Prevented ExceptionDemo example being built on WINDOWS via if( NOT WIN32 )
[oota-llvm.git] / docs / LangRef.html
index c57518befc098a464cf6e96f3c3f9a595f35f52f..fed2f80696c3cbcfb4b06dbaee8d5ae39cea1f51 100644 (file)
@@ -5,7 +5,7 @@
   <title>LLVM Assembly Language Reference Manual</title>
   <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
   <meta name="author" content="Chris Lattner">
-  <meta name="description" 
+  <meta name="description"
   content="LLVM Assembly Language Reference Manual.">
   <link rel="stylesheet" href="llvm.css" type="text/css">
 </head>
   <li><a href="#highlevel">High Level Structure</a>
     <ol>
       <li><a href="#modulestructure">Module Structure</a></li>
-      <li><a href="#linkage">Linkage Types</a></li>
+      <li><a href="#linkage">Linkage Types</a>
+        <ol>
+          <li><a href="#linkage_private">'<tt>private</tt>' Linkage</a></li>
+          <li><a href="#linkage_linker_private">'<tt>linker_private</tt>' Linkage</a></li>
+          <li><a href="#linkage_internal">'<tt>internal</tt>' Linkage</a></li>
+          <li><a href="#linkage_available_externally">'<tt>available_externally</tt>' Linkage</a></li>
+          <li><a href="#linkage_linkonce">'<tt>linkonce</tt>' Linkage</a></li>
+          <li><a href="#linkage_common">'<tt>common</tt>' Linkage</a></li>
+          <li><a href="#linkage_weak">'<tt>weak</tt>' Linkage</a></li>
+          <li><a href="#linkage_appending">'<tt>appending</tt>' Linkage</a></li>
+          <li><a href="#linkage_externweak">'<tt>extern_weak</tt>' Linkage</a></li>
+          <li><a href="#linkage_linkonce_odr">'<tt>linkonce_odr</tt>' Linkage</a></li>
+          <li><a href="#linkage_weak">'<tt>weak_odr</tt>' Linkage</a></li>
+          <li><a href="#linkage_external">'<tt>externally visible</tt>' Linkage</a></li>
+          <li><a href="#linkage_dllimport">'<tt>dllimport</tt>' Linkage</a></li>
+          <li><a href="#linkage_dllexport">'<tt>dllexport</tt>' Linkage</a></li>
+        </ol>
+      </li>
       <li><a href="#callingconv">Calling Conventions</a></li>
       <li><a href="#namedtypes">Named Types</a></li>
       <li><a href="#globalvars">Global Variables</a></li>
       <li><a href="#functionstructure">Functions</a></li>
       <li><a href="#aliasstructure">Aliases</a></li>
+      <li><a href="#namedmetadatastructure">Named Metadata</a></li>
       <li><a href="#paramattrs">Parameter Attributes</a></li>
       <li><a href="#fnattrs">Function Attributes</a></li>
       <li><a href="#gc">Garbage Collector Names</a></li>
       <li><a href="#moduleasm">Module-Level Inline Assembly</a></li>
       <li><a href="#datalayout">Data Layout</a></li>
+      <li><a href="#pointeraliasing">Pointer Aliasing Rules</a></li>
     </ol>
   </li>
   <li><a href="#typesystem">Type System</a>
     <ol>
       <li><a href="#t_classifications">Type Classifications</a></li>
-      <li><a href="#t_primitive">Primitive Types</a>    
+      <li><a href="#t_primitive">Primitive Types</a>
         <ol>
+          <li><a href="#t_integer">Integer Type</a></li>
           <li><a href="#t_floating">Floating Point Types</a></li>
           <li><a href="#t_void">Void Type</a></li>
           <li><a href="#t_label">Label Type</a></li>
@@ -46,7 +66,6 @@
       </li>
       <li><a href="#t_derived">Derived Types</a>
         <ol>
-          <li><a href="#t_integer">Integer Type</a></li>
           <li><a href="#t_array">Array Type</a></li>
           <li><a href="#t_function">Function Type</a></li>
           <li><a href="#t_pointer">Pointer Type</a></li>
       <li><a href="#complexconstants">Complex Constants</a></li>
       <li><a href="#globalconstants">Global Variable and Function Addresses</a></li>
       <li><a href="#undefvalues">Undefined Values</a></li>
+      <li><a href="#blockaddress">Addresses of Basic Blocks</a></li>
       <li><a href="#constantexprs">Constant Expressions</a></li>
-      <li><a href="#metadata">Embedded Metadata</a></li>
     </ol>
   </li>
   <li><a href="#othervalues">Other Values</a>
     <ol>
       <li><a href="#inlineasm">Inline Assembler Expressions</a></li>
+      <li><a href="#metadata">Metadata Nodes and Metadata Strings</a></li>
+    </ol>
+  </li>
+  <li><a href="#intrinsic_globals">Intrinsic Global Variables</a>
+    <ol>
+      <li><a href="#intg_used">The '<tt>llvm.used</tt>' Global Variable</a></li>
+      <li><a href="#intg_compiler_used">The '<tt>llvm.compiler.used</tt>'
+          Global Variable</a></li>
+      <li><a href="#intg_global_ctors">The '<tt>llvm.global_ctors</tt>'
+         Global Variable</a></li>
+      <li><a href="#intg_global_dtors">The '<tt>llvm.global_dtors</tt>'
+         Global Variable</a></li>
     </ol>
   </li>
   <li><a href="#instref">Instruction Reference</a>
           <li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li>
           <li><a href="#i_br">'<tt>br</tt>' Instruction</a></li>
           <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li>
+          <li><a href="#i_indirectbr">'<tt>indirectbr</tt>' Instruction</a></li>
           <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li>
           <li><a href="#i_unwind">'<tt>unwind</tt>'  Instruction</a></li>
           <li><a href="#i_unreachable">'<tt>unreachable</tt>' Instruction</a></li>
       </li>
       <li><a href="#memoryops">Memory Access and Addressing Operations</a>
         <ol>
-          <li><a href="#i_malloc">'<tt>malloc</tt>'   Instruction</a></li>
-          <li><a href="#i_free">'<tt>free</tt>'     Instruction</a></li>
           <li><a href="#i_alloca">'<tt>alloca</tt>'   Instruction</a></li>
          <li><a href="#i_load">'<tt>load</tt>'     Instruction</a></li>
          <li><a href="#i_store">'<tt>store</tt>'    Instruction</a></li>
         <ol>
           <li><a href="#i_icmp">'<tt>icmp</tt>' Instruction</a></li>
           <li><a href="#i_fcmp">'<tt>fcmp</tt>' Instruction</a></li>
-          <li><a href="#i_vicmp">'<tt>vicmp</tt>' Instruction</a></li>
-          <li><a href="#i_vfcmp">'<tt>vfcmp</tt>' Instruction</a></li>
           <li><a href="#i_phi">'<tt>phi</tt>'   Instruction</a></li>
           <li><a href="#i_select">'<tt>select</tt>' Instruction</a></li>
           <li><a href="#i_call">'<tt>call</tt>'  Instruction</a></li>
           <li><a href="#int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic </a></li>
           <li><a href="#int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic </a></li>
           <li><a href="#int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic </a></li>
-          <li><a href="#int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic </a></li>
-          <li><a href="#int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic </a></li>
         </ol>
       </li>
       <li><a href="#int_overflow">Arithmetic with Overflow Intrinsics</a>
           <li><a href="#int_atomic_load_umin"><tt>llvm.atomic.load.umin</tt></a></li>
         </ol>
       </li>
+      <li><a href="#int_memorymarkers">Memory Use Markers</a>
+        <ol>
+          <li><a href="#int_lifetime_start"><tt>llvm.lifetime.start</tt></a></li>
+          <li><a href="#int_lifetime_end"><tt>llvm.lifetime.end</tt></a></li>
+          <li><a href="#int_invariant_start"><tt>llvm.invariant.start</tt></a></li>
+          <li><a href="#int_invariant_end"><tt>llvm.invariant.end</tt></a></li>
+        </ol>
+      </li>
       <li><a href="#int_general">General intrinsics</a>
         <ol>
           <li><a href="#int_var_annotation">
             '<tt>llvm.trap</tt>' Intrinsic</a></li>
           <li><a href="#int_stackprotector">
             '<tt>llvm.stackprotector</tt>' Intrinsic</a></li>
+         <li><a href="#int_objectsize">
+            '<tt>llvm.objectsize</tt>' Intrinsic</a></li>
         </ol>
       </li>
     </ol>
 <!-- *********************************************************************** -->
 
