could have accomplished the same
-    thing as the above code without being given a <tt>BasicBlock</tt> by doing:
-    </p>
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+  <a name="dss_sortedvectormap">A sorted 'vector'</a>
+</div>
 
-<div class="doc_code">
-<pre>
-Instruction *pi = ...;
-Instruction *newInst = new Instruction(...);
+<div class="doc_text">
 
-pi-&gt;getParent()-&gt;getInstList().insert(pi, newInst);
-</pre>
+<p>
+If your usage pattern follows a strict insert-then-query approach, you can
+trivially use the same approach as <a href="#dss_sortedvectorset">sorted vectors
+for set-like containers</a>.  The only difference is that your query function
+(which uses std::lower_bound to get efficient log(n) lookup) should only compare
+the key, not both the key and value.  This yields the same advantages as sorted
+vectors for sets.
+</p>
 </div>
 
-    <p>In fact, this sequence of steps occurs so frequently that the
-    <tt>Instruction</tt> class and <tt>Instruction</tt>-derived classes provide
-    constructors which take (as a default parameter) a pointer to an
-    <tt>Instruction</tt> which the newly-created <tt>Instruction</tt> should
-    precede.  That is, <tt>Instruction</tt> constructors are capable of
-    inserting the newly-created instance into the <tt>BasicBlock</tt> of a
-    provided instruction, immediately before that instruction.  Using an
-    <tt>Instruction</tt> constructor with a <tt>insertBefore</tt> (default)
-    parameter, the above code becomes:</p>
-
-<div class="doc_code">
-<pre>
-Instruction* pi = ...;
-Instruction* newInst = new Instruction(..., pi);
-</pre>
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+  <a name="dss_stringmap">"llvm/ADT/StringMap.h"</a>
 </div>
 
-    <p>which is much cleaner, especially if you're creating a lot of
-    instructions and adding them to <tt>BasicBlock</tt>s.</p></li>
-</ul>
+<div class="doc_text">
 
+<p>
+Strings are commonly used as keys in maps, and they are difficult to support
+efficiently: they are variable length, inefficient to hash and compare when
+long, expensive to copy, etc.  StringMap is a specialized container designed to
+cope with these issues.  It supports mapping an arbitrary range of bytes to an
+arbitrary other object.</p>
+
+<p>The StringMap implementation uses a quadratically-probed hash table, where
+the buckets store a pointer to the heap allocated entries (and some other
+stuff).  The entries in the map must be heap allocated because the strings are
+variable length.  The string data (key) and the element object (value) are
+stored in the same allocation with the string data immediately after the element
+object.  This container guarantees the "<tt>(char*)(&amp;Value+1)</tt>" points
+to the key string for a value.</p>
+
+<p>The StringMap is very fast for several reasons: quadratic probing is very
+cache efficient for lookups, the hash value of strings in buckets is not
+recomputed when lookup up an element, StringMap rarely has to touch the
+memory for unrelated objects when looking up a value (even when hash collisions
+happen), hash table growth does not recompute the hash values for strings
+already in the table, and each pair in the map is store in a single allocation
+(the string data is stored in the same allocation as the Value of a pair).</p>
+
+<p>StringMap also provides query methods that take byte ranges, so it only ever
+copies a string if a value is inserted into the table.</p>
 </div>
 
-<!--_______________________________________________________________________-->
+<!-- _______________________________________________________________________ -->
 <div class="doc_subsubsection">
-  <a name="schanges_deleting">Deleting <tt>Instruction</tt>s</a>
+  <a name="dss_indexedmap">"llvm/ADT/IndexedMap.h"</a>
 </div>
 
 <div class="doc_text">
+<p>
+IndexedMap is a specialized container for mapping small dense integers (or
+values that can be mapped to small dense integers) to some other type.  It is
+internally implemented as a vector with a mapping function that maps the keys to
+the dense integer range.
+</p>
 
-<p>Deleting an instruction from an existing sequence of instructions that form a
-<a href="#BasicBlock"><tt>BasicBlock</tt></a> is very straight-forward. First,
-you must have a pointer to the instruction that you wish to delete.  Second, you
-need to obtain the pointer to that instruction's basic block. You use the
-pointer to the basic block to get its list of instructions and then use the
-erase function to remove your instruction. For example:</p>
+<p>
+This is useful for cases like virtual registers in the LLVM code generator: they
+have a dense mapping that is offset by a compile-time constant (the first
+virtual register ID).</p>
 
-<div class="doc_code">
-<pre>
-<a href="#Instruction">Instruction</a> *I = .. ;
-<a href="#BasicBlock">BasicBlock</a> *BB = I-&gt;getParent();
+</div>
 
-BB-&gt;getInstList().erase(I);
-</pre>
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+  <a name="dss_densemap">"llvm/ADT/DenseMap.h"</a>
 </div>
 
+<div class="doc_text">
+
+<p>
+DenseMap is a simple quadratically probed hash table.  It excels at supporting
+small keys and values: it uses a single allocation to hold all of the pairs that
+are currently inserted in the map.  DenseMap is a great way to map pointers to
+pointers, or map other small types to each other.
+</p>
+
+<p>
+There are several aspects of DenseMap that you should be aware of, however.  The
+iterators in a densemap are invalidated whenever an insertion occurs, unlike
+map.  Also, because DenseMap allocates space for a large number of key/value
+pairs (it starts with 64 by default), it will waste a lot of space if your keys
+or values are large.  Finally, you must implement a partial specialization of
+DenseMapInfo for the key that you want, if it isn't already supported.  This
+is required to tell DenseMap about two special marker values (which can never be
+inserted into the map) that it needs internally.</p>
+
 </div>
 
-<!--_______________________________________________________________________-->
+<!-- _______________________________________________________________________ -->
 <div class="doc_subsubsection">
-  <a name="schanges_replacing">Replacing an <tt>Instruction</tt> with another
-  <tt>Value</tt></a>
+  <a name="dss_map">&lt;map&gt;</a>
 </div>
 
 <div class="doc_text">
 
-<p><i>Replacing individual instructions</i></p>
-
-<p>Including "<a href="/doxygen/BasicBlockUtils_8h-source.html">llvm/Transforms/Utils/BasicBlockUtils.h</a>"
-permits use of two very useful replace functions: <tt>ReplaceInstWithValue</tt>
-and <tt>ReplaceInstWithInst</tt>.</p>
+<p>
+std::map has similar characteristics to <a href="#dss_set">std::set</a>: it uses
+a single allocation per pair inserted into the map, it offers log(n) lookup with
+an extremely large constant factor, imposes a space penalty of 3 pointers per
+pair in the map, etc.</p>
 
-<h4><a name="schanges_deleting">Deleting <tt>Instruction</tt>s</a></h4>
+<p>std::map is most useful when your keys or values are very large, if you need
+to iterate over the collection in sorted order, or if you need stable iterators
+into the map (i.e. they don't get invalidated if an insertion or deletion of
+another element takes place).</p>
 
-<ul>
-  <li><tt>ReplaceInstWithValue</tt>
+</div>
 
-    <p>This function replaces all uses (within a basic block) of a given
-    instruction with a value, and then removes the original instruction. The
-    following example illustrates the replacement of the result of a particular
-    <tt>AllocaInst</tt> that allocates memory for a single integer with a null
-    pointer to an integer.</p>
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+  <a name="dss_othermap">Other Map-Like Container Options</a>
+</div>
 
-<div class="doc_code">
-<pre>
-AllocaInst* instToReplace = ...;
-BasicBlock::iterator ii(instToReplace);
+<div class="doc_text">
 
-ReplaceInstWithValue(instToReplace-&gt;getParent()-&gt;getInstList(), ii,
-                     Constant::getNullValue(PointerType::get(Type::IntTy)));
-</pre></div></li>
+<p>
+The STL provides several other options, such as std::multimap and the various 
+"hash_map" like containers (whether from C++ TR1 or from the SGI library).</p>
 
-  <li><tt>ReplaceInstWithInst</tt> 
+<p>std::multimap is useful if you want to map a key to multiple values, but has
+all the drawbacks of std::map.  A sorted vector or some other approach is almost
+always better.</p>
 
-    <p>This function replaces a particular instruction with another
-    instruction. The following example illustrates the replacement of one
-    <tt>AllocaInst</tt> with another.</p>
+<p>The various hash_map implementations (exposed portably by
+"llvm/ADT/hash_map") are simple chained hash tables.  This algorithm is as
+malloc intensive as std::map (performing an allocation for each element
+inserted, thus having really high constant factors) but (usually) provides O(1)
+insertion/deletion of elements.  This can be useful if your elements are large
+(thus making the constant-factor cost relatively low) or if comparisons are
+expensive.  Element iteration does not visit elements in a useful order.</p>
 
-<div class="doc_code">
-<pre>
-AllocaInst* instToReplace = ...;
-BasicBlock::iterator ii(instToReplace);
+</div>
 
-ReplaceInstWithInst(instToReplace-&gt;getParent()-&gt;getInstList(), ii,
-                    new AllocaInst(Type::IntTy, 0, "ptrToReplacedInt"));
-</pre></div></li>
-</ul>
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+  <a name="ds_bit">Bit storage containers (BitVector, SparseBitVector)</a>
+</div>
 
-<p><i>Replacing multiple uses of <tt>User</tt>s and <tt>Value</tt>s</i></p>
+<div class="doc_text">
+<p>Unlike the other containers, there are only two bit storage containers, and 
+choosing when to use each is relatively straightforward.</p>
 
-<p>You can use <tt>Value::replaceAllUsesWith</tt> and
-<tt>User::replaceUsesOfWith</tt> to change more than one use at a time.  See the
-doxygen documentation for the <a href="/doxygen/structllvm_1_1Value.html">Value Class</a>
-and <a href="/doxygen/classllvm_1_1User.html">User Class</a>, respectively, for more
-information.</p>
+<p>One additional option is 
+<tt>std::vector&lt;bool&gt;</tt>: we discourage its use for two reasons 1) the
+implementation in many common compilers (e.g. commonly available versions of 
+GCC) is extremely inefficient and 2) the C++ standards committee is likely to
+deprecate this container and/or change it significantly somehow.  In any case,
+please don't use it.</p>
+</div>
 
-<!-- Value::replaceAllUsesWith User::replaceUsesOfWith Point out:
-include/llvm/Transforms/Utils/ especially BasicBlockUtils.h with:
-ReplaceInstWithValue, ReplaceInstWithInst -->
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+  <a name="dss_bitvector">BitVector</a>
+</div>
 
+<div class="doc_text">
+<p> The BitVector container provides a fixed size set of bits for manipulation.
+It supports individual bit setting/testing, as well as set operations.  The set
+operations take time O(size of bitvector), but operations are performed one word
+at a time, instead of one bit at a time.  This makes the BitVector very fast for
+set operations compared to other containers.  Use the BitVector when you expect
+the number of set bits to be high (IE a dense set).
+</p>
 </div>
 
-<!-- *********************************************************************** -->
-<div class="doc_section">
-  <a name="advanced">Advanced Topics</a>
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+  <a name="dss_sparsebitvector">SparseBitVector</a>
 </div>
-<!-- *********************************************************************** -->
 
 <div class="doc_text">
-<p>
-This section describes some of the advanced or obscure API's that most clients
-do not need to be aware of.  These API's tend manage the inner workings of the
-LLVM system, and only need to be accessed in unusual circumstances.
+<p> The SparseBitVector container is much like BitVector, with one major
+difference: Only the bits that are set, are stored.  This makes the
+SparseBitVector much more space efficient than BitVector when the set is sparse,
+as well as making set operations O(number of set bits) instead of O(size of
+universe).  The downside to the SparseBitVector is that setting and testing of random bits is O(N), and on large SparseBitVectors, this can be slower than BitVector. In our implementation, setting or testing bits in sorted order
+(either forwards or reverse) is O(1) worst case.  Testing and setting bits within 128 bits (depends on size) of the current bit is also O(1).  As a general statement, testing/setting bits in a SparseBitVector is O(distance away from last set bit).
 </p>
 </div>
 
