explain that NumElements in alloca and malloc defaults to one
[oota-llvm.git] / docs / ProgrammersManual.html
index 04f0c4f486417726f625457a2b0692ccc5dc25a5..7bec1b964dc85a9ca95caedfe790947e2f8d4e6d 100644 (file)
   <li><a href="#introduction">Introduction</a></li>
   <li><a href="#general">General Information</a>
     <ul>
-      <li><a href="#stl">The C++ Standard Template Library</a><!--
-    <li>The <tt>-time-passes</tt> option
-    <li>How to use the LLVM Makefile system
-    <li>How to write a regression test
---> </li>
+      <li><a href="#stl">The C++ Standard Template Library</a></li>
+<!--
+      <li>The <tt>-time-passes</tt> option</li>
+      <li>How to use the LLVM Makefile system</li>
+      <li>How to write a regression test</li>
+
+--> 
     </ul>
   </li>
   <li><a href="#apis">Important and useful LLVM APIs</a>
     <ul>
       <li><a href="#isa">The <tt>isa&lt;&gt;</tt>, <tt>cast&lt;&gt;</tt>
 and <tt>dyn_cast&lt;&gt;</tt> templates</a> </li>
-      <li><a href="#DEBUG">The <tt>DEBUG()</tt> macro &amp; <tt>-debug</tt>
+      <li><a href="#DEBUG">The <tt>DEBUG()</tt> macro and <tt>-debug</tt>
 option</a>
         <ul>
           <li><a href="#DEBUG_TYPE">Fine grained debug info with <tt>DEBUG_TYPE</tt>
 and the <tt>-debug-only</tt> option</a> </li>
         </ul>
       </li>
-      <li><a href="#Statistic">The <tt>Statistic</tt> template &amp; <tt>-stats</tt>
-option</a><!--
-    <li>The <tt>InstVisitor</tt> template
-    <li>The general graph API
---> </li>
+      <li><a href="#Statistic">The <tt>Statistic</tt> class &amp; <tt>-stats</tt>
+option</a></li>
+<!--
+      <li>The <tt>InstVisitor</tt> template
+      <li>The general graph API
+--> 
+      <li><a href="#ViewGraph">Viewing graphs while debugging code</a></li>
     </ul>
   </li>
+  <li><a href="#datastructure">Picking the Right Data Structure for a Task</a>
+    <ul>
+    <li><a href="#ds_sequential">Sequential Containers (std::vector, std::list, etc)</a>
+    <ul>
+      <li><a href="#dss_fixedarrays">Fixed Size Arrays</a></li>
+      <li><a href="#dss_heaparrays">Heap Allocated Arrays</a></li>
+      <li><a href="#dss_smallvector">"llvm/ADT/SmallVector.h"</a></li>
+      <li><a href="#dss_vector">&lt;vector&gt;</a></li>
+      <li><a href="#dss_deque">&lt;deque&gt;</a></li>
+      <li><a href="#dss_list">&lt;list&gt;</a></li>
+      <li><a href="#dss_ilist">llvm/ADT/ilist</a></li>
+      <li><a href="#dss_other">Other Sequential Container Options</a></li>
+    </ul></li>
+    <li><a href="#ds_set">Set-Like Containers (std::set, SmallSet, SetVector, etc)</a>
+    <ul>
+      <li><a href="#dss_sortedvectorset">A sorted 'vector'</a></li>
+      <li><a href="#dss_smallset">"llvm/ADT/SmallSet.h"</a></li>
+      <li><a href="#dss_smallptrset">"llvm/ADT/SmallPtrSet.h"</a></li>
+      <li><a href="#dss_denseset">"llvm/ADT/DenseSet.h"</a></li>
+      <li><a href="#dss_FoldingSet">"llvm/ADT/FoldingSet.h"</a></li>
+      <li><a href="#dss_set">&lt;set&gt;</a></li>
+      <li><a href="#dss_setvector">"llvm/ADT/SetVector.h"</a></li>
+      <li><a href="#dss_uniquevector">"llvm/ADT/UniqueVector.h"</a></li>
+      <li><a href="#dss_otherset">Other Set-Like ContainerOptions</a></li>
+    </ul></li>
+    <li><a href="#ds_map">Map-Like Containers (std::map, DenseMap, etc)</a>
+    <ul>
+      <li><a href="#dss_sortedvectormap">A sorted 'vector'</a></li>
+      <li><a href="#dss_stringmap">"llvm/ADT/StringMap.h"</a></li>
+      <li><a href="#dss_indexedmap">"llvm/ADT/IndexedMap.h"</a></li>
+      <li><a href="#dss_densemap">"llvm/ADT/DenseMap.h"</a></li>
+      <li><a href="#dss_map">&lt;map&gt;</a></li>
+      <li><a href="#dss_othermap">Other Map-Like Container Options</a></li>
+    </ul></li>
+    <li><a href="#ds_bit">BitVector-like containers</a>
+    <ul>
+      <li><a href="#dss_bitvector">A dense bitvector</a></li>
+      <li><a href="#dss_sparsebitvector">A sparse bitvector</a></li>
+    </ul></li>
+  </ul>
+  </li>
   <li><a href="#common">Helpful Hints for Common Operations</a>
     <ul>
       <li><a href="#inspection">Basic Inspection and Traversal Routines</a>
@@ -58,6 +103,8 @@ complex example</a> </li>
 the same way</a> </li>
           <li><a href="#iterate_chains">Iterating over def-use &amp;
 use-def chains</a> </li>
+          <li><a href="#iterate_preds">Iterating over predecessors &amp;
+successors of blocks</a></li>
         </ul>
       </li>
       <li><a href="#simplechanges">Making simple changes</a>
@@ -67,7 +114,9 @@ use-def chains</a> </li>
           <li><a href="#schanges_deleting">Deleting             <tt>Instruction</tt>s</a> </li>
           <li><a href="#schanges_replacing">Replacing an                <tt>Instruction</tt>
 with another <tt>Value</tt></a> </li>
+          <li><a href="#schanges_deletingGV">Deleting <tt>GlobalVariable</tt>s</a> </li>  
         </ul>
+      </li>
 <!--
     <li>Working with the Control Flow Graph
     <ul>
@@ -75,43 +124,49 @@ with another <tt>Value</tt></a> </li>
       <li>
       <li>
     </ul>
---> </li>
+--> 
     </ul>
   </li>
+
+  <li><a href="#advanced">Advanced Topics</a>
+  <ul>
+  <li><a href="#TypeResolve">LLVM Type Resolution</a>
+  <ul>
+    <li><a href="#BuildRecType">Basic Recursive Type Construction</a></li>
+    <li><a href="#refineAbstractTypeTo">The <tt>refineAbstractTypeTo</tt> method</a></li>
+    <li><a href="#PATypeHolder">The PATypeHolder Class</a></li>
+    <li><a href="#AbstractTypeUser">The AbstractTypeUser Class</a></li>
+  </ul></li>
+
+  <li><a href="#SymbolTable">The <tt>ValueSymbolTable</tt> and <tt>TypeSymbolTable</tt> classes </a></li>
+  </ul></li>
+
   <li><a href="#coreclasses">The Core LLVM Class Hierarchy Reference</a>
     <ul>
-    <li><a href="#Value">The <tt>Value</tt> class</a>
+      <li><a href="#Type">The <tt>Type</tt> class</a> </li>
+      <li><a href="#Module">The <tt>Module</tt> class</a></li>
+      <li><a href="#Value">The <tt>Value</tt> class</a>
       <ul>
-      <li><a href="#User">The <tt>User</tt> class</a>
+        <li><a href="#User">The <tt>User</tt> class</a>
         <ul>
-          <li><a href="#Instruction">The <tt>Instruction</tt> class</a>
-            <ul>
-             <li><a href="#GetElementPtrInst">The <tt>GetElementPtrInst</tt>
-                   class</a></li>
-            </ul></li>
-          <li><a href="#Module">The <tt>Module</tt> class</a></li>
+          <li><a href="#Instruction">The <tt>Instruction</tt> class</a></li>
           <li><a href="#Constant">The <tt>Constant</tt> class</a>
-           <ul>
-             <li><a href="#GlobalValue">The <tt>GlobalValue</tt> class</a>
-             <ul>
-               <li><a href="#BasicBlock">The <tt>BasicBlock</tt>class</a></li>
-               <li><a href="#Function">The <tt>Function</tt> class</a></li>
-               <li><a href="#GlobalVariable">The <tt>GlobalVariable</tt> class
-                 </a></li>
-             </ul></li>
-           </ul>
-         </li>
-          <li><a href="#Type">The <tt>Type</tt> class</a> </li>
-          <li><a href="#Argument">The <tt>Argument</tt> class</a></li>
-        </ul></li>
-    </ul></li>
-    <li><a href="#SymbolTable">The <tt>SymbolTable</tt> class </a></li>
-    <li>The <tt>ilist</tt> and <tt>iplist</tt> classes
-      <ul>
-       <li>Creating, inserting, moving and deleting from LLVM lists </li>
+          <ul>
+            <li><a href="#GlobalValue">The <tt>GlobalValue</tt> class</a>
+            <ul>
+              <li><a href="#Function">The <tt>Function</tt> class</a></li>
+              <li><a href="#GlobalVariable">The <tt>GlobalVariable</tt> class</a></li>
+            </ul>
+            </li>
+          </ul>
+          </li>
+        </ul>
+        </li>
+        <li><a href="#BasicBlock">The <tt>BasicBlock</tt> class</a></li>
+        <li><a href="#Argument">The <tt>Argument</tt> class</a></li>
       </ul>
-    </li>
-    <li>Important iterator invalidation semantics to be aware of.</li>
+      </li>
+    </ul>
   </li>
 </ol>
 
@@ -206,7 +261,7 @@ STL</a>.</li>
 <li><a href="http://www.research.att.com/%7Ebs/C++.html">Bjarne Stroustrup's C++
 Page</a></li>
 
-<li><a href="http://www.linux.com.cn/Bruce_Eckel/TICPPv2/Contents.htm">
+<li><a href="http://64.78.49.204/">
 Bruce Eckel's Thinking in C++, 2nd ed. Volume 2 Revision 4.0 (even better, get
 the book).</a></li>
 
@@ -249,7 +304,8 @@ know about when writing transformations.</p>
 
 <!-- ======================================================================= -->
 <div class="doc_subsection">
-  <a name="isa">The isa&lt;&gt;, cast&lt;&gt; and dyn_cast&lt;&gt; templates</a>
+  <a name="isa">The <tt>isa&lt;&gt;</tt>, <tt>cast&lt;&gt;</tt> and
+  <tt>dyn_cast&lt;&gt;</tt> templates</a>
 </div>
 
 <div class="doc_text">
@@ -260,34 +316,38 @@ operator, but they don't have some drawbacks (primarily stemming from
 the fact that <tt>dynamic_cast&lt;&gt;</tt> only works on classes that
 have a v-table). Because they are used so often, you must know what they
 do and how they work. All of these templates are defined in the <a
- href="/doxygen/Casting_8h-source.html"><tt>Support/Casting.h</tt></a>
+ href="/doxygen/Casting_8h-source.html"><tt>llvm/Support/Casting.h</tt></a>
 file (note that you very rarely have to include this file directly).</p>
 
 <dl>
   <dt><tt>isa&lt;&gt;</tt>: </dt>
 
-  <dd>The <tt>isa&lt;&gt;</tt> operator works exactly like the Java
+  <dd><p>The <tt>isa&lt;&gt;</tt> operator works exactly like the Java
   "<tt>instanceof</tt>" operator.  It returns true or false depending on whether
   a reference or pointer points to an instance of the specified class.  This can
-  be very useful for constraint checking of various sorts (example below).</dd>
+  be very useful for constraint checking of various sorts (example below).</p>
+  </dd>
 
   <dt><tt>cast&lt;&gt;</tt>: </dt>
 
-  <dd>The <tt>cast&lt;&gt;</tt> operator is a "checked cast" operation. It
+  <dd><p>The <tt>cast&lt;&gt;</tt> operator is a "checked cast" operation. It
   converts a pointer or reference from a base class to a derived cast, causing
   an assertion failure if it is not really an instance of the right type.  This
   should be used in cases where you have some information that makes you believe
   that something is of the right type.  An example of the <tt>isa&lt;&gt;</tt>
-  and <tt>cast&lt;&gt;</tt> template is:
+  and <tt>cast&lt;&gt;</tt> template is:</p>
 
-  <pre>
-  static bool isLoopInvariant(const <a href="#Value">Value</a> *V, const Loop *L) {
-    if (isa&lt;<a href="#Constant">Constant</a>&gt;(V) || isa&lt;<a href="#Argument">Argument</a>&gt;(V) || isa&lt;<a href="#GlobalValue">GlobalValue</a>&gt;(V))
-      return true;
+<div class="doc_code">
+<pre>
+static bool isLoopInvariant(const <a href="#Value">Value</a> *V, const Loop *L) {
+  if (isa&lt;<a href="#Constant">Constant</a>&gt;(V) || isa&lt;<a href="#Argument">Argument</a>&gt;(V) || isa&lt;<a href="#GlobalValue">GlobalValue</a>&gt;(V))
+    return true;
 
-  <i>// Otherwise, it must be an instruction...</i>
+  // <i>Otherwise, it must be an instruction...</i>
   return !L-&gt;contains(cast&lt;<a href="#Instruction">Instruction</a>&gt;(V)-&gt;getParent());
-  </pre>
+}
+</pre>
+</div>
 
   <p>Note that you should <b>not</b> use an <tt>isa&lt;&gt;</tt> test followed
   by a <tt>cast&lt;&gt;</tt>, for that use the <tt>dyn_cast&lt;&gt;</tt>
@@ -297,57 +357,51 @@ file (note that you very rarely have to include this file directly).</p>
 
   <dt><tt>dyn_cast&lt;&gt;</tt>:</dt>
 
-  <dd>The <tt>dyn_cast&lt;&gt;</tt> operator is a "checking cast" operation. It
-  checks to see if the operand is of the specified type, and if so, returns a
+  <dd><p>The <tt>dyn_cast&lt;&gt;</tt> operator is a "checking cast" operation.
+  It checks to see if the operand is of the specified type, and if so, returns a
   pointer to it (this operator does not work with references). If the operand is
   not of the correct type, a null pointer is returned.  Thus, this works very
-  much like the <tt>dynamic_cast</tt> operator in C++, and should be used in the
-  same circumstances.  Typically, the <tt>dyn_cast&lt;&gt;</tt> operator is used
-  in an <tt>if</tt> statement or some other flow control statement like this:
-
-   <pre>
-     if (<a href="#AllocationInst">AllocationInst</a> *AI = dyn_cast&lt;<a href="#AllocationInst">AllocationInst</a>&gt;(Val)) {
-       ...
-     }
-   </pre>
+  much like the <tt>dynamic_cast&lt;&gt;</tt> operator in C++, and should be
+  used in the same circumstances.  Typically, the <tt>dyn_cast&lt;&gt;</tt>
+  operator is used in an <tt>if</tt> statement or some other flow control
+  statement like this:</p>
+
+<div class="doc_code">
+<pre>
+if (<a href="#AllocationInst">AllocationInst</a> *AI = dyn_cast&lt;<a href="#AllocationInst">AllocationInst</a>&gt;(Val)) {
+  // <i>...</i>
+}
+</pre>
+</div>
    
-   <p> This form of the <tt>if</tt> statement effectively combines together a
-   call to <tt>isa&lt;&gt;</tt> and a call to <tt>cast&lt;&gt;</tt> into one
-   statement, which is very convenient.</p>
+  <p>This form of the <tt>if</tt> statement effectively combines together a call
+  to <tt>isa&lt;&gt;</tt> and a call to <tt>cast&lt;&gt;</tt> into one
+  statement, which is very convenient.</p>
 
-   <p> Another common example is:</p>
+  <p>Note that the <tt>dyn_cast&lt;&gt;</tt> operator, like C++'s
+  <tt>dynamic_cast&lt;&gt;</tt> or Java's <tt>instanceof</tt> operator, can be
+  abused.  In particular, you should not use big chained <tt>if/then/else</tt>
+  blocks to check for lots of different variants of classes.  If you find
+  yourself wanting to do this, it is much cleaner and more efficient to use the
+  <tt>InstVisitor</tt> class to dispatch over the instruction type directly.</p>
 
-   <pre>
-     <i>// Loop over all of the phi nodes in a basic block</i>
-     BasicBlock::iterator BBI = BB-&gt;begin();
-     for (; <a href="#PhiNode">PHINode</a> *PN = dyn_cast&lt;<a href="#PHINode">PHINode</a>&gt;(BBI); ++BBI)
-       std::cerr &lt;&lt; *PN;
-   </pre>
-
-   <p>Note that the <tt>dyn_cast&lt;&gt;</tt> operator, like C++'s
-   <tt>dynamic_cast</tt> or Java's <tt>instanceof</tt> operator, can be abused.
-   In particular you should not use big chained <tt>if/then/else</tt> blocks to
-   check for lots of different variants of classes.  If you find yourself
-   wanting to do this, it is much cleaner and more efficient to use the
-   InstVisitor class to dispatch over the instruction type directly.</p>
-
-    </dd>
+  </dd>
 
-    <dt><tt>cast_or_null&lt;&gt;</tt>: </dt>
-   
-    <dd>The <tt>cast_or_null&lt;&gt;</tt> operator works just like the
-    <tt>cast&lt;&gt;</tt> operator, except that it allows for a null pointer as
-    an argument (which it then propagates).  This can sometimes be useful,
-    allowing you to combine several null checks into one.</dd>
+  <dt><tt>cast_or_null&lt;&gt;</tt>: </dt>
+  
+  <dd><p>The <tt>cast_or_null&lt;&gt;</tt> operator works just like the
+  <tt>cast&lt;&gt;</tt> operator, except that it allows for a null pointer as an
+  argument (which it then propagates).  This can sometimes be useful, allowing
+  you to combine several null checks into one.</p></dd>
 
-    <dt><tt>dyn_cast_or_null&lt;&gt;</tt>: </dt>
+  <dt><tt>dyn_cast_or_null&lt;&gt;</tt>: </dt>
 
-    <dd>The <tt>dyn_cast_or_null&lt;&gt;</tt> operator works just like the
-    <tt>dyn_cast&lt;&gt;</tt> operator, except that it allows for a null pointer
-    as an argument (which it then propagates).  This can sometimes be useful,
-    allowing you to combine several null checks into one.</dd>
+  <dd><p>The <tt>dyn_cast_or_null&lt;&gt;</tt> operator works just like the
+  <tt>dyn_cast&lt;&gt;</tt> operator, except that it allows for a null pointer
+  as an argument (which it then propagates).  This can sometimes be useful,
+  allowing you to combine several null checks into one.</p></dd>
 
-  </dl>
+</dl>
 
 <p>These five templates can be used with any classes, whether they have a
 v-table or not.  To add support for these templates, you simply need to add
@@ -359,31 +413,42 @@ are lots of examples in the LLVM source base.</p>
 
 <!-- ======================================================================= -->
 <div class="doc_subsection">
-  <a name="DEBUG">The <tt>DEBUG()</tt> macro &amp; <tt>-debug</tt> option</a>
+  <a name="DEBUG">The <tt>DEBUG()</tt> macro and <tt>-debug</tt> option</a>
 </div>
 
 <div class="doc_text">
 
 <p>Often when working on your pass you will put a bunch of debugging printouts
 and other code into your pass.  After you get it working, you want to remove
-it... but you may need it again in the future (to work out new bugs that you run
+it, but you may need it again in the future (to work out new bugs that you run
 across).</p>
 
 <p> Naturally, because of this, you don't want to delete the debug printouts,
 but you don't want them to always be noisy.  A standard compromise is to comment
 them out, allowing you to enable them if you need them in the future.</p>
 
-<p>The "<tt><a href="/doxygen/Debug_8h-source.html">Support/Debug.h</a></tt>"
+<p>The "<tt><a href="/doxygen/Debug_8h-source.html">llvm/Support/Debug.h</a></tt>"
 file provides a macro named <tt>DEBUG()</tt> that is a much nicer solution to
 this problem.  Basically, you can put arbitrary code into the argument of the
 <tt>DEBUG</tt> macro, and it is only executed if '<tt>opt</tt>' (or any other
 tool) is run with the '<tt>-debug</tt>' command line argument:</p>
 
-  <pre>     ... <br>     DEBUG(std::cerr &lt;&lt; "I am here!\n");<br>     ...<br></pre>
+<div class="doc_code">
+<pre>
+DOUT &lt;&lt; "I am here!\n";
+</pre>
+</div>
 
 <p>Then you can run your pass like this:</p>
 
-  <pre>  $ opt &lt; a.bc &gt; /dev/null -mypass<br>    &lt;no output&gt;<br>  $ opt &lt; a.bc &gt; /dev/null -mypass -debug<br>    I am here!<br>  $<br></pre>
+<div class="doc_code">
+<pre>
+$ opt &lt; a.bc &gt; /dev/null -mypass
+<i>&lt;no output&gt;</i>
+$ opt &lt; a.bc &gt; /dev/null -mypass -debug
+I am here!
+</pre>
+</div>
 
 <p>Using the <tt>DEBUG()</tt> macro instead of a home-brewed solution allows you
 to not have to create "yet another" command line option for the debug output for
@@ -401,7 +466,7 @@ program hasn't been started yet, you can always just run it with
 