 <div class="doc_text">
-<p>This document is a reference manual for the LLVM assembly language. 
-LLVM is a Static Single Assignment (SSA) based representation that provides
-type safety, low-level operations, flexibility, and the capability of
-representing 'all' high-level languages cleanly.  It is the common code
-representation used throughout all phases of the LLVM compilation
-strategy.</p>
+
+<p>This document is a reference manual for the LLVM assembly language. LLVM is
+   a Static Single Assignment (SSA) based representation that provides type
+   safety, low-level operations, flexibility, and the capability of representing
+   'all' high-level languages cleanly.  It is the common code representation
+   used throughout all phases of the LLVM compilation strategy.</p>
+
 </div>
 
 <!-- *********************************************************************** -->
@@ -288,26 +325,24 @@ strategy.</p>
 
 <div class="doc_text">
 
-<p>The LLVM code representation is designed to be used in three
-different forms: as an in-memory compiler IR, as an on-disk bitcode
-representation (suitable for fast loading by a Just-In-Time compiler),
-and as a human readable assembly language representation.  This allows
-LLVM to provide a powerful intermediate representation for efficient
-compiler transformations and analysis, while providing a natural means
-to debug and visualize the transformations.  The three different forms
-of LLVM are all equivalent.  This document describes the human readable
-representation and notation.</p>
+<p>The LLVM code representation is designed to be used in three different forms:
+   as an in-memory compiler IR, as an on-disk bitcode representation (suitable
+   for fast loading by a Just-In-Time compiler), and as a human readable
+   assembly language representation.  This allows LLVM to provide a powerful
+   intermediate representation for efficient compiler transformations and
+   analysis, while providing a natural means to debug and visualize the
+   transformations.  The three different forms of LLVM are all equivalent.  This
+   document describes the human readable representation and notation.</p>
 