-<!-- ======================================================================= -->
-<div class="doc_subsection">
-  <a name="TypeResolve">LLVM Type Resolution</a>
+<!-- *********************************************************************** -->
+<div class="doc_section">
+  <a name="common">Helpful Hints for Common Operations</a>
+</div>
+<!-- *********************************************************************** -->
+
+<div class="doc_text">
+
+<p>This section describes how to perform some very simple transformations of
+LLVM code.  This is meant to give examples of common idioms used, showing the
+practical side of LLVM transformations.  <p> Because this is a "how-to" section,
+you should also read about the main classes that you will be working with.  The
+<a href="#coreclasses">Core LLVM Class Hierarchy Reference</a> contains details
+and descriptions of the main classes that you should know about.</p>
+
+</div>
+
+<!-- NOTE: this section should be heavy on example code -->
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+  <a name="inspection">Basic Inspection and Traversal Routines</a>
+</div>
+
+<div class="doc_text">
+
+<p>The LLVM compiler infrastructure have many different data structures that may
+be traversed.  Following the example of the C++ standard template library, the
+techniques used to traverse these various data structures are all basically the
+same.  For a enumerable sequence of values, the <tt>XXXbegin()</tt> function (or
+method) returns an iterator to the start of the sequence, the <tt>XXXend()</tt>
+function returns an iterator pointing to one past the last valid element of the
+sequence, and there is some <tt>XXXiterator</tt> data type that is common
+between the two operations.</p>
+
+<p>Because the pattern for iteration is common across many different aspects of
+the program representation, the standard template library algorithms may be used
+on them, and it is easier to remember how to iterate. First we show a few common
+examples of the data structures that need to be traversed.  Other data
+structures are traversed in very similar ways.</p>
+
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+  <a name="iterate_function">Iterating over the </a><a
+  href="#BasicBlock"><tt>BasicBlock</tt></a>s in a <a
+  href="#Function"><tt>Function</tt></a>
+</div>
+
+<div class="doc_text">
+
+<p>It's quite common to have a <tt>Function</tt> instance that you'd like to
+transform in some way; in particular, you'd like to manipulate its
+<tt>BasicBlock</tt>s.  To facilitate this, you'll need to iterate over all of
+the <tt>BasicBlock</tt>s that constitute the <tt>Function</tt>. The following is
+an example that prints the name of a <tt>BasicBlock</tt> and the number of
+<tt>Instruction</tt>s it contains:</p>
+
+<div class="doc_code">
+<pre>
+// <i>func is a pointer to a Function instance</i>
+for (Function::iterator i = func-&gt;begin(), e = func-&gt;end(); i != e; ++i)
+  // <i>Print out the name of the basic block if it has one, and then the</i>
+  // <i>number of instructions that it contains</i>
+  llvm::cerr &lt;&lt; "Basic block (name=" &lt;&lt; i-&gt;getName() &lt;&lt; ") has "
+             &lt;&lt; i-&gt;size() &lt;&lt; " instructions.\n";
+</pre>
+</div>
+
+<p>Note that i can be used as if it were a pointer for the purposes of
+invoking member functions of the <tt>Instruction</tt> class.  This is
+because the indirection operator is overloaded for the iterator
+classes.  In the above code, the expression <tt>i-&gt;size()</tt> is
+exactly equivalent to <tt>(*i).size()</tt> just like you'd expect.</p>
+
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+  <a name="iterate_basicblock">Iterating over the </a><a
+  href="#Instruction"><tt>Instruction</tt></a>s in a <a
+  href="#BasicBlock"><tt>BasicBlock</tt></a>
+</div>
+
+<div class="doc_text">
+
+<p>Just like when dealing with <tt>BasicBlock</tt>s in <tt>Function</tt>s, it's
+easy to iterate over the individual instructions that make up
+<tt>BasicBlock</tt>s. Here's a code snippet that prints out each instruction in
+a <tt>BasicBlock</tt>:</p>
+
+<div class="doc_code">
+<pre>
+// <i>blk is a pointer to a BasicBlock instance</i>
+for (BasicBlock::iterator i = blk-&gt;begin(), e = blk-&gt;end(); i != e; ++i)
+   // <i>The next statement works since operator&lt;&lt;(ostream&amp;,...)</i>
+   // <i>is overloaded for Instruction&amp;</i>
+   llvm::cerr &lt;&lt; *i &lt;&lt; "\n";
+</pre>
+</div>
+
+<p>However, this isn't really the best way to print out the contents of a
+<tt>BasicBlock</tt>!  Since the ostream operators are overloaded for virtually
+anything you'll care about, you could have just invoked the print routine on the
+basic block itself: <tt>llvm::cerr &lt;&lt; *blk &lt;&lt; "\n";</tt>.</p>
+
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+  <a name="iterate_institer">Iterating over the </a><a
+  href="#Instruction"><tt>Instruction</tt></a>s in a <a
+  href="#Function"><tt>Function</tt></a>
+</div>
+
+<div class="doc_text">
+
+<p>If you're finding that you commonly iterate over a <tt>Function</tt>'s
+<tt>BasicBlock</tt>s and then that <tt>BasicBlock</tt>'s <tt>Instruction</tt>s,
+<tt>InstIterator</tt> should be used instead. You'll need to include <a
+href="/doxygen/InstIterator_8h-source.html"><tt>llvm/Support/InstIterator.h</tt></a>,
+and then instantiate <tt>InstIterator</tt>s explicitly in your code.  Here's a
+small example that shows how to dump all instructions in a function to the standard error stream:<p>
+
+<div class="doc_code">
+<pre>
+#include "<a href="/doxygen/InstIterator_8h-source.html">llvm/Support/InstIterator.h</a>"
+
+// <i>F is a pointer to a Function instance</i>
+for (inst_iterator i = inst_begin(F), e = inst_end(F); i != e; ++i)
+  llvm::cerr &lt;&lt; *i &lt;&lt; "\n";
+</pre>
+</div>
+
+<p>Easy, isn't it?  You can also use <tt>InstIterator</tt>s to fill a
+work list with its initial contents.  For example, if you wanted to
+initialize a work list to contain all instructions in a <tt>Function</tt>
+F, all you would need to do is something like:</p>
+
+<div class="doc_code">
+<pre>
+std::set&lt;Instruction*&gt; worklist;
+worklist.insert(inst_begin(F), inst_end(F));
+</pre>
+</div>
+
+<p>The STL set <tt>worklist</tt> would now contain all instructions in the
+<tt>Function</tt> pointed to by F.</p>
+
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+  <a name="iterate_convert">Turning an iterator into a class pointer (and
+  vice-versa)</a>
+</div>
+
+<div class="doc_text">
+
+<p>Sometimes, it'll be useful to grab a reference (or pointer) to a class
+instance when all you've got at hand is an iterator.  Well, extracting
+a reference or a pointer from an iterator is very straight-forward.
+Assuming that <tt>i</tt> is a <tt>BasicBlock::iterator</tt> and <tt>j</tt>
+is a <tt>BasicBlock::const_iterator</tt>:</p>
+
+<div class="doc_code">
+<pre>
+Instruction&amp; inst = *i;   // <i>Grab reference to instruction reference</i>
+Instruction* pinst = &amp;*i; // <i>Grab pointer to instruction reference</i>
+const Instruction&amp; inst = *j;
+</pre>
+</div>
+
+<p>However, the iterators you'll be working with in the LLVM framework are
+special: they will automatically convert to a ptr-to-instance type whenever they
+need to.  Instead of dereferencing the iterator and then taking the address of
+the result, you can simply assign the iterator to the proper pointer type and
+you get the dereference and address-of operation as a result of the assignment
+(behind the scenes, this is a result of overloading casting mechanisms).  Thus
+the last line of the last example,</p>
+
+<div class="doc_code">
+<pre>
+Instruction *pinst = &amp;*i;
+</pre>
+</div>
+
+<p>is semantically equivalent to</p>
+
+<div class="doc_code">
+<pre>
+Instruction *pinst = i;
+</pre>
+</div>
+
+<p>It's also possible to turn a class pointer into the corresponding iterator,
+and this is a constant time operation (very efficient).  The following code
+snippet illustrates use of the conversion constructors provided by LLVM
+iterators.  By using these, you can explicitly grab the iterator of something
+without actually obtaining it via iteration over some structure:</p>
+
+<div class="doc_code">
+<pre>
+void printNextInstruction(Instruction* inst) {
+  BasicBlock::iterator it(inst);
+  ++it; // <i>After this line, it refers to the instruction after *inst</i>
+  if (it != inst-&gt;getParent()-&gt;end()) llvm::cerr &lt;&lt; *it &lt;&lt; "\n";
+}
+</pre>
+</div>
+
+</div>
+
+<!--_______________________________________________________________________-->
+<div class="doc_subsubsection">
+  <a name="iterate_complex">Finding call sites: a slightly more complex
+  example</a>
+</div>
+
+<div class="doc_text">
+
+<p>Say that you're writing a FunctionPass and would like to count all the
+locations in the entire module (that is, across every <tt>Function</tt>) where a
+certain function (i.e., some <tt>Function</tt>*) is already in scope.  As you'll
+learn later, you may want to use an <tt>InstVisitor</tt> to accomplish this in a
+much more straight-forward manner, but this example will allow us to explore how
+you'd do it if you didn't have <tt>InstVisitor</tt> around. In pseudo-code, this
+is what we want to do:</p>
+
+<div class="doc_code">
+<pre>
+initialize callCounter to zero
+for each Function f in the Module
+  for each BasicBlock b in f
+    for each Instruction i in b
+      if (i is a CallInst and calls the given function)
+        increment callCounter
+</pre>
+</div>
+
+<p>And the actual code is (remember, because we're writing a
+<tt>FunctionPass</tt>, our <tt>FunctionPass</tt>-derived class simply has to
+override the <tt>runOnFunction</tt> method):</p>
+
+<div class="doc_code">
+<pre>
+Function* targetFunc = ...;
+
+class OurFunctionPass : public FunctionPass {
+  public:
+    OurFunctionPass(): callCounter(0) { }
+
+    virtual runOnFunction(Function&amp; F) {
+      for (Function::iterator b = F.begin(), be = F.end(); b != be; ++b) {
+        for (BasicBlock::iterator i = b-&gt;begin(); ie = b-&gt;end(); i != ie; ++i) {
+          if (<a href="#CallInst">CallInst</a>* callInst = <a href="#isa">dyn_cast</a>&lt;<a
+ href="#CallInst">CallInst</a>&gt;(&amp;*i)) {
+            // <i>We know we've encountered a call instruction, so we</i>
+            // <i>need to determine if it's a call to the</i>
+            // <i>function pointed to by m_func or not.</i>
+            if (callInst-&gt;getCalledFunction() == targetFunc)
+              ++callCounter;
+          }
+        }
+      }
+    }
+
+  private:
+    unsigned callCounter;
+};
+</pre>
+</div>
+
+</div>
+
+<!--_______________________________________________________________________-->
+<div class="doc_subsubsection">
+  <a name="calls_and_invokes">Treating calls and invokes the same way</a>
+</div>
+
+<div class="doc_text">
+
+<p>You may have noticed that the previous example was a bit oversimplified in
+that it did not deal with call sites generated by 'invoke' instructions. In
+this, and in other situations, you may find that you want to treat
+<tt>CallInst</tt>s and <tt>InvokeInst</tt>s the same way, even though their
+most-specific common base class is <tt>Instruction</tt>, which includes lots of
+less closely-related things. For these cases, LLVM provides a handy wrapper
+class called <a
+href="http://llvm.org/doxygen/classllvm_1_1CallSite.html"><tt>CallSite</tt></a>.
+It is essentially a wrapper around an <tt>Instruction</tt> pointer, with some
+methods that provide functionality common to <tt>CallInst</tt>s and
+<tt>InvokeInst</tt>s.</p>
+
+<p>This class has "value semantics": it should be passed by value, not by
+reference and it should not be dynamically allocated or deallocated using
+<tt>operator new</tt> or <tt>operator delete</tt>. It is efficiently copyable,
+assignable and constructable, with costs equivalents to that of a bare pointer.
+If you look at its definition, it has only a single pointer member.</p>
+
+</div>
+
+<!--_______________________________________________________________________-->
+<div class="doc_subsubsection">
+  <a name="iterate_chains">Iterating over def-use &amp; use-def chains</a>
+</div>
+
+<div class="doc_text">
+
+<p>Frequently, we might have an instance of the <a
+href="/doxygen/classllvm_1_1Value.html">Value Class</a> and we want to
+determine which <tt>User</tt>s use the <tt>Value</tt>.  The list of all
+<tt>User</tt>s of a particular <tt>Value</tt> is called a <i>def-use</i> chain.
+For example, let's say we have a <tt>Function*</tt> named <tt>F</tt> to a
+particular function <tt>foo</tt>. Finding all of the instructions that
+<i>use</i> <tt>foo</tt> is as simple as iterating over the <i>def-use</i> chain
+of <tt>F</tt>:</p>
+
+<div class="doc_code">
+<pre>
+Function *F = ...;
+
+for (Value::use_iterator i = F-&gt;use_begin(), e = F-&gt;use_end(); i != e; ++i)
+  if (Instruction *Inst = dyn_cast&lt;Instruction&gt;(*i)) {
+    llvm::cerr &lt;&lt; "F is used in instruction:\n";
+    llvm::cerr &lt;&lt; *Inst &lt;&lt; "\n";
+  }
+</pre>
+</div>
+
+<p>Alternately, it's common to have an instance of the <a
+href="/doxygen/classllvm_1_1User.html">User Class</a> and need to know what
+<tt>Value</tt>s are used by it.  The list of all <tt>Value</tt>s used by a
+<tt>User</tt> is known as a <i>use-def</i> chain.  Instances of class
+<tt>Instruction</tt> are common <tt>User</tt>s, so we might want to iterate over
+all of the values that a particular instruction uses (that is, the operands of
+the particular <tt>Instruction</tt>):</p>
+
+<div class="doc_code">
+<pre>
+Instruction *pi = ...;
+
+for (User::op_iterator i = pi-&gt;op_begin(), e = pi-&gt;op_end(); i != e; ++i) {
+  Value *v = *i;
+  // <i>...</i>
+}
+</pre>
+</div>
+
+<!--
+  def-use chains ("finding all users of"): Value::use_begin/use_end
+  use-def chains ("finding all values used"): User::op_begin/op_end [op=operand]
+-->
+
+</div>
+
+<!--_______________________________________________________________________-->
+<div class="doc_subsubsection">
+  <a name="iterate_preds">Iterating over predecessors &amp;
+successors of blocks</a>
+</div>
+
+<div class="doc_text">
+
+<p>Iterating over the predecessors and successors of a block is quite easy
+with the routines defined in <tt>"llvm/Support/CFG.h"</tt>.  Just use code like
+this to iterate over all predecessors of BB:</p>
+
+<div class="doc_code">
+<pre>
+#include "llvm/Support/CFG.h"
+BasicBlock *BB = ...;
+
+for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
+  BasicBlock *Pred = *PI;
+  // <i>...</i>
+}
+</pre>
+</div>
+
+<p>Similarly, to iterate over successors use
+succ_iterator/succ_begin/succ_end.</p>
+
+</div>
+
+
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+  <a name="simplechanges">Making simple changes</a>
+</div>
+
+<div class="doc_text">
+
+<p>There are some primitive transformation operations present in the LLVM
+infrastructure that are worth knowing about.  When performing
+transformations, it's fairly common to manipulate the contents of basic
+blocks. This section describes some of the common methods for doing so
+and gives example code.</p>
+
+</div>
+
+<!--_______________________________________________________________________-->
+<div class="doc_subsubsection">
+  <a name="schanges_creating">Creating and inserting new
+  <tt>Instruction</tt>s</a>
+</div>
+
+<div class="doc_text">
+
+<p><i>Instantiating Instructions</i></p>
+
+<p>Creation of <tt>Instruction</tt>s is straight-forward: simply call the
+constructor for the kind of instruction to instantiate and provide the necessary
+parameters. For example, an <tt>AllocaInst</tt> only <i>requires</i> a
+(const-ptr-to) <tt>Type</tt>. Thus:</p> 
+
+<div class="doc_code">
+<pre>
+AllocaInst* ai = new AllocaInst(Type::Int32Ty);
+</pre>
+</div>
+
+<p>will create an <tt>AllocaInst</tt> instance that represents the allocation of
+one integer in the current stack frame, at run time. Each <tt>Instruction</tt>
+subclass is likely to have varying default parameters which change the semantics
+of the instruction, so refer to the <a
+href="/doxygen/classllvm_1_1Instruction.html">doxygen documentation for the subclass of
+Instruction</a> that you're interested in instantiating.</p>
+
+<p><i>Naming values</i></p>
+
+<p>It is very useful to name the values of instructions when you're able to, as
+this facilitates the debugging of your transformations.  If you end up looking
+at generated LLVM machine code, you definitely want to have logical names
+associated with the results of instructions!  By supplying a value for the
+<tt>Name</tt> (default) parameter of the <tt>Instruction</tt> constructor, you
+associate a logical name with the result of the instruction's execution at
+run time.  For example, say that I'm writing a transformation that dynamically
+allocates space for an integer on the stack, and that integer is going to be
+used as some kind of index by some other code.  To accomplish this, I place an
+<tt>AllocaInst</tt> at the first point in the first <tt>BasicBlock</tt> of some
+<tt>Function</tt>, and I'm intending to use it within the same
+<tt>Function</tt>. I might do:</p>
+
+<div class="doc_code">
+<pre>
+AllocaInst* pa = new AllocaInst(Type::Int32Ty, 0, "indexLoc");
+</pre>
+</div>
+
+<p>where <tt>indexLoc</tt> is now the logical name of the instruction's
+execution value, which is a pointer to an integer on the run time stack.</p>
+
+<p><i>Inserting instructions</i></p>
+
+<p>There are essentially two ways to insert an <tt>Instruction</tt>
+into an existing sequence of instructions that form a <tt>BasicBlock</tt>:</p>
+
+<ul>
+  <li>Insertion into an explicit instruction list
+
+    <p>Given a <tt>BasicBlock* pb</tt>, an <tt>Instruction* pi</tt> within that
+    <tt>BasicBlock</tt>, and a newly-created instruction we wish to insert
+    before <tt>*pi</tt>, we do the following: </p>
+
+<div class="doc_code">
+<pre>
+BasicBlock *pb = ...;
+Instruction *pi = ...;
+Instruction *newInst = new Instruction(...);
+
+pb-&gt;getInstList().insert(pi, newInst); // <i>Inserts newInst before pi in pb</i>
+</pre>
+</div>
+
+    <p>Appending to the end of a <tt>BasicBlock</tt> is so common that
+    the <tt>Instruction</tt> class and <tt>Instruction</tt>-derived
+    classes provide constructors which take a pointer to a
+    <tt>BasicBlock</tt> to be appended to. For example code that
+    looked like: </p>
+
+<div class="doc_code">
+<pre>
+BasicBlock *pb = ...;
+Instruction *newInst = new Instruction(...);
+
+pb-&gt;getInstList().push_back(newInst); // <i>Appends newInst to pb</i>
+</pre>
+</div>
+
+    <p>becomes: </p>
+
+<div class="doc_code">
+<pre>
+BasicBlock *pb = ...;
+Instruction *newInst = new Instruction(..., pb);
+</pre>
+</div>
+
+    <p>which is much cleaner, especially if you are creating
+    long instruction streams.</p></li>
+
+  <li>Insertion into an implicit instruction list
+
+    <p><tt>Instruction</tt> instances that are already in <tt>BasicBlock</tt>s
+    are implicitly associated with an existing instruction list: the instruction
+    list of the enclosing basic block. Thus, we could have accomplished the same
+    thing as the above code without being given a <tt>BasicBlock</tt> by doing:
+    </p>
+
+<div class="doc_code">
+<pre>
+Instruction *pi = ...;
+Instruction *newInst = new Instruction(...);
+
+pi-&gt;getParent()-&gt;getInstList().insert(pi, newInst);
+</pre>
+</div>
+
+    <p>In fact, this sequence of steps occurs so frequently that the
+    <tt>Instruction</tt> class and <tt>Instruction</tt>-derived classes provide
+    constructors which take (as a default parameter) a pointer to an
+    <tt>Instruction</tt> which the newly-created <tt>Instruction</tt> should
+    precede.  That is, <tt>Instruction</tt> constructors are capable of
+    inserting the newly-created instance into the <tt>BasicBlock</tt> of a
+    provided instruction, immediately before that instruction.  Using an
+    <tt>Instruction</tt> constructor with a <tt>insertBefore</tt> (default)
+    parameter, the above code becomes:</p>
+
+<div class="doc_code">
+<pre>
+Instruction* pi = ...;
+Instruction* newInst = new Instruction(..., pi);
+</pre>
+</div>
+
+    <p>which is much cleaner, especially if you're creating a lot of
+    instructions and adding them to <tt>BasicBlock</tt>s.</p></li>
+</ul>
+
+</div>
+
+<!--_______________________________________________________________________-->
+<div class="doc_subsubsection">
+  <a name="schanges_deleting">Deleting <tt>Instruction</tt>s</a>
+</div>
+
+<div class="doc_text">
+
+<p>Deleting an instruction from an existing sequence of instructions that form a
+<a href="#BasicBlock"><tt>BasicBlock</tt></a> is very straight-forward. First,
+you must have a pointer to the instruction that you wish to delete.  Second, you
+need to obtain the pointer to that instruction's basic block. You use the
+pointer to the basic block to get its list of instructions and then use the
+erase function to remove your instruction. For example:</p>
+
+<div class="doc_code">
+<pre>
+<a href="#Instruction">Instruction</a> *I = .. ;
+<a href="#BasicBlock">BasicBlock</a> *BB = I-&gt;getParent();
+
+BB-&gt;getInstList().erase(I);
+</pre>
+</div>
+
+</div>
+
+<!--_______________________________________________________________________-->
+<div class="doc_subsubsection">
+  <a name="schanges_replacing">Replacing an <tt>Instruction</tt> with another
+  <tt>Value</tt></a>
+</div>
+
+<div class="doc_text">
+
+<p><i>Replacing individual instructions</i></p>
+
+<p>Including "<a href="/doxygen/BasicBlockUtils_8h-source.html">llvm/Transforms/Utils/BasicBlockUtils.h</a>"
+permits use of two very useful replace functions: <tt>ReplaceInstWithValue</tt>
+and <tt>ReplaceInstWithInst</tt>.</p>
+
+<h4><a name="schanges_deleting">Deleting <tt>Instruction</tt>s</a></h4>
+
+<ul>
+  <li><tt>ReplaceInstWithValue</tt>
+
+    <p>This function replaces all uses (within a basic block) of a given
+    instruction with a value, and then removes the original instruction. The
+    following example illustrates the replacement of the result of a particular
+    <tt>AllocaInst</tt> that allocates memory for a single integer with a null
+    pointer to an integer.</p>
+
+<div class="doc_code">
+<pre>
+AllocaInst* instToReplace = ...;
+BasicBlock::iterator ii(instToReplace);
+
+ReplaceInstWithValue(instToReplace-&gt;getParent()-&gt;getInstList(), ii,
+                     Constant::getNullValue(PointerType::get(Type::Int32Ty)));
+</pre></div></li>
+
+  <li><tt>ReplaceInstWithInst</tt> 
+
+    <p>This function replaces a particular instruction with another
+    instruction. The following example illustrates the replacement of one
+    <tt>AllocaInst</tt> with another.</p>
+
+<div class="doc_code">
+<pre>
+AllocaInst* instToReplace = ...;
+BasicBlock::iterator ii(instToReplace);
+
+ReplaceInstWithInst(instToReplace-&gt;getParent()-&gt;getInstList(), ii,
+                    new AllocaInst(Type::Int32Ty, 0, "ptrToReplacedInt"));
+</pre></div></li>
+</ul>
+
+<p><i>Replacing multiple uses of <tt>User</tt>s and <tt>Value</tt>s</i></p>
+
+<p>You can use <tt>Value::replaceAllUsesWith</tt> and
+<tt>User::replaceUsesOfWith</tt> to change more than one use at a time.  See the
+doxygen documentation for the <a href="/doxygen/classllvm_1_1Value.html">Value Class</a>
+and <a href="/doxygen/classllvm_1_1User.html">User Class</a>, respectively, for more
+information.</p>
+
+<!-- Value::replaceAllUsesWith User::replaceUsesOfWith Point out:
+include/llvm/Transforms/Utils/ especially BasicBlockUtils.h with:
+ReplaceInstWithValue, ReplaceInstWithInst -->
+
+</div>
+
+<!--_______________________________________________________________________-->
+<div class="doc_subsubsection">
+  <a name="schanges_deletingGV">Deleting <tt>GlobalVariable</tt>s</a>
+</div>
+
+<div class="doc_text">
+
+<p>Deleting a global variable from a module is just as easy as deleting an 
+Instruction. First, you must have a pointer to the global variable that you wish
+ to delete.  You use this pointer to erase it from its parent, the module.
+ For example:</p>
+
+<div class="doc_code">
+<pre>
+<a href="#GlobalVariable">GlobalVariable</a> *GV = .. ;
+
+GV-&gt;eraseFromParent();
+</pre>
+</div>
+
+</div>
+
+<!-- *********************************************************************** -->
+<div class="doc_section">
+  <a name="advanced">Advanced Topics</a>
+</div>
+<!-- *********************************************************************** -->
+
+<div class="doc_text">
+<p>
+This section describes some of the advanced or obscure API's that most clients
+do not need to be aware of.  These API's tend manage the inner workings of the
+LLVM system, and only need to be accessed in unusual circumstances.
+</p>
+</div>
+
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+  <a name="TypeResolve">LLVM Type Resolution</a>
 </div>
 