 <!-- _______________________________________________________________________ -->
 <div class="doc_subsubsection">
-  <a name="DEBUG_TYPE">Fine grained debug info with <tt>DEBUG_TYPE()</tt> and
+  <a name="DEBUG_TYPE">Fine grained debug info with <tt>DEBUG_TYPE</tt> and
   the <tt>-debug-only</tt> option</a>
 </div>
 
@@ -413,15 +478,42 @@ generator).  If you want to enable debug information with more fine-grained
 control, you define the <tt>DEBUG_TYPE</tt> macro and the <tt>-debug</tt> only
 option as follows:</p>
 
-  <pre>     ...<br>     DEBUG(std::cerr &lt;&lt; "No debug type\n");<br>     #undef  DEBUG_TYPE<br>     #define DEBUG_TYPE "foo"<br>     DEBUG(std::cerr &lt;&lt; "'foo' debug type\n");<br>     #undef  DEBUG_TYPE<br>     #define DEBUG_TYPE "bar"<br>     DEBUG(std::cerr &lt;&lt; "'bar' debug type\n");<br>     #undef  DEBUG_TYPE<br>     #define DEBUG_TYPE ""<br>     DEBUG(std::cerr &lt;&lt; "No debug type (2)\n");<br>     ...<br></pre>
+<div class="doc_code">
+<pre>
+DOUT &lt;&lt; "No debug type\n";
+#undef  DEBUG_TYPE
+#define DEBUG_TYPE "foo"
+DOUT &lt;&lt; "'foo' debug type\n";
+#undef  DEBUG_TYPE
+#define DEBUG_TYPE "bar"
+DOUT &lt;&lt; "'bar' debug type\n";
+#undef  DEBUG_TYPE
+#define DEBUG_TYPE ""
+DOUT &lt;&lt; "No debug type (2)\n";
+</pre>
+</div>
 
 <p>Then you can run your pass like this:</p>
 
-  <pre>  $ opt &lt; a.bc &gt; /dev/null -mypass<br>    &lt;no output&gt;<br>  $ opt &lt; a.bc &gt; /dev/null -mypass -debug<br>    No debug type<br>    'foo' debug type<br>    'bar' debug type<br>    No debug type (2)<br>  $ opt &lt; a.bc &gt; /dev/null -mypass -debug-only=foo<br>    'foo' debug type<br>  $ opt &lt; a.bc &gt; /dev/null -mypass -debug-only=bar<br>    'bar' debug type<br>  $<br></pre>
+<div class="doc_code">
+<pre>
+$ opt &lt; a.bc &gt; /dev/null -mypass
+<i>&lt;no output&gt;</i>
+$ opt &lt; a.bc &gt; /dev/null -mypass -debug
+No debug type
+'foo' debug type
+'bar' debug type
+No debug type (2)
+$ opt &lt; a.bc &gt; /dev/null -mypass -debug-only=foo
+'foo' debug type
+$ opt &lt; a.bc &gt; /dev/null -mypass -debug-only=bar
+'bar' debug type
+</pre>
+</div>
 
 <p>Of course, in practice, you should only set <tt>DEBUG_TYPE</tt> at the top of
 a file, to specify the debug type for the entire module (if you do this before
-you <tt>#include "Support/Debug.h"</tt>, you don't have to insert the ugly
+you <tt>#include "llvm/Support/Debug.h"</tt>, you don't have to insert the ugly
 <tt>#undef</tt>'s).  Also, you should use names more meaningful than "foo" and
 "bar", because there is no system in place to ensure that names do not
 conflict. If two different modules use the same string, they will all be turned
@@ -433,15 +525,15 @@ even if the source lives in multiple files.</p>
 
 <!-- ======================================================================= -->
 <div class="doc_subsection">
-  <a name="Statistic">The <tt>Statistic</tt> template &amp; <tt>-stats</tt>
+  <a name="Statistic">The <tt>Statistic</tt> class &amp; <tt>-stats</tt>
   option</a>
 </div>
 
 <div class="doc_text">
 
 <p>The "<tt><a
-href="/doxygen/Statistic_8h-source.html">Support/Statistic.h</a></tt>" file
-provides a template named <tt>Statistic</tt> that is used as a unified way to
+href="/doxygen/Statistic_8h-source.html">llvm/ADT/Statistic.h</a></tt>" file
+provides a class named <tt>Statistic</tt> that is used as a unified way to
 keep track of what the LLVM compiler is doing and how effective various
 optimizations are.  It is useful to see what optimizations are contributing to
 making a particular program run faster.</p>
@@ -449,7 +541,7 @@ making a particular program run faster.</p>
 <p>Often you may run your pass on some big program, and you're interested to see
 how many times it makes a certain transformation.  Although you can do this with
 hand inspection, or some ad-hoc method, this is a real pain and not very useful
-for big programs.  Using the <tt>Statistic</tt> template makes it very easy to
+for big programs.  Using the <tt>Statistic</tt> class makes it very easy to
 keep track of this information, and the calculated information is presented in a
 uniform manner with the rest of the passes being executed.</p>
 
@@ -457,27 +549,73 @@ uniform manner with the rest of the passes being executed.</p>
 it are as follows:</p>
 
 <ol>
-    <li>Define your statistic like this:
-      <pre>static Statistic&lt;&gt; NumXForms("mypassname", "The # of times I did stuff");<br></pre>
+    <li><p>Define your statistic like this:</p>
+
+<div class="doc_code">
+<pre>
+#define <a href="#DEBUG_TYPE">DEBUG_TYPE</a> "mypassname"   <i>// This goes before any #includes.</i>
+STATISTIC(NumXForms, "The # of times I did stuff");
+</pre>
+</div>
 
-      <p>The <tt>Statistic</tt> template can emulate just about any data-type,
-      but if you do not specify a template argument, it defaults to acting like
-      an unsigned int counter (this is usually what you want).</p></li>
+  <p>The <tt>STATISTIC</tt> macro defines a static variable, whose name is
+    specified by the first argument.  The pass name is taken from the DEBUG_TYPE
+    macro, and the description is taken from the second argument.  The variable
+    defined ("NumXForms" in this case) acts like an unsigned integer.</p></li>
+
+    <li><p>Whenever you make a transformation, bump the counter:</p>
+
+<div class="doc_code">
+<pre>
+++NumXForms;   // <i>I did stuff!</i>
+</pre>
+</div>
 
-    <li>Whenever you make a transformation, bump the counter:
-      <pre>   ++NumXForms;   // I did stuff<br></pre>
     </li>
   </ol>
 
   <p>That's all you have to do.  To get '<tt>opt</tt>' to print out the
   statistics gathered, use the '<tt>-stats</tt>' option:</p>
 
-  <pre>   $ opt -stats -mypassname &lt; program.bc &gt; /dev/null<br>    ... statistic output ...<br></pre>
+<div class="doc_code">
+<pre>
+$ opt -stats -mypassname &lt; program.bc &gt; /dev/null
+<i>... statistics output ...</i>
+</pre>
+</div>
 
-  <p> When running <tt>gccas</tt> on a C file from the SPEC benchmark
+  <p> When running <tt>opt</tt> on a C file from the SPEC benchmark
 suite, it gives a report that looks like this:</p>
 
-  <pre>   7646 bytecodewriter  - Number of normal instructions<br>    725 bytecodewriter  - Number of oversized instructions<br> 129996 bytecodewriter  - Number of bytecode bytes written<br>   2817 raise           - Number of insts DCEd or constprop'd<br>   3213 raise           - Number of cast-of-self removed<br>   5046 raise           - Number of expression trees converted<br>     75 raise           - Number of other getelementptr's formed<br>    138 raise           - Number of load/store peepholes<br>     42 deadtypeelim    - Number of unused typenames removed from symtab<br>    392 funcresolve     - Number of varargs functions resolved<br>     27 globaldce       - Number of global variables removed<br>      2 adce            - Number of basic blocks removed<br>    134 cee             - Number of branches revectored<br>     49 cee             - Number of setcc instruction eliminated<br>    532 gcse            - Number of loads removed<br>   2919 gcse            - Number of instructions removed<br>     86 indvars         - Number of canonical indvars added<br>     87 indvars         - Number of aux indvars removed<br>     25 instcombine     - Number of dead inst eliminate<br>    434 instcombine     - Number of insts combined<br>    248 licm            - Number of load insts hoisted<br>   1298 licm            - Number of insts hoisted to a loop pre-header<br>      3 licm            - Number of insts hoisted to multiple loop preds (bad, no loop pre-header)<br>     75 mem2reg         - Number of alloca's promoted<br>   1444 cfgsimplify     - Number of blocks simplified<br></pre>
+<div class="doc_code">
+<pre>
+   7646 bitcodewriter   - Number of normal instructions
+    725 bitcodewriter   - Number of oversized instructions
+ 129996 bitcodewriter   - Number of bitcode bytes written
+   2817 raise           - Number of insts DCEd or constprop'd
+   3213 raise           - Number of cast-of-self removed
+   5046 raise           - Number of expression trees converted
+     75 raise           - Number of other getelementptr's formed
+    138 raise           - Number of load/store peepholes
+     42 deadtypeelim    - Number of unused typenames removed from symtab
+    392 funcresolve     - Number of varargs functions resolved
+     27 globaldce       - Number of global variables removed
+      2 adce            - Number of basic blocks removed
+    134 cee             - Number of branches revectored
+     49 cee             - Number of setcc instruction eliminated
+    532 gcse            - Number of loads removed
+   2919 gcse            - Number of instructions removed
+     86 indvars         - Number of canonical indvars added
+     87 indvars         - Number of aux indvars removed
+     25 instcombine     - Number of dead inst eliminate
+    434 instcombine     - Number of insts combined
+    248 licm            - Number of load insts hoisted
+   1298 licm            - Number of insts hoisted to a loop pre-header
+      3 licm            - Number of insts hoisted to multiple loop preds (bad, no loop pre-header)
+     75 mem2reg         - Number of alloca's promoted
+   1444 cfgsimplify     - Number of blocks simplified
+</pre>
+</div>
 
 <p>Obviously, with so many optimizations, having a unified framework for this
 stuff is very nice.  Making your pass fit well into the framework makes it more
@@ -485,298 +623,1165 @@ maintainable and useful.</p>
 
 </div>
 
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+  <a name="ViewGraph">Viewing graphs while debugging code</a>
+</div>
+
+<div class="doc_text">
+
+<p>Several of the important data structures in LLVM are graphs: for example
+CFGs made out of LLVM <a href="#BasicBlock">BasicBlock</a>s, CFGs made out of
+LLVM <a href="CodeGenerator.html#machinebasicblock">MachineBasicBlock</a>s, and
+<a href="CodeGenerator.html#selectiondag_intro">Instruction Selection
+DAGs</a>.  In many cases, while debugging various parts of the compiler, it is
+nice to instantly visualize these graphs.</p>
+
+<p>LLVM provides several callbacks that are available in a debug build to do
+exactly that.  If you call the <tt>Function::viewCFG()</tt> method, for example,
+the current LLVM tool will pop up a window containing the CFG for the function
+where each basic block is a node in the graph, and each node contains the
+instructions in the block.  Similarly, there also exists 
+<tt>Function::viewCFGOnly()</tt> (does not include the instructions), the
+<tt>MachineFunction::viewCFG()</tt> and <tt>MachineFunction::viewCFGOnly()</tt>,
+and the <tt>SelectionDAG::viewGraph()</tt> methods.  Within GDB, for example,
+you can usually use something like <tt>call DAG.viewGraph()</tt> to pop
+up a window.  Alternatively, you can sprinkle calls to these functions in your
+code in places you want to debug.</p>
+
+<p>Getting this to work requires a small amount of configuration.  On Unix
+systems with X11, install the <a href="http://www.graphviz.org">graphviz</a>
+toolkit, and make sure 'dot' and 'gv' are in your path.  If you are running on
+Mac OS/X, download and install the Mac OS/X <a 
+href="http://www.pixelglow.com/graphviz/">Graphviz program</a>, and add
+<tt>/Applications/Graphviz.app/Contents/MacOS/</tt> (or wherever you install
+it) to your path.  Once in your system and path are set up, rerun the LLVM
+configure script and rebuild LLVM to enable this functionality.</p>
+
+<p><tt>SelectionDAG</tt> has been extended to make it easier to locate
+<i>interesting</i> nodes in large complex graphs.  From gdb, if you
+<tt>call DAG.setGraphColor(<i>node</i>, "<i>color</i>")</tt>, then the
+next <tt>call DAG.viewGraph()</tt> would highlight the node in the
+specified color (choices of colors can be found at <a
+href="http://www.graphviz.org/doc/info/colors.html">colors</a>.) More
+complex node attributes can be provided with <tt>call
+DAG.setGraphAttrs(<i>node</i>, "<i>attributes</i>")</tt> (choices can be
+found at <a href="http://www.graphviz.org/doc/info/attrs.html">Graph
+Attributes</a>.)  If you want to restart and clear all the current graph
+attributes, then you can <tt>call DAG.clearGraphAttrs()</tt>. </p>
+
+</div>
+
 <!-- *********************************************************************** -->
 <div class="doc_section">
-  <a name="common">Helpful Hints for Common Operations</a>
+  <a name="datastructure">Picking the Right Data Structure for a Task</a>
 </div>
 <!-- *********************************************************************** -->
 
 <div class="doc_text">
 
-<p>This section describes how to perform some very simple transformations of
-LLVM code.  This is meant to give examples of common idioms used, showing the
-practical side of LLVM transformations.  <p> Because this is a "how-to" section,
-you should also read about the main classes that you will be working with.  The
-<a href="#coreclasses">Core LLVM Class Hierarchy Reference</a> contains details
-and descriptions of the main classes that you should know about.</p>
+<p>LLVM has a plethora of data structures in the <tt>llvm/ADT/</tt> directory,
+ and we commonly use STL data structures.  This section describes the trade-offs
+ you should consider when you pick one.</p>
+
+<p>
+The first step is a choose your own adventure: do you want a sequential
+container, a set-like container, or a map-like container?  The most important
+thing when choosing a container is the algorithmic properties of how you plan to
+access the container.  Based on that, you should use:</p>
+
+<ul>
+<li>a <a href="#ds_map">map-like</a> container if you need efficient look-up
+    of an value based on another value.  Map-like containers also support
+    efficient queries for containment (whether a key is in the map).  Map-like
+    containers generally do not support efficient reverse mapping (values to
+    keys).  If you need that, use two maps.  Some map-like containers also
+    support efficient iteration through the keys in sorted order.  Map-like
+    containers are the most expensive sort, only use them if you need one of
+    these capabilities.</li>
+
+<li>a <a href="#ds_set">set-like</a> container if you need to put a bunch of
+    stuff into a container that automatically eliminates duplicates.  Some
+    set-like containers support efficient iteration through the elements in
+    sorted order.  Set-like containers are more expensive than sequential
+    containers.
+</li>
+
+<li>a <a href="#ds_sequential">sequential</a> container provides
+    the most efficient way to add elements and keeps track of the order they are
+    added to the collection.  They permit duplicates and support efficient
+    iteration, but do not support efficient look-up based on a key.
+</li>
+
+<li>a <a href="#ds_bit">bit</a> container provides an efficient way to store and
+    perform set operations on sets of numeric id's, while automatically
+    eliminating duplicates.  Bit containers require a maximum of 1 bit for each
+    identifier you want to store.
+</li>
+</ul>
+
+<p>
+Once the proper category of container is determined, you can fine tune the
+memory use, constant factors, and cache behaviors of access by intelligently
+picking a member of the category.  Note that constant factors and cache behavior
+can be a big deal.  If you have a vector that usually only contains a few
+elements (but could contain many), for example, it's much better to use
+<a href="#dss_smallvector">SmallVector</a> than <a href="#dss_vector">vector</a>
+.  Doing so avoids (relatively) expensive malloc/free calls, which dwarf the
+cost of adding the elements to the container. </p>
 
 </div>
 
-<!-- NOTE: this section should be heavy on example code -->
 <!-- ======================================================================= -->
 <div class="doc_subsection">
-  <a name="inspection">Basic Inspection and Traversal Routines</a>
+  <a name="ds_sequential">Sequential Containers (std::vector, std::list, etc)</a>
 </div>
 
 <div class="doc_text">
+There are a variety of sequential containers available for you, based on your
+needs.  Pick the first in this section that will do what you want.
+</div>
 
-<p>The LLVM compiler infrastructure have many different data structures that may
-be traversed.  Following the example of the C++ standard template library, the
-techniques used to traverse these various data structures are all basically the
-same.  For a enumerable sequence of values, the <tt>XXXbegin()</tt> function (or
-method) returns an iterator to the start of the sequence, the <tt>XXXend()</tt>
-function returns an iterator pointing to one past the last valid element of the
-sequence, and there is some <tt>XXXiterator</tt> data type that is common
-between the two operations.</p>
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+  <a name="dss_fixedarrays">Fixed Size Arrays</a>
+</div>
 
-<p>Because the pattern for iteration is common across many different aspects of
-the program representation, the standard template library algorithms may be used
-on them, and it is easier to remember how to iterate. First we show a few common
-examples of the data structures that need to be traversed.  Other data
-structures are traversed in very similar ways.</p>
+<div class="doc_text">
+<p>Fixed size arrays are very simple and very fast.  They are good if you know
+exactly how many elements you have, or you have a (low) upper bound on how many
+you have.</p>
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+  <a name="dss_heaparrays">Heap Allocated Arrays</a>
+</div>
 
+<div class="doc_text">
+<p>Heap allocated arrays (new[] + delete[]) are also simple.  They are good if
+the number of elements is variable, if you know how many elements you will need
+before the array is allocated, and if the array is usually large (if not,
+consider a <a href="#dss_smallvector">SmallVector</a>).  The cost of a heap
+allocated array is the cost of the new/delete (aka malloc/free).  Also note that
+if you are allocating an array of a type with a constructor, the constructor and
+destructors will be run for every element in the array (re-sizable vectors only
+construct those elements actually used).</p>
 </div>
 
 <!-- _______________________________________________________________________ -->
 <div class="doc_subsubsection">
-  <a name="iterate_function">Iterating over the </a><a
-  href="#BasicBlock"><tt>BasicBlock</tt></a>s in a <a
-  href="#Function"><tt>Function</tt></a>
+  <a name="dss_smallvector">"llvm/ADT/SmallVector.h"</a>
 </div>
 
 <div class="doc_text">
+<p><tt>SmallVector&lt;Type, N&gt;</tt> is a simple class that looks and smells
+just like <tt>vector&lt;Type&gt;</tt>:
+it supports efficient iteration, lays out elements in memory order (so you can
+do pointer arithmetic between elements), supports efficient push_back/pop_back
+operations, supports efficient random access to its elements, etc.</p>
 
-<p>It's quite common to have a <tt>Function</tt> instance that you'd like to
-transform in some way; in particular, you'd like to manipulate its
-<tt>BasicBlock</tt>s.  To facilitate this, you'll need to iterate over all of
-the <tt>BasicBlock</tt>s that constitute the <tt>Function</tt>. The following is
-an example that prints the name of a <tt>BasicBlock</tt> and the number of
-<tt>Instruction</tt>s it contains:</p>
+<p>The advantage of SmallVector is that it allocates space for
+some number of elements (N) <b>in the object itself</b>.  Because of this, if
+the SmallVector is dynamically smaller than N, no malloc is performed.  This can
+be a big win in cases where the malloc/free call is far more expensive than the
+code that fiddles around with the elements.</p>
 
-  <pre>  // func is a pointer to a Function instance<br>  for (Function::iterator i = func-&gt;begin(), e = func-&gt;end(); i != e; ++i) {<br><br>      // print out the name of the basic block if it has one, and then the<br>      // number of instructions that it contains<br><br>      cerr &lt;&lt; "Basic block (name=" &lt;&lt; i-&gt;getName() &lt;&lt; ") has " <br>           &lt;&lt; i-&gt;size() &lt;&lt; " instructions.\n";<br>  }<br></pre>
+<p>This is good for vectors that are "usually small" (e.g. the number of
+predecessors/successors of a block is usually less than 8).  On the other hand,
+this makes the size of the SmallVector itself large, so you don't want to
+allocate lots of them (doing so will waste a lot of space).  As such,
+SmallVectors are most useful when on the stack.</p>
 
-<p>Note that i can be used as if it were a pointer for the purposes of
-invoking member functions of the <tt>Instruction</tt> class.  This is
-because the indirection operator is overloaded for the iterator
-classes.  In the above code, the expression <tt>i-&gt;size()</tt> is
-exactly equivalent to <tt>(*i).size()</tt> just like you'd expect.</p>
+<p>SmallVector also provides a nice portable and efficient replacement for
+<tt>alloca</tt>.</p>
 
 </div>
 
 <!-- _______________________________________________________________________ -->
 <div class="doc_subsubsection">
-  <a name="iterate_basicblock">Iterating over the </a><a
-  href="#Instruction"><tt>Instruction</tt></a>s in a <a
-  href="#BasicBlock"><tt>BasicBlock</tt></a>
+  <a name="dss_vector">&lt;vector&gt;</a>
 </div>
 
 <div class="doc_text">
+<p>
+std::vector is well loved and respected.  It is useful when SmallVector isn't:
+when the size of the vector is often large (thus the small optimization will
+rarely be a benefit) or if you will be allocating many instances of the vector
+itself (which would waste space for elements that aren't in the container).
+vector is also useful when interfacing with code that expects vectors :).
+</p>
 
-<p>Just like when dealing with <tt>BasicBlock</tt>s in <tt>Function</tt>s, it's
-easy to iterate over the individual instructions that make up
-<tt>BasicBlock</tt>s. Here's a code snippet that prints out each instruction in
-a <tt>BasicBlock</tt>:</p>
+<p>One worthwhile note about std::vector: avoid code like this:</p>
 