-<p>The LLVM representation aims to be light-weight and low-level
-while being expressive, typed, and extensible at the same time.  It
-aims to be a "universal IR" of sorts, by being at a low enough level
-that high-level ideas may be cleanly mapped to it (similar to how
-microprocessors are "universal IR's", allowing many source languages to
-be mapped to them).  By providing type information, LLVM can be used as
-the target of optimizations: for example, through pointer analysis, it
-can be proven that a C automatic variable is never accessed outside of
-the current function... allowing it to be promoted to a simple SSA
-value instead of a memory location.</p>
+<p>The LLVM representation aims to be light-weight and low-level while being
+   expressive, typed, and extensible at the same time.  It aims to be a
+   "universal IR" of sorts, by being at a low enough level that high-level ideas
+   may be cleanly mapped to it (similar to how microprocessors are "universal
+   IR's", allowing many source languages to be mapped to them).  By providing
+   type information, LLVM can be used as the target of optimizations: for
+   example, through pointer analysis, it can be proven that a C automatic
+   variable is never accessed outside of the current function, allowing it to
+   be promoted to a simple SSA value instead of a memory location.</p>
 
 </div>
 
@@ -316,10 +351,10 @@ value instead of a memory location.</p>
 
 <div class="doc_text">
 
-<p>It is important to note that this document describes 'well formed'
-LLVM assembly language.  There is a difference between what the parser
-accepts and what is considered 'well formed'.  For example, the
-following instruction is syntactically okay, but not well formed:</p>
+<p>It is important to note that this document describes 'well formed' LLVM
+   assembly language.  There is a difference between what the parser accepts and
+   what is considered 'well formed'.  For example, the following instruction is
+   syntactically okay, but not well formed:</p>
 
 <div class="doc_code">
 <pre>
@@ -327,13 +362,13 @@ following instruction is syntactically okay, but not well formed:</p>
 </pre>
 </div>
 
-<p>...because the definition of <tt>%x</tt> does not dominate all of
-its uses. The LLVM infrastructure provides a verification pass that may
-be used to verify that an LLVM module is well formed.  This pass is
-automatically run by the parser after parsing input assembly and by
-the optimizer before it outputs bitcode.  The violations pointed out
-by the verifier pass indicate bugs in transformation passes or input to
-the parser.</p>
+<p>because the definition of <tt>%x</tt> does not dominate all of its uses. The
+   LLVM infrastructure provides a verification pass that may be used to verify
+   that an LLVM module is well formed.  This pass is automatically run by the
+   parser after parsing input assembly and by the optimizer before it outputs
+   bitcode.  The violations pointed out by the verifier pass indicate bugs in
+   transformation passes or input to the parser.</p>
+
 </div>
 
 <!-- Describe the typesetting conventions here. -->
@@ -344,44 +379,47 @@ the parser.</p>
 
 <div class="doc_text">
 
-  <p>LLVM identifiers come in two basic types: global and local. Global
-  identifiers (functions, global variables) begin with the @ character. Local
-  identifiers (register names, types) begin with the % character. Additionally,
-  there are three different formats for identifiers, for different purposes:</p>
+<p>LLVM identifiers come in two basic types: global and local. Global
+   identifiers (functions, global variables) begin with the <tt>'@'</tt>
+   character. Local identifiers (register names, types) begin with
+   the <tt>'%'</tt> character. Additionally, there are three different formats
+   for identifiers, for different purposes:</p>
 
 <ol>
   <li>Named values are represented as a string of characters with their prefix.
-  For example, %foo, @DivisionByZero, %a.really.long.identifier.  The actual
-  regular expression used is '<tt>[%@][a-zA-Z$._][a-zA-Z$._0-9]*</tt>'.
-  Identifiers which require other characters in their names can be surrounded
-  with quotes. Special characters may be escaped using "\xx" where xx is the 
-  ASCII code for the character in hexadecimal.  In this way, any character can 
-  be used in a name value, even quotes themselves.
+      For example, <tt>%foo</tt>, <tt>@DivisionByZero</tt>,
+      <tt>%a.really.long.identifier</tt>. The actual regular expression used is
+      '<tt>[%@][a-zA-Z$._][a-zA-Z$._0-9]*</tt>'.  Identifiers which require
+      other characters in their names can be surrounded with quotes. Special
+      characters may be escaped using <tt>"\xx"</tt> where <tt>xx</tt> is the
+      ASCII code for the character in hexadecimal.  In this way, any character
+      can be used in a name value, even quotes themselves.</li>
 
   <li>Unnamed values are represented as an unsigned numeric value with their
-  prefix.  For example, %12, @2, %44.</li>
+      prefix.  For example, <tt>%12</tt>, <tt>@2</tt>, <tt>%44</tt>.</li>
 
   <li>Constants, which are described in a <a href="#constants">section about
-  constants</a>, below.</li>
+      constants</a>, below.</li>
 </ol>
 
 <p>LLVM requires that values start with a prefix for two reasons: Compilers
-don't need to worry about name clashes with reserved words, and the set of
-reserved words may be expanded in the future without penalty.  Additionally,
-unnamed identifiers allow a compiler to quickly come up with a temporary
-variable without having to avoid symbol table conflicts.</p>
+   don't need to worry about name clashes with reserved words, and the set of
+   reserved words may be expanded in the future without penalty.  Additionally,
+   unnamed identifiers allow a compiler to quickly come up with a temporary
+   variable without having to avoid symbol table conflicts.</p>
 