 <div class="doc_text">
@@ -1269,7 +2042,7 @@ recursive types and late resolution of opaque types makes the situation very
 difficult to handle.  Fortunately, for the most part, our implementation makes
 most clients able to be completely unaware of the nasty internal details.  The
 primary case where clients are exposed to the inner workings of it are when
-building a recursive type.  In addition to this case, the LLVM bytecode reader,
+building a recursive type.  In addition to this case, the LLVM bitcode reader,
 assembly parser, and linker also have to be aware of the inner workings of this
 system.
 </p>
@@ -1278,8 +2051,8 @@ system.
 For our purposes below, we need three concepts.  First, an "Opaque Type" is 
 exactly as defined in the <a href="LangRef.html#t_opaque">language 
 reference</a>.  Second an "Abstract Type" is any type which includes an 
-opaque type as part of its type graph (for example "<tt>{ opaque, int }</tt>").
-Third, a concrete type is a type that is not an abstract type (e.g. "<tt>[ int
+opaque type as part of its type graph (for example "<tt>{ opaque, i32 }</tt>").
+Third, a concrete type is a type that is not an abstract type (e.g. "<tt>{ i32
 float }</tt>").
 </p>
 
@@ -1300,7 +2073,7 @@ to be emitted to an output .ll file:
 
 <div class="doc_code">
 <pre>
-%mylist = type { %mylist*, int }
+%mylist = type { %mylist*, i32 }
 </pre>
 </div>
 
@@ -1310,22 +2083,22 @@ To build this, use the following LLVM APIs:
 
 <div class="doc_code">
 <pre>
-//<i> Create the initial outer struct.</i>
+// <i>Create the initial outer struct</i>
 <a href="#PATypeHolder">PATypeHolder</a> StructTy = OpaqueType::get();
 std::vector&lt;const Type*&gt; Elts;
 Elts.push_back(PointerType::get(StructTy));
-Elts.push_back(Type::IntTy);
+Elts.push_back(Type::Int32Ty);
 StructType *NewSTy = StructType::get(Elts);
 
-//<i> At this point, NewSTy = "{ opaque*, int }". Tell VMCore that</i>
-//<i> the struct and the opaque type are actually the same.</i>
+// <i>At this point, NewSTy = "{ opaque*, i32 }". Tell VMCore that</i>
+// <i>the struct and the opaque type are actually the same.</i>
 cast&lt;OpaqueType&gt;(StructTy.get())-&gt;<a href="#refineAbstractTypeTo">refineAbstractTypeTo</a>(NewSTy);
 
 // <i>NewSTy is potentially invalidated, but StructTy (a <a href="#PATypeHolder">PATypeHolder</a>) is</i>
-// <i>kept up-to-date.</i>
+// <i>kept up-to-date</i>
 NewSTy = cast&lt;StructType&gt;(StructTy.get());
 
-// <i>Add a name for the type to the module symbol table (optional).</i>
+// <i>Add a name for the type to the module symbol table (optional)</i>
 MyModule-&gt;addTypeName("mylist", NewSTy);
 </pre>
 </div>
@@ -1334,7 +2107,7 @@ MyModule-&gt;addTypeName("mylist", NewSTy);
 This code shows the basic approach used to build recursive types: build a
 non-recursive type using 'opaque', then use type unification to close the cycle.
 The type unification step is performed by the <tt><a
-ref="#refineAbstractTypeTo">refineAbstractTypeTo</a></tt> method, which is
+href="#refineAbstractTypeTo">refineAbstractTypeTo</a></tt> method, which is
 described next.  After that, we describe the <a
 href="#PATypeHolder">PATypeHolder class</a>.
 </p>
@@ -1357,7 +2130,7 @@ existing types, and all duplicates are deleted (to preserve pointer equality).
 