-  <pre>  // blk is a pointer to a BasicBlock instance<br>  for (BasicBlock::iterator i = blk-&gt;begin(), e = blk-&gt;end(); i != e; ++i)<br>     // the next statement works since operator&lt;&lt;(ostream&amp;,...) <br>     // is overloaded for Instruction&amp;<br>     cerr &lt;&lt; *i &lt;&lt; "\n";<br></pre>
+<div class="doc_code">
+<pre>
+for ( ... ) {
+   std::vector&lt;foo&gt; V;
+   use V;
+}
+</pre>
+</div>
 
-<p>However, this isn't really the best way to print out the contents of a
-<tt>BasicBlock</tt>!  Since the ostream operators are overloaded for virtually
-anything you'll care about, you could have just invoked the print routine on the
-basic block itself: <tt>cerr &lt;&lt; *blk &lt;&lt; "\n";</tt>.</p>
+<p>Instead, write this as:</p>
 
-<p>Note that currently operator&lt;&lt; is implemented for <tt>Value*</tt>, so
-it will print out the contents of the pointer, instead of the pointer value you
-might expect.  This is a deprecated interface that will be removed in the
-future, so it's best not to depend on it.  To print out the pointer value for
-now, you must cast to <tt>void*</tt>.</p>
+<div class="doc_code">
+<pre>
+std::vector&lt;foo&gt; V;
+for ( ... ) {
+   use V;
+   V.clear();
+}
+</pre>
+</div>
+
+<p>Doing so will save (at least) one heap allocation and free per iteration of
+the loop.</p>
 
 </div>
 
 <!-- _______________________________________________________________________ -->
 <div class="doc_subsubsection">
-  <a name="iterate_institer">Iterating over the </a><a
-  href="#Instruction"><tt>Instruction</tt></a>s in a <a
-  href="#Function"><tt>Function</tt></a>
+  <a name="dss_deque">&lt;deque&gt;</a>
 </div>
 
 <div class="doc_text">
+<p>std::deque is, in some senses, a generalized version of std::vector.  Like
+std::vector, it provides constant time random access and other similar
+properties, but it also provides efficient access to the front of the list.  It
+does not guarantee continuity of elements within memory.</p>
 
-<p>If you're finding that you commonly iterate over a <tt>Function</tt>'s
-<tt>BasicBlock</tt>s and then that <tt>BasicBlock</tt>'s <tt>Instruction</tt>s,
-<tt>InstIterator</tt> should be used instead. You'll need to include <a
-href="/doxygen/InstIterator_8h-source.html"><tt>llvm/Support/InstIterator.h</tt></a>,
-and then instantiate <tt>InstIterator</tt>s explicitly in your code.  Here's a
-small example that shows how to dump all instructions in a function to the standard error stream:<p>
+<p>In exchange for this extra flexibility, std::deque has significantly higher
+constant factor costs than std::vector.  If possible, use std::vector or
+something cheaper.</p>
+</div>
 
-  <pre>#include "<a href="/doxygen/InstIterator_8h-source.html">llvm/Support/InstIterator.h</a>"<br>...<br>// Suppose F is a ptr to a function<br>for (inst_iterator i = inst_begin(F), e = inst_end(F); i != e; ++i)<br>  cerr &lt;&lt; *i &lt;&lt; "\n";<br></pre>
-Easy, isn't it?  You can also use <tt>InstIterator</tt>s to fill a
-worklist with its initial contents.  For example, if you wanted to
-initialize a worklist to contain all instructions in a <tt>Function</tt>
-F, all you would need to do is something like:
-  <pre>std::set&lt;Instruction*&gt; worklist;<br>worklist.insert(inst_begin(F), inst_end(F));<br></pre>
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+  <a name="dss_list">&lt;list&gt;</a>
+</div>
 
-<p>The STL set <tt>worklist</tt> would now contain all instructions in the
-<tt>Function</tt> pointed to by F.</p>
+<div class="doc_text">
+<p>std::list is an extremely inefficient class that is rarely useful.
+It performs a heap allocation for every element inserted into it, thus having an
+extremely high constant factor, particularly for small data types.  std::list
+also only supports bidirectional iteration, not random access iteration.</p>
 
+<p>In exchange for this high cost, std::list supports efficient access to both
+ends of the list (like std::deque, but unlike std::vector or SmallVector).  In
+addition, the iterator invalidation characteristics of std::list are stronger
+than that of a vector class: inserting or removing an element into the list does
+not invalidate iterator or pointers to other elements in the list.</p>
 </div>
 
 <!-- _______________________________________________________________________ -->
 <div class="doc_subsubsection">
-  <a name="iterate_convert">Turning an iterator into a class pointer (and
-  vice-versa)</a>
+  <a name="dss_ilist">llvm/ADT/ilist</a>
 </div>
 
 <div class="doc_text">
+<p><tt>ilist&lt;T&gt;</tt> implements an 'intrusive' doubly-linked list.  It is
+intrusive, because it requires the element to store and provide access to the
+prev/next pointers for the list.</p>
 
-<p>Sometimes, it'll be useful to grab a reference (or pointer) to a class
-instance when all you've got at hand is an iterator.  Well, extracting
-a reference or a pointer from an iterator is very straight-forward.
-Assuming that <tt>i</tt> is a <tt>BasicBlock::iterator</tt> and <tt>j</tt>
-is a <tt>BasicBlock::const_iterator</tt>:</p>
+<p>ilist has the same drawbacks as std::list, and additionally requires an
+ilist_traits implementation for the element type, but it provides some novel
+characteristics.  In particular, it can efficiently store polymorphic objects,
+the traits class is informed when an element is inserted or removed from the
+list, and ilists are guaranteed to support a constant-time splice operation.
+</p>
 
-  <pre>    Instruction&amp; inst = *i;   // grab reference to instruction reference<br>    Instruction* pinst = &amp;*i; // grab pointer to instruction reference<br>    const Instruction&amp; inst = *j;<br></pre>
+<p>These properties are exactly what we want for things like Instructions and
+basic blocks, which is why these are implemented with ilists.</p>
+</div>
 
-<p>However, the iterators you'll be working with in the LLVM framework are
-special: they will automatically convert to a ptr-to-instance type whenever they
-need to.  Instead of dereferencing the iterator and then taking the address of
-the result, you can simply assign the iterator to the proper pointer type and
-you get the dereference and address-of operation as a result of the assignment
-(behind the scenes, this is a result of overloading casting mechanisms).  Thus
-the last line of the last example,</p>
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+  <a name="dss_other">Other Sequential Container options</a>
+</div>
 
-  <pre>Instruction* pinst = &amp;*i;</pre>
+<div class="doc_text">
+<p>Other STL containers are available, such as std::string.</p>
 
-<p>is semantically equivalent to</p>
+<p>There are also various STL adapter classes such as std::queue,
+std::priority_queue, std::stack, etc.  These provide simplified access to an
+underlying container but don't affect the cost of the container itself.</p>
 
-  <pre>Instruction* pinst = i;</pre>
+</div>
 
-<p>It's also possible to turn a class pointer into the corresponding iterator,
-and this is a constant time operation (very efficient).  The following code
-snippet illustrates use of the conversion constructors provided by LLVM
-iterators.  By using these, you can explicitly grab the iterator of something
-without actually obtaining it via iteration over some structure:</p>
 
-  <pre>void printNextInstruction(Instruction* inst) {<br>    BasicBlock::iterator it(inst);<br>    ++it; // after this line, it refers to the instruction after *inst.<br>    if (it != inst-&gt;getParent()-&gt;end()) cerr &lt;&lt; *it &lt;&lt; "\n";<br>}<br></pre>
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+  <a name="ds_set">Set-Like Containers (std::set, SmallSet, SetVector, etc)</a>
+</div>
+
+<div class="doc_text">
+
+<p>Set-like containers are useful when you need to canonicalize multiple values
+into a single representation.  There are several different choices for how to do
+this, providing various trade-offs.</p>
 
 </div>
 
-<!--_______________________________________________________________________-->
+
+<!-- _______________________________________________________________________ -->
 <div class="doc_subsubsection">
-  <a name="iterate_complex">Finding call sites: a slightly more complex
-  example</a>
+  <a name="dss_sortedvectorset">A sorted 'vector'</a>
 </div>
 
 <div class="doc_text">
 
-<p>Say that you're writing a FunctionPass and would like to count all the
-locations in the entire module (that is, across every <tt>Function</tt>) where a
-certain function (i.e., some <tt>Function</tt>*) is already in scope.  As you'll
-learn later, you may want to use an <tt>InstVisitor</tt> to accomplish this in a
-much more straight-forward manner, but this example will allow us to explore how
-you'd do it if you didn't have <tt>InstVisitor</tt> around. In pseudocode, this
-is what we want to do:</p>
-
-  <pre>initialize callCounter to zero<br>for each Function f in the Module<br>    for each BasicBlock b in f<br>      for each Instruction i in b<br>        if (i is a CallInst and calls the given function)<br>          increment callCounter<br></pre>
-
-<p>And the actual code is (remember, since we're writing a
-<tt>FunctionPass</tt>, our <tt>FunctionPass</tt>-derived class simply has to
-override the <tt>runOnFunction</tt> method...):</p>
+<p>If you intend to insert a lot of elements, then do a lot of queries, a
+great approach is to use a vector (or other sequential container) with
+std::sort+std::unique to remove duplicates.  This approach works really well if
+your usage pattern has these two distinct phases (insert then query), and can be
+coupled with a good choice of <a href="#ds_sequential">sequential container</a>.
+</p>
 
-  <pre>Function* targetFunc = ...;<br><br>class OurFunctionPass : public FunctionPass {<br>  public:<br>    OurFunctionPass(): callCounter(0) { }<br><br>    virtual runOnFunction(Function&amp; F) {<br>      for (Function::iterator b = F.begin(), be = F.end(); b != be; ++b) {<br>            for (BasicBlock::iterator i = b-&gt;begin(); ie = b-&gt;end(); i != ie; ++i) {<br>          if (<a
- href="#CallInst">CallInst</a>* callInst = <a href="#isa">dyn_cast</a>&lt;<a
- href="#CallInst">CallInst</a>&gt;(&amp;*i)) {<br>                 // we know we've encountered a call instruction, so we<br>              // need to determine if it's a call to the<br>                  // function pointed to by m_func or not.<br>  <br>              if (callInst-&gt;getCalledFunction() == targetFunc)<br>                     ++callCounter;<br>          }<br>       }<br>    }<br>    <br>  private:<br>    unsigned  callCounter;<br>};<br></pre>
+<p>
+This combination provides the several nice properties: the result data is
+contiguous in memory (good for cache locality), has few allocations, is easy to
+address (iterators in the final vector are just indices or pointers), and can be
+efficiently queried with a standard binary or radix search.</p>
 
 </div>
 
-<!--_______________________________________________________________________-->
+<!-- _______________________________________________________________________ -->
 <div class="doc_subsubsection">
-  <a name="calls_and_invokes">Treating calls and invokes the same way</a>
+  <a name="dss_smallset">"llvm/ADT/SmallSet.h"</a>
 </div>
 
 <div class="doc_text">
 
-<p>You may have noticed that the previous example was a bit oversimplified in
-that it did not deal with call sites generated by 'invoke' instructions. In
-this, and in other situations, you may find that you want to treat
-<tt>CallInst</tt>s and <tt>InvokeInst</tt>s the same way, even though their
-most-specific common base class is <tt>Instruction</tt>, which includes lots of
-less closely-related things. For these cases, LLVM provides a handy wrapper
-class called <a
-href="http://llvm.cs.uiuc.edu/doxygen/classllvm_1_1CallSite.html"><tt>CallSite</tt></a>.
-It is essentially a wrapper around an <tt>Instruction</tt> pointer, with some
-methods that provide functionality common to <tt>CallInst</tt>s and
-<tt>InvokeInst</tt>s.</p>
+<p>If you have a set-like data structure that is usually small and whose elements
+are reasonably small, a <tt>SmallSet&lt;Type, N&gt;</tt> is a good choice.  This set
+has space for N elements in place (thus, if the set is dynamically smaller than
+N, no malloc traffic is required) and accesses them with a simple linear search.
+When the set grows beyond 'N' elements, it allocates a more expensive representation that
+guarantees efficient access (for most types, it falls back to std::set, but for
+pointers it uses something far better, <a
+href="#dss_smallptrset">SmallPtrSet</a>).</p>
 
-<p>This class has "value semantics": it should be passed by value, not by
-reference and it should not be dynamically allocated or deallocated using
-<tt>operator new</tt> or <tt>operator delete</tt>. It is efficiently copyable,
-assignable and constructable, with costs equivalents to that of a bare pointer.
-If you look at its definition, it has only a single pointer member.</p>
+<p>The magic of this class is that it handles small sets extremely efficiently,
+but gracefully handles extremely large sets without loss of efficiency.  The
+drawback is that the interface is quite small: it supports insertion, queries
+and erasing, but does not support iteration.</p>
 
 </div>
 
-<!--_______________________________________________________________________-->
+<!-- _______________________________________________________________________ -->
 <div class="doc_subsubsection">
-  <a name="iterate_chains">Iterating over def-use &amp; use-def chains</a>
+  <a name="dss_smallptrset">"llvm/ADT/SmallPtrSet.h"</a>
 </div>
 
 <div class="doc_text">
 
-<p>Frequently, we might have an instance of the <a
-href="/doxygen/structllvm_1_1Value.html">Value Class</a> and we want to
-determine which <tt>User</tt>s use the <tt>Value</tt>.  The list of all
-<tt>User</tt>s of a particular <tt>Value</tt> is called a <i>def-use</i> chain.
-For example, let's say we have a <tt>Function*</tt> named <tt>F</tt> to a
-particular function <tt>foo</tt>. Finding all of the instructions that
-<i>use</i> <tt>foo</tt> is as simple as iterating over the <i>def-use</i> chain
-of <tt>F</tt>:</p>
+<p>SmallPtrSet has all the advantages of SmallSet (and a SmallSet of pointers is 
+transparently implemented with a SmallPtrSet), but also supports iterators.  If
+more than 'N' insertions are performed, a single quadratically
+probed hash table is allocated and grows as needed, providing extremely
+efficient access (constant time insertion/deleting/queries with low constant
+factors) and is very stingy with malloc traffic.</p>
 
-  <pre>Function* F = ...;<br><br>for (Value::use_iterator i = F-&gt;use_begin(), e = F-&gt;use_end(); i != e; ++i) {<br>    if (Instruction *Inst = dyn_cast&lt;Instruction&gt;(*i)) {<br>        cerr &lt;&lt; "F is used in instruction:\n";<br>        cerr &lt;&lt; *Inst &lt;&lt; "\n";<br>    }<br>}<br></pre>
+<p>Note that, unlike std::set, the iterators of SmallPtrSet are invalidated
+whenever an insertion occurs.  Also, the values visited by the iterators are not
+visited in sorted order.</p>
 
-<p>Alternately, it's common to have an instance of the <a
-href="/doxygen/classllvm_1_1User.html">User Class</a> and need to know what
-<tt>Value</tt>s are used by it.  The list of all <tt>Value</tt>s used by a
-<tt>User</tt> is known as a <i>use-def</i> chain.  Instances of class
-<tt>Instruction</tt> are common <tt>User</tt>s, so we might want to iterate over
-all of the values that a particular instruction uses (that is, the operands of
-the particular <tt>Instruction</tt>):</p>
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+  <a name="dss_denseset">"llvm/ADT/DenseSet.h"</a>
+</div>
 
-  <pre>Instruction* pi = ...;<br><br>for (User::op_iterator i = pi-&gt;op_begin(), e = pi-&gt;op_end(); i != e; ++i) {<br>    Value* v = *i;<br>    ...<br>}<br></pre>
+<div class="doc_text">
 
-<!--
-  def-use chains ("finding all users of"): Value::use_begin/use_end
-  use-def chains ("finding all values used"): User::op_begin/op_end [op=operand]
--->
+<p>
+DenseSet is a simple quadratically probed hash table.  It excels at supporting
+small values: it uses a single allocation to hold all of the pairs that
+are currently inserted in the set.  DenseSet is a great way to unique small
+values that are not simple pointers (use <a 
+href="#dss_smallptrset">SmallPtrSet</a> for pointers).  Note that DenseSet has
+the same requirements for the value type that <a 
+href="#dss_densemap">DenseMap</a> has.
+</p>
 
 </div>
 
-<!-- ======================================================================= -->
-<div class="doc_subsection">
-  <a name="simplechanges">Making simple changes</a>
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+  <a name="dss_FoldingSet">"llvm/ADT/FoldingSet.h"</a>
 </div>
 
 <div class="doc_text">
 
-<p>There are some primitive transformation operations present in the LLVM
-infrastructure that are worth knowing about.  When performing
-transformations, it's fairly common to manipulate the contents of basic
-blocks. This section describes some of the common methods for doing so
-and gives example code.</p>
+<p>
+FoldingSet is an aggregate class that is really good at uniquing
+expensive-to-create or polymorphic objects.  It is a combination of a chained
+hash table with intrusive links (uniqued objects are required to inherit from
+FoldingSetNode) that uses <a href="#dss_smallvector">SmallVector</a> as part of
+its ID process.</p>
+
+<p>Consider a case where you want to implement a "getOrCreateFoo" method for
+a complex object (for example, a node in the code generator).  The client has a
+description of *what* it wants to generate (it knows the opcode and all the
+operands), but we don't want to 'new' a node, then try inserting it into a set
+only to find out it already exists, at which point we would have to delete it
+and return the node that already exists.
+</p>
+
+<p>To support this style of client, FoldingSet perform a query with a
+FoldingSetNodeID (which wraps SmallVector) that can be used to describe the
+element that we want to query for.  The query either returns the element
+matching the ID or it returns an opaque ID that indicates where insertion should
+take place.  Construction of the ID usually does not require heap traffic.</p>
+
+<p>Because FoldingSet uses intrusive links, it can support polymorphic objects
+in the set (for example, you can have SDNode instances mixed with LoadSDNodes).
+Because the elements are individually allocated, pointers to the elements are
+stable: inserting or removing elements does not invalidate any pointers to other
+elements.
+</p>
 
 </div>
 
-<!--_______________________________________________________________________-->
+<!-- _______________________________________________________________________ -->
 <div class="doc_subsubsection">
-  <a name="schanges_creating">Creating and inserting new
-  <tt>Instruction</tt>s</a>
+  <a name="dss_set">&lt;set&gt;</a>
 </div>
 
 <div class="doc_text">
 
-<p><i>Instantiating Instructions</i></p>
+<p><tt>std::set</tt> is a reasonable all-around set class, which is decent at
+many things but great at nothing.  std::set allocates memory for each element
+inserted (thus it is very malloc intensive) and typically stores three pointers
+per element in the set (thus adding a large amount of per-element space
+overhead).  It offers guaranteed log(n) performance, which is not particularly
+fast from a complexity standpoint (particularly if the elements of the set are
+expensive to compare, like strings), and has extremely high constant factors for
+lookup, insertion and removal.</p>
 
-<p>Creation of <tt>Instruction</tt>s is straight-forward: simply call the
-constructor for the kind of instruction to instantiate and provide the necessary
-parameters. For example, an <tt>AllocaInst</tt> only <i>requires</i> a
-(const-ptr-to) <tt>Type</tt>. Thus:</p> 
+<p>The advantages of std::set are that its iterators are stable (deleting or
+inserting an element from the set does not affect iterators or pointers to other
+elements) and that iteration over the set is guaranteed to be in sorted order.
+If the elements in the set are large, then the relative overhead of the pointers
+and malloc traffic is not a big deal, but if the elements of the set are small,
+std::set is almost never a good choice.</p>
 