 <p>Reserved words in LLVM are very similar to reserved words in other
-languages. There are keywords for different opcodes 
-('<tt><a href="#i_add">add</a></tt>', 
- '<tt><a href="#i_bitcast">bitcast</a></tt>', 
- '<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names ('<tt><a
-href="#t_void">void</a></tt>', '<tt><a href="#t_primitive">i32</a></tt>', etc...),
-and others.  These reserved words cannot conflict with variable names, because
-none of them start with a prefix character ('%' or '@').</p>
+   languages. There are keywords for different opcodes
+   ('<tt><a href="#i_add">add</a></tt>',
+   '<tt><a href="#i_bitcast">bitcast</a></tt>',
+   '<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names
+   ('<tt><a href="#t_void">void</a></tt>',
+   '<tt><a href="#t_primitive">i32</a></tt>', etc...), and others.  These
+   reserved words cannot conflict with variable names, because none of them
+   start with a prefix character (<tt>'%'</tt> or <tt>'@'</tt>).</p>
 
 <p>Here is an example of LLVM code to multiply the integer variable
-'<tt>%X</tt>' by 8:</p>
+   '<tt>%X</tt>' by 8:</p>
 
 <p>The easy way:</p>
 
@@ -403,31 +441,29 @@ none of them start with a prefix character ('%' or '@').</p>
 
 <div class="doc_code">
 <pre>
-<a href="#i_add">add</a> i32 %X, %X           <i>; yields {i32}:%0</i>
-<a href="#i_add">add</a> i32 %0, %0           <i>; yields {i32}:%1</i>
+%0 = <a href="#i_add">add</a> i32 %X, %X           <i>; yields {i32}:%0</i>
+%1 = <a href="#i_add">add</a> i32 %0, %0           <i>; yields {i32}:%1</i>
 %result = <a href="#i_add">add</a> i32 %1, %1
 </pre>
 </div>
 
-<p>This last way of multiplying <tt>%X</tt> by 8 illustrates several
-important lexical features of LLVM:</p>
+<p>This last way of multiplying <tt>%X</tt> by 8 illustrates several important
+   lexical features of LLVM:</p>
 
 <ol>
-
   <li>Comments are delimited with a '<tt>;</tt>' and go until the end of
-  line.</li>
+      line.</li>
 
   <li>Unnamed temporaries are created when the result of a computation is not
-  assigned to a named value.</li>
+      assigned to a named value.</li>
 
   <li>Unnamed temporaries are numbered sequentially</li>
-
 </ol>
 
-<p>...and it also shows a convention that we follow in this document.  When
-demonstrating instructions, we will follow an instruction with a comment that
-defines the type and name of value produced.  Comments are shown in italic
-text.</p>
+<p>It also shows a convention that we follow in this document.  When
+   demonstrating instructions, we will follow an instruction with a comment that
+   defines the type and name of value produced.  Comments are shown in italic
+   text.</p>
 
 </div>
 
@@ -441,45 +477,47 @@ text.</p>
 
 <div class="doc_text">
 
-<p>LLVM programs are composed of "Module"s, each of which is a
-translation unit of the input programs.  Each module consists of
-functions, global variables, and symbol table entries.  Modules may be
-combined together with the LLVM linker, which merges function (and
-global variable) definitions, resolves forward declarations, and merges
-symbol table entries. Here is an example of the "hello world" module:</p>
+<p>LLVM programs are composed of "Module"s, each of which is a translation unit
+   of the input programs.  Each module consists of functions, global variables,
+   and symbol table entries.  Modules may be combined together with the LLVM
+   linker, which merges function (and global variable) definitions, resolves
+   forward declarations, and merges symbol table entries. Here is an example of
+   the "hello world" module:</p>
 
 <div class="doc_code">
-<pre><i>; Declare the string constant as a global constant...</i>
-<a href="#identifiers">@.LC0</a> = <a href="#linkage_internal">internal</a> <a
- href="#globalvars">constant</a> <a href="#t_array">[13 x i8]</a> c"hello world\0A\00"          <i>; [13 x i8]*</i>
+<pre>
+<i>; Declare the string constant as a global constant.</i>
+<a href="#identifiers">@.LC0</a> = <a href="#linkage_internal">internal</a> <a href="#globalvars">constant</a> <a href="#t_array">[13 x i8]</a> c"hello world\0A\00"    <i>; [13 x i8]*</i>
 
 <i>; External declaration of the puts function</i>
-<a href="#functionstructure">declare</a> i32 @puts(i8 *)                                            <i>; i32(i8 *)* </i>
+<a href="#functionstructure">declare</a> i32 @puts(i8 *)                                     <i>; i32(i8 *)* </i>
 