 <p>
 In the example above, the OpaqueType object is definitely deleted.
-Additionally, if there is an "{ \2*, int}" type already created in the system,
+Additionally, if there is an "{ \2*, i32}" type already created in the system,
 the pointer and struct type created are <b>also</b> deleted.  Obviously whenever
 a type is deleted, any "Type*" pointers in the program are invalidated.  As
 such, it is safest to avoid having <i>any</i> "Type*" pointers to abstract types
@@ -1371,305 +2144,350 @@ complex datastructures.
 
 </div>
 
-<!-- ______________________________________________________________________ -->
+<!-- ______________________________________________________________________ -->
+<div class="doc_subsubsection">
+  <a name="PATypeHolder">The PATypeHolder Class</a>
+</div>
+
+<div class="doc_text">
+<p>
+PATypeHolder is a form of a "smart pointer" for Type objects.  When VMCore
+happily goes about nuking types that become isomorphic to existing types, it
+automatically updates all PATypeHolder objects to point to the new type.  In the
+example above, this allows the code to maintain a pointer to the resultant
+resolved recursive type, even though the Type*'s are potentially invalidated.
+</p>
+
+<p>
+PATypeHolder is an extremely light-weight object that uses a lazy union-find
+implementation to update pointers.  For example the pointer from a Value to its
+Type is maintained by PATypeHolder objects.
+</p>
+
+</div>
+
+<!-- ______________________________________________________________________ -->
+<div class="doc_subsubsection">
+  <a name="AbstractTypeUser">The AbstractTypeUser Class</a>
+</div>
+
+<div class="doc_text">
+
+<p>
+Some data structures need more to perform more complex updates when types get
+resolved.  To support this, a class can derive from the AbstractTypeUser class.
+This class
+allows it to get callbacks when certain types are resolved.  To register to get
+callbacks for a particular type, the DerivedType::{add/remove}AbstractTypeUser
+methods can be called on a type.  Note that these methods only work for <i>
+  abstract</i> types.  Concrete types (those that do not include any opaque 
+objects) can never be refined.
+</p>
+</div>
+
+
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+  <a name="SymbolTable">The <tt>ValueSymbolTable</tt> and
+   <tt>TypeSymbolTable</tt> classes</a>
+</div>
+
+<div class="doc_text">
+<p>The <tt><a href="http://llvm.org/doxygen/classllvm_1_1ValueSymbolTable.html">
+ValueSymbolTable</a></tt> class provides a symbol table that the <a
+href="#Function"><tt>Function</tt></a> and <a href="#Module">
+<tt>Module</tt></a> classes use for naming value definitions. The symbol table
+can provide a name for any <a href="#Value"><tt>Value</tt></a>. 
+The <tt><a href="http://llvm.org/doxygen/classllvm_1_1TypeSymbolTable.html">
+TypeSymbolTable</a></tt> class is used by the <tt>Module</tt> class to store
+names for types.</p>
+
+<p>Note that the <tt>SymbolTable</tt> class should not be directly accessed 
+by most clients.  It should only be used when iteration over the symbol table 
+names themselves are required, which is very special purpose.  Note that not 
+all LLVM
+<a href="#Value">Value</a>s have names, and those without names (i.e. they have
+an empty name) do not exist in the symbol table.
+</p>
+
+<p>These symbol tables support iteration over the values/types in the symbol
+table with <tt>begin/end/iterator</tt> and supports querying to see if a
+specific name is in the symbol table (with <tt>lookup</tt>).  The
+<tt>ValueSymbolTable</tt> class exposes no public mutator methods, instead,
+simply call <tt>setName</tt> on a value, which will autoinsert it into the
+appropriate symbol table.  For types, use the Module::addTypeName method to
+insert entries into the symbol table.</p>
+
+</div>
+
+
+
+<!-- *********************************************************************** -->
+<div class="doc_section">
+  <a name="coreclasses">The Core LLVM Class Hierarchy Reference </a>
+</div>
+<!-- *********************************************************************** -->
+
+<div class="doc_text">
+<p><tt>#include "<a href="/doxygen/Type_8h-source.html">llvm/Type.h</a>"</tt>
+<br>doxygen info: <a href="/doxygen/classllvm_1_1Type.html">Type Class</a></p>
+
+<p>The Core LLVM classes are the primary means of representing the program
+being inspected or transformed.  The core LLVM classes are defined in
+header files in the <tt>include/llvm/</tt> directory, and implemented in
+the <tt>lib/VMCore</tt> directory.</p>
+
+</div>
+
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+  <a name="Type">The <tt>Type</tt> class and Derived Types</a>
+</div>
+
+<div class="doc_text">
+
+  <p><tt>Type</tt> is a superclass of all type classes. Every <tt>Value</tt> has
+  a <tt>Type</tt>. <tt>Type</tt> cannot be instantiated directly but only
+  through its subclasses. Certain primitive types (<tt>VoidType</tt>,
+  <tt>LabelType</tt>, <tt>FloatType</tt> and <tt>DoubleType</tt>) have hidden 
+  subclasses. They are hidden because they offer no useful functionality beyond
+  what the <tt>Type</tt> class offers except to distinguish themselves from 
+  other subclasses of <tt>Type</tt>.</p>
+  <p>All other types are subclasses of <tt>DerivedType</tt>.  Types can be 
+  named, but this is not a requirement. There exists exactly 
+  one instance of a given shape at any one time.  This allows type equality to
+  be performed with address equality of the Type Instance. That is, given two 
+  <tt>Type*</tt> values, the types are identical if the pointers are identical.
+  </p>
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+  <a name="m_Value">Important Public Methods</a>
+</div>
+
+<div class="doc_text">
+
+<ul>
+  <li><tt>bool isInteger() const</tt>: Returns true for any integer type.</li>
+
+  <li><tt>bool isFloatingPoint()</tt>: Return true if this is one of the two
+  floating point types.</li>
+
+  <li><tt>bool isAbstract()</tt>: Return true if the type is abstract (contains
+  an OpaqueType anywhere in its definition).</li>
+
+  <li><tt>bool isSized()</tt>: Return true if the type has known size. Things
+  that don't have a size are abstract types, labels and void.</li>
+
+</ul>
+</div>
+
+<!-- _______________________________________________________________________ -->
 <div class="doc_subsubsection">
-  <a name="PATypeHolder">The PATypeHolder Class</a>
+  <a name="m_Value">Important Derived Types</a>
 </div>
-
 <div class="doc_text">
-<p>
-PATypeHolder is a form of a "smart pointer" for Type objects.  When VMCore
-happily goes about nuking types that become isomorphic to existing types, it
-automatically updates all PATypeHolder objects to point to the new type.  In the
-example above, this allows the code to maintain a pointer to the resultant
-resolved recursive type, even though the Type*'s are potentially invalidated.
-</p>
+<dl>
+  <dt><tt>IntegerType</tt></dt>
+  <dd>Subclass of DerivedType that represents integer types of any bit width. 
+  Any bit width between <tt>IntegerType::MIN_INT_BITS</tt> (1) and 
+  <tt>IntegerType::MAX_INT_BITS</tt> (~8 million) can be represented.
+  <ul>
+    <li><tt>static const IntegerType* get(unsigned NumBits)</tt>: get an integer
+    type of a specific bit width.</li>
+    <li><tt>unsigned getBitWidth() const</tt>: Get the bit width of an integer
+    type.</li>
+  </ul>
+  </dd>
+  <dt><tt>SequentialType</tt></dt>
+  <dd>This is subclassed by ArrayType and PointerType
+    <ul>
+      <li><tt>const Type * getElementType() const</tt>: Returns the type of each
+      of the elements in the sequential type. </li>
+    </ul>
+  </dd>
+  <dt><tt>ArrayType</tt></dt>
+  <dd>This is a subclass of SequentialType and defines the interface for array 
+  types.
+    <ul>
+      <li><tt>unsigned getNumElements() const</tt>: Returns the number of 
+      elements in the array. </li>
+    </ul>
+  </dd>
+  <dt><tt>PointerType</tt></dt>
+  <dd>Subclass of SequentialType for pointer types.</dd>
+  <dt><tt>VectorType</tt></dt>
+  <dd>Subclass of SequentialType for vector types. A 
+  vector type is similar to an ArrayType but is distinguished because it is 
+  a first class type wherease ArrayType is not. Vector types are used for 
+  vector operations and are usually small vectors of of an integer or floating 
+  point type.</dd>
+  <dt><tt>StructType</tt></dt>
+  <dd>Subclass of DerivedTypes for struct types.</dd>
+  <dt><tt><a name="FunctionType">FunctionType</a></tt></dt>
+  <dd>Subclass of DerivedTypes for function types.
+    <ul>
+      <li><tt>bool isVarArg() const</tt>: Returns true if its a vararg
+      function</li>
+      <li><tt> const Type * getReturnType() const</tt>: Returns the
+      return type of the function.</li>
+      <li><tt>const Type * getParamType (unsigned i)</tt>: Returns
+      the type of the ith parameter.</li>
+      <li><tt> const unsigned getNumParams() const</tt>: Returns the
+      number of formal parameters.</li>
+    </ul>
+  </dd>
+  <dt><tt>OpaqueType</tt></dt>
+  <dd>Sublcass of DerivedType for abstract types. This class 
+  defines no content and is used as a placeholder for some other type. Note 
+  that OpaqueType is used (temporarily) during type resolution for forward 
+  references of types. Once the referenced type is resolved, the OpaqueType 
+  is replaced with the actual type. OpaqueType can also be used for data 
+  abstraction. At link time opaque types can be resolved to actual types 
+  of the same name.</dd>
+</dl>
+</div>
 
-<p>
-PATypeHolder is an extremely light-weight object that uses a lazy union-find
-implementation to update pointers.  For example the pointer from a Value to its
-Type is maintained by PATypeHolder objects.
-</p>
 
-</div>
 
-<!-- ______________________________________________________________________ -->
-<div class="doc_subsubsection">
-  <a name="AbstractTypeUser">The AbstractTypeUser Class</a>
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+  <a name="Module">The <tt>Module</tt> class</a>
 </div>
 
 <div class="doc_text">
 
-<p>
-Some data structures need more to perform more complex updates when types get
-resolved.  The <a href="#SymbolTable">SymbolTable</a> class, for example, needs
-move and potentially merge type planes in its representation when a pointer
-changes.</p>
+<p><tt>#include "<a
+href="/doxygen/Module_8h-source.html">llvm/Module.h</a>"</tt><br> doxygen info:
+<a href="/doxygen/classllvm_1_1Module.html">Module Class</a></p>
 
-<p>
-To support this, a class can derive from the AbstractTypeUser class.  This class
-allows it to get callbacks when certain types are resolved.  To register to get
-callbacks for a particular type, the DerivedType::{add/remove}AbstractTypeUser
-methods can be called on a type.  Note that these methods only work for <i>
-abstract</i> types.  Concrete types (those that do not include an opaque objects
-somewhere) can never be refined.
-</p>
-</div>
+<p>The <tt>Module</tt> class represents the top level structure present in LLVM
+programs.  An LLVM module is effectively either a translation unit of the
+original program or a combination of several translation units merged by the
+linker.  The <tt>Module</tt> class keeps track of a list of <a
+href="#Function"><tt>Function</tt></a>s, a list of <a
+href="#GlobalVariable"><tt>GlobalVariable</tt></a>s, and a <a
+href="#SymbolTable"><tt>SymbolTable</tt></a>.  Additionally, it contains a few
+helpful member functions that try to make common operations easy.</p>
 
+</div>
 
-<!-- ======================================================================= -->
-<div class="doc_subsection">
-  <a name="SymbolTable">The <tt>SymbolTable</tt> class</a>
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+  <a name="m_Module">Important Public Members of the <tt>Module</tt> class</a>
 </div>
 