-<pre>AllocaInst* ai = new AllocaInst(Type::IntTy);</pre>
+</div>
 
-<p>will create an <tt>AllocaInst</tt> instance that represents the allocation of
-one integer in the current stack frame, at runtime. Each <tt>Instruction</tt>
-subclass is likely to have varying default parameters which change the semantics
-of the instruction, so refer to the <a
-href="/doxygen/classllvm_1_1Instruction.html">doxygen documentation for the subclass of
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+  <a name="dss_setvector">"llvm/ADT/SetVector.h"</a>
+</div>
+
+<div class="doc_text">
+<p>LLVM's SetVector&lt;Type&gt; is an adapter class that combines your choice of
+a set-like container along with a <a href="#ds_sequential">Sequential 
+Container</a>.  The important property
+that this provides is efficient insertion with uniquing (duplicate elements are
+ignored) with iteration support.  It implements this by inserting elements into
+both a set-like container and the sequential container, using the set-like
+container for uniquing and the sequential container for iteration.
+</p>
+
+<p>The difference between SetVector and other sets is that the order of
+iteration is guaranteed to match the order of insertion into the SetVector.
+This property is really important for things like sets of pointers.  Because
+pointer values are non-deterministic (e.g. vary across runs of the program on
+different machines), iterating over the pointers in the set will
+not be in a well-defined order.</p>
+
+<p>
+The drawback of SetVector is that it requires twice as much space as a normal
+set and has the sum of constant factors from the set-like container and the 
+sequential container that it uses.  Use it *only* if you need to iterate over 
+the elements in a deterministic order.  SetVector is also expensive to delete
+elements out of (linear time), unless you use it's "pop_back" method, which is
+faster.
+</p>
+
+<p>SetVector is an adapter class that defaults to using std::vector and std::set
+for the underlying containers, so it is quite expensive.  However,
+<tt>"llvm/ADT/SetVector.h"</tt> also provides a SmallSetVector class, which
+defaults to using a SmallVector and SmallSet of a specified size.  If you use
+this, and if your sets are dynamically smaller than N, you will save a lot of 
+heap traffic.</p>
+
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+  <a name="dss_uniquevector">"llvm/ADT/UniqueVector.h"</a>
+</div>
+
+<div class="doc_text">
+
+<p>
+UniqueVector is similar to <a href="#dss_setvector">SetVector</a>, but it
+retains a unique ID for each element inserted into the set.  It internally
+contains a map and a vector, and it assigns a unique ID for each value inserted
+into the set.</p>
+
+<p>UniqueVector is very expensive: its cost is the sum of the cost of
+maintaining both the map and vector, it has high complexity, high constant
+factors, and produces a lot of malloc traffic.  It should be avoided.</p>
+
+</div>
+
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+  <a name="dss_otherset">Other Set-Like Container Options</a>
+</div>
+
+<div class="doc_text">
+
+<p>
+The STL provides several other options, such as std::multiset and the various 
+"hash_set" like containers (whether from C++ TR1 or from the SGI library).</p>
+
+<p>std::multiset is useful if you're not interested in elimination of
+duplicates, but has all the drawbacks of std::set.  A sorted vector (where you 
+don't delete duplicate entries) or some other approach is almost always
+better.</p>
+
+<p>The various hash_set implementations (exposed portably by
+"llvm/ADT/hash_set") is a simple chained hashtable.  This algorithm is as malloc
+intensive as std::set (performing an allocation for each element inserted,
+thus having really high constant factors) but (usually) provides O(1)
+insertion/deletion of elements.  This can be useful if your elements are large
+(thus making the constant-factor cost relatively low) or if comparisons are
+expensive.  Element iteration does not visit elements in a useful order.</p>
+
+</div>
+
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+  <a name="ds_map">Map-Like Containers (std::map, DenseMap, etc)</a>
+</div>
+
+<div class="doc_text">
+Map-like containers are useful when you want to associate data to a key.  As
+usual, there are a lot of different ways to do this. :)
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+  <a name="dss_sortedvectormap">A sorted 'vector'</a>
+</div>
+
+<div class="doc_text">
+
+<p>
+If your usage pattern follows a strict insert-then-query approach, you can
+trivially use the same approach as <a href="#dss_sortedvectorset">sorted vectors
+for set-like containers</a>.  The only difference is that your query function
+(which uses std::lower_bound to get efficient log(n) lookup) should only compare
+the key, not both the key and value.  This yields the same advantages as sorted
+vectors for sets.
+</p>
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+  <a name="dss_stringmap">"llvm/ADT/StringMap.h"</a>
+</div>
+
+<div class="doc_text">
+
+<p>
+Strings are commonly used as keys in maps, and they are difficult to support
+efficiently: they are variable length, inefficient to hash and compare when
+long, expensive to copy, etc.  StringMap is a specialized container designed to
+cope with these issues.  It supports mapping an arbitrary range of bytes to an
+arbitrary other object.</p>
+
+<p>The StringMap implementation uses a quadratically-probed hash table, where
+the buckets store a pointer to the heap allocated entries (and some other
+stuff).  The entries in the map must be heap allocated because the strings are
+variable length.  The string data (key) and the element object (value) are
+stored in the same allocation with the string data immediately after the element
+object.  This container guarantees the "<tt>(char*)(&amp;Value+1)</tt>" points
+to the key string for a value.</p>
+
+<p>The StringMap is very fast for several reasons: quadratic probing is very
+cache efficient for lookups, the hash value of strings in buckets is not
+recomputed when lookup up an element, StringMap rarely has to touch the
+memory for unrelated objects when looking up a value (even when hash collisions
+happen), hash table growth does not recompute the hash values for strings
+already in the table, and each pair in the map is store in a single allocation
+(the string data is stored in the same allocation as the Value of a pair).</p>
+
+<p>StringMap also provides query methods that take byte ranges, so it only ever
+copies a string if a value is inserted into the table.</p>
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+  <a name="dss_indexedmap">"llvm/ADT/IndexedMap.h"</a>
+</div>
+
+<div class="doc_text">
+<p>
+IndexedMap is a specialized container for mapping small dense integers (or
+values that can be mapped to small dense integers) to some other type.  It is
+internally implemented as a vector with a mapping function that maps the keys to
+the dense integer range.
+</p>
+
+<p>
+This is useful for cases like virtual registers in the LLVM code generator: they
+have a dense mapping that is offset by a compile-time constant (the first
+virtual register ID).</p>
+
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+  <a name="dss_densemap">"llvm/ADT/DenseMap.h"</a>
+</div>
+
+<div class="doc_text">
+
+<p>
+DenseMap is a simple quadratically probed hash table.  It excels at supporting
+small keys and values: it uses a single allocation to hold all of the pairs that
+are currently inserted in the map.  DenseMap is a great way to map pointers to
+pointers, or map other small types to each other.
+</p>
+
+<p>
+There are several aspects of DenseMap that you should be aware of, however.  The
+iterators in a densemap are invalidated whenever an insertion occurs, unlike
+map.  Also, because DenseMap allocates space for a large number of key/value
+pairs (it starts with 64 by default), it will waste a lot of space if your keys
+or values are large.  Finally, you must implement a partial specialization of
+DenseMapInfo for the key that you want, if it isn't already supported.  This
+is required to tell DenseMap about two special marker values (which can never be
+inserted into the map) that it needs internally.</p>
+
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+  <a name="dss_map">&lt;map&gt;</a>
+</div>
+
+<div class="doc_text">
+
+<p>
+std::map has similar characteristics to <a href="#dss_set">std::set</a>: it uses
+a single allocation per pair inserted into the map, it offers log(n) lookup with
+an extremely large constant factor, imposes a space penalty of 3 pointers per
+pair in the map, etc.</p>
+
+<p>std::map is most useful when your keys or values are very large, if you need
+to iterate over the collection in sorted order, or if you need stable iterators
+into the map (i.e. they don't get invalidated if an insertion or deletion of
+another element takes place).</p>
+
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+  <a name="dss_othermap">Other Map-Like Container Options</a>
+</div>
+
+<div class="doc_text">
+
+<p>
+The STL provides several other options, such as std::multimap and the various 
+"hash_map" like containers (whether from C++ TR1 or from the SGI library).</p>
+
+<p>std::multimap is useful if you want to map a key to multiple values, but has
+all the drawbacks of std::map.  A sorted vector or some other approach is almost
+always better.</p>
+
+<p>The various hash_map implementations (exposed portably by
+"llvm/ADT/hash_map") are simple chained hash tables.  This algorithm is as
+malloc intensive as std::map (performing an allocation for each element
+inserted, thus having really high constant factors) but (usually) provides O(1)
+insertion/deletion of elements.  This can be useful if your elements are large
+(thus making the constant-factor cost relatively low) or if comparisons are
+expensive.  Element iteration does not visit elements in a useful order.</p>
+
+</div>
+
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+  <a name="ds_bit">Bit storage containers (BitVector, SparseBitVector)</a>
+</div>
+
+<div class="doc_text">
+<p>Unlike the other containers, there are only two bit storage containers, and 
+choosing when to use each is relatively straightforward.</p>
+
+<p>One additional option is 
+<tt>std::vector&lt;bool&gt;</tt>: we discourage its use for two reasons 1) the
+implementation in many common compilers (e.g. commonly available versions of 
+GCC) is extremely inefficient and 2) the C++ standards committee is likely to
+deprecate this container and/or change it significantly somehow.  In any case,
+please don't use it.</p>
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+  <a name="dss_bitvector">BitVector</a>
+</div>
+
+<div class="doc_text">
+<p> The BitVector container provides a fixed size set of bits for manipulation.
+It supports individual bit setting/testing, as well as set operations.  The set
+operations take time O(size of bitvector), but operations are performed one word
+at a time, instead of one bit at a time.  This makes the BitVector very fast for
+set operations compared to other containers.  Use the BitVector when you expect
+the number of set bits to be high (IE a dense set).
+</p>
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+  <a name="dss_sparsebitvector">SparseBitVector</a>
+</div>
+
+<div class="doc_text">
+<p> The SparseBitVector container is much like BitVector, with one major
+difference: Only the bits that are set, are stored.  This makes the
+SparseBitVector much more space efficient than BitVector when the set is sparse,
+as well as making set operations O(number of set bits) instead of O(size of
+universe).  The downside to the SparseBitVector is that setting and testing of random bits is O(N), and on large SparseBitVectors, this can be slower than BitVector. In our implementation, setting or testing bits in sorted order
+(either forwards or reverse) is O(1) worst case.  Testing and setting bits within 128 bits (depends on size) of the current bit is also O(1).  As a general statement, testing/setting bits in a SparseBitVector is O(distance away from last set bit).
+</p>
+</div>
+
+<!-- *********************************************************************** -->
+<div class="doc_section">
+  <a name="common">Helpful Hints for Common Operations</a>
+</div>
+<!-- *********************************************************************** -->
+
+<div class="doc_text">
+
+<p>This section describes how to perform some very simple transformations of
+LLVM code.  This is meant to give examples of common idioms used, showing the
+practical side of LLVM transformations.  <p> Because this is a "how-to" section,
+you should also read about the main classes that you will be working with.  The
+<a href="#coreclasses">Core LLVM Class Hierarchy Reference</a> contains details
+and descriptions of the main classes that you should know about.</p>
+
+</div>
+
+<!-- NOTE: this section should be heavy on example code -->
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+  <a name="inspection">Basic Inspection and Traversal Routines</a>
+</div>
+
+<div class="doc_text">
+
+<p>The LLVM compiler infrastructure have many different data structures that may
+be traversed.  Following the example of the C++ standard template library, the
+techniques used to traverse these various data structures are all basically the
+same.  For a enumerable sequence of values, the <tt>XXXbegin()</tt> function (or
+method) returns an iterator to the start of the sequence, the <tt>XXXend()</tt>
+function returns an iterator pointing to one past the last valid element of the
+sequence, and there is some <tt>XXXiterator</tt> data type that is common
+between the two operations.</p>
+
+<p>Because the pattern for iteration is common across many different aspects of
+the program representation, the standard template library algorithms may be used
+on them, and it is easier to remember how to iterate. First we show a few common
+examples of the data structures that need to be traversed.  Other data
+structures are traversed in very similar ways.</p>
+
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+  <a name="iterate_function">Iterating over the </a><a
+  href="#BasicBlock"><tt>BasicBlock</tt></a>s in a <a
+  href="#Function"><tt>Function</tt></a>
+</div>
+
+<div class="doc_text">
+
+<p>It's quite common to have a <tt>Function</tt> instance that you'd like to
+transform in some way; in particular, you'd like to manipulate its
+<tt>BasicBlock</tt>s.  To facilitate this, you'll need to iterate over all of
+the <tt>BasicBlock</tt>s that constitute the <tt>Function</tt>. The following is
+an example that prints the name of a <tt>BasicBlock</tt> and the number of
+<tt>Instruction</tt>s it contains:</p>
+
+<div class="doc_code">
+<pre>
+// <i>func is a pointer to a Function instance</i>
+for (Function::iterator i = func-&gt;begin(), e = func-&gt;end(); i != e; ++i)
+  // <i>Print out the name of the basic block if it has one, and then the</i>
+  // <i>number of instructions that it contains</i>
+  llvm::cerr &lt;&lt; "Basic block (name=" &lt;&lt; i-&gt;getName() &lt;&lt; ") has "
+             &lt;&lt; i-&gt;size() &lt;&lt; " instructions.\n";
+</pre>
+</div>
+
+<p>Note that i can be used as if it were a pointer for the purposes of
+invoking member functions of the <tt>Instruction</tt> class.  This is
+because the indirection operator is overloaded for the iterator
+classes.  In the above code, the expression <tt>i-&gt;size()</tt> is
+exactly equivalent to <tt>(*i).size()</tt> just like you'd expect.</p>
+
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+  <a name="iterate_basicblock">Iterating over the </a><a
+  href="#Instruction"><tt>Instruction</tt></a>s in a <a
+  href="#BasicBlock"><tt>BasicBlock</tt></a>
+</div>
+
+<div class="doc_text">
+
+<p>Just like when dealing with <tt>BasicBlock</tt>s in <tt>Function</tt>s, it's
+easy to iterate over the individual instructions that make up
+<tt>BasicBlock</tt>s. Here's a code snippet that prints out each instruction in
+a <tt>BasicBlock</tt>:</p>
+
+<div class="doc_code">
+<pre>
+// <i>blk is a pointer to a BasicBlock instance</i>
+for (BasicBlock::iterator i = blk-&gt;begin(), e = blk-&gt;end(); i != e; ++i)
+   // <i>The next statement works since operator&lt;&lt;(ostream&amp;,...)</i>
+   // <i>is overloaded for Instruction&amp;</i>
+   llvm::cerr &lt;&lt; *i &lt;&lt; "\n";
+</pre>
+</div>
+
+<p>However, this isn't really the best way to print out the contents of a
+<tt>BasicBlock</tt>!  Since the ostream operators are overloaded for virtually
+anything you'll care about, you could have just invoked the print routine on the
+basic block itself: <tt>llvm::cerr &lt;&lt; *blk &lt;&lt; "\n";</tt>.</p>
+
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+  <a name="iterate_institer">Iterating over the </a><a
+  href="#Instruction"><tt>Instruction</tt></a>s in a <a
+  href="#Function"><tt>Function</tt></a>
+</div>
+
+<div class="doc_text">
+
+<p>If you're finding that you commonly iterate over a <tt>Function</tt>'s
+<tt>BasicBlock</tt>s and then that <tt>BasicBlock</tt>'s <tt>Instruction</tt>s,
+<tt>InstIterator</tt> should be used instead. You'll need to include <a
+href="/doxygen/InstIterator_8h-source.html"><tt>llvm/Support/InstIterator.h</tt></a>,
+and then instantiate <tt>InstIterator</tt>s explicitly in your code.  Here's a
+small example that shows how to dump all instructions in a function to the standard error stream:<p>
+
+<div class="doc_code">
+<pre>
+#include "<a href="/doxygen/InstIterator_8h-source.html">llvm/Support/InstIterator.h</a>"
+
+// <i>F is a pointer to a Function instance</i>
+for (inst_iterator i = inst_begin(F), e = inst_end(F); i != e; ++i)
+  llvm::cerr &lt;&lt; *i &lt;&lt; "\n";
+</pre>
+</div>
+
+<p>Easy, isn't it?  You can also use <tt>InstIterator</tt>s to fill a
+work list with its initial contents.  For example, if you wanted to
+initialize a work list to contain all instructions in a <tt>Function</tt>
+F, all you would need to do is something like:</p>
+
+<div class="doc_code">
+<pre>
+std::set&lt;Instruction*&gt; worklist;
+worklist.insert(inst_begin(F), inst_end(F));
+</pre>
+</div>
+
+<p>The STL set <tt>worklist</tt> would now contain all instructions in the
+<tt>Function</tt> pointed to by F.</p>
+
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+  <a name="iterate_convert">Turning an iterator into a class pointer (and
+  vice-versa)</a>
+</div>
+
+<div class="doc_text">
+
+<p>Sometimes, it'll be useful to grab a reference (or pointer) to a class
+instance when all you've got at hand is an iterator.  Well, extracting
+a reference or a pointer from an iterator is very straight-forward.
+Assuming that <tt>i</tt> is a <tt>BasicBlock::iterator</tt> and <tt>j</tt>
+is a <tt>BasicBlock::const_iterator</tt>:</p>
+
+<div class="doc_code">
+<pre>
+Instruction&amp; inst = *i;   // <i>Grab reference to instruction reference</i>
+Instruction* pinst = &amp;*i; // <i>Grab pointer to instruction reference</i>
+const Instruction&amp; inst = *j;
+</pre>
+</div>
+
+<p>However, the iterators you'll be working with in the LLVM framework are
+special: they will automatically convert to a ptr-to-instance type whenever they
+need to.  Instead of dereferencing the iterator and then taking the address of
+the result, you can simply assign the iterator to the proper pointer type and
+you get the dereference and address-of operation as a result of the assignment
+(behind the scenes, this is a result of overloading casting mechanisms).  Thus
+the last line of the last example,</p>
+
+<div class="doc_code">
+<pre>
+Instruction *pinst = &amp;*i;
+</pre>
+</div>
+
+<p>is semantically equivalent to</p>
+
+<div class="doc_code">
+<pre>
+Instruction *pinst = i;
+</pre>
+</div>
+
+<p>It's also possible to turn a class pointer into the corresponding iterator,
+and this is a constant time operation (very efficient).  The following code
+snippet illustrates use of the conversion constructors provided by LLVM
+iterators.  By using these, you can explicitly grab the iterator of something
+without actually obtaining it via iteration over some structure:</p>
+
+<div class="doc_code">
+<pre>
+void printNextInstruction(Instruction* inst) {
+  BasicBlock::iterator it(inst);
+  ++it; // <i>After this line, it refers to the instruction after *inst</i>
+  if (it != inst-&gt;getParent()-&gt;end()) llvm::cerr &lt;&lt; *it &lt;&lt; "\n";
+}
+</pre>
+</div>
+
+</div>
+
+<!--_______________________________________________________________________-->
+<div class="doc_subsubsection">
+  <a name="iterate_complex">Finding call sites: a slightly more complex
+  example</a>
+</div>
+
+<div class="doc_text">
+
+<p>Say that you're writing a FunctionPass and would like to count all the
+locations in the entire module (that is, across every <tt>Function</tt>) where a
+certain function (i.e., some <tt>Function</tt>*) is already in scope.  As you'll
+learn later, you may want to use an <tt>InstVisitor</tt> to accomplish this in a
+much more straight-forward manner, but this example will allow us to explore how
+you'd do it if you didn't have <tt>InstVisitor</tt> around. In pseudo-code, this
+is what we want to do:</p>
+
+<div class="doc_code">
+<pre>
+initialize callCounter to zero
+for each Function f in the Module
+  for each BasicBlock b in f
+    for each Instruction i in b
+      if (i is a CallInst and calls the given function)
+        increment callCounter
+</pre>
+</div>
+
+<p>And the actual code is (remember, because we're writing a
+<tt>FunctionPass</tt>, our <tt>FunctionPass</tt>-derived class simply has to
+override the <tt>runOnFunction</tt> method):</p>
+
+<div class="doc_code">
+<pre>
+Function* targetFunc = ...;
+
+class OurFunctionPass : public FunctionPass {
+  public:
+    OurFunctionPass(): callCounter(0) { }
+
+    virtual runOnFunction(Function&amp; F) {
+      for (Function::iterator b = F.begin(), be = F.end(); b != be; ++b) {
+        for (BasicBlock::iterator i = b-&gt;begin(); ie = b-&gt;end(); i != ie; ++i) {
+          if (<a href="#CallInst">CallInst</a>* callInst = <a href="#isa">dyn_cast</a>&lt;<a
+ href="#CallInst">CallInst</a>&gt;(&amp;*i)) {
+            // <i>We know we've encountered a call instruction, so we</i>
+            // <i>need to determine if it's a call to the</i>
+            // <i>function pointed to by m_func or not.</i>
+            if (callInst-&gt;getCalledFunction() == targetFunc)
+              ++callCounter;
+          }
+        }
+      }
+    }
+
+  private:
+    unsigned callCounter;
+};
+</pre>
+</div>
+
+</div>
+
+<!--_______________________________________________________________________-->
+<div class="doc_subsubsection">
+  <a name="calls_and_invokes">Treating calls and invokes the same way</a>
+</div>
+
+<div class="doc_text">
+
+<p>You may have noticed that the previous example was a bit oversimplified in
+that it did not deal with call sites generated by 'invoke' instructions. In
+this, and in other situations, you may find that you want to treat
+<tt>CallInst</tt>s and <tt>InvokeInst</tt>s the same way, even though their
+most-specific common base class is <tt>Instruction</tt>, which includes lots of
+less closely-related things. For these cases, LLVM provides a handy wrapper
+class called <a
+href="http://llvm.org/doxygen/classllvm_1_1CallSite.html"><tt>CallSite</tt></a>.
+It is essentially a wrapper around an <tt>Instruction</tt> pointer, with some
+methods that provide functionality common to <tt>CallInst</tt>s and
+<tt>InvokeInst</tt>s.</p>
+
+<p>This class has "value semantics": it should be passed by value, not by
+reference and it should not be dynamically allocated or deallocated using
+<tt>operator new</tt> or <tt>operator delete</tt>. It is efficiently copyable,
+assignable and constructable, with costs equivalents to that of a bare pointer.
+If you look at its definition, it has only a single pointer member.</p>
+
+</div>
+
+<!--_______________________________________________________________________-->
+<div class="doc_subsubsection">
+  <a name="iterate_chains">Iterating over def-use &amp; use-def chains</a>
+</div>
+
+<div class="doc_text">
+
+<p>Frequently, we might have an instance of the <a
+href="/doxygen/classllvm_1_1Value.html">Value Class</a> and we want to
+determine which <tt>User</tt>s use the <tt>Value</tt>.  The list of all
+<tt>User</tt>s of a particular <tt>Value</tt> is called a <i>def-use</i> chain.
+For example, let's say we have a <tt>Function*</tt> named <tt>F</tt> to a
+particular function <tt>foo</tt>. Finding all of the instructions that
+<i>use</i> <tt>foo</tt> is as simple as iterating over the <i>def-use</i> chain
+of <tt>F</tt>:</p>
+
+<div class="doc_code">
+<pre>
+Function *F = ...;
+
+for (Value::use_iterator i = F-&gt;use_begin(), e = F-&gt;use_end(); i != e; ++i)
+  if (Instruction *Inst = dyn_cast&lt;Instruction&gt;(*i)) {
+    llvm::cerr &lt;&lt; "F is used in instruction:\n";
+    llvm::cerr &lt;&lt; *Inst &lt;&lt; "\n";
+  }
+</pre>
+</div>
+
+<p>Alternately, it's common to have an instance of the <a
+href="/doxygen/classllvm_1_1User.html">User Class</a> and need to know what
+<tt>Value</tt>s are used by it.  The list of all <tt>Value</tt>s used by a
+<tt>User</tt> is known as a <i>use-def</i> chain.  Instances of class
+<tt>Instruction</tt> are common <tt>User</tt>s, so we might want to iterate over
+all of the values that a particular instruction uses (that is, the operands of
+the particular <tt>Instruction</tt>):</p>
+
+<div class="doc_code">
+<pre>
+Instruction *pi = ...;
+
+for (User::op_iterator i = pi-&gt;op_begin(), e = pi-&gt;op_end(); i != e; ++i) {
+  Value *v = *i;
+  // <i>...</i>
+}
+</pre>
+</div>
+
+<!--
+  def-use chains ("finding all users of"): Value::use_begin/use_end
+  use-def chains ("finding all values used"): User::op_begin/op_end [op=operand]
+-->
+
+</div>
+
+<!--_______________________________________________________________________-->
+<div class="doc_subsubsection">
+  <a name="iterate_preds">Iterating over predecessors &amp;
+successors of blocks</a>
+</div>
+
+<div class="doc_text">
+
+<p>Iterating over the predecessors and successors of a block is quite easy
+with the routines defined in <tt>"llvm/Support/CFG.h"</tt>.  Just use code like
+this to iterate over all predecessors of BB:</p>
+
+<div class="doc_code">
+<pre>
+#include "llvm/Support/CFG.h"
+BasicBlock *BB = ...;
+
+for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
+  BasicBlock *Pred = *PI;
+  // <i>...</i>
+}
+</pre>
+</div>
+
+<p>Similarly, to iterate over successors use
+succ_iterator/succ_begin/succ_end.</p>
+
+</div>
+
+
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+  <a name="simplechanges">Making simple changes</a>
+</div>
+
+<div class="doc_text">
+
+<p>There are some primitive transformation operations present in the LLVM
+infrastructure that are worth knowing about.  When performing
+transformations, it's fairly common to manipulate the contents of basic
+blocks. This section describes some of the common methods for doing so
+and gives example code.</p>
+
+</div>
+
+<!--_______________________________________________________________________-->
+<div class="doc_subsubsection">
+  <a name="schanges_creating">Creating and inserting new
+  <tt>Instruction</tt>s</a>
+</div>
+
+<div class="doc_text">
+
+<p><i>Instantiating Instructions</i></p>
+
+<p>Creation of <tt>Instruction</tt>s is straight-forward: simply call the
+constructor for the kind of instruction to instantiate and provide the necessary
+parameters. For example, an <tt>AllocaInst</tt> only <i>requires</i> a
+(const-ptr-to) <tt>Type</tt>. Thus:</p> 
+
+<div class="doc_code">
+<pre>
+AllocaInst* ai = new AllocaInst(Type::Int32Ty);
+</pre>
+</div>
+
+<p>will create an <tt>AllocaInst</tt> instance that represents the allocation of
+one integer in the current stack frame, at run time. Each <tt>Instruction</tt>
+subclass is likely to have varying default parameters which change the semantics
+of the instruction, so refer to the <a
+href="/doxygen/classllvm_1_1Instruction.html">doxygen documentation for the subclass of
 Instruction</a> that you're interested in instantiating.</p>
 