 <i>; Definition of main function</i>
-define i32 @main() {                                                 <i>; i32()* </i>
-        <i>; Convert [13 x i8]* to i8  *...</i>
-        %cast210 = <a
- href="#i_getelementptr">getelementptr</a> [13 x i8]* @.LC0, i64 0, i64 0 <i>; i8 *</i>
+define i32 @main() {                                        <i>; i32()* </i>
+  <i>; Convert [13 x i8]* to i8  *...</i>
+  %cast210 = <a href="#i_getelementptr">getelementptr</a> [13 x i8]* @.LC0, i64 0, i64 0   <i>; i8 *</i>
+
+  <i>; Call puts function to write out the string to stdout.</i>
+  <a href="#i_call">call</a> i32 @puts(i8 * %cast210)                             <i>; i32</i>
+  <a href="#i_ret">ret</a> i32 0<br>}
 
-        <i>; Call puts function to write out the string to stdout...</i>
-        <a
- href="#i_call">call</a> i32 @puts(i8 * %cast210)                              <i>; i32</i>
-        <a
- href="#i_ret">ret</a> i32 0<br>}<br>
+<i>; Named metadata</i>
+!1 = metadata !{i32 41}
+!foo = !{!1, null}
 </pre>
 </div>
 
-<p>This example is made up of a <a href="#globalvars">global variable</a>
-named "<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>"
-function, and a <a href="#functionstructure">function definition</a>
-for "<tt>main</tt>".</p>
+<p>This example is made up of a <a href="#globalvars">global variable</a> named
+   "<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>" function,
+   a <a href="#functionstructure">function definition</a> for
+   "<tt>main</tt>" and <a href="#namedmetadatastructure">named metadata</a> 
+   "<tt>foo"</tt>.</p>
 
-<p>In general, a module is made up of a list of global values,
-where both functions and global variables are global values.  Global values are
-represented by a pointer to a memory location (in this case, a pointer to an
-array of char, and a pointer to a function), and have one of the following <a
-href="#linkage">linkage types</a>.</p>
+<p>In general, a module is made up of a list of global values, where both
+   functions and global variables are global values.  Global values are
+   represented by a pointer to a memory location (in this case, a pointer to an
+   array of char, and a pointer to a function), and have one of the
+   following <a href="#linkage">linkage types</a>.</p>
 
 </div>
 
@@ -490,139 +528,133 @@ href="#linkage">linkage types</a>.</p>
 
 <div class="doc_text">
 
-<p>
-All Global Variables and Functions have one of the following types of linkage:
-</p>
+<p>All Global Variables and Functions have one of the following types of
+   linkage:</p>
 