 <div class="doc_text">
-<p>This class provides a symbol table that the <a
-href="#Function"><tt>Function</tt></a> and <a href="#Module">
-<tt>Module</tt></a> classes use for naming definitions. The symbol table can
-provide a name for any <a href="#Value"><tt>Value</tt></a> or <a
-href="#Type"><tt>Type</tt></a>.  <tt>SymbolTable</tt> is an abstract data
-type. It hides the data it contains and provides access to it through a
-controlled interface.</p>
-
-<p>Note that the symbol table class is should not be directly accessed by most
-clients.  It should only be used when iteration over the symbol table names
-themselves are required, which is very special purpose.  Note that not all LLVM
-<a href="#Value">Value</a>s have names, and those without names (i.e. they have
-an empty name) do not exist in the symbol table.
-</p>
 
-<p>To use the <tt>SymbolTable</tt> well, you need to understand the 
-structure of the information it holds. The class contains two 
-<tt>std::map</tt> objects. The first, <tt>pmap</tt>, is a map of 
-<tt>Type*</tt> to maps of name (<tt>std::string</tt>) to <tt>Value*</tt>. 
-The second, <tt>tmap</tt>, is a map of names to <tt>Type*</tt>. Thus, Values
-are stored in two-dimensions and accessed by <tt>Type</tt> and name. Types,
-however, are stored in a single dimension and accessed only by name.</p>
+<ul>
+  <li><tt>Module::Module(std::string name = "")</tt></li>
+</ul>
 
-<p>The interface of this class provides three basic types of operations:
-<ol>
-  <li><em>Accessors</em>. Accessors provide read-only access to information
-  such as finding a value for a name with the 
-  <a href="#SymbolTable_lookup">lookup</a> method.</li> 
-  <li><em>Mutators</em>. Mutators allow the user to add information to the
-  <tt>SymbolTable</tt> with methods like 
-  <a href="#SymbolTable_insert"><tt>insert</tt></a>.</li>
-  <li><em>Iterators</em>. Iterators allow the user to traverse the content
-  of the symbol table in well defined ways, such as the method
-  <a href="#SymbolTable_type_begin"><tt>type_begin</tt></a>.</li>
-</ol>
+<p>Constructing a <a href="#Module">Module</a> is easy. You can optionally
+provide a name for it (probably based on the name of the translation unit).</p>
 
-<h3>Accessors</h3>
-<dl>
-  <dt><tt>Value* lookup(const Type* Ty, const std::string&amp; name) const</tt>:
-  </dt>
-  <dd>The <tt>lookup</tt> method searches the type plane given by the
-  <tt>Ty</tt> parameter for a <tt>Value</tt> with the provided <tt>name</tt>.
-  If a suitable <tt>Value</tt> is not found, null is returned.</dd>
-
-  <dt><tt>Type* lookupType( const std::string&amp; name) const</tt>:</dt>
-  <dd>The <tt>lookupType</tt> method searches through the types for a
-  <tt>Type</tt> with the provided <tt>name</tt>. If a suitable <tt>Type</tt>
-  is not found, null is returned.</dd>
-
-  <dt><tt>bool hasTypes() const</tt>:</dt>
-  <dd>This function returns true if an entry has been made into the type
-  map.</dd>
-
-  <dt><tt>bool isEmpty() const</tt>:</dt>
-  <dd>This function returns true if both the value and types maps are
-  empty</dd>
-</dl>
+<ul>
+  <li><tt>Module::iterator</tt> - Typedef for function list iterator<br>
+    <tt>Module::const_iterator</tt> - Typedef for const_iterator.<br>
 
-<h3>Mutators</h3>
-<dl>
-  <dt><tt>void insert(Value *Val)</tt>:</dt>
-  <dd>This method adds the provided value to the symbol table.  The Value must
-  have both a name and a type which are extracted and used to place the value
-  in the correct type plane under the value's name.</dd>
-
-  <dt><tt>void insert(const std::string&amp; Name, Value *Val)</tt>:</dt>
-  <dd> Inserts a constant or type into the symbol table with the specified
-  name. There can be a many to one mapping between names and constants
-  or types.</dd>
-
-  <dt><tt>void insert(const std::string&amp; Name, Type *Typ)</tt>:</dt>
-  <dd> Inserts a type into the symbol table with the specified name. There
-  can be a many-to-one mapping between names and types. This method
-  allows a type with an existing entry in the symbol table to get
-  a new name.</dd>
-
-  <dt><tt>void remove(Value* Val)</tt>:</dt>
- <dd> This method removes a named value from the symbol table. The
-  type and name of the Value are extracted from \p N and used to
-  lookup the Value in the correct type plane. If the Value is
-  not in the symbol table, this method silently ignores the
-  request.</dd>
-
-  <dt><tt>void remove(Type* Typ)</tt>:</dt>
-  <dd> This method removes a named type from the symbol table. The
-  name of the type is extracted from \P T and used to look up
-  the Type in the type map. If the Type is not in the symbol
-  table, this method silently ignores the request.</dd>
-
-  <dt><tt>Value* remove(const std::string&amp; Name, Value *Val)</tt>:</dt>
-  <dd> Remove a constant or type with the specified name from the 
-  symbol table.</dd>
-
-  <dt><tt>Type* remove(const std::string&amp; Name, Type* T)</tt>:</dt>
-  <dd> Remove a type with the specified name from the symbol table.
-  Returns the removed Type.</dd>
-
-  <dt><tt>Value *value_remove(const value_iterator&amp; It)</tt>:</dt>
-  <dd> Removes a specific value from the symbol table. 
-  Returns the removed value.</dd>
-
-  <dt><tt>bool strip()</tt>:</dt>
-  <dd> This method will strip the symbol table of its names leaving
-  the type and values. </dd>
-
-  <dt><tt>void clear()</tt>:</dt>
-  <dd>Empty the symbol table completely.</dd>
-</dl>
+    <tt>begin()</tt>, <tt>end()</tt>
+    <tt>size()</tt>, <tt>empty()</tt>
 
-<h3>Iteration</h3>
-<p>The following functions describe three types of iterators you can obtain
-the beginning or end of the sequence for both const and non-const. It is
-important to keep track of the different kinds of iterators. There are
-three idioms worth pointing out:</p>
-
-<table>
-  <tr><th>Units</th><th>Iterator</th><th>Idiom</th></tr>
-  <tr>
-    <td align="left">Planes Of name/Value maps</td><td>PI</td>
-    <td align="left"><pre><tt>
-for (SymbolTable::plane_const_iterator PI = ST.plane_begin(),
-     PE = ST.plane_end(); PI != PE; ++PI ) {
-  PI-&gt;first // This is the Type* of the plane
-  PI-&gt;second // This is the SymbolTable::ValueMap of name/Value pairs
-}
-    </tt></pre></td>
-  </tr>
-  <tr>
-    <td align="left">All name/Type Pairs</td><td>TI</td>
-    <td align="left"><pre><tt>
-for (SymbolTable::type_const_iterator TI = ST.type_begin(),
-     TE = ST.type_end(); TI != TE; ++TI ) {
-  TI-&gt;first  // This is the name of the type
-  TI-&gt;second // This is the Type* value associated with the name
-}
-    </tt></pre></td>
-  </tr>
-  <tr>
-    <td align="left">name/Value pairs in a plane</td><td>VI</td>
-    <td align="left"><pre><tt>
-for (SymbolTable::value_const_iterator VI = ST.value_begin(SomeType),
-     VE = ST.value_end(SomeType); VI != VE; ++VI ) {
-  VI-&gt;first  // This is the name of the Value
-  VI-&gt;second // This is the Value* value associated with the name
-}
-    </tt></pre></td>
-  </tr>
-</table>
+    <p>These are forwarding methods that make it easy to access the contents of
+    a <tt>Module</tt> object's <a href="#Function"><tt>Function</tt></a>
+    list.</p></li>
 
-<p>Using the recommended iterator names and idioms will help you avoid
-making mistakes. Of particular note, make sure that whenever you use
-value_begin(SomeType) that you always compare the resulting iterator
-with value_end(SomeType) not value_end(SomeOtherType) or else you 
-will loop infinitely.</p>
+  <li><tt>Module::FunctionListType &amp;getFunctionList()</tt>
 
-<dl>
+    <p> Returns the list of <a href="#Function"><tt>Function</tt></a>s.  This is
+    necessary to use when you need to update the list or perform a complex
+    action that doesn't have a forwarding method.</p>
 
-  <dt><tt>plane_iterator plane_begin()</tt>:</dt>
-  <dd>Get an iterator that starts at the beginning of the type planes.
-  The iterator will iterate over the Type/ValueMap pairs in the
-  type planes. </dd>
+    <p><!--  Global Variable --></p></li> 
+</ul>
+
+<hr>
 
-  <dt><tt>plane_const_iterator plane_begin() const</tt>:</dt>
-  <dd>Get a const_iterator that starts at the beginning of the type 
-  planes.  The iterator will iterate over the Type/ValueMap pairs 
-  in the type planes. </dd>
+<ul>
+  <li><tt>Module::global_iterator</tt> - Typedef for global variable list iterator<br>
+
+    <tt>Module::const_global_iterator</tt> - Typedef for const_iterator.<br>
 
-  <dt><tt>plane_iterator plane_end()</tt>:</dt>
-  <dd>Get an iterator at the end of the type planes. This serves as
-  the marker for end of iteration over the type planes.</dd>
+    <tt>global_begin()</tt>, <tt>global_end()</tt>
+    <tt>global_size()</tt>, <tt>global_empty()</tt>
 
-  <dt><tt>plane_const_iterator plane_end() const</tt>:</dt>
-  <dd>Get a const_iterator at the end of the type planes. This serves as
-  the marker for end of iteration over the type planes.</dd>
+    <p> These are forwarding methods that make it easy to access the contents of
+    a <tt>Module</tt> object's <a
+    href="#GlobalVariable"><tt>GlobalVariable</tt></a> list.</p></li>
 
-  <dt><tt>value_iterator value_begin(const Type *Typ)</tt>:</dt>
-  <dd>Get an iterator that starts at the beginning of a type plane.
-  The iterator will iterate over the name/value pairs in the type plane.
-  Note: The type plane must already exist before using this.</dd>
+  <li><tt>Module::GlobalListType &amp;getGlobalList()</tt>
 
-  <dt><tt>value_const_iterator value_begin(const Type *Typ) const</tt>:</dt>
-  <dd>Get a const_iterator that starts at the beginning of a type plane.
-  The iterator will iterate over the name/value pairs in the type plane.
-  Note: The type plane must already exist before using this.</dd>
+    <p>Returns the list of <a
+    href="#GlobalVariable"><tt>GlobalVariable</tt></a>s.  This is necessary to
+    use when you need to update the list or perform a complex action that
+    doesn't have a forwarding method.</p>
 
-  <dt><tt>value_iterator value_end(const Type *Typ)</tt>:</dt>
-  <dd>Get an iterator to the end of a type plane. This serves as the marker
-  for end of iteration of the type plane.
-  Note: The type plane must already exist before using this.</dd>
+    <p><!--  Symbol table stuff --> </p></li>
+</ul>
 
-  <dt><tt>value_const_iterator value_end(const Type *Typ) const</tt>:</dt>
-  <dd>Get a const_iterator to the end of a type plane. This serves as the
-  marker for end of iteration of the type plane.
-  Note: the type plane must already exist before using this.</dd>
+<hr>
 
-  <dt><tt>type_iterator type_begin()</tt>:</dt>
-  <dd>Get an iterator to the start of the name/Type map.</dd>
+<ul>
+  <li><tt><a href="#SymbolTable">SymbolTable</a> *getSymbolTable()</tt>
 
-  <dt><tt>type_const_iterator type_begin() cons</tt>:</dt>
-  <dd> Get a const_iterator to the start of the name/Type map.</dd>
+    <p>Return a reference to the <a href="#SymbolTable"><tt>SymbolTable</tt></a>
+    for this <tt>Module</tt>.</p>
 
-  <dt><tt>type_iterator type_end()</tt>:</dt>
-  <dd>Get an iterator to the end of the name/Type map. This serves as the
-  marker for end of iteration of the types.</dd>
+    <p><!--  Convenience methods --></p></li>
+</ul>
 
-  <dt><tt>type_const_iterator type_end() const</tt>:</dt>
-  <dd>Get a const-iterator to the end of the name/Type map. This serves 
-  as the marker for end of iteration of the types.</dd>
+<hr>
 
-  <dt><tt>plane_const_iterator find(const Type* Typ ) const</tt>:</dt>
-  <dd>This method returns a plane_const_iterator for iteration over
-  the type planes starting at a specific plane, given by \p Ty.</dd>
+<ul>
+  <li><tt><a href="#Function">Function</a> *getFunction(const std::string
+  &amp;Name, const <a href="#FunctionType">FunctionType</a> *Ty)</tt>
 
-  <dt><tt>plane_iterator find( const Type* Typ </tt>:</dt>
-  <dd>This method returns a plane_iterator for iteration over the
-  type planes starting at a specific plane, given by \p Ty.</dd>
+    <p>Look up the specified function in the <tt>Module</tt> <a
+    href="#SymbolTable"><tt>SymbolTable</tt></a>. If it does not exist, return
+    <tt>null</tt>.</p></li>
 
-</dl>
-</div>
+  <li><tt><a href="#Function">Function</a> *getOrInsertFunction(const
+  std::string &amp;Name, const <a href="#FunctionType">FunctionType</a> *T)</tt>
 
+    <p>Look up the specified function in the <tt>Module</tt> <a
+    href="#SymbolTable"><tt>SymbolTable</tt></a>. If it does not exist, add an
+    external declaration for the function and return it.</p></li>
 