 <p><i>Naming values</i></p>
@@ -787,169 +1792,702 @@ at generated LLVM machine code, you definitely want to have logical names
 associated with the results of instructions!  By supplying a value for the
 <tt>Name</tt> (default) parameter of the <tt>Instruction</tt> constructor, you
 associate a logical name with the result of the instruction's execution at
-runtime.  For example, say that I'm writing a transformation that dynamically
+run time.  For example, say that I'm writing a transformation that dynamically
 allocates space for an integer on the stack, and that integer is going to be
 used as some kind of index by some other code.  To accomplish this, I place an
 <tt>AllocaInst</tt> at the first point in the first <tt>BasicBlock</tt> of some
 <tt>Function</tt>, and I'm intending to use it within the same
 <tt>Function</tt>. I might do:</p>
 
-  <pre>AllocaInst* pa = new AllocaInst(Type::IntTy, 0, "indexLoc");</pre>
+<div class="doc_code">
+<pre>
+AllocaInst* pa = new AllocaInst(Type::Int32Ty, 0, "indexLoc");
+</pre>
+</div>
 
 <p>where <tt>indexLoc</tt> is now the logical name of the instruction's
-execution value, which is a pointer to an integer on the runtime stack.</p>
+execution value, which is a pointer to an integer on the run time stack.</p>
 
 <p><i>Inserting instructions</i></p>
 
-<p>There are essentially two ways to insert an <tt>Instruction</tt>
-into an existing sequence of instructions that form a <tt>BasicBlock</tt>:</p>
+<p>There are essentially two ways to insert an <tt>Instruction</tt>
+into an existing sequence of instructions that form a <tt>BasicBlock</tt>:</p>
+
+<ul>
+  <li>Insertion into an explicit instruction list
+
+    <p>Given a <tt>BasicBlock* pb</tt>, an <tt>Instruction* pi</tt> within that
+    <tt>BasicBlock</tt>, and a newly-created instruction we wish to insert
+    before <tt>*pi</tt>, we do the following: </p>
+
+<div class="doc_code">
+<pre>
+BasicBlock *pb = ...;
+Instruction *pi = ...;
+Instruction *newInst = new Instruction(...);
+
+pb-&gt;getInstList().insert(pi, newInst); // <i>Inserts newInst before pi in pb</i>
+</pre>
+</div>
+
+    <p>Appending to the end of a <tt>BasicBlock</tt> is so common that
+    the <tt>Instruction</tt> class and <tt>Instruction</tt>-derived
+    classes provide constructors which take a pointer to a
+    <tt>BasicBlock</tt> to be appended to. For example code that
+    looked like: </p>
+
+<div class="doc_code">
+<pre>
+BasicBlock *pb = ...;
+Instruction *newInst = new Instruction(...);
+
+pb-&gt;getInstList().push_back(newInst); // <i>Appends newInst to pb</i>
+</pre>
+</div>
+
+    <p>becomes: </p>
+
+<div class="doc_code">
+<pre>
+BasicBlock *pb = ...;
+Instruction *newInst = new Instruction(..., pb);
+</pre>
+</div>
+
+    <p>which is much cleaner, especially if you are creating
+    long instruction streams.</p></li>
+
+  <li>Insertion into an implicit instruction list
+
+    <p><tt>Instruction</tt> instances that are already in <tt>BasicBlock</tt>s
+    are implicitly associated with an existing instruction list: the instruction
+    list of the enclosing basic block. Thus, we could have accomplished the same
+    thing as the above code without being given a <tt>BasicBlock</tt> by doing:
+    </p>
+
+<div class="doc_code">
+<pre>
+Instruction *pi = ...;
+Instruction *newInst = new Instruction(...);
+
+pi-&gt;getParent()-&gt;getInstList().insert(pi, newInst);
+</pre>
+</div>
+
+    <p>In fact, this sequence of steps occurs so frequently that the
+    <tt>Instruction</tt> class and <tt>Instruction</tt>-derived classes provide
+    constructors which take (as a default parameter) a pointer to an
+    <tt>Instruction</tt> which the newly-created <tt>Instruction</tt> should
+    precede.  That is, <tt>Instruction</tt> constructors are capable of
+    inserting the newly-created instance into the <tt>BasicBlock</tt> of a
+    provided instruction, immediately before that instruction.  Using an
+    <tt>Instruction</tt> constructor with a <tt>insertBefore</tt> (default)
+    parameter, the above code becomes:</p>
+
+<div class="doc_code">
+<pre>
+Instruction* pi = ...;
+Instruction* newInst = new Instruction(..., pi);
+</pre>
+</div>
+
+    <p>which is much cleaner, especially if you're creating a lot of
+    instructions and adding them to <tt>BasicBlock</tt>s.</p></li>
+</ul>
+
+</div>
+
+<!--_______________________________________________________________________-->
+<div class="doc_subsubsection">
+  <a name="schanges_deleting">Deleting <tt>Instruction</tt>s</a>
+</div>
+
+<div class="doc_text">
+
+<p>Deleting an instruction from an existing sequence of instructions that form a
+<a href="#BasicBlock"><tt>BasicBlock</tt></a> is very straight-forward. First,
+you must have a pointer to the instruction that you wish to delete.  Second, you
+need to obtain the pointer to that instruction's basic block. You use the
+pointer to the basic block to get its list of instructions and then use the
+erase function to remove your instruction. For example:</p>
+
+<div class="doc_code">
+<pre>
+<a href="#Instruction">Instruction</a> *I = .. ;
+<a href="#BasicBlock">BasicBlock</a> *BB = I-&gt;getParent();
+
+BB-&gt;getInstList().erase(I);
+</pre>
+</div>
+
+</div>
+
+<!--_______________________________________________________________________-->
+<div class="doc_subsubsection">
+  <a name="schanges_replacing">Replacing an <tt>Instruction</tt> with another
+  <tt>Value</tt></a>
+</div>
+
+<div class="doc_text">
+
+<p><i>Replacing individual instructions</i></p>
+
+<p>Including "<a href="/doxygen/BasicBlockUtils_8h-source.html">llvm/Transforms/Utils/BasicBlockUtils.h</a>"
+permits use of two very useful replace functions: <tt>ReplaceInstWithValue</tt>
+and <tt>ReplaceInstWithInst</tt>.</p>
+
+<h4><a name="schanges_deleting">Deleting <tt>Instruction</tt>s</a></h4>
+
+<ul>
+  <li><tt>ReplaceInstWithValue</tt>
+
+    <p>This function replaces all uses (within a basic block) of a given
+    instruction with a value, and then removes the original instruction. The
+    following example illustrates the replacement of the result of a particular
+    <tt>AllocaInst</tt> that allocates memory for a single integer with a null
+    pointer to an integer.</p>
+
+<div class="doc_code">
+<pre>
+AllocaInst* instToReplace = ...;
+BasicBlock::iterator ii(instToReplace);
+
+ReplaceInstWithValue(instToReplace-&gt;getParent()-&gt;getInstList(), ii,
+                     Constant::getNullValue(PointerType::get(Type::Int32Ty)));
+</pre></div></li>
+
+  <li><tt>ReplaceInstWithInst</tt> 
+
+    <p>This function replaces a particular instruction with another
+    instruction. The following example illustrates the replacement of one
+    <tt>AllocaInst</tt> with another.</p>
+
+<div class="doc_code">
+<pre>
+AllocaInst* instToReplace = ...;
+BasicBlock::iterator ii(instToReplace);
+
+ReplaceInstWithInst(instToReplace-&gt;getParent()-&gt;getInstList(), ii,
+                    new AllocaInst(Type::Int32Ty, 0, "ptrToReplacedInt"));
+</pre></div></li>
+</ul>
+
+<p><i>Replacing multiple uses of <tt>User</tt>s and <tt>Value</tt>s</i></p>
+
+<p>You can use <tt>Value::replaceAllUsesWith</tt> and
+<tt>User::replaceUsesOfWith</tt> to change more than one use at a time.  See the
+doxygen documentation for the <a href="/doxygen/classllvm_1_1Value.html">Value Class</a>
+and <a href="/doxygen/classllvm_1_1User.html">User Class</a>, respectively, for more
+information.</p>
+
+<!-- Value::replaceAllUsesWith User::replaceUsesOfWith Point out:
+include/llvm/Transforms/Utils/ especially BasicBlockUtils.h with:
+ReplaceInstWithValue, ReplaceInstWithInst -->
+
+</div>
+
+<!--_______________________________________________________________________-->
+<div class="doc_subsubsection">
+  <a name="schanges_deletingGV">Deleting <tt>GlobalVariable</tt>s</a>
+</div>
+
+<div class="doc_text">
+
+<p>Deleting a global variable from a module is just as easy as deleting an 
+Instruction. First, you must have a pointer to the global variable that you wish
+ to delete.  You use this pointer to erase it from its parent, the module.
+ For example:</p>
+
+<div class="doc_code">
+<pre>
+<a href="#GlobalVariable">GlobalVariable</a> *GV = .. ;
+
+GV-&gt;eraseFromParent();
+</pre>
+</div>
+
+</div>
+
+<!-- *********************************************************************** -->
+<div class="doc_section">
+  <a name="advanced">Advanced Topics</a>
+</div>
+<!-- *********************************************************************** -->
+
+<div class="doc_text">
+<p>
+This section describes some of the advanced or obscure API's that most clients
+do not need to be aware of.  These API's tend manage the inner workings of the
+LLVM system, and only need to be accessed in unusual circumstances.
+</p>
+</div>
+
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+  <a name="TypeResolve">LLVM Type Resolution</a>
+</div>
+
+<div class="doc_text">
+
+<p>
+The LLVM type system has a very simple goal: allow clients to compare types for
+structural equality with a simple pointer comparison (aka a shallow compare).
+This goal makes clients much simpler and faster, and is used throughout the LLVM
+system.
+</p>
+
+<p>
+Unfortunately achieving this goal is not a simple matter.  In particular,
+recursive types and late resolution of opaque types makes the situation very
+difficult to handle.  Fortunately, for the most part, our implementation makes
+most clients able to be completely unaware of the nasty internal details.  The
+primary case where clients are exposed to the inner workings of it are when
+building a recursive type.  In addition to this case, the LLVM bitcode reader,
+assembly parser, and linker also have to be aware of the inner workings of this
+system.
+</p>
+
+<p>
+For our purposes below, we need three concepts.  First, an "Opaque Type" is 
+exactly as defined in the <a href="LangRef.html#t_opaque">language 
+reference</a>.  Second an "Abstract Type" is any type which includes an 
+opaque type as part of its type graph (for example "<tt>{ opaque, i32 }</tt>").
+Third, a concrete type is a type that is not an abstract type (e.g. "<tt>{ i32, 
+float }</tt>").
+</p>
+
+</div>
+
+<!-- ______________________________________________________________________ -->
+<div class="doc_subsubsection">
+  <a name="BuildRecType">Basic Recursive Type Construction</a>
+</div>
+
+<div class="doc_text">
+
+<p>
+Because the most common question is "how do I build a recursive type with LLVM",
+we answer it now and explain it as we go.  Here we include enough to cause this
+to be emitted to an output .ll file:
+</p>
+
+<div class="doc_code">
+<pre>
+%mylist = type { %mylist*, i32 }
+</pre>
+</div>
+
+<p>
+To build this, use the following LLVM APIs:
+</p>
+
+<div class="doc_code">
+<pre>
+// <i>Create the initial outer struct</i>
+<a href="#PATypeHolder">PATypeHolder</a> StructTy = OpaqueType::get();
+std::vector&lt;const Type*&gt; Elts;
+Elts.push_back(PointerType::get(StructTy));
+Elts.push_back(Type::Int32Ty);
+StructType *NewSTy = StructType::get(Elts);
+
+// <i>At this point, NewSTy = "{ opaque*, i32 }". Tell VMCore that</i>
+// <i>the struct and the opaque type are actually the same.</i>
+cast&lt;OpaqueType&gt;(StructTy.get())-&gt;<a href="#refineAbstractTypeTo">refineAbstractTypeTo</a>(NewSTy);
+
+// <i>NewSTy is potentially invalidated, but StructTy (a <a href="#PATypeHolder">PATypeHolder</a>) is</i>
+// <i>kept up-to-date</i>
+NewSTy = cast&lt;StructType&gt;(StructTy.get());
+
+// <i>Add a name for the type to the module symbol table (optional)</i>
+MyModule-&gt;addTypeName("mylist", NewSTy);
+</pre>
+</div>
+
+<p>
+This code shows the basic approach used to build recursive types: build a
+non-recursive type using 'opaque', then use type unification to close the cycle.
+The type unification step is performed by the <tt><a
+href="#refineAbstractTypeTo">refineAbstractTypeTo</a></tt> method, which is
+described next.  After that, we describe the <a
+href="#PATypeHolder">PATypeHolder class</a>.
+</p>
+
+</div>
+
+<!-- ______________________________________________________________________ -->
+<div class="doc_subsubsection">
+  <a name="refineAbstractTypeTo">The <tt>refineAbstractTypeTo</tt> method</a>
+</div>
+
+<div class="doc_text">
+<p>
+The <tt>refineAbstractTypeTo</tt> method starts the type unification process.
+While this method is actually a member of the DerivedType class, it is most
+often used on OpaqueType instances.  Type unification is actually a recursive
+process.  After unification, types can become structurally isomorphic to
+existing types, and all duplicates are deleted (to preserve pointer equality).
+</p>
+
+<p>
+In the example above, the OpaqueType object is definitely deleted.
+Additionally, if there is an "{ \2*, i32}" type already created in the system,
+the pointer and struct type created are <b>also</b> deleted.  Obviously whenever
+a type is deleted, any "Type*" pointers in the program are invalidated.  As
+such, it is safest to avoid having <i>any</i> "Type*" pointers to abstract types
+live across a call to <tt>refineAbstractTypeTo</tt> (note that non-abstract
+types can never move or be deleted).  To deal with this, the <a
+href="#PATypeHolder">PATypeHolder</a> class is used to maintain a stable
+reference to a possibly refined type, and the <a
+href="#AbstractTypeUser">AbstractTypeUser</a> class is used to update more
+complex datastructures.
+</p>
+
+</div>
+
+<!-- ______________________________________________________________________ -->
+<div class="doc_subsubsection">
+  <a name="PATypeHolder">The PATypeHolder Class</a>
+</div>
+
+<div class="doc_text">
+<p>
+PATypeHolder is a form of a "smart pointer" for Type objects.  When VMCore
+happily goes about nuking types that become isomorphic to existing types, it
+automatically updates all PATypeHolder objects to point to the new type.  In the
+example above, this allows the code to maintain a pointer to the resultant
+resolved recursive type, even though the Type*'s are potentially invalidated.
+</p>
+
+<p>
+PATypeHolder is an extremely light-weight object that uses a lazy union-find
+implementation to update pointers.  For example the pointer from a Value to its
+Type is maintained by PATypeHolder objects.
+</p>
+
+</div>
+
+<!-- ______________________________________________________________________ -->
+<div class="doc_subsubsection">
+  <a name="AbstractTypeUser">The AbstractTypeUser Class</a>
+</div>
+
+<div class="doc_text">
+
+<p>
+Some data structures need more to perform more complex updates when types get
+resolved.  To support this, a class can derive from the AbstractTypeUser class.
+This class
+allows it to get callbacks when certain types are resolved.  To register to get
+callbacks for a particular type, the DerivedType::{add/remove}AbstractTypeUser
+methods can be called on a type.  Note that these methods only work for <i>
+  abstract</i> types.  Concrete types (those that do not include any opaque 
+objects) can never be refined.
+</p>
+</div>
+
+
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+  <a name="SymbolTable">The <tt>ValueSymbolTable</tt> and
+   <tt>TypeSymbolTable</tt> classes</a>
+</div>
+
+<div class="doc_text">
+<p>The <tt><a href="http://llvm.org/doxygen/classllvm_1_1ValueSymbolTable.html">
+ValueSymbolTable</a></tt> class provides a symbol table that the <a
+href="#Function"><tt>Function</tt></a> and <a href="#Module">
+<tt>Module</tt></a> classes use for naming value definitions. The symbol table
+can provide a name for any <a href="#Value"><tt>Value</tt></a>. 
+The <tt><a href="http://llvm.org/doxygen/classllvm_1_1TypeSymbolTable.html">
+TypeSymbolTable</a></tt> class is used by the <tt>Module</tt> class to store
+names for types.</p>
+
+<p>Note that the <tt>SymbolTable</tt> class should not be directly accessed 
+by most clients.  It should only be used when iteration over the symbol table 
+names themselves are required, which is very special purpose.  Note that not 
+all LLVM
+<a href="#Value">Value</a>s have names, and those without names (i.e. they have
+an empty name) do not exist in the symbol table.
+</p>
+
+<p>These symbol tables support iteration over the values/types in the symbol
+table with <tt>begin/end/iterator</tt> and supports querying to see if a
+specific name is in the symbol table (with <tt>lookup</tt>).  The
+<tt>ValueSymbolTable</tt> class exposes no public mutator methods, instead,
+simply call <tt>setName</tt> on a value, which will autoinsert it into the
+appropriate symbol table.  For types, use the Module::addTypeName method to
+insert entries into the symbol table.</p>
+
+</div>
+
+
 
-<ul>
-  <li>Insertion into an explicit instruction list
+<!-- *********************************************************************** -->
+<div class="doc_section">
+  <a name="coreclasses">The Core LLVM Class Hierarchy Reference </a>
+</div>
+<!-- *********************************************************************** -->
 