 <dl>
-
-  <dt><tt><b><a name="linkage_private">private</a></b></tt>: </dt>
-
-  <dd>Global values with private linkage are only directly accessible by
-  objects in the current module.  In particular, linking code into a module with
-  an private global value may cause the private to be renamed as necessary to
-  avoid collisions.  Because the symbol is private to the module, all
-  references can be updated. This doesn't show up in any symbol table in the
-  object file.
-  </dd>
-
-  <dt><tt><b><a name="linkage_internal">internal</a></b></tt>: </dt>
-
-  <dd> Similar to private, but the value shows as a local symbol (STB_LOCAL in
-  the case of ELF) in the object file. This corresponds to the notion of the
-  '<tt>static</tt>' keyword in C.
-  </dd>
-
-  <dt><tt><b><a name="available_externally">available_externally</a></b></tt>:
-  </dt>
-
+  <dt><tt><b><a name="linkage_private">private</a></b></tt></dt>
+  <dd>Global values with private linkage are only directly accessible by objects
+      in the current module.  In particular, linking code into a module with an
+      private global value may cause the private to be renamed as necessary to
+      avoid collisions.  Because the symbol is private to the module, all
+      references can be updated. This doesn't show up in any symbol table in the
+      object file.</dd>
+
+  <dt><tt><b><a name="linkage_linker_private">linker_private</a></b></tt></dt>
+  <dd>Similar to private, but the symbol is passed through the assembler and
+      removed by the linker after evaluation.  Note that (unlike private
+      symbols) linker_private symbols are subject to coalescing by the linker:
+      weak symbols get merged and redefinitions are rejected.  However, unlike
+      normal strong symbols, they are removed by the linker from the final
+      linked image (executable or dynamic library).</dd>
+
+  <dt><tt><b><a name="linkage_internal">internal</a></b></tt></dt>
+  <dd>Similar to private, but the value shows as a local symbol
+      (<tt>STB_LOCAL</tt> in the case of ELF) in the object file. This
+      corresponds to the notion of the '<tt>static</tt>' keyword in C.</dd>
+
+  <dt><tt><b><a name="linkage_available_externally">available_externally</a></b></tt></dt>
   <dd>Globals with "<tt>available_externally</tt>" linkage are never emitted
-  into the object file corresponding to the LLVM module.  They exist to
-  allow inlining and other optimizations to take place given knowledge of the
-  definition of the global, which is known to be somewhere outside the module.
-  Globals with <tt>available_externally</tt> linkage are allowed to be discarded
-  at will, and are otherwise the same as <tt>linkonce_odr</tt>.  This linkage
-  type is only allowed on definitions, not declarations.</dd>
-
-  <dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt>: </dt>
-
+      into the object file corresponding to the LLVM module.  They exist to
+      allow inlining and other optimizations to take place given knowledge of
+      the definition of the global, which is known to be somewhere outside the
+      module.  Globals with <tt>available_externally</tt> linkage are allowed to
+      be discarded at will, and are otherwise the same as <tt>linkonce_odr</tt>.
+      This linkage type is only allowed on definitions, not declarations.</dd>
+
+  <dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt></dt>
   <dd>Globals with "<tt>linkonce</tt>" linkage are merged with other globals of
-  the same name when linkage occurs.  This is typically used to implement 
-  inline functions, templates, or other code which must be generated in each 
-  translation unit that uses it.  Unreferenced <tt>linkonce</tt> globals are 
-  allowed to be discarded.
-  </dd>
-
-  <dt><tt><b><a name="linkage_common">common</a></b></tt>: </dt>
-
-  <dd>"<tt>common</tt>" linkage is exactly the same as <tt>linkonce</tt> 
-  linkage, except that unreferenced <tt>common</tt> globals may not be
-  discarded.  This is used for globals that may be emitted in multiple 
-  translation units, but that are not guaranteed to be emitted into every 
-  translation unit that uses them.  One example of this is tentative
-  definitions in C, such as "<tt>int X;</tt>" at global scope.
-  </dd>
-
-  <dt><tt><b><a name="linkage_weak">weak</a></b></tt>: </dt>
-
-  <dd>"<tt>weak</tt>" linkage is the same as <tt>common</tt> linkage, except
-  that some targets may choose to emit different assembly sequences for them 
-  for target-dependent reasons.  This is used for globals that are declared 
-  "weak" in C source code.
-  </dd>
-
-  <dt><tt><b><a name="linkage_appending">appending</a></b></tt>: </dt>
-
+      the same name when linkage occurs.  This can be used to implement
+      some forms of inline functions, templates, or other code which must be
+      generated in each translation unit that uses it, but where the body may
+      be overridden with a more definitive definition later.  Unreferenced
+      <tt>linkonce</tt> globals are allowed to be discarded.  Note that
+      <tt>linkonce</tt> linkage does not actually allow the optimizer to
+      inline the body of this function into callers because it doesn't know if
+      this definition of the function is the definitive definition within the
+      program or whether it will be overridden by a stronger definition.
+      To enable inlining and other optimizations, use "<tt>linkonce_odr</tt>"
+      linkage.</dd>
+
+  <dt><tt><b><a name="linkage_weak">weak</a></b></tt></dt>
+  <dd>"<tt>weak</tt>" linkage has the same merging semantics as
+      <tt>linkonce</tt> linkage, except that unreferenced globals with
+      <tt>weak</tt> linkage may not be discarded.  This is used for globals that
+      are declared "weak" in C source code.</dd>
+
+  <dt><tt><b><a name="linkage_common">common</a></b></tt></dt>
+  <dd>"<tt>common</tt>" linkage is most similar to "<tt>weak</tt>" linkage, but
+      they are used for tentative definitions in C, such as "<tt>int X;</tt>" at
+      global scope.
+      Symbols with "<tt>common</tt>" linkage are merged in the same way as
+      <tt>weak symbols</tt>, and they may not be deleted if unreferenced.
+      <tt>common</tt> symbols may not have an explicit section,
+      must have a zero initializer, and may not be marked '<a
+      href="#globalvars"><tt>constant</tt></a>'.  Functions and aliases may not
+      have common linkage.</dd>
+
+
+  <dt><tt><b><a name="linkage_appending">appending</a></b></tt></dt>
   <dd>"<tt>appending</tt>" linkage may only be applied to global variables of
-  pointer to array type.  When two global variables with appending linkage are
-  linked together, the two global arrays are appended together.  This is the
-  LLVM, typesafe, equivalent of having the system linker append together
-  "sections" with identical names when .o files are linked.
-  </dd>
-
-  <dt><tt><b><a name="linkage_externweak">extern_weak</a></b></tt>: </dt>
-
-  <dd>The semantics of this linkage follow the ELF object file model: the
-    symbol is weak until linked, if not linked, the symbol becomes null instead
-    of being an undefined reference.
-  </dd>
-
-  <dt><tt><b><a name="linkage_linkonce">linkonce_odr</a></b></tt>: </dt>
-  <dt><tt><b><a name="linkage_weak">weak_odr</a></b></tt>: </dt>
-  <dd>Some languages allow differing globals to be merged, such as two
-    functions with different semantics.  Other languages, such as <tt>C++</tt>,
-    ensure that only equivalent globals are ever merged (the "one definition
-    rule" - "ODR").  Such languages can use the <tt>linkonce_odr</tt>
-    and <tt>weak_odr</tt> linkage types to indicate that the global will only
-    be merged with equivalent globals.  These linkage types are otherwise the
-    same as their non-<tt>odr</tt> versions.
-  </dd>
+      pointer to array type.  When two global variables with appending linkage
+      are linked together, the two global arrays are appended together.  This is
+      the LLVM, typesafe, equivalent of having the system linker append together
+      "sections" with identical names when .o files are linked.</dd>
+
+  <dt><tt><b><a name="linkage_externweak">extern_weak</a></b></tt></dt>
+  <dd>The semantics of this linkage follow the ELF object file model: the symbol
+      is weak until linked, if not linked, the symbol becomes null instead of
+      being an undefined reference.</dd>
+
+  <dt><tt><b><a name="linkage_linkonce_odr">linkonce_odr</a></b></tt></dt>
+  <dt><tt><b><a name="linkage_weak_odr">weak_odr</a></b></tt></dt>
+  <dd>Some languages allow differing globals to be merged, such as two functions
+      with different semantics.  Other languages, such as <tt>C++</tt>, ensure
+      that only equivalent globals are ever merged (the "one definition rule" -
+      "ODR").  Such languages can use the <tt>linkonce_odr</tt>
+      and <tt>weak_odr</tt> linkage types to indicate that the global will only
+      be merged with equivalent globals.  These linkage types are otherwise the
+      same as their non-<tt>odr</tt> versions.</dd>
 