+  <li><tt>std::string getTypeName(const <a href="#Type">Type</a> *Ty)</tt>
 
-<!-- *********************************************************************** -->
-<div class="doc_section">
-  <a name="coreclasses">The Core LLVM Class Hierarchy Reference </a>
-</div>
-<!-- *********************************************************************** -->
+    <p>If there is at least one entry in the <a
+    href="#SymbolTable"><tt>SymbolTable</tt></a> for the specified <a
+    href="#Type"><tt>Type</tt></a>, return it.  Otherwise return the empty
+    string.</p></li>
 
-<div class="doc_text">
+  <li><tt>bool addTypeName(const std::string &amp;Name, const <a
+  href="#Type">Type</a> *Ty)</tt>
 
-<p>The Core LLVM classes are the primary means of representing the program
-being inspected or transformed.  The core LLVM classes are defined in
-header files in the <tt>include/llvm/</tt> directory, and implemented in
-the <tt>lib/VMCore</tt> directory.</p>
+    <p>Insert an entry in the <a href="#SymbolTable"><tt>SymbolTable</tt></a>
+    mapping <tt>Name</tt> to <tt>Ty</tt>. If there is already an entry for this
+    name, true is returned and the <a
+    href="#SymbolTable"><tt>SymbolTable</tt></a> is not modified.</p></li>
+</ul>
 
 </div>
 
+
 <!-- ======================================================================= -->
 <div class="doc_subsection">
   <a name="Value">The <tt>Value</tt> class</a>
 </div>
 
-<div>
+<div class="doc_text">
 
 <p><tt>#include "<a href="/doxygen/Value_8h-source.html">llvm/Value.h</a>"</tt>
 <br> 
-doxygen info: <a href="/doxygen/structllvm_1_1Value.html">Value Class</a></p>
+doxygen info: <a href="/doxygen/classllvm_1_1Value.html">Value Class</a></p>
 
 <p>The <tt>Value</tt> class is the most important class in the LLVM Source
 base.  It represents a typed value that may be used (among other things) as an
@@ -1697,11 +2515,11 @@ method. In addition, all LLVM values can be named.  The "name" of the
 
 <div class="doc_code">
 <pre>
-%<b>foo</b> = add int 1, 2
+%<b>foo</b> = add i32 1, 2
 </pre>
 </div>
 
-<p><a name="#nameWarning">The name of this instruction is "foo".</a> <b>NOTE</b>
+<p><a name="nameWarning">The name of this instruction is "foo".</a> <b>NOTE</b>
 that the name of any value may be missing (an empty string), so names should
 <b>ONLY</b> be used for debugging (making the source code easier to read,
 debugging printouts), they should not be used to keep track of values or map
@@ -1853,15 +2671,38 @@ way as for other <a href="#User"><tt>User</tt></a>s (with the
 the <tt>Instruction</tt> class is the <tt>llvm/Instruction.def</tt> file. This
 file contains some meta-data about the various different types of instructions
 in LLVM.  It describes the enum values that are used as opcodes (for example
-<tt>Instruction::Add</tt> and <tt>Instruction::SetLE</tt>), as well as the
+<tt>Instruction::Add</tt> and <tt>Instruction::ICmp</tt>), as well as the
 concrete sub-classes of <tt>Instruction</tt> that implement the instruction (for
 example <tt><a href="#BinaryOperator">BinaryOperator</a></tt> and <tt><a
-href="#SetCondInst">SetCondInst</a></tt>).  Unfortunately, the use of macros in
+href="#CmpInst">CmpInst</a></tt>).  Unfortunately, the use of macros in
 this file confuses doxygen, so these enum values don't show up correctly in the
 <a href="/doxygen/classllvm_1_1Instruction.html">doxygen output</a>.</p>
 
 </div>
 
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+  <a name="s_Instruction">Important Subclasses of the <tt>Instruction</tt>
+  class</a>
+</div>
+<div class="doc_text">
+  <ul>
+    <li><tt><a name="BinaryOperator">BinaryOperator</a></tt>
+    <p>This subclasses represents all two operand instructions whose operands
+    must be the same type, except for the comparison instructions.</p></li>
+    <li><tt><a name="CastInst">CastInst</a></tt>
+    <p>This subclass is the parent of the 12 casting instructions. It provides
+    common operations on cast instructions.</p>
+    <li><tt><a name="CmpInst">CmpInst</a></tt>
+    <p>This subclass respresents the two comparison instructions, 
+    <a href="LangRef.html#i_icmp">ICmpInst</a> (integer opreands), and
+    <a href="LangRef.html#i_fcmp">FCmpInst</a> (floating point operands).</p>
+    <li><tt><a name="TerminatorInst">TerminatorInst</a></tt>
+    <p>This subclass is the parent of all terminator instructions (those which
+    can terminate a block).</p>
+  </ul>
+  </div>
+
 <!-- _______________________________________________________________________ -->
 <div class="doc_subsubsection">
   <a name="m_Instruction">Important Public Members of the <tt>Instruction</tt>
@@ -1883,102 +2724,77 @@ this  <tt>Instruction</tt> is embedded into.</p></li>
     <p>Returns another instance of the specified instruction, identical
 in all ways to the original except that the instruction has no parent
 (ie it's not embedded into a <a href="#BasicBlock"><tt>BasicBlock</tt></a>),
-and it has no name</p></li>
-</ul>
-
-</div>
-
-<!-- ======================================================================= -->
-<div class="doc_subsection">
-  <a name="BasicBlock">The <tt>BasicBlock</tt> class</a>
-</div>
-
-<div class="doc_text">
-
-<p><tt>#include "<a
-href="/doxygen/BasicBlock_8h-source.html">llvm/BasicBlock.h</a>"</tt><br>
-doxygen info: <a href="/doxygen/structllvm_1_1BasicBlock.html">BasicBlock
-Class</a><br>
-Superclass: <a href="#Value"><tt>Value</tt></a></p>
-
-<p>This class represents a single entry multiple exit section of the code,
-commonly known as a basic block by the compiler community.  The
-<tt>BasicBlock</tt> class maintains a list of <a
-href="#Instruction"><tt>Instruction</tt></a>s, which form the body of the block.
-Matching the language definition, the last element of this list of instructions
-is always a terminator instruction (a subclass of the <a
-href="#TerminatorInst"><tt>TerminatorInst</tt></a> class).</p>
-
-<p>In addition to tracking the list of instructions that make up the block, the
-<tt>BasicBlock</tt> class also keeps track of the <a
-href="#Function"><tt>Function</tt></a> that it is embedded into.</p>
-
-<p>Note that <tt>BasicBlock</tt>s themselves are <a
-href="#Value"><tt>Value</tt></a>s, because they are referenced by instructions
-like branches and can go in the switch tables. <tt>BasicBlock</tt>s have type
-<tt>label</tt>.</p>
-
-</div>
-
-<!-- _______________________________________________________________________ -->
-<div class="doc_subsubsection">
-  <a name="m_BasicBlock">Important Public Members of the <tt>BasicBlock</tt>
-  class</a>
-</div>
-
-<div class="doc_text">
-
-<ul>
-
-<li><tt>BasicBlock(const std::string &amp;Name = "", </tt><tt><a
- href="#Function">Function</a> *Parent = 0)</tt>
-
-<p>The <tt>BasicBlock</tt> constructor is used to create new basic blocks for
-insertion into a function.  The constructor optionally takes a name for the new
-block, and a <a href="#Function"><tt>Function</tt></a> to insert it into.  If
-the <tt>Parent</tt> parameter is specified, the new <tt>BasicBlock</tt> is
-automatically inserted at the end of the specified <a
-href="#Function"><tt>Function</tt></a>, if not specified, the BasicBlock must be
-manually inserted into the <a href="#Function"><tt>Function</tt></a>.</p></li>
-
-<li><tt>BasicBlock::iterator</tt> - Typedef for instruction list iterator<br>
-<tt>BasicBlock::const_iterator</tt> - Typedef for const_iterator.<br>
-<tt>begin()</tt>, <tt>end()</tt>, <tt>front()</tt>, <tt>back()</tt>,
-<tt>size()</tt>, <tt>empty()</tt>
-STL-style functions for accessing the instruction list.
-
-<p>These methods and typedefs are forwarding functions that have the same
-semantics as the standard library methods of the same names.  These methods
-expose the underlying instruction list of a basic block in a way that is easy to
-manipulate.  To get the full complement of container operations (including
-operations to update the list), you must use the <tt>getInstList()</tt>
-method.</p></li>
-
-<li><tt>BasicBlock::InstListType &amp;getInstList()</tt>
+and it has no name</p></li>
+</ul>
 
-<p>This method is used to get access to the underlying container that actually
-holds the Instructions.  This method must be used when there isn't a forwarding
-function in the <tt>BasicBlock</tt> class for the operation that you would like
-to perform.  Because there are no forwarding functions for "updating"
-operations, you need to use this if you want to update the contents of a
-<tt>BasicBlock</tt>.</p></li>
+</div>
 
-<li><tt><a href="#Function">Function</a> *getParent()</tt>
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+  <a name="Constant">The <tt>Constant</tt> class and subclasses</a>
+</div>
 
-<p> Returns a pointer to <a href="#Function"><tt>Function</tt></a> the block is
-embedded into, or a null pointer if it is homeless.</p></li>
+<div class="doc_text">
 
-<li><tt><a href="#TerminatorInst">TerminatorInst</a> *getTerminator()</tt>
+<p>Constant represents a base class for different types of constants. It
+is subclassed by ConstantInt, ConstantArray, etc. for representing 
+the various types of Constants.  <a href="#GlobalValue">GlobalValue</a> is also
+a subclass, which represents the address of a global variable or function.
+</p>
 
-<p> Returns a pointer to the terminator instruction that appears at the end of
-the <tt>BasicBlock</tt>.  If there is no terminator instruction, or if the last
-instruction in the block is not a terminator, then a null pointer is
-returned.</p></li>
+</div>
 
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">Important Subclasses of Constant </div>
+<div class="doc_text">
+<ul>
+  <li>ConstantInt : This subclass of Constant represents an integer constant of
+  any width.
+    <ul>
+      <li><tt>const APInt&amp; getValue() const</tt>: Returns the underlying
+      value of this constant, an APInt value.</li>
+      <li><tt>int64_t getSExtValue() const</tt>: Converts the underlying APInt
+      value to an int64_t via sign extension. If the value (not the bit width)
+      of the APInt is too large to fit in an int64_t, an assertion will result.
+      For this reason, use of this method is discouraged.</li>
+      <li><tt>uint64_t getZExtValue() const</tt>: Converts the underlying APInt
+      value to a uint64_t via zero extension. IF the value (not the bit width)
+      of the APInt is too large to fit in a uint64_t, an assertion will result.
+      For this reason, use of this method is discouraged.</li>
+      <li><tt>static ConstantInt* get(const APInt&amp; Val)</tt>: Returns the
+      ConstantInt object that represents the value provided by <tt>Val</tt>.
+      The type is implied as the IntegerType that corresponds to the bit width
+      of <tt>Val</tt>.</li>
+      <li><tt>static ConstantInt* get(const Type *Ty, uint64_t Val)</tt>: 
+      Returns the ConstantInt object that represents the value provided by 
+      <tt>Val</tt> for integer type <tt>Ty</tt>.</li>
+    </ul>
+  </li>
+  <li>ConstantFP : This class represents a floating point constant.
+    <ul>
+      <li><tt>double getValue() const</tt>: Returns the underlying value of 
+      this constant. </li>
+    </ul>
+  </li>
+  <li>ConstantArray : This represents a constant array.
+    <ul>
+      <li><tt>const std::vector&lt;Use&gt; &amp;getValues() const</tt>: Returns 
+      a vector of component constants that makeup this array. </li>
+    </ul>
+  </li>
+  <li>ConstantStruct : This represents a constant struct.
+    <ul>
+      <li><tt>const std::vector&lt;Use&gt; &amp;getValues() const</tt>: Returns 
+      a vector of component constants that makeup this array. </li>
+    </ul>
+  </li>
+  <li>GlobalValue : This represents either a global variable or a function. In 
+  either case, the value is a constant fixed address (after linking). 
+  </li>
 </ul>
-
 </div>
 
+
 <!-- ======================================================================= -->
 <div class="doc_subsection">
   <a name="GlobalValue">The <tt>GlobalValue</tt> class</a>
@@ -2015,11 +2831,11 @@ global is always a pointer to its contents. It is important to remember this
 when using the <tt>GetElementPtrInst</tt> instruction because this pointer must
 be dereferenced first. For example, if you have a <tt>GlobalVariable</tt> (a
 subclass of <tt>GlobalValue)</tt> that is an array of 24 ints, type <tt>[24 x
-int]</tt>, then the <tt>GlobalVariable</tt> is a pointer to that array. Although
+i32]</tt>, then the <tt>GlobalVariable</tt> is a pointer to that array. Although
 the address of the first element of this array and the value of the
 <tt>GlobalVariable</tt> are the same, they have different types. The
-<tt>GlobalVariable</tt>'s type is <tt>[24 x int]</tt>. The first element's type
-is <tt>int.</tt> Because of this, accessing a global value requires you to
+<tt>GlobalVariable</tt>'s type is <tt>[24 x i32]</tt>. The first element's type
+is <tt>i32.</tt> Because of this, accessing a global value requires you to
 dereference the pointer with <tt>GetElementPtrInst</tt> first, then its elements
 can be accessed. This is explained in the <a href="LangRef.html#globalvars">LLVM
 Language Reference Manual</a>.</p>
@@ -2119,7 +2935,7 @@ is its address (after linking) which is guaranteed to be constant.</p>
     create and what type of linkage the function should have. The <a 
     href="#FunctionType"><tt>FunctionType</tt></a> argument
     specifies the formal arguments and return value for the function. The same
-    <a href="#FunctionTypel"><tt>FunctionType</tt></a> value can be used to
+    <a href="#FunctionType"><tt>FunctionType</tt></a> value can be used to
     create multiple functions. The <tt>Parent</tt> argument specifies the Module
     in which the function is defined. If this argument is provided, the function
     will automatically be inserted into that module's list of
@@ -2137,406 +2953,219 @@ is its address (after linking) which is guaranteed to be constant.</p>
     <tt>begin()</tt>, <tt>end()</tt>
     <tt>size()</tt>, <tt>empty()</tt>
 