-    <p>Given a <tt>BasicBlock* pb</tt>, an <tt>Instruction* pi</tt> within that
-    <tt>BasicBlock</tt>, and a newly-created instruction we wish to insert
-    before <tt>*pi</tt>, we do the following: </p>
+<div class="doc_text">
+<p><tt>#include "<a href="/doxygen/Type_8h-source.html">llvm/Type.h</a>"</tt>
+<br>doxygen info: <a href="/doxygen/classllvm_1_1Type.html">Type Class</a></p>
 
-      <pre>  BasicBlock *pb = ...;<br>  Instruction *pi = ...;<br>  Instruction *newInst = new Instruction(...);<br>  pb-&gt;getInstList().insert(pi, newInst); // inserts newInst before pi in pb<br></pre>
+<p>The Core LLVM classes are the primary means of representing the program
+being inspected or transformed.  The core LLVM classes are defined in
+header files in the <tt>include/llvm/</tt> directory, and implemented in
+the <tt>lib/VMCore</tt> directory.</p>
 
-    <p>Appending to the end of a <tt>BasicBlock</tt> is so common that
-    the <tt>Instruction</tt> class and <tt>Instruction</tt>-derived
-    classes provide constructors which take a pointer to a
-    <tt>BasicBlock</tt> to be appended to. For example code that
-    looked like: </p>
+</div>
 
-      <pre>  BasicBlock *pb = ...;<br>  Instruction *newInst = new Instruction(...);<br>  pb-&gt;getInstList().push_back(newInst); // appends newInst to pb<br></pre>
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+  <a name="Type">The <tt>Type</tt> class and Derived Types</a>
+</div>
 
-    <p>becomes: </p>
+<div class="doc_text">
 
-      <pre>  BasicBlock *pb = ...;<br>  Instruction *newInst = new Instruction(..., pb);<br></pre>
+  <p><tt>Type</tt> is a superclass of all type classes. Every <tt>Value</tt> has
+  a <tt>Type</tt>. <tt>Type</tt> cannot be instantiated directly but only
+  through its subclasses. Certain primitive types (<tt>VoidType</tt>,
+  <tt>LabelType</tt>, <tt>FloatType</tt> and <tt>DoubleType</tt>) have hidden 
+  subclasses. They are hidden because they offer no useful functionality beyond
+  what the <tt>Type</tt> class offers except to distinguish themselves from 
+  other subclasses of <tt>Type</tt>.</p>
+  <p>All other types are subclasses of <tt>DerivedType</tt>.  Types can be 
+  named, but this is not a requirement. There exists exactly 
+  one instance of a given shape at any one time.  This allows type equality to
+  be performed with address equality of the Type Instance. That is, given two 
+  <tt>Type*</tt> values, the types are identical if the pointers are identical.
+  </p>
+</div>
 
-    <p>which is much cleaner, especially if you are creating
-    long instruction streams.</p></li>
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+  <a name="m_Value">Important Public Methods</a>
+</div>
 
-  <li>Insertion into an implicit instruction list
+<div class="doc_text">
 
-    <p><tt>Instruction</tt> instances that are already in <tt>BasicBlock</tt>s
-    are implicitly associated with an existing instruction list: the instruction
-    list of the enclosing basic block. Thus, we could have accomplished the same
-    thing as the above code without being given a <tt>BasicBlock</tt> by doing:
-    </p>
+<ul>
+  <li><tt>bool isInteger() const</tt>: Returns true for any integer type.</li>
 
-      <pre>  Instruction *pi = ...;<br>  Instruction *newInst = new Instruction(...);<br>  pi-&gt;getParent()-&gt;getInstList().insert(pi, newInst);<br></pre>
+  <li><tt>bool isFloatingPoint()</tt>: Return true if this is one of the two
+  floating point types.</li>
 
-    <p>In fact, this sequence of steps occurs so frequently that the
-    <tt>Instruction</tt> class and <tt>Instruction</tt>-derived classes provide
-    constructors which take (as a default parameter) a pointer to an
-    <tt>Instruction</tt> which the newly-created <tt>Instruction</tt> should
-    precede.  That is, <tt>Instruction</tt> constructors are capable of
-    inserting the newly-created instance into the <tt>BasicBlock</tt> of a
-    provided instruction, immediately before that instruction.  Using an
-    <tt>Instruction</tt> constructor with a <tt>insertBefore</tt> (default)
-    parameter, the above code becomes:</p>
+  <li><tt>bool isAbstract()</tt>: Return true if the type is abstract (contains
+  an OpaqueType anywhere in its definition).</li>
 
-      <pre>Instruction* pi = ...;<br>Instruction* newInst = new Instruction(..., pi);<br></pre>
+  <li><tt>bool isSized()</tt>: Return true if the type has known size. Things
+  that don't have a size are abstract types, labels and void.</li>
 
-    <p>which is much cleaner, especially if you're creating a lot of
-instructions and adding them to <tt>BasicBlock</tt>s.</p></li>
 </ul>
-
 </div>
 
-<!--_______________________________________________________________________-->
+<!-- _______________________________________________________________________ -->
 <div class="doc_subsubsection">
-  <a name="schanges_deleting">Deleting <tt>Instruction</tt>s</a>
+  <a name="m_Value">Important Derived Types</a>
+</div>
+<div class="doc_text">
+<dl>
+  <dt><tt>IntegerType</tt></dt>
+  <dd>Subclass of DerivedType that represents integer types of any bit width. 
+  Any bit width between <tt>IntegerType::MIN_INT_BITS</tt> (1) and 
+  <tt>IntegerType::MAX_INT_BITS</tt> (~8 million) can be represented.
+  <ul>
+    <li><tt>static const IntegerType* get(unsigned NumBits)</tt>: get an integer
+    type of a specific bit width.</li>
+    <li><tt>unsigned getBitWidth() const</tt>: Get the bit width of an integer
+    type.</li>
+  </ul>
+  </dd>
+  <dt><tt>SequentialType</tt></dt>
+  <dd>This is subclassed by ArrayType and PointerType
+    <ul>
+      <li><tt>const Type * getElementType() const</tt>: Returns the type of each
+      of the elements in the sequential type. </li>
+    </ul>
+  </dd>
+  <dt><tt>ArrayType</tt></dt>
+  <dd>This is a subclass of SequentialType and defines the interface for array 
+  types.
+    <ul>
+      <li><tt>unsigned getNumElements() const</tt>: Returns the number of 
+      elements in the array. </li>
+    </ul>
+  </dd>
+  <dt><tt>PointerType</tt></dt>
+  <dd>Subclass of SequentialType for pointer types.</dd>
+  <dt><tt>VectorType</tt></dt>
+  <dd>Subclass of SequentialType for vector types. A 
+  vector type is similar to an ArrayType but is distinguished because it is 
+  a first class type wherease ArrayType is not. Vector types are used for 
+  vector operations and are usually small vectors of of an integer or floating 
+  point type.</dd>
+  <dt><tt>StructType</tt></dt>
+  <dd>Subclass of DerivedTypes for struct types.</dd>
+  <dt><tt><a name="FunctionType">FunctionType</a></tt></dt>
+  <dd>Subclass of DerivedTypes for function types.
+    <ul>
+      <li><tt>bool isVarArg() const</tt>: Returns true if its a vararg
+      function</li>
+      <li><tt> const Type * getReturnType() const</tt>: Returns the
+      return type of the function.</li>
+      <li><tt>const Type * getParamType (unsigned i)</tt>: Returns
+      the type of the ith parameter.</li>
+      <li><tt> const unsigned getNumParams() const</tt>: Returns the
+      number of formal parameters.</li>
+    </ul>
+  </dd>
+  <dt><tt>OpaqueType</tt></dt>
+  <dd>Sublcass of DerivedType for abstract types. This class 
+  defines no content and is used as a placeholder for some other type. Note 
+  that OpaqueType is used (temporarily) during type resolution for forward 
+  references of types. Once the referenced type is resolved, the OpaqueType 
+  is replaced with the actual type. OpaqueType can also be used for data 
+  abstraction. At link time opaque types can be resolved to actual types 
+  of the same name.</dd>
+</dl>
+</div>
+
+
+
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+  <a name="Module">The <tt>Module</tt> class</a>
 </div>
 
 <div class="doc_text">
 
-<p>Deleting an instruction from an existing sequence of instructions that form a
-<a href="#BasicBlock"><tt>BasicBlock</tt></a> is very straight-forward. First,
-you must have a pointer to the instruction that you wish to delete.  Second, you
-need to obtain the pointer to that instruction's basic block. You use the
-pointer to the basic block to get its list of instructions and then use the
-erase function to remove your instruction. For example:</p>
+<p><tt>#include "<a
+href="/doxygen/Module_8h-source.html">llvm/Module.h</a>"</tt><br> doxygen info:
+<a href="/doxygen/classllvm_1_1Module.html">Module Class</a></p>
 
-  <pre>  <a href="#Instruction">Instruction</a> *I = .. ;<br>  <a
- href="#BasicBlock">BasicBlock</a> *BB = I-&gt;getParent();<br>  BB-&gt;getInstList().erase(I);<br></pre>
+<p>The <tt>Module</tt> class represents the top level structure present in LLVM
+programs.  An LLVM module is effectively either a translation unit of the
+original program or a combination of several translation units merged by the
+linker.  The <tt>Module</tt> class keeps track of a list of <a
+href="#Function"><tt>Function</tt></a>s, a list of <a
+href="#GlobalVariable"><tt>GlobalVariable</tt></a>s, and a <a
+href="#SymbolTable"><tt>SymbolTable</tt></a>.  Additionally, it contains a few
+helpful member functions that try to make common operations easy.</p>
 
 </div>
 
-<!--_______________________________________________________________________-->
+<!-- _______________________________________________________________________ -->
 <div class="doc_subsubsection">
-  <a name="schanges_replacing">Replacing an <tt>Instruction</tt> with another
-  <tt>Value</tt></a>
+  <a name="m_Module">Important Public Members of the <tt>Module</tt> class</a>
 </div>
 
 <div class="doc_text">
 
-<p><i>Replacing individual instructions</i></p>
+<ul>
+  <li><tt>Module::Module(std::string name = "")</tt></li>
+</ul>
 
-<p>Including "<a href="/doxygen/BasicBlockUtils_8h-source.html">llvm/Transforms/Utils/BasicBlockUtils.h</a>"
-permits use of two very useful replace functions: <tt>ReplaceInstWithValue</tt>
-and <tt>ReplaceInstWithInst</tt>.</p>
+<p>Constructing a <a href="#Module">Module</a> is easy. You can optionally
+provide a name for it (probably based on the name of the translation unit).</p>
 
-<h4><a name="schanges_deleting">Deleting <tt>Instruction</tt>s</a></h4>
+<ul>
+  <li><tt>Module::iterator</tt> - Typedef for function list iterator<br>
+    <tt>Module::const_iterator</tt> - Typedef for const_iterator.<br>
+
+    <tt>begin()</tt>, <tt>end()</tt>
+    <tt>size()</tt>, <tt>empty()</tt>
+
+    <p>These are forwarding methods that make it easy to access the contents of
+    a <tt>Module</tt> object's <a href="#Function"><tt>Function</tt></a>
+    list.</p></li>
+
+  <li><tt>Module::FunctionListType &amp;getFunctionList()</tt>
+
+    <p> Returns the list of <a href="#Function"><tt>Function</tt></a>s.  This is
+    necessary to use when you need to update the list or perform a complex
+    action that doesn't have a forwarding method.</p>
+
+    <p><!--  Global Variable --></p></li> 
+</ul>
+
+<hr>
 
 <ul>
-  <li><tt>ReplaceInstWithValue</tt>
+  <li><tt>Module::global_iterator</tt> - Typedef for global variable list iterator<br>
 
-    <p>This function replaces all uses (within a basic block) of a given
-    instruction with a value, and then removes the original instruction. The
-    following example illustrates the replacement of the result of a particular
-    <tt>AllocaInst</tt> that allocates memory for a single integer with an null
-    pointer to an integer.</p>
+    <tt>Module::const_global_iterator</tt> - Typedef for const_iterator.<br>
 
-      <pre>AllocaInst* instToReplace = ...;<br>BasicBlock::iterator ii(instToReplace);<br>ReplaceInstWithValue(instToReplace-&gt;getParent()-&gt;getInstList(), ii,<br>                     Constant::getNullValue(PointerType::get(Type::IntTy)));<br></pre></li>
+    <tt>global_begin()</tt>, <tt>global_end()</tt>
+    <tt>global_size()</tt>, <tt>global_empty()</tt>
 
-  <li><tt>ReplaceInstWithInst</tt> 
+    <p> These are forwarding methods that make it easy to access the contents of
+    a <tt>Module</tt> object's <a
+    href="#GlobalVariable"><tt>GlobalVariable</tt></a> list.</p></li>
 
-    <p>This function replaces a particular instruction with another
-    instruction. The following example illustrates the replacement of one
-    <tt>AllocaInst</tt> with another.</p>
+  <li><tt>Module::GlobalListType &amp;getGlobalList()</tt>
+
+    <p>Returns the list of <a
+    href="#GlobalVariable"><tt>GlobalVariable</tt></a>s.  This is necessary to
+    use when you need to update the list or perform a complex action that
+    doesn't have a forwarding method.</p>
 
-      <pre>AllocaInst* instToReplace = ...;<br>BasicBlock::iterator ii(instToReplace);<br>ReplaceInstWithInst(instToReplace-&gt;getParent()-&gt;getInstList(), ii,<br>                    new AllocaInst(Type::IntTy, 0, "ptrToReplacedInt"));<br></pre></li>
+    <p><!--  Symbol table stuff --> </p></li>
 </ul>
 
-<p><i>Replacing multiple uses of <tt>User</tt>s and <tt>Value</tt>s</i></p>
+<hr>
 
-<p>You can use <tt>Value::replaceAllUsesWith</tt> and
-<tt>User::replaceUsesOfWith</tt> to change more than one use at a time.  See the
-doxygen documentation for the <a href="/doxygen/structllvm_1_1Value.html">Value Class</a>
-and <a href="/doxygen/classllvm_1_1User.html">User Class</a>, respectively, for more
-information.</p>
+<ul>
+  <li><tt><a href="#SymbolTable">SymbolTable</a> *getSymbolTable()</tt>
 
-<!-- Value::replaceAllUsesWith User::replaceUsesOfWith Point out:
-include/llvm/Transforms/Utils/ especially BasicBlockUtils.h with:
-ReplaceInstWithValue, ReplaceInstWithInst -->
+    <p>Return a reference to the <a href="#SymbolTable"><tt>SymbolTable</tt></a>
+    for this <tt>Module</tt>.</p>
 
-</div>
+    <p><!--  Convenience methods --></p></li>
+</ul>
 
-<!-- *********************************************************************** -->
-<div class="doc_section">
-  <a name="coreclasses">The Core LLVM Class Hierarchy Reference </a>
-</div>
-<!-- *********************************************************************** -->
+<hr>
 
-<div class="doc_text">
+<ul>
+  <li><tt><a href="#Function">Function</a> *getFunction(const std::string
+  &amp;Name, const <a href="#FunctionType">FunctionType</a> *Ty)</tt>
 
-<p>The Core LLVM classes are the primary means of representing the program
-being inspected or transformed.  The core LLVM classes are defined in
-header files in the <tt>include/llvm/</tt> directory, and implemented in
-the <tt>lib/VMCore</tt> directory.</p>
+    <p>Look up the specified function in the <tt>Module</tt> <a
+    href="#SymbolTable"><tt>SymbolTable</tt></a>. If it does not exist, return
+    <tt>null</tt>.</p></li>
+
+  <li><tt><a href="#Function">Function</a> *getOrInsertFunction(const
+  std::string &amp;Name, const <a href="#FunctionType">FunctionType</a> *T)</tt>
+
+    <p>Look up the specified function in the <tt>Module</tt> <a
+    href="#SymbolTable"><tt>SymbolTable</tt></a>. If it does not exist, add an
+    external declaration for the function and return it.</p></li>
+
+  <li><tt>std::string getTypeName(const <a href="#Type">Type</a> *Ty)</tt>
+
+    <p>If there is at least one entry in the <a
+    href="#SymbolTable"><tt>SymbolTable</tt></a> for the specified <a
+    href="#Type"><tt>Type</tt></a>, return it.  Otherwise return the empty
+    string.</p></li>
+
+  <li><tt>bool addTypeName(const std::string &amp;Name, const <a
+  href="#Type">Type</a> *Ty)</tt>
+
+    <p>Insert an entry in the <a href="#SymbolTable"><tt>SymbolTable</tt></a>
+    mapping <tt>Name</tt> to <tt>Ty</tt>. If there is already an entry for this
+    name, true is returned and the <a
+    href="#SymbolTable"><tt>SymbolTable</tt></a> is not modified.</p></li>
+</ul>
 
 </div>
 
+
 <!-- ======================================================================= -->
 <div class="doc_subsection">
   <a name="Value">The <tt>Value</tt> class</a>
 </div>
 
-<div>
+<div class="doc_text">
 
 <p><tt>#include "<a href="/doxygen/Value_8h-source.html">llvm/Value.h</a>"</tt>
 <br> 
-doxygen info: <a href="/doxygen/structllvm_1_1Value.html">Value Class</a></p>
+doxygen info: <a href="/doxygen/classllvm_1_1Value.html">Value Class</a></p>
 
 <p>The <tt>Value</tt> class is the most important class in the LLVM Source
 base.  It represents a typed value that may be used (among other things) as an
@@ -975,9 +2513,13 @@ and this <a href="#Type">Type</a> is available through the <tt>getType()</tt>
 method. In addition, all LLVM values can be named.  The "name" of the
 <tt>Value</tt> is a symbolic string printed in the LLVM code:</p>
 
-  <pre>   %<b>foo</b> = add int 1, 2<br></pre>
+<div class="doc_code">
+<pre>
+%<b>foo</b> = add i32 1, 2
+</pre>
+</div>
 
-<p><a name="#nameWarning">The name of this instruction is "foo".</a> <b>NOTE</b>
+<p><a name="nameWarning">The name of this instruction is "foo".</a> <b>NOTE</b>
 that the name of any value may be missing (an empty string), so names should
 <b>ONLY</b> be used for debugging (making the source code easier to read,
 debugging printouts), they should not be used to keep track of values or map
@@ -1036,7 +2578,12 @@ be aware of the <a href="#nameWarning">precaution above</a>.</p>
     produces a constant value (for example through constant folding), you can
     replace all uses of the instruction with the constant like this:</p>
 
-    <pre>  Inst-&gt;replaceAllUsesWith(ConstVal);<br></pre>
+<div class="doc_code">
+<pre>
+Inst-&gt;replaceAllUsesWith(ConstVal);
+</pre>
+</div>
+
 </ul>
 
 </div>
@@ -1085,9 +2632,9 @@ convenient form for direct access.</p></li>
 
   <li><tt>User::op_iterator</tt> - Typedef for iterator over the operand
 list<br>
-    <tt>User::op_const_iterator</tt> <tt>use_iterator op_begin()</tt> -
-Get an iterator to the start of the operand list.<br>
-    <tt>use_iterator op_end()</tt> - Get an iterator to the end of the
+    <tt>op_iterator op_begin()</tt> - Get an iterator to the start of 
+the operand list.<br>
+    <tt>op_iterator op_end()</tt> - Get an iterator to the end of the
 operand list.
     <p> Together, these methods make up the iterator based interface to
 the operands of a <tt>User</tt>.</p></li>
@@ -1124,15 +2671,38 @@ way as for other <a href="#User"><tt>User</tt></a>s (with the
 the <tt>Instruction</tt> class is the <tt>llvm/Instruction.def</tt> file. This
 file contains some meta-data about the various different types of instructions
 in LLVM.  It describes the enum values that are used as opcodes (for example
-<tt>Instruction::Add</tt> and <tt>Instruction::SetLE</tt>), as well as the
+<tt>Instruction::Add</tt> and <tt>Instruction::ICmp</tt>), as well as the
 concrete sub-classes of <tt>Instruction</tt> that implement the instruction (for
 example <tt><a href="#BinaryOperator">BinaryOperator</a></tt> and <tt><a
-href="#SetCondInst">SetCondInst</a></tt>).  Unfortunately, the use of macros in
+href="#CmpInst">CmpInst</a></tt>).  Unfortunately, the use of macros in
 this file confuses doxygen, so these enum values don't show up correctly in the
 <a href="/doxygen/classllvm_1_1Instruction.html">doxygen output</a>.</p>
 