   <dt><tt><b><a name="linkage_external">externally visible</a></b></tt>:</dt>
-
   <dd>If none of the above identifiers are used, the global is externally
-  visible, meaning that it participates in linkage and can be used to resolve
-  external symbol references.
-  </dd>
+      visible, meaning that it participates in linkage and can be used to
+      resolve external symbol references.</dd>
 </dl>
 
-  <p>
-  The next two types of linkage are targeted for Microsoft Windows platform
-  only. They are designed to support importing (exporting) symbols from (to)
-  DLLs (Dynamic Link Libraries).
-  </p>
-
-  <dl>
-  <dt><tt><b><a name="linkage_dllimport">dllimport</a></b></tt>: </dt>
+<p>The next two types of linkage are targeted for Microsoft Windows platform
+   only. They are designed to support importing (exporting) symbols from (to)
+   DLLs (Dynamic Link Libraries).</p>
 
+<dl>
+  <dt><tt><b><a name="linkage_dllimport">dllimport</a></b></tt></dt>
   <dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function
-    or variable via a global pointer to a pointer that is set up by the DLL
-    exporting the symbol. On Microsoft Windows targets, the pointer name is
-    formed by combining <code>__imp_</code> and the function or variable name.
-  </dd>
-
-  <dt><tt><b><a name="linkage_dllexport">dllexport</a></b></tt>: </dt>
+      or variable via a global pointer to a pointer that is set up by the DLL
+      exporting the symbol. On Microsoft Windows targets, the pointer name is
+      formed by combining <code>__imp_</code> and the function or variable
+      name.</dd>
 
+  <dt><tt><b><a name="linkage_dllexport">dllexport</a></b></tt></dt>
   <dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global
-    pointer to a pointer in a DLL, so that it can be referenced with the
-    <tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer
-    name is formed by combining <code>__imp_</code> and the function or variable
-    name.
-  </dd>
-
+      pointer to a pointer in a DLL, so that it can be referenced with the
+      <tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer
+      name is formed by combining <code>__imp_</code> and the function or
+      variable name.</dd>
 </dl>
 
-<p>For example, since the "<tt>.LC0</tt>"
-variable is defined to be internal, if another module defined a "<tt>.LC0</tt>"
-variable and was linked with this one, one of the two would be renamed,
-preventing a collision.  Since "<tt>main</tt>" and "<tt>puts</tt>" are
-external (i.e., lacking any linkage declarations), they are accessible
-outside of the current module.</p>
-<p>It is illegal for a function <i>declaration</i>
-to have any linkage type other than "externally visible", <tt>dllimport</tt>
-or <tt>extern_weak</tt>.</p>
+<p>For example, since the "<tt>.LC0</tt>" variable is defined to be internal, if
+   another module defined a "<tt>.LC0</tt>" variable and was linked with this
+   one, one of the two would be renamed, preventing a collision.  Since
+   "<tt>main</tt>" and "<tt>puts</tt>" are external (i.e., lacking any linkage
+   declarations), they are accessible outside of the current module.</p>
+
+<p>It is illegal for a function <i>declaration</i> to have any linkage type
+   other than "externally visible", <tt>dllimport</tt>
+   or <tt>extern_weak</tt>.</p>
+
 <p>Aliases can have only <tt>external</tt>, <tt>internal</tt>, <tt>weak</tt>
-or <tt>weak_odr</tt> linkages.</p>
+   or <tt>weak_odr</tt> linkages.</p>
+
 </div>
 
 <!-- ======================================================================= -->
@@ -633,55 +665,48 @@ or <tt>weak_odr</tt> linkages.</p>
 <div class="doc_text">
 
 <p>LLVM <a href="#functionstructure">functions</a>, <a href="#i_call">calls</a>
-and <a href="#i_invoke">invokes</a> can all have an optional calling convention
-specified for the call.  The calling convention of any pair of dynamic
-caller/callee must match, or the behavior of the program is undefined.  The
-following calling conventions are supported by LLVM, and more may be added in
-the future:</p>
+   and <a href="#i_invoke">invokes</a> can all have an optional calling
+   convention specified for the call.  The calling convention of any pair of
+   dynamic caller/callee must match, or the behavior of the program is
+   undefined.  The following calling conventions are supported by LLVM, and more
+   may be added in the future:</p>
 