-    <p>These are forwarding methods that make it easy to access the contents of
-    a <tt>Function</tt> object's <a href="#BasicBlock"><tt>BasicBlock</tt></a>
-    list.</p></li>
-
-  <li><tt>Function::BasicBlockListType &amp;getBasicBlockList()</tt>
-
-    <p>Returns the list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s.  This
-    is necessary to use when you need to update the list or perform a complex
-    action that doesn't have a forwarding method.</p></li>
-
-  <li><tt>Function::arg_iterator</tt> - Typedef for the argument list
-iterator<br>
-    <tt>Function::const_arg_iterator</tt> - Typedef for const_iterator.<br>
-
-    <tt>arg_begin()</tt>, <tt>arg_end()</tt>
-    <tt>arg_size()</tt>, <tt>arg_empty()</tt>
-
-    <p>These are forwarding methods that make it easy to access the contents of
-    a <tt>Function</tt> object's <a href="#Argument"><tt>Argument</tt></a>
-    list.</p></li>
-
-  <li><tt>Function::ArgumentListType &amp;getArgumentList()</tt>
-
-    <p>Returns the list of <a href="#Argument"><tt>Argument</tt></a>s.  This is
-    necessary to use when you need to update the list or perform a complex
-    action that doesn't have a forwarding method.</p></li>
-
-  <li><tt><a href="#BasicBlock">BasicBlock</a> &amp;getEntryBlock()</tt>
-
-    <p>Returns the entry <a href="#BasicBlock"><tt>BasicBlock</tt></a> for the
-    function.  Because the entry block for the function is always the first
-    block, this returns the first block of the <tt>Function</tt>.</p></li>
-
-  <li><tt><a href="#Type">Type</a> *getReturnType()</tt><br>
-    <tt><a href="#FunctionType">FunctionType</a> *getFunctionType()</tt>
-
-    <p>This traverses the <a href="#Type"><tt>Type</tt></a> of the
-    <tt>Function</tt> and returns the return type of the function, or the <a
-    href="#FunctionType"><tt>FunctionType</tt></a> of the actual
-    function.</p></li>
-
-  <li><tt><a href="#SymbolTable">SymbolTable</a> *getSymbolTable()</tt>
-
-    <p> Return a pointer to the <a href="#SymbolTable"><tt>SymbolTable</tt></a>
-    for this <tt>Function</tt>.</p></li>
-</ul>
-
-</div>
-
-<!-- ======================================================================= -->
-<div class="doc_subsection">
-  <a name="GlobalVariable">The <tt>GlobalVariable</tt> class</a>
-</div>
-
-<div class="doc_text">
-
-<p><tt>#include "<a
-href="/doxygen/GlobalVariable_8h-source.html">llvm/GlobalVariable.h</a>"</tt>
-<br>
-doxygen info: <a href="/doxygen/classllvm_1_1GlobalVariable.html">GlobalVariable
- Class</a><br>
-Superclasses: <a href="#GlobalValue"><tt>GlobalValue</tt></a>, 
-<a href="#Constant"><tt>Constant</tt></a>,
-<a href="#User"><tt>User</tt></a>,
-<a href="#Value"><tt>Value</tt></a></p>
-
-<p>Global variables are represented with the (suprise suprise)
-<tt>GlobalVariable</tt> class. Like functions, <tt>GlobalVariable</tt>s are also
-subclasses of <a href="#GlobalValue"><tt>GlobalValue</tt></a>, and as such are
-always referenced by their address (global values must live in memory, so their
-"name" refers to their constant address). See 
-<a href="#GlobalValue"><tt>GlobalValue</tt></a> for more on this.  Global 
-variables may have an initial value (which must be a 
-<a href="#Constant"><tt>Constant</tt></a>), and if they have an initializer, 
-they may be marked as "constant" themselves (indicating that their contents 
-never change at runtime).</p>
-</div>
-
-<!-- _______________________________________________________________________ -->
-<div class="doc_subsubsection">
-  <a name="m_GlobalVariable">Important Public Members of the
-  <tt>GlobalVariable</tt> class</a>
-</div>
-
-<div class="doc_text">
-
-<ul>
-  <li><tt>GlobalVariable(const </tt><tt><a href="#Type">Type</a> *Ty, bool
-  isConstant, LinkageTypes&amp; Linkage, <a href="#Constant">Constant</a>
-  *Initializer = 0, const std::string &amp;Name = "", Module* Parent = 0)</tt>
-
-    <p>Create a new global variable of the specified type. If
-    <tt>isConstant</tt> is true then the global variable will be marked as
-    unchanging for the program. The Linkage parameter specifies the type of
-    linkage (internal, external, weak, linkonce, appending) for the variable. If
-    the linkage is InternalLinkage, WeakLinkage, or LinkOnceLinkage,&nbsp; then
-    the resultant global variable will have internal linkage.  AppendingLinkage
-    concatenates together all instances (in different translation units) of the
-    variable into a single variable but is only applicable to arrays.  &nbsp;See
-    the <a href="LangRef.html#modulestructure">LLVM Language Reference</a> for
-    further details on linkage types. Optionally an initializer, a name, and the
-    module to put the variable into may be specified for the global variable as
-    well.</p></li>
-
-  <li><tt>bool isConstant() const</tt>
-
-    <p>Returns true if this is a global variable that is known not to
-    be modified at runtime.</p></li>
-
-  <li><tt>bool hasInitializer()</tt>
-
-    <p>Returns true if this <tt>GlobalVariable</tt> has an intializer.</p></li>
-
-  <li><tt><a href="#Constant">Constant</a> *getInitializer()</tt>
-
-    <p>Returns the intial value for a <tt>GlobalVariable</tt>.  It is not legal
-    to call this method if there is no initializer.</p></li>
-</ul>
-
-</div>
-
-<!-- ======================================================================= -->
-<div class="doc_subsection">
-  <a name="Module">The <tt>Module</tt> class</a>
-</div>
-
-<div class="doc_text">
-
-<p><tt>#include "<a
-href="/doxygen/Module_8h-source.html">llvm/Module.h</a>"</tt><br> doxygen info:
-<a href="/doxygen/classllvm_1_1Module.html">Module Class</a></p>
-
-<p>The <tt>Module</tt> class represents the top level structure present in LLVM
-programs.  An LLVM module is effectively either a translation unit of the
-original program or a combination of several translation units merged by the
-linker.  The <tt>Module</tt> class keeps track of a list of <a
-href="#Function"><tt>Function</tt></a>s, a list of <a
-href="#GlobalVariable"><tt>GlobalVariable</tt></a>s, and a <a
-href="#SymbolTable"><tt>SymbolTable</tt></a>.  Additionally, it contains a few
-helpful member functions that try to make common operations easy.</p>
-
-</div>
-
-<!-- _______________________________________________________________________ -->
-<div class="doc_subsubsection">
-  <a name="m_Module">Important Public Members of the <tt>Module</tt> class</a>
-</div>
-
-<div class="doc_text">
-
-<ul>
-  <li><tt>Module::Module(std::string name = "")</tt></li>
-</ul>
-
-<p>Constructing a <a href="#Module">Module</a> is easy. You can optionally
-provide a name for it (probably based on the name of the translation unit).</p>
-
-<ul>
-  <li><tt>Module::iterator</tt> - Typedef for function list iterator<br>
-    <tt>Module::const_iterator</tt> - Typedef for const_iterator.<br>
-
-    <tt>begin()</tt>, <tt>end()</tt>
-    <tt>size()</tt>, <tt>empty()</tt>
-
-    <p>These are forwarding methods that make it easy to access the contents of
-    a <tt>Module</tt> object's <a href="#Function"><tt>Function</tt></a>
-    list.</p></li>
-
-  <li><tt>Module::FunctionListType &amp;getFunctionList()</tt>
-
-    <p> Returns the list of <a href="#Function"><tt>Function</tt></a>s.  This is
-    necessary to use when you need to update the list or perform a complex
-    action that doesn't have a forwarding method.</p>
-
-    <p><!--  Global Variable --></p></li> 
-</ul>
-
-<hr>
-
-<ul>
-  <li><tt>Module::global_iterator</tt> - Typedef for global variable list iterator<br>
-
-    <tt>Module::const_global_iterator</tt> - Typedef for const_iterator.<br>
-
-    <tt>global_begin()</tt>, <tt>global_end()</tt>
-    <tt>global_size()</tt>, <tt>global_empty()</tt>
-
-    <p> These are forwarding methods that make it easy to access the contents of
-    a <tt>Module</tt> object's <a
-    href="#GlobalVariable"><tt>GlobalVariable</tt></a> list.</p></li>
-
-  <li><tt>Module::GlobalListType &amp;getGlobalList()</tt>
-
-    <p>Returns the list of <a
-    href="#GlobalVariable"><tt>GlobalVariable</tt></a>s.  This is necessary to
-    use when you need to update the list or perform a complex action that
-    doesn't have a forwarding method.</p>
-
-    <p><!--  Symbol table stuff --> </p></li>
-</ul>
-
-<hr>
+    <p>These are forwarding methods that make it easy to access the contents of
+    a <tt>Function</tt> object's <a href="#BasicBlock"><tt>BasicBlock</tt></a>
+    list.</p></li>
 
-<ul>
-  <li><tt><a href="#SymbolTable">SymbolTable</a> *getSymbolTable()</tt>
+  <li><tt>Function::BasicBlockListType &amp;getBasicBlockList()</tt>
 
-    <p>Return a reference to the <a href="#SymbolTable"><tt>SymbolTable</tt></a>
-    for this <tt>Module</tt>.</p>
+    <p>Returns the list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s.  This
+    is necessary to use when you need to update the list or perform a complex
+    action that doesn't have a forwarding method.</p></li>
 
-    <p><!--  Convenience methods --></p></li>
-</ul>
+  <li><tt>Function::arg_iterator</tt> - Typedef for the argument list
+iterator<br>
+    <tt>Function::const_arg_iterator</tt> - Typedef for const_iterator.<br>
 
-<hr>
+    <tt>arg_begin()</tt>, <tt>arg_end()</tt>
+    <tt>arg_size()</tt>, <tt>arg_empty()</tt>
 
-<ul>
-  <li><tt><a href="#Function">Function</a> *getFunction(const std::string
-  &amp;Name, const <a href="#FunctionType">FunctionType</a> *Ty)</tt>
+    <p>These are forwarding methods that make it easy to access the contents of
+    a <tt>Function</tt> object's <a href="#Argument"><tt>Argument</tt></a>
+    list.</p></li>
 
-    <p>Look up the specified function in the <tt>Module</tt> <a
-    href="#SymbolTable"><tt>SymbolTable</tt></a>. If it does not exist, return
-    <tt>null</tt>.</p></li>
+  <li><tt>Function::ArgumentListType &amp;getArgumentList()</tt>
 
-  <li><tt><a href="#Function">Function</a> *getOrInsertFunction(const
-  std::string &amp;Name, const <a href="#FunctionType">FunctionType</a> *T)</tt>
+    <p>Returns the list of <a href="#Argument"><tt>Argument</tt></a>s.  This is
+    necessary to use when you need to update the list or perform a complex
+    action that doesn't have a forwarding method.</p></li>
 
-    <p>Look up the specified function in the <tt>Module</tt> <a
-    href="#SymbolTable"><tt>SymbolTable</tt></a>. If it does not exist, add an
-    external declaration for the function and return it.</p></li>
+  <li><tt><a href="#BasicBlock">BasicBlock</a> &amp;getEntryBlock()</tt>
 
-  <li><tt>std::string getTypeName(const <a href="#Type">Type</a> *Ty)</tt>
+    <p>Returns the entry <a href="#BasicBlock"><tt>BasicBlock</tt></a> for the
+    function.  Because the entry block for the function is always the first
+    block, this returns the first block of the <tt>Function</tt>.</p></li>
 
-    <p>If there is at least one entry in the <a
-    href="#SymbolTable"><tt>SymbolTable</tt></a> for the specified <a
-    href="#Type"><tt>Type</tt></a>, return it.  Otherwise return the empty
-    string.</p></li>
+  <li><tt><a href="#Type">Type</a> *getReturnType()</tt><br>
+    <tt><a href="#FunctionType">FunctionType</a> *getFunctionType()</tt>
 
-  <li><tt>bool addTypeName(const std::string &amp;Name, const <a
-  href="#Type">Type</a> *Ty)</tt>
+    <p>This traverses the <a href="#Type"><tt>Type</tt></a> of the
+    <tt>Function</tt> and returns the return type of the function, or the <a
+    href="#FunctionType"><tt>FunctionType</tt></a> of the actual
+    function.</p></li>
 