 </div>
 
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+  <a name="s_Instruction">Important Subclasses of the <tt>Instruction</tt>
+  class</a>
+</div>
+<div class="doc_text">
+  <ul>
+    <li><tt><a name="BinaryOperator">BinaryOperator</a></tt>
+    <p>This subclasses represents all two operand instructions whose operands
+    must be the same type, except for the comparison instructions.</p></li>
+    <li><tt><a name="CastInst">CastInst</a></tt>
+    <p>This subclass is the parent of the 12 casting instructions. It provides
+    common operations on cast instructions.</p>
+    <li><tt><a name="CmpInst">CmpInst</a></tt>
+    <p>This subclass respresents the two comparison instructions, 
+    <a href="LangRef.html#i_icmp">ICmpInst</a> (integer opreands), and
+    <a href="LangRef.html#i_fcmp">FCmpInst</a> (floating point operands).</p>
+    <li><tt><a name="TerminatorInst">TerminatorInst</a></tt>
+    <p>This subclass is the parent of all terminator instructions (those which
+    can terminate a block).</p>
+  </ul>
+  </div>
+
 <!-- _______________________________________________________________________ -->
 <div class="doc_subsubsection">
   <a name="m_Instruction">Important Public Members of the <tt>Instruction</tt>
@@ -1150,96 +2720,81 @@ this  <tt>Instruction</tt> is embedded into.</p></li>
       <tt>call</tt>,<tt>free</tt>,<tt>invoke</tt>, or <tt>store</tt>.</p></li>
   <li><tt>unsigned getOpcode()</tt>
     <p>Returns the opcode for the <tt>Instruction</tt>.</p></li>
-  <li><tt><a href="#Instruction">Instruction</a> *clone() const</tt>
-    <p>Returns another instance of the specified instruction, identical
-in all ways to the original except that the instruction has no parent
-(ie it's not embedded into a <a href="#BasicBlock"><tt>BasicBlock</tt></a>),
-and it has no name</p></li>
-</ul>
-
-</div>
-
-<!-- ======================================================================= -->
-<div class="doc_subsection">
-  <a name="BasicBlock">The <tt>BasicBlock</tt> class</a>
-</div>
-
-<div class="doc_text">
-
-<p><tt>#include "<a
-href="/doxygen/BasicBlock_8h-source.html">llvm/BasicBlock.h</a>"</tt><br>
-doxygen info: <a href="/doxygen/structllvm_1_1BasicBlock.html">BasicBlock
-Class</a><br>
-Superclass: <a href="#Value"><tt>Value</tt></a></p>
-
-<p>This class represents a single entry multiple exit section of the code,
-commonly known as a basic block by the compiler community.  The
-<tt>BasicBlock</tt> class maintains a list of <a
-href="#Instruction"><tt>Instruction</tt></a>s, which form the body of the block.
-Matching the language definition, the last element of this list of instructions
-is always a terminator instruction (a subclass of the <a
-href="#TerminatorInst"><tt>TerminatorInst</tt></a> class).</p>
-
-<p>In addition to tracking the list of instructions that make up the block, the
-<tt>BasicBlock</tt> class also keeps track of the <a
-href="#Function"><tt>Function</tt></a> that it is embedded into.</p>
-
-<p>Note that <tt>BasicBlock</tt>s themselves are <a
-href="#Value"><tt>Value</tt></a>s, because they are referenced by instructions
-like branches and can go in the switch tables. <tt>BasicBlock</tt>s have type
-<tt>label</tt>.</p>
+  <li><tt><a href="#Instruction">Instruction</a> *clone() const</tt>
+    <p>Returns another instance of the specified instruction, identical
+in all ways to the original except that the instruction has no parent
+(ie it's not embedded into a <a href="#BasicBlock"><tt>BasicBlock</tt></a>),
+and it has no name</p></li>
+</ul>
 
 </div>
 
-<!-- _______________________________________________________________________ -->
-<div class="doc_subsubsection">
-  <a name="m_BasicBlock">Important Public Members of the <tt>BasicBlock</tt>
-  class</a>
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+  <a name="Constant">The <tt>Constant</tt> class and subclasses</a>
 </div>
 
 <div class="doc_text">
 
+<p>Constant represents a base class for different types of constants. It
+is subclassed by ConstantInt, ConstantArray, etc. for representing 
+the various types of Constants.  <a href="#GlobalValue">GlobalValue</a> is also
+a subclass, which represents the address of a global variable or function.
+</p>
+
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">Important Subclasses of Constant </div>
+<div class="doc_text">
 <ul>
-  <li><tt>BasicBlock(const std::string &amp;Name = "", </tt><tt><a
- href="#Function">Function</a> *Parent = 0)</tt>
-    <p>The <tt>BasicBlock</tt> constructor is used to create new basic
-blocks for insertion into a function.  The constructor optionally takes
-a name for the new block, and a <a href="#Function"><tt>Function</tt></a>
-to insert it into.  If the <tt>Parent</tt> parameter is specified, the
-new <tt>BasicBlock</tt> is automatically inserted at the end of the
-specified <a href="#Function"><tt>Function</tt></a>, if not specified,
-the BasicBlock must be manually inserted into the <a href="#Function"><tt>Function</tt></a>.</p>
+  <li>ConstantInt : This subclass of Constant represents an integer constant of
+  any width.
+    <ul>
+      <li><tt>const APInt&amp; getValue() const</tt>: Returns the underlying
+      value of this constant, an APInt value.</li>
+      <li><tt>int64_t getSExtValue() const</tt>: Converts the underlying APInt
+      value to an int64_t via sign extension. If the value (not the bit width)
+      of the APInt is too large to fit in an int64_t, an assertion will result.
+      For this reason, use of this method is discouraged.</li>
+      <li><tt>uint64_t getZExtValue() const</tt>: Converts the underlying APInt
+      value to a uint64_t via zero extension. IF the value (not the bit width)
+      of the APInt is too large to fit in a uint64_t, an assertion will result.
+      For this reason, use of this method is discouraged.</li>
+      <li><tt>static ConstantInt* get(const APInt&amp; Val)</tt>: Returns the
+      ConstantInt object that represents the value provided by <tt>Val</tt>.
+      The type is implied as the IntegerType that corresponds to the bit width
+      of <tt>Val</tt>.</li>
+      <li><tt>static ConstantInt* get(const Type *Ty, uint64_t Val)</tt>: 
+      Returns the ConstantInt object that represents the value provided by 
+      <tt>Val</tt> for integer type <tt>Ty</tt>.</li>
+    </ul>
+  </li>
+  <li>ConstantFP : This class represents a floating point constant.
+    <ul>
+      <li><tt>double getValue() const</tt>: Returns the underlying value of 
+      this constant. </li>
+    </ul>
+  </li>
+  <li>ConstantArray : This represents a constant array.
+    <ul>
+      <li><tt>const std::vector&lt;Use&gt; &amp;getValues() const</tt>: Returns 
+      a vector of component constants that makeup this array. </li>
+    </ul>
+  </li>
+  <li>ConstantStruct : This represents a constant struct.
+    <ul>
+      <li><tt>const std::vector&lt;Use&gt; &amp;getValues() const</tt>: Returns 
+      a vector of component constants that makeup this array. </li>
+    </ul>
+  </li>
+  <li>GlobalValue : This represents either a global variable or a function. In 
+  either case, the value is a constant fixed address (after linking). 
   </li>
-  <li><tt>BasicBlock::iterator</tt> - Typedef for instruction list
-iterator<br>
-    <tt>BasicBlock::const_iterator</tt> - Typedef for const_iterator.<br>
-    <tt>begin()</tt>, <tt>end()</tt>, <tt>front()</tt>, <tt>back()</tt>,<tt>size()</tt>,<tt>empty()</tt>,<tt>rbegin()</tt>,<tt>rend()
-- </tt>STL style functions for accessing the instruction list.
-    <p> These methods and typedefs are forwarding functions that have
-the same semantics as the standard library methods of the same names.
-These methods expose the underlying instruction list of a basic block in
-a way that is easy to manipulate.  To get the full complement of
-container operations (including operations to update the list), you must
-use the <tt>getInstList()</tt> method.</p></li>
-  <li><tt>BasicBlock::InstListType &amp;getInstList()</tt>
-    <p> This method is used to get access to the underlying container
-that actually holds the Instructions.  This method must be used when
-there isn't a forwarding function in the <tt>BasicBlock</tt> class for
-the operation that you would like to perform.  Because there are no
-forwarding functions for "updating" operations, you need to use this if
-you want to update the contents of a <tt>BasicBlock</tt>.</p></li>
-  <li><tt><a href="#Function">Function</a> *getParent()</tt>
-    <p> Returns a pointer to <a href="#Function"><tt>Function</tt></a>
-the block is embedded into, or a null pointer if it is homeless.</p></li>
-  <li><tt><a href="#TerminatorInst">TerminatorInst</a> *getTerminator()</tt>
-    <p> Returns a pointer to the terminator instruction that appears at
-the end of the <tt>BasicBlock</tt>.  If there is no terminator
-instruction, or if the last instruction in the block is not a
-terminator, then a null pointer is returned.</p></li>
 </ul>
-
 </div>
 
+
 <!-- ======================================================================= -->
 <div class="doc_subsection">
   <a name="GlobalValue">The <tt>GlobalValue</tt> class</a>
@@ -1251,8 +2806,8 @@ terminator, then a null pointer is returned.</p></li>
 href="/doxygen/GlobalValue_8h-source.html">llvm/GlobalValue.h</a>"</tt><br>
 doxygen info: <a href="/doxygen/classllvm_1_1GlobalValue.html">GlobalValue
 Class</a><br>
-Superclasses: <a href="#User"><tt>User</tt></a>, <a
-href="#Value"><tt>Value</tt></a></p>
+Superclasses: <a href="#Constant"><tt>Constant</tt></a>, 
+<a href="#User"><tt>User</tt></a>, <a href="#Value"><tt>Value</tt></a></p>
 
 <p>Global values (<a href="#GlobalVariable"><tt>GlobalVariable</tt></a>s or <a
 href="#Function"><tt>Function</tt></a>s) are the only LLVM values that are
@@ -1276,11 +2831,11 @@ global is always a pointer to its contents. It is important to remember this
 when using the <tt>GetElementPtrInst</tt> instruction because this pointer must
 be dereferenced first. For example, if you have a <tt>GlobalVariable</tt> (a
 subclass of <tt>GlobalValue)</tt> that is an array of 24 ints, type <tt>[24 x
-int]</tt>, then the <tt>GlobalVariable</tt> is a pointer to that array. Although
+i32]</tt>, then the <tt>GlobalVariable</tt> is a pointer to that array. Although
 the address of the first element of this array and the value of the
 <tt>GlobalVariable</tt> are the same, they have different types. The
-<tt>GlobalVariable</tt>'s type is <tt>[24 x int]</tt>. The first element's type
-is <tt>int.</tt> Because of this, accessing a global value requires you to
+<tt>GlobalVariable</tt>'s type is <tt>[24 x i32]</tt>. The first element's type
+is <tt>i32.</tt> Because of this, accessing a global value requires you to
 dereference the pointer with <tt>GetElementPtrInst</tt> first, then its elements
 can be accessed. This is explained in the <a href="LangRef.html#globalvars">LLVM
 Language Reference Manual</a>.</p>
@@ -1319,15 +2874,17 @@ GlobalValue is currently embedded into.</p></li>
 <p><tt>#include "<a
 href="/doxygen/Function_8h-source.html">llvm/Function.h</a>"</tt><br> doxygen
 info: <a href="/doxygen/classllvm_1_1Function.html">Function Class</a><br>
-Superclasses: <a href="#GlobalValue"><tt>GlobalValue</tt></a>, <a
-href="#User"><tt>User</tt></a>, <a href="#Value"><tt>Value</tt></a></p>
+Superclasses: <a href="#GlobalValue"><tt>GlobalValue</tt></a>, 
+<a href="#Constant"><tt>Constant</tt></a>, 
+<a href="#User"><tt>User</tt></a>, 
+<a href="#Value"><tt>Value</tt></a></p>
 
 <p>The <tt>Function</tt> class represents a single procedure in LLVM.  It is
 actually one of the more complex classes in the LLVM heirarchy because it must
 keep track of a large amount of data.  The <tt>Function</tt> class keeps track
-of a list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s, a list of formal <a
-href="#Argument"><tt>Argument</tt></a>s, and a <a
-href="#SymbolTable"><tt>SymbolTable</tt></a>.</p>
+of a list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s, a list of formal 
+<a href="#Argument"><tt>Argument</tt></a>s, and a 
+<a href="#SymbolTable"><tt>SymbolTable</tt></a>.</p>
 
 <p>The list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s is the most
 commonly used part of <tt>Function</tt> objects.  The list imposes an implicit
@@ -1371,14 +2928,14 @@ is its address (after linking) which is guaranteed to be constant.</p>
 
 <ul>
   <li><tt>Function(const </tt><tt><a href="#FunctionType">FunctionType</a>
-  *Ty, bool isInternal, const std::string &amp;N = "", Module* Parent = 0)</tt>
+  *Ty, LinkageTypes Linkage, const std::string &amp;N = "", Module* Parent = 0)</tt>
 
     <p>Constructor used when you need to create new <tt>Function</tt>s to add
     the the program.  The constructor must specify the type of the function to
-    create and whether or not it should start out with internal or external
-    linkage. The&nbsp;<a href="#FunctionType"><tt>FunctionType</tt></a> argument
+    create and what type of linkage the function should have. The <a 
+    href="#FunctionType"><tt>FunctionType</tt></a> argument
     specifies the formal arguments and return value for the function. The same
-    <a href="#FunctionTypel"><tt>FunctionType</tt></a> value can be used to
+    <a href="#FunctionType"><tt>FunctionType</tt></a> value can be used to
     create multiple functions. The <tt>Parent</tt> argument specifies the Module
     in which the function is defined. If this argument is provided, the function
     will automatically be inserted into that module's list of
@@ -1393,8 +2950,8 @@ is its address (after linking) which is guaranteed to be constant.</p>
   <li><tt>Function::iterator</tt> - Typedef for basic block list iterator<br>
     <tt>Function::const_iterator</tt> - Typedef for const_iterator.<br>
 
-    <tt>begin()</tt>, <tt>end()</tt>, <tt>front()</tt>, <tt>back()</tt>,
-    <tt>size()</tt>, <tt>empty()</tt>, <tt>rbegin()</tt>, <tt>rend()</tt>
+    <tt>begin()</tt>, <tt>end()</tt>
+    <tt>size()</tt>, <tt>empty()</tt>
 
     <p>These are forwarding methods that make it easy to access the contents of
     a <tt>Function</tt> object's <a href="#BasicBlock"><tt>BasicBlock</tt></a>
@@ -1406,12 +2963,12 @@ is its address (after linking) which is guaranteed to be constant.</p>
     is necessary to use when you need to update the list or perform a complex
     action that doesn't have a forwarding method.</p></li>
 
-  <li><tt>Function::aiterator</tt> - Typedef for the argument list
+  <li><tt>Function::arg_iterator</tt> - Typedef for the argument list
 iterator<br>
-    <tt>Function::const_aiterator</tt> - Typedef for const_iterator.<br>
+    <tt>Function::const_arg_iterator</tt> - Typedef for const_iterator.<br>
 
-    <tt>abegin()</tt>, <tt>aend()</tt>, <tt>afront()</tt>, <tt>aback()</tt>,
-    <tt>asize()</tt>, <tt>aempty()</tt>, <tt>arbegin()</tt>, <tt>arend()</tt>
+    <tt>arg_begin()</tt>, <tt>arg_end()</tt>
+    <tt>arg_size()</tt>, <tt>arg_empty()</tt>
 
     <p>These are forwarding methods that make it easy to access the contents of
     a <tt>Function</tt> object's <a href="#Argument"><tt>Argument</tt></a>
@@ -1456,20 +3013,22 @@ iterator<br>
 href="/doxygen/GlobalVariable_8h-source.html">llvm/GlobalVariable.h</a>"</tt>
 <br>
 doxygen info: <a href="/doxygen/classllvm_1_1GlobalVariable.html">GlobalVariable
-Class</a><br> Superclasses: <a href="#GlobalValue"><tt>GlobalValue</tt></a>, <a
-href="#User"><tt>User</tt></a>, <a href="#Value"><tt>Value</tt></a></p>
+ Class</a><br>
+Superclasses: <a href="#GlobalValue"><tt>GlobalValue</tt></a>, 
+<a href="#Constant"><tt>Constant</tt></a>,
+<a href="#User"><tt>User</tt></a>,
+<a href="#Value"><tt>Value</tt></a></p>
 
 <p>Global variables are represented with the (suprise suprise)
 <tt>GlobalVariable</tt> class. Like functions, <tt>GlobalVariable</tt>s are also
 subclasses of <a href="#GlobalValue"><tt>GlobalValue</tt></a>, and as such are
 always referenced by their address (global values must live in memory, so their
-"name" refers to their address). See <a
-href="#GlobalValue"><tt>GlobalValue</tt></a> for more on this. Global variables
-may have an initial value (which must be a <a
-href="#Constant"><tt>Constant</tt></a>), and if they have an initializer, they
-may be marked as "constant" themselves (indicating that their contents never
-change at runtime).</p>
-
+"name" refers to their constant address). See 
+<a href="#GlobalValue"><tt>GlobalValue</tt></a> for more on this.  Global 
+variables may have an initial value (which must be a 
+<a href="#Constant"><tt>Constant</tt></a>), and if they have an initializer, 
+they may be marked as "constant" themselves (indicating that their contents 
+never change at runtime).</p>
 </div>
 
 <!-- _______________________________________________________________________ -->
@@ -1515,287 +3074,98 @@ change at runtime).</p>
 
 </div>
 
+
 <!-- ======================================================================= -->
 <div class="doc_subsection">
-  <a name="Module">The <tt>Module</tt> class</a>
+  <a name="BasicBlock">The <tt>BasicBlock</tt> class</a>
 </div>
 
 <div class="doc_text">
 
 <p><tt>#include "<a
-href="/doxygen/Module_8h-source.html">llvm/Module.h</a>"</tt><br> doxygen info:
-<a href="/doxygen/classllvm_1_1Module.html">Module Class</a></p>
-
-<p>The <tt>Module</tt> class represents the top level structure present in LLVM
-programs.  An LLVM module is effectively either a translation unit of the
-original program or a combination of several translation units merged by the
-linker.  The <tt>Module</tt> class keeps track of a list of <a
-href="#Function"><tt>Function</tt></a>s, a list of <a
-href="#GlobalVariable"><tt>GlobalVariable</tt></a>s, and a <a
-href="#SymbolTable"><tt>SymbolTable</tt></a>.  Additionally, it contains a few
-helpful member functions that try to make common operations easy.</p>
-
-</div>
-
-<!-- _______________________________________________________________________ -->
-<div class="doc_subsubsection">
-  <a name="m_Module">Important Public Members of the <tt>Module</tt> class</a>
-</div>
-
-<div class="doc_text">
-
-<ul>
-  <li><tt>Module::Module(std::string name = "")</tt></li>
-</ul>
-
-<p>Constructing a <a href="#Module">Module</a> is easy. You can optionally
-provide a name for it (probably based on the name of the translation unit).</p>
-
-<ul>
-  <li><tt>Module::iterator</tt> - Typedef for function list iterator<br>
-    <tt>Module::const_iterator</tt> - Typedef for const_iterator.<br>
-
-    <tt>begin()</tt>, <tt>end()</tt>, <tt>front()</tt>, <tt>back()</tt>,
-    <tt>size()</tt>, <tt>empty()</tt>, <tt>rbegin()</tt>, <tt>rend()</tt>
-
-    <p>These are forwarding methods that make it easy to access the contents of
-    a <tt>Module</tt> object's <a href="#Function"><tt>Function</tt></a>
-    list.</p></li>
-
-  <li><tt>Module::FunctionListType &amp;getFunctionList()</tt>
-
-    <p> Returns the list of <a href="#Function"><tt>Function</tt></a>s.  This is
-    necessary to use when you need to update the list or perform a complex
-    action that doesn't have a forwarding method.</p>
-
-    <p><!--  Global Variable --></p></li> 
-</ul>
-
-<hr>
-
-<ul>
-  <li><tt>Module::giterator</tt> - Typedef for global variable list iterator<br>
-
-    <tt>Module::const_giterator</tt> - Typedef for const_iterator.<br>
-
-    <tt>gbegin()</tt>, <tt>gend()</tt>, <tt>gfront()</tt>, <tt>gback()</tt>,
-    <tt>gsize()</tt>, <tt>gempty()</tt>, <tt>grbegin()</tt>, <tt>grend()</tt>
-
-    <p> These are forwarding methods that make it easy to access the contents of
-    a <tt>Module</tt> object's <a
-    href="#GlobalVariable"><tt>GlobalVariable</tt></a> list.</p></li>
-
-  <li><tt>Module::GlobalListType &amp;getGlobalList()</tt>
-
-    <p>Returns the list of <a
-    href="#GlobalVariable"><tt>GlobalVariable</tt></a>s.  This is necessary to
-    use when you need to update the list or perform a complex action that
-    doesn't have a forwarding method.</p>
-
-    <p><!--  Symbol table stuff --> </p></li>
-</ul>
-
-<hr>
-
-<ul>
-  <li><tt><a href="#SymbolTable">SymbolTable</a> *getSymbolTable()</tt>
-
-    <p>Return a reference to the <a href="#SymbolTable"><tt>SymbolTable</tt></a>
-    for this <tt>Module</tt>.</p>
-
-    <p><!--  Convenience methods --></p></li>
-</ul>
-
-<hr>
-
-<ul>
-  <li><tt><a href="#Function">Function</a> *getFunction(const std::string
-  &amp;Name, const <a href="#FunctionType">FunctionType</a> *Ty)</tt>
-
-    <p>Look up the specified function in the <tt>Module</tt> <a
-    href="#SymbolTable"><tt>SymbolTable</tt></a>. If it does not exist, return
-    <tt>null</tt>.</p></li>
-
-  <li><tt><a href="#Function">Function</a> *getOrInsertFunction(const
-  std::string &amp;Name, const <a href="#FunctionType">FunctionType</a> *T)</tt>
-
-    <p>Look up the specified function in the <tt>Module</tt> <a
-    href="#SymbolTable"><tt>SymbolTable</tt></a>. If it does not exist, add an
-    external declaration for the function and return it.</p></li>
-
-  <li><tt>std::string getTypeName(const <a href="#Type">Type</a> *Ty)</tt>
-
-    <p>If there is at least one entry in the <a
-    href="#SymbolTable"><tt>SymbolTable</tt></a> for the specified <a
-    href="#Type"><tt>Type</tt></a>, return it.  Otherwise return the empty
-    string.</p></li>
-
-  <li><tt>bool addTypeName(const std::string &amp;Name, const <a
-  href="#Type">Type</a> *Ty)</tt>
-
-    <p>Insert an entry in the <a href="#SymbolTable"><tt>SymbolTable</tt></a>
-    mapping <tt>Name</tt> to <tt>Ty</tt>. If there is already an entry for this
-    name, true is returned and the <a
-    href="#SymbolTable"><tt>SymbolTable</tt></a> is not modified.</p></li>
-</ul>
-
-</div>
+href="/doxygen/BasicBlock_8h-source.html">llvm/BasicBlock.h</a>"</tt><br>
+doxygen info: <a href="/doxygen/structllvm_1_1BasicBlock.html">BasicBlock
+Class</a><br>
+Superclass: <a href="#Value"><tt>Value</tt></a></p>
 