 <dl>
   <dt><b>"<tt>ccc</tt>" - The C calling convention</b>:</dt>
-
   <dd>This calling convention (the default if no other calling convention is
-  specified) matches the target C calling conventions.  This calling convention
-  supports varargs function calls and tolerates some mismatch in the declared
-  prototype and implemented declaration of the function (as does normal C). 
-  </dd>
+      specified) matches the target C calling conventions.  This calling
+      convention supports varargs function calls and tolerates some mismatch in
+      the declared prototype and implemented declaration of the function (as
+      does normal C).</dd>
 
   <dt><b>"<tt>fastcc</tt>" - The fast calling convention</b>:</dt>
-
   <dd>This calling convention attempts to make calls as fast as possible
-  (e.g. by passing things in registers).  This calling convention allows the
-  target to use whatever tricks it wants to produce fast code for the target,
-  without having to conform to an externally specified ABI (Application Binary
-  Interface).  Implementations of this convention should allow arbitrary
-  <a href="CodeGenerator.html#tailcallopt">tail call optimization</a> to be
-  supported.  This calling convention does not support varargs and requires the
-  prototype of all callees to exactly match the prototype of the function
-  definition.
-  </dd>
+      (e.g. by passing things in registers).  This calling convention allows the
+      target to use whatever tricks it wants to produce fast code for the
+      target, without having to conform to an externally specified ABI
+      (Application Binary Interface).
+      <a href="CodeGenerator.html#tailcallopt">Tail calls can only be optimized
+      when this convention is used.</a>  This calling convention does not
+      support varargs and requires the prototype of all callees to exactly match
+      the prototype of the function definition.</dd>
 
   <dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt>
-
   <dd>This calling convention attempts to make code in the caller as efficient
-  as possible under the assumption that the call is not commonly executed.  As
-  such, these calls often preserve all registers so that the call does not break
-  any live ranges in the caller side.  This calling convention does not support
-  varargs and requires the prototype of all callees to exactly match the
-  prototype of the function definition.
-  </dd>
+      as possible under the assumption that the call is not commonly executed.
+      As such, these calls often preserve all registers so that the call does
+      not break any live ranges in the caller side.  This calling convention
+      does not support varargs and requires the prototype of all callees to
+      exactly match the prototype of the function definition.</dd>
 
   <dt><b>"<tt>cc &lt;<em>n</em>&gt;</tt>" - Numbered convention</b>:</dt>
-
   <dd>Any calling convention may be specified by number, allowing
-  target-specific calling conventions to be used.  Target specific calling
-  conventions start at 64.
-  </dd>
+      target-specific calling conventions to be used.  Target specific calling
+      conventions start at 64.</dd>
 </dl>
 
 <p>More calling conventions can be added/defined on an as-needed basis, to
-support pascal conventions or any other well-known target-independent
-convention.</p>
+   support Pascal conventions or any other well-known target-independent
+   convention.</p>
 
 </div>
 
@@ -692,37 +717,29 @@ convention.</p>
 
 <div class="doc_text">
 
-<p>
-All Global Variables and Functions have one of the following visibility styles:
-</p>
+<p>All Global Variables and Functions have one of the following visibility
+   styles:</p>
 
 <dl>
   <dt><b>"<tt>default</tt>" - Default style</b>:</dt>
-
   <dd>On targets that use the ELF object file format, default visibility means
-    that the declaration is visible to other
-    modules and, in shared libraries, means that the declared entity may be
-    overridden. On Darwin, default visibility means that the declaration is
-    visible to other modules. Default visibility corresponds to "external
-    linkage" in the language.
-  </dd>
+      that the declaration is visible to other modules and, in shared libraries,
+      means that the declared entity may be overridden. On Darwin, default
+      visibility means that the declaration is visible to other modules. Default
+      visibility corresponds to "external linkage" in the language.</dd>
 
   <dt><b>"<tt>hidden</tt>" - Hidden style</b>:</dt>
-
   <dd>Two declarations of an object with hidden visibility refer to the same
-    object if they are in the same shared object. Usually, hidden visibility
-    indicates that the symbol will not be placed into the dynamic symbol table,
-    so no other module (executable or shared library) can reference it
-    directly.
-  </dd>
+      object if they are in the same shared object. Usually, hidden visibility
+      indicates that the symbol will not be placed into the dynamic symbol
+      table, so no other module (executable or shared library) can reference it
+      directly.</dd>
 
   <dt><b>"<tt>protected</tt>" - Protected style</b>:</dt>
-
   <dd>On ELF, protected visibility indicates that the symbol will be placed in
-  the dynamic symbol table, but that references within the defining module will
-  bind to the local symbol. That is, the symbol cannot be overridden by another
-  module.
-  </dd>
+      the dynamic symbol table, but that references within the defining module
+      will bind to the local symbol. That is, the symbol cannot be overridden by
+      another module.</dd>
 </dl>
 
 </div>
@@ -735,9 +752,8 @@ All Global Variables and Functions have one of the following visibility styles:
 <div class="doc_text">
 
 <p>LLVM IR allows you to specify name aliases for certain types.  This can make
-it easier to read the IR and make the IR more condensed (particularly when
-recursive types are involved).  An example of a name specification is:
-</p>
+   it easier to read the IR and make the IR more condensed (particularly when
+   recursive types are involved).  An example of a name specification is:</p>
 
 <div class="doc_code">
 <pre>
@@ -745,19 +761,19 @@ recursive