-    <p>Insert an entry in the <a href="#SymbolTable"><tt>SymbolTable</tt></a>
-    mapping <tt>Name</tt> to <tt>Ty</tt>. If there is already an entry for this
-    name, true is returned and the <a
-    href="#SymbolTable"><tt>SymbolTable</tt></a> is not modified.</p></li>
+  <li><tt><a href="#SymbolTable">SymbolTable</a> *getSymbolTable()</tt>
+
+    <p> Return a pointer to the <a href="#SymbolTable"><tt>SymbolTable</tt></a>
+    for this <tt>Function</tt>.</p></li>
 </ul>
 
 </div>
 
 <!-- ======================================================================= -->
 <div class="doc_subsection">
-  <a name="Constant">The <tt>Constant</tt> class and subclasses</a>
+  <a name="GlobalVariable">The <tt>GlobalVariable</tt> class</a>
 </div>
 
 <div class="doc_text">
 
-<p>Constant represents a base class for different types of constants. It
-is subclassed by ConstantBool, ConstantInt, ConstantSInt, ConstantUInt,
-ConstantArray etc for representing the various types of Constants.</p>
+<p><tt>#include "<a
+href="/doxygen/GlobalVariable_8h-source.html">llvm/GlobalVariable.h</a>"</tt>
+<br>
+doxygen info: <a href="/doxygen/classllvm_1_1GlobalVariable.html">GlobalVariable
+ Class</a><br>
+Superclasses: <a href="#GlobalValue"><tt>GlobalValue</tt></a>, 
+<a href="#Constant"><tt>Constant</tt></a>,
+<a href="#User"><tt>User</tt></a>,
+<a href="#Value"><tt>Value</tt></a></p>
 
+<p>Global variables are represented with the (suprise suprise)
+<tt>GlobalVariable</tt> class. Like functions, <tt>GlobalVariable</tt>s are also
+subclasses of <a href="#GlobalValue"><tt>GlobalValue</tt></a>, and as such are
+always referenced by their address (global values must live in memory, so their
+"name" refers to their constant address). See 
+<a href="#GlobalValue"><tt>GlobalValue</tt></a> for more on this.  Global 
+variables may have an initial value (which must be a 
+<a href="#Constant"><tt>Constant</tt></a>), and if they have an initializer, 
+they may be marked as "constant" themselves (indicating that their contents 
+never change at runtime).</p>
 </div>
 
 <!-- _______________________________________________________________________ -->
 <div class="doc_subsubsection">
-  <a name="m_Constant">Important Public Methods</a>
-</div>
-<div class="doc_text">
+  <a name="m_GlobalVariable">Important Public Members of the
+  <tt>GlobalVariable</tt> class</a>
 </div>
 
-<!-- _______________________________________________________________________ -->
-<div class="doc_subsubsection">Important Subclasses of Constant </div>
 <div class="doc_text">
+
 <ul>
-  <li>ConstantSInt : This subclass of Constant represents a signed integer 
-  constant.
-    <ul>
-      <li><tt>int64_t getValue() const</tt>: Returns the underlying value of
-      this constant. </li>
-    </ul>
-  </li>
-  <li>ConstantUInt : This class represents an unsigned integer.
-    <ul>
-      <li><tt>uint64_t getValue() const</tt>: Returns the underlying value of 
-      this constant. </li>
-    </ul>
-  </li>
-  <li>ConstantFP : This class represents a floating point constant.
-    <ul>
-      <li><tt>double getValue() const</tt>: Returns the underlying value of 
-      this constant. </li>
-    </ul>
-  </li>
-  <li>ConstantBool : This represents a boolean constant.
-    <ul>
-      <li><tt>bool getValue() const</tt>: Returns the underlying value of this 
-      constant. </li>
-    </ul>
-  </li>
-  <li>ConstantArray : This represents a constant array.
-    <ul>
-      <li><tt>const std::vector&lt;Use&gt; &amp;getValues() const</tt>: Returns 
-      a vector of component constants that makeup this array. </li>
-    </ul>
-  </li>
-  <li>ConstantStruct : This represents a constant struct.
-    <ul>
-      <li><tt>const std::vector&lt;Use&gt; &amp;getValues() const</tt>: Returns 
-      a vector of component constants that makeup this array. </li>
-    </ul>
-  </li>
-  <li>GlobalValue : This represents either a global variable or a function. In 
-  either case, the value is a constant fixed address (after linking). 
-  </li>
+  <li><tt>GlobalVariable(const </tt><tt><a href="#Type">Type</a> *Ty, bool
+  isConstant, LinkageTypes&amp; Linkage, <a href="#Constant">Constant</a>
+  *Initializer = 0, const std::string &amp;Name = "", Module* Parent = 0)</tt>
+
+    <p>Create a new global variable of the specified type. If
+    <tt>isConstant</tt> is true then the global variable will be marked as
+    unchanging for the program. The Linkage parameter specifies the type of
+    linkage (internal, external, weak, linkonce, appending) for the variable. If
+    the linkage is InternalLinkage, WeakLinkage, or LinkOnceLinkage,&nbsp; then
+    the resultant global variable will have internal linkage.  AppendingLinkage
+    concatenates together all instances (in different translation units) of the
+    variable into a single variable but is only applicable to arrays.  &nbsp;See
+    the <a href="LangRef.html#modulestructure">LLVM Language Reference</a> for
+    further details on linkage types. Optionally an initializer, a name, and the
+    module to put the variable into may be specified for the global variable as
+    well.</p></li>
+
+  <li><tt>bool isConstant() const</tt>
+
+    <p>Returns true if this is a global variable that is known not to
+    be modified at runtime.</p></li>
+
+  <li><tt>bool hasInitializer()</tt>
+
+    <p>Returns true if this <tt>GlobalVariable</tt> has an intializer.</p></li>
+
+  <li><tt><a href="#Constant">Constant</a> *getInitializer()</tt>
+
+    <p>Returns the intial value for a <tt>GlobalVariable</tt>.  It is not legal
+    to call this method if there is no initializer.</p></li>
 </ul>
+
 </div>
 
+
 <!-- ======================================================================= -->
 <div class="doc_subsection">
-  <a name="Type">The <tt>Type</tt> class and Derived Types</a>
+  <a name="BasicBlock">The <tt>BasicBlock</tt> class</a>
 </div>
 
 <div class="doc_text">
 
-<p>Type as noted earlier is also a subclass of a Value class.  Any primitive
-type (like int, short etc) in LLVM is an instance of Type Class.  All other
-types are instances of subclasses of type like FunctionType, ArrayType
-etc. DerivedType is the interface for all such dervied types including
-FunctionType, ArrayType, PointerType, StructType. Types can have names. They can
-be recursive (StructType).  There exists exactly one instance of any type
-structure at a time. This allows using pointer equality of Type *s for comparing
-types.</p>
+<p><tt>#include "<a
+href="/doxygen/BasicBlock_8h-source.html">llvm/BasicBlock.h</a>"</tt><br>
+doxygen info: <a href="/doxygen/structllvm_1_1BasicBlock.html">BasicBlock
+Class</a><br>
+Superclass: <a href="#Value"><tt>Value</tt></a></p>
+
+<p>This class represents a single entry multiple exit section of the code,
+commonly known as a basic block by the compiler community.  The
+<tt>BasicBlock</tt> class maintains a list of <a
+href="#Instruction"><tt>Instruction</tt></a>s, which form the body of the block.
+Matching the language definition, the last element of this list of instructions
+is always a terminator instruction (a subclass of the <a
+href="#TerminatorInst"><tt>TerminatorInst</tt></a> class).</p>
+
+<p>In addition to tracking the list of instructions that make up the block, the
+<tt>BasicBlock</tt> class also keeps track of the <a
+href="#Function"><tt>Function</tt></a> that it is embedded into.</p>
+
+<p>Note that <tt>BasicBlock</tt>s themselves are <a
+href="#Value"><tt>Value</tt></a>s, because they are referenced by instructions
+like branches and can go in the switch tables. <tt>BasicBlock</tt>s have type
+<tt>label</tt>.</p>
 
 </div>
 
 <!-- _______________________________________________________________________ -->
 <div class="doc_subsubsection">
-  <a name="m_Value">Important Public Methods</a>
+  <a name="m_BasicBlock">Important Public Members of the <tt>BasicBlock</tt>
+  class</a>
 </div>
 
 <div class="doc_text">
-
 <ul>
 
-  <li><tt>bool isSigned() const</tt>: Returns whether an integral numeric type
-  is signed. This is true for SByteTy, ShortTy, IntTy, LongTy. Note that this is
-  not true for Float and Double. </li>
+<li><tt>BasicBlock(const std::string &amp;Name = "", </tt><tt><a
+ href="#Function">Function</a> *Parent = 0)</tt>
+
+<p>The <tt>BasicBlock</tt> constructor is used to create new basic blocks for
+insertion into a function.  The constructor optionally takes a name for the new
+block, and a <a href="#Function"><tt>Function</tt></a> to insert it into.  If
+the <tt>Parent</tt> parameter is specified, the new <tt>BasicBlock</tt> is
+automatically inserted at the end of the specified <a
+href="#Function"><tt>Function</tt></a>, if not specified, the BasicBlock must be
+manually inserted into the <a href="#Function"><tt>Function</tt></a>.</p></li>
+
+<li><tt>BasicBlock::iterator</tt> - Typedef for instruction list iterator<br>
+<tt>BasicBlock::const_iterator</tt> - Typedef for const_iterator.<br>
+<tt>begin()</tt>, <tt>end()</tt>, <tt>front()</tt>, <tt>back()</tt>,
+<tt>size()</tt>, <tt>empty()</tt>
+STL-style functions for accessing the instruction list.
 
-  <li><tt>bool isUnsigned() const</tt>: Returns whether a numeric type is
-  unsigned. This is not quite the complement of isSigned... nonnumeric types
-  return false as they do with isSigned. This returns true for UByteTy,
-  UShortTy, UIntTy, and ULongTy. </li>
+<p>These methods and typedefs are forwarding functions that have the same
+semantics as the standard library methods of the same names.  These methods
+expose the underlying instruction list of a basic block in a way that is easy to
+manipulate.  To get the full complement of container operations (including
+operations to update the list), you must use the <tt>getInstList()</tt>
+method.</p></li>
 
-  <li><tt>bool isInteger() const</tt>: Equivalent to isSigned() || isUnsigned().</li>
+<li><tt>BasicBlock::InstListType &amp;getInstList()</tt>
 
-  <li><tt>bool isIntegral() const</tt>: Returns true if this is an integral
-  type, which is either Bool type or one of the Integer types.</li>
+<p>This method is used to get access to the underlying container that actually
+holds the Instructions.  This method must be used when there isn't a forwarding
+function in the <tt>BasicBlock</tt> class for the operation that you would like
+to perform.  Because there are no forwarding functions for "updating"
+operations, you need to use this if you want to update the contents of a
+<tt>BasicBlock</tt>.</p></li>
 
-  <li><tt>bool isFloatingPoint()</tt>: Return true if this is one of the two
-  floating point types.</li>
+<li><tt><a href="#Function">Function</a> *getParent()</tt>
 
-  <li><tt>isLosslesslyConvertableTo (const Type *Ty) const</tt>: Return true if
-  this type can be converted to 'Ty' without any reinterpretation of bits. For
-  example, uint to int or one pointer type to another.</li>
-</ul>
-</div>
+<p> Returns a pointer to <a href="#Function"><tt>Function</tt></a> the block is
+embedded into, or a null pointer if it is homeless.</p></li>
+
+<li><tt><a href="#TerminatorInst">TerminatorInst</a> *getTerminator()</tt>
+
+<p> Returns a pointer to the terminator instruction that appears at the end of
+the <tt>BasicBlock</tt>.  If there is no terminator instruction, or if the last
+instruction in the block is not a terminator, then a null pointer is
+returned.</p></li>
 
-<!-- _______________________________________________________________________ -->
-<div class="doc_subsubsection">
-  <a name="m_Value">Important Derived Types</a>
-</div>
-<div class="doc_text">
-<ul>
-  <li>SequentialType : This is subclassed by ArrayType and PointerType
-    <ul>
-      <li><tt>const Type * getElementType() const</tt>: Returns the type of each
-      of the elements in the sequential type. </li>
-    </ul>
-  </li>
-  <li>ArrayType : This is a subclass of SequentialType and defines interface for
-  array types.
-    <ul>
-      <li><tt>unsigned getNumElements() const</tt>: Returns the number of 
-      elements in the array. </li>
-    </ul>
-  </li>
-  <li>PointerType : Subclass of SequentialType for  pointer types. </li>
-  <li>StructType : subclass of DerivedTypes for struct types </li>
-  <li>FunctionType : subclass of DerivedTypes for function types.
-    <ul>
-      <li><tt>bool isVarArg() const</tt>: Returns true if its a vararg
-      function</li>
-      <li><tt> const Type * getReturnType() const</tt>: Returns the
-      return type of the function.</li>
-      <li><tt>const Type * getParamType (unsigned i)</tt>: Returns
-      the type of the ith parameter.</li>
-      <li><tt> const unsigned getNumParams() const</tt>: Returns the
-      number of formal parameters.</li>
-    </ul>
-  </li>
 </ul>
+
 </div>
 
+
 <!-- ======================================================================= -->
 <div class="doc_subsection">
   <a name="Argument">The <tt>Argument</tt> class</a>