-<!-- ======================================================================= -->
-<div class="doc_subsection">
-  <a name="Constant">The <tt>Constant</tt> class and subclasses</a>
-</div>
+<p>This class represents a single entry multiple exit section of the code,
+commonly known as a basic block by the compiler community.  The
+<tt>BasicBlock</tt> class maintains a list of <a
+href="#Instruction"><tt>Instruction</tt></a>s, which form the body of the block.
+Matching the language definition, the last element of this list of instructions
+is always a terminator instruction (a subclass of the <a
+href="#TerminatorInst"><tt>TerminatorInst</tt></a> class).</p>
 
-<div class="doc_text">
+<p>In addition to tracking the list of instructions that make up the block, the
+<tt>BasicBlock</tt> class also keeps track of the <a
+href="#Function"><tt>Function</tt></a> that it is embedded into.</p>
 
-<p>Constant represents a base class for different types of constants. It
-is subclassed by ConstantBool, ConstantInt, ConstantSInt, ConstantUInt,
-ConstantArray etc for representing the various types of Constants.</p>
+<p>Note that <tt>BasicBlock</tt>s themselves are <a
+href="#Value"><tt>Value</tt></a>s, because they are referenced by instructions
+like branches and can go in the switch tables. <tt>BasicBlock</tt>s have type
+<tt>label</tt>.</p>
 
 </div>
 
 <!-- _______________________________________________________________________ -->
 <div class="doc_subsubsection">
-  <a name="m_Value">Important Public Methods</a>
+  <a name="m_BasicBlock">Important Public Members of the <tt>BasicBlock</tt>
+  class</a>
 </div>
 
 <div class="doc_text">
-
 <ul>
-    <hr> Important Subclasses of Constant
-    <p> </p>
-    <ul>
-      <li>ConstantSInt : This subclass of Constant represents a signed
-integer constant.
-        <ul>
-       <li><tt>int64_t getValue() const</tt>: Returns the underlying value of
-this constant. </li>
-        </ul>
-      </li>
-      <li>ConstantUInt : This class represents an unsigned integer.
-        <ul>
-       <li><tt>uint64_t getValue() const</tt>: Returns the underlying value
-of this constant. </li>
-        </ul>
-      </li>
-      <li>ConstantFP : This class represents a floating point constant.
-        <ul>
-       <li><tt>double getValue() const</tt>: Returns the underlying value of
-this constant. </li>
-        </ul>
-      </li>
-      <li>ConstantBool : This represents a boolean constant.
-        <ul>
-       <li><tt>bool getValue() const</tt>: Returns the underlying value of
-this constant. </li>
-        </ul>
-      </li>
-      <li>ConstantArray : This represents a constant array.
-        <ul>
-       <li><tt>const std::vector&lt;Use&gt; &amp;getValues() const</tt>:
-Returns a Vecotr of component constants that makeup this array. </li>
-        </ul>
-      </li>
-      <li>ConstantStruct : This represents a constant struct.
-        <ul>
-       <li><tt>const std::vector&lt;Use&gt; &amp;getValues() const</tt>:
-Returns a Vecotr of component constants that makeup this array. </li>
-        </ul>
-      </li>
-      <li>GlobalValue : This represents either a global variable or a
-      function. In either case, the value is a constant fixed address
-      (after linking). 
-      </li>
-    </ul>
-  </li>
-</ul>
-</div>
-
-<!-- ======================================================================= -->
-<div class="doc_subsection">
-  <a name="Type">The <tt>Type</tt> class and Derived Types</a>
-</div>
-
-<div class="doc_text">
 
-<p>Type as noted earlier is also a subclass of a Value class.  Any primitive
-type (like int, short etc) in LLVM is an instance of Type Class.  All other
-types are instances of subclasses of type like FunctionType, ArrayType
-etc. DerivedType is the interface for all such dervied types including
-FunctionType, ArrayType, PointerType, StructType. Types can have names. They can
-be recursive (StructType).  There exists exactly one instance of any type
-structure at a time. This allows using pointer equality of Type *s for comparing
-types.</p>
-
-</div>
-
-<!-- _______________________________________________________________________ -->
-<div class="doc_subsubsection">
-  <a name="m_Value">Important Public Methods</a>
-</div>
+<li><tt>BasicBlock(const std::string &amp;Name = "", </tt><tt><a
+ href="#Function">Function</a> *Parent = 0)</tt>
 
-<div class="doc_text">
+<p>The <tt>BasicBlock</tt> constructor is used to create new basic blocks for
+insertion into a function.  The constructor optionally takes a name for the new
+block, and a <a href="#Function"><tt>Function</tt></a> to insert it into.  If
+the <tt>Parent</tt> parameter is specified, the new <tt>BasicBlock</tt> is
+automatically inserted at the end of the specified <a
+href="#Function"><tt>Function</tt></a>, if not specified, the BasicBlock must be
+manually inserted into the <a href="#Function"><tt>Function</tt></a>.</p></li>
 
-<ul>
+<li><tt>BasicBlock::iterator</tt> - Typedef for instruction list iterator<br>
+<tt>BasicBlock::const_iterator</tt> - Typedef for const_iterator.<br>
+<tt>begin()</tt>, <tt>end()</tt>, <tt>front()</tt>, <tt>back()</tt>,
+<tt>size()</tt>, <tt>empty()</tt>
+STL-style functions for accessing the instruction list.
 
-  <li><tt>bool isSigned() const</tt>: Returns whether an integral numeric type
-  is signed. This is true for SByteTy, ShortTy, IntTy, LongTy. Note that this is
-  not true for Float and Double. </li>
+<p>These methods and typedefs are forwarding functions that have the same
+semantics as the standard library methods of the same names.  These methods
+expose the underlying instruction list of a basic block in a way that is easy to
+manipulate.  To get the full complement of container operations (including
+operations to update the list), you must use the <tt>getInstList()</tt>
+method.</p></li>
 
-  <li><tt>bool isUnsigned() const</tt>: Returns whether a numeric type is
-  unsigned. This is not quite the complement of isSigned... nonnumeric types
-  return false as they do with isSigned. This returns true for UByteTy,
-  UShortTy, UIntTy, and ULongTy. </li>
+<li><tt>BasicBlock::InstListType &amp;getInstList()</tt>
 
-  <li><tt>bool isInteger() const</tt>: Equivalent to isSigned() || isUnsigned().</li>
+<p>This method is used to get access to the underlying container that actually
+holds the Instructions.  This method must be used when there isn't a forwarding
+function in the <tt>BasicBlock</tt> class for the operation that you would like
+to perform.  Because there are no forwarding functions for "updating"
+operations, you need to use this if you want to update the contents of a
+<tt>BasicBlock</tt>.</p></li>
 
-  <li><tt>bool isIntegral() const</tt>: Returns true if this is an integral
-  type, which is either Bool type or one of the Integer types.</li>
+<li><tt><a href="#Function">Function</a> *getParent()</tt>
 
-  <li><tt>bool isFloatingPoint()</tt>: Return true if this is one of the two
-  floating point types.</li>
+<p> Returns a pointer to <a href="#Function"><tt>Function</tt></a> the block is
+embedded into, or a null pointer if it is homeless.</p></li>
 
-  <li><tt>isLosslesslyConvertableTo (const Type *Ty) const</tt>: Return true if
-  this type can be converted to 'Ty' without any reinterpretation of bits. For
-  example, uint to int or one pointer type to another.</li>
+<li><tt><a href="#TerminatorInst">TerminatorInst</a> *getTerminator()</tt>
 
-<br>
-    <p>Derived Types</p>
+<p> Returns a pointer to the terminator instruction that appears at the end of
+the <tt>BasicBlock</tt>.  If there is no terminator instruction, or if the last
+instruction in the block is not a terminator, then a null pointer is
+returned.</p></li>
 
-    <ul>
-      <li>SequentialType : This is subclassed by ArrayType and PointerType
-        <ul>
-       <li><tt>const Type * getElementType() const</tt>: Returns the type of
-each of the elements in the sequential type. </li>
-        </ul>
-      </li>
-      <li>ArrayType : This is a subclass of SequentialType and defines
-interface for array types.
-        <ul>
-       <li><tt>unsigned getNumElements() const</tt>: Returns the number of
-elements in the array. </li>
-        </ul>
-      </li>
-      <li>PointerType : Subclass of SequentialType for  pointer types. </li>
-      <li>StructType : subclass of DerivedTypes for struct types </li>
-      <li>FunctionType : subclass of DerivedTypes for function types.
-        <ul>
-         <li><tt>bool isVarArg() const</tt>: Returns true if its a vararg
-          function</li>
-          <li><tt> const Type * getReturnType() const</tt>: Returns the
-          return type of the function.</li>
-          <li><tt>const Type * getParamType (unsigned i)</tt>: Returns
-          the type of the ith parameter.</li>
-          <li><tt> const unsigned getNumParams() const</tt>: Returns the
-          number of formal parameters.</li>
-        </ul>
-      </li>
-    </ul>
-  </li>
 </ul>
 
 </div>
 
+
 <!-- ======================================================================= -->
 <div class="doc_subsection">
   <a name="Argument">The <tt>Argument</tt> class</a>
@@ -1804,235 +3174,11 @@ elements in the array. </li>
 <div class="doc_text">
 
 <p>This subclass of Value defines the interface for incoming formal
-arguments to a function. A Function maitanis a list of its formal
+arguments to a function. A Function maintains a list of its formal
 arguments. An argument has a pointer to the parent Function.</p>
 
 </div>
 
-<!-- ======================================================================= -->
-<div class="doc_subsection">
-  <a name="SymbolTable">The <tt>SymbolTable</tt> class</a>
-</div>
-<div class="doc_text">
-<p>This class provides a symbol table that the
-<a href="#Function"><tt>Function</tt></a> and <a href="#Module">
-<tt>Module</tt></a> classes use for naming definitions. The symbol table can 
-provide a name for any <a href="#Value"><tt>Value</tt></a> or 
-<a href="#Type"><tt>Type</tt></a>.  <tt>SymbolTable</tt> is an abstract data 
-type. It hides the data it contains and provides access to it through a 
-controlled interface.</p>
-
-<p>To use the <tt>SymbolTable</tt> well, you need to understand the 
-structure of the information it holds. The class contains two 
-<tt>std::map</tt> objects. The first, <tt>pmap</tt>, is a map of 
-<tt>Type*</tt> to maps of name (<tt>std::string</tt>) to <tt>Value*</tt>. 
-The second, <tt>tmap</tt>, is a map of names to <tt>Type*</tt>. Thus, Values
-are stored in two-dimensions and accessed by <tt>Type</tt> and name. Types,
-however, are stored in a single dimension and accessed only by name.</p>
-
-<p>The interface of this class provides three basic types of operations:
-<ol>
-  <li><em>Accessors</em>. Accessors provide read-only access to information
-  such as finding a value for a name with the 
-  <a href="#SymbolTable_lookup">lookup</a> method.</li> 
-  <li><em>Mutators</em>. Mutators allow the user to add information to the
-  <tt>SymbolTable</tt> with methods like 
-  <a href="#SymbolTable_insert"><tt>insert</tt></a>.</li>
-  <li><em>Iterators</em>. Iterators allow the user to traverse the content
-  of the symbol table in well defined ways, such as the method
-  <a href="#SymbolTable_type_begin"><tt>type_begin</tt></a>.</li>
-</ol>
-
-<h3>Accessors</h3>
-<dl>
-  <dt><tt>Value* lookup(const Type* Ty, const std::string&amp; name) const</tt>:
-  </dt>
-  <dd>The <tt>lookup</tt> method searches the type plane given by the
-  <tt>Ty</tt> parameter for a <tt>Value</tt> with the provided <tt>name</tt>.
-  If a suitable <tt>Value</tt> is not found, null is returned.</dd>
-
-  <dt><tt>Type* lookupType( const std::string&amp; name) const</tt>:</dt>
-  <dd>The <tt>lookupType</tt> method searches through the types for a
-  <tt>Type</tt> with the provided <tt>name</tt>. If a suitable <tt>Type</tt>
-  is not found, null is returned.</dd>
-
-  <dt><tt>bool hasTypes() const</tt>:</dt>
-  <dd>This function returns true if an entry has been made into the type
-  map.</dd>
-
-  <dt><tt>bool isEmpty() const</tt>:</dt>
-  <dd>This function returns true if both the value and types maps are
-  empty</dd>
-
-  <dt><tt>std::string get_name(const Value*) const</tt>:</dt>
-  <dd>This function returns the name of the Value provided or the empty
-  string if the Value is not in the symbol table.</dd> 
-
-  <dt><tt>std::string get_name(const Type*) const</tt>:</dt>
-  <dd>This function returns the name of the Type provided or the empty
-  string if the Type is not in the symbol table.</dd>
-</dl>
-
-<h3>Mutators</h3>
-<dl>
-  <dt><tt>void insert(Value *Val)</tt>:</dt>
-  <dd>This method adds the provided value to the symbol table.  The Value must
-  have both a name and a type which are extracted and used to place the value
-  in the correct type plane under the value's name.</dd>
-
-  <dt><tt>void insert(const std::string&amp; Name, Value *Val)</tt>:</dt>
-  <dd> Inserts a constant or type into the symbol table with the specified
-  name. There can be a many to one mapping between names and constants
-  or types.</dd>
-
-  <dt><tt>void insert(const std::string&amp; Name, Type *Typ)</tt>:</dt>
-  <dd> Inserts a type into the symbol table with the specified name. There
-  can be a many-to-one mapping between names and types. This method
-  allows a type with an existing entry in the symbol table to get
-  a new name.</dd>
-
-  <dt><tt>void remove(Value* Val)</tt>:</dt>
- <dd> This method removes a named value from the symbol table. The
-  type and name of the Value are extracted from \p N and used to
-  lookup the Value in the correct type plane. If the Value is
-  not in the symbol table, this method silently ignores the
-  request.</dd>
-
-  <dt><tt>void remove(Type* Typ)</tt>:</dt>
-  <dd> This method removes a named type from the symbol table. The
-  name of the type is extracted from \P T and used to look up
-  the Type in the type map. If the Type is not in the symbol
-  table, this method silently ignores the request.</dd>
-
-  <dt><tt>Value* remove(const std::string&amp; Name, Value *Val)</tt>:</dt>
-  <dd> Remove a constant or type with the specified name from the 
-  symbol table.</dd>
-
-  <dt><tt>Type* remove(const std::string&amp; Name, Type* T)</tt>:</dt>
-  <dd> Remove a type with the specified name from the symbol table.
-  Returns the removed Type.</dd>
-
-  <dt><tt>Value *value_remove(const value_iterator&amp; It)</tt>:</dt>
-  <dd> Removes a specific value from the symbol table. 
-  Returns the removed value.</dd>
-
-  <dt><tt>bool strip()</tt>:</dt>
-  <dd> This method will strip the symbol table of its names leaving
-  the type and values. </dd>
-
-  <dt><tt>void clear()</tt>:</dt>
-  <dd>Empty the symbol table completely.</dd>
-</dl>
-
-<h3>Iteration</h3>
-<p>The following functions describe three types of iterators you can obtain
-the beginning or end of the sequence for both const and non-const. It is
-important to keep track of the different kinds of iterators. There are
-three idioms worth pointing out:</p>
-<table class="doc_table">
-  <tr><th>Units</th><th>Iterator</th><th>Idiom</th></tr>
-  <tr>
-    <td>Planes Of name/Value maps</td><td>PI</td>
-    <td><tt><pre>
-for (SymbolTable::plane_const_iterator PI = ST.plane_begin(),
-PE = ST.plane_end(); PI != PE; ++PI ) {
-  PI-&gt;first // This is the Type* of the plane
-  PI-&gt;second // This is the SymbolTable::ValueMap of name/Value pairs
-    </pre></tt></td>
-  </tr>
-  <tr>
-    <td>All name/Type Pairs</td><td>TI</td>
-    <td><tt><pre>
-for (SymbolTable::type_const_iterator TI = ST.type_begin(),
-     TE = ST.type_end(); TI != TE; ++TI )
-  TI-&gt;first  // This is the name of the type
-  TI-&gt;second // This is the Type* value associated with the name
-    </pre></tt></td>
-  </tr>
-  <tr>
-    <td>name/Value pairs in a plane</td><td>VI</td>
-    <td><tt><pre>
-for (SymbolTable::value_const_iterator VI = ST.value_begin(SomeType),
-     VE = ST.value_end(SomeType); VI != VE; ++VI )
-  VI-&gt;first  // This is the name of the Value
-  VI-&gt;second // This is the Value* value associated with the name
-    </pre></tt></td>
-  </tr>
-</table>
-<p>Using the recommended iterator names and idioms will help you avoid
-making mistakes. Of particular note, make sure that whenever you use
-value_begin(SomeType) that you always compare the resulting iterator
-with value_end(SomeType) not value_end(SomeOtherType) or else you 
-will loop infinitely.</p>
-
-<dl>
-
-  <dt><tt>plane_iterator plane_begin()</tt>:</dt>
-  <dd>Get an iterator that starts at the beginning of the type planes.
-  The iterator will iterate over the Type/ValueMap pairs in the
-  type planes. </dd>
-
-  <dt><tt>plane_const_iterator plane_begin() const</tt>:</dt>
-  <dd>Get a const_iterator that starts at the beginning of the type 
-  planes.  The iterator will iterate over the Type/ValueMap pairs 
-  in the type planes. </dd>
-
-  <dt><tt>plane_iterator plane_end()</tt>:</dt>
-  <dd>Get an iterator at the end of the type planes. This serves as
-  the marker for end of iteration over the type planes.</dd>
-
-  <dt><tt>plane_const_iterator plane_end() const</tt>:</dt>
-  <dd>Get a const_iterator at the end of the type planes. This serves as
-  the marker for end of iteration over the type planes.</dd>
-
-  <dt><tt>value_iterator value_begin(const Type *Typ)</tt>:</dt>
-  <dd>Get an iterator that starts at the beginning of a type plane.
-  The iterator will iterate over the name/value pairs in the type plane.
-  Note: The type plane must already exist before using this.</dd>
-
-  <dt><tt>value_const_iterator value_begin(const Type *Typ) const</tt>:</dt>
-  <dd>Get a const_iterator that starts at the beginning of a type plane.
-  The iterator will iterate over the name/value pairs in the type plane.
-  Note: The type plane must already exist before using this.</dd>
-
-  <dt><tt>value_iterator value_end(const Type *Typ)</tt>:</dt>
-  <dd>Get an iterator to the end of a type plane. This serves as the marker
-  for end of iteration of the type plane.
-  Note: The type plane must already exist before using this.</dd>
-
-  <dt><tt>value_const_iterator value_end(const Type *Typ) const</tt>:</dt>
-  <dd>Get a const_iterator to the end of a type plane. This serves as the
-  marker for end of iteration of the type plane.
-  Note: the type plane must already exist before using this.</dd>
-
-  <dt><tt>type_iterator type_begin()</tt>:</dt>
-  <dd>Get an iterator to the start of the name/Type map.</dd>
-
-  <dt><tt>type_const_iterator type_begin() cons</tt>:</dt>
-  <dd> Get a const_iterator to the start of the name/Type map.</dd>
-
-  <dt><tt>type_iterator type_end()</tt>:</dt>
-  <dd>Get an iterator to the end of the name/Type map. This serves as the
-  marker for end of iteration of the types.</dd>
-
-  <dt><tt>type_const_iterator type_end() const</tt>:</dt>
-  <dd>Get a const-iterator to the end of the name/Type map. This serves 
-  as the marker for end of iteration of the types.</dd>
-
-  <dt><tt>plane_const_iterator find(const Type* Typ ) const</tt>:</dt>
-  <dd>This method returns a plane_const_iterator for iteration over
-  the type planes starting at a specific plane, given by \p Ty.</dd>
-
-  <dt><tt>plane_iterator find( const Type* Typ </tt>:</dt>
-  <dd>This method returns a plane_iterator for iteration over the
-  type planes starting at a specific plane, given by \p Ty.</dd>
-
-  <dt><tt>const ValueMap* findPlane( const Type* Typ ) cons</tt>:</dt>
-  <dd>This method returns a ValueMap* for a specific type plane. This
-  interface is deprecated and may go away in the future.</dd>
-</dl>
-</div>
-
 <!-- *********************************************************************** -->
 <hr>
 <address>
@@ -2043,11 +3189,9 @@ will loop infinitely.</p>
 
   <a href="mailto:dhurjati@cs.uiuc.edu">Dinakar Dhurjati</a> and
   <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
-  <a href="http://llvm.cs.uiuc.edu">The LLVM Compiler Infrastructure</a><br>
+  <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
   Last modified: $Date$
 </address>
 
 </body>
 </html>
-<!-- vim: sw=2 noai
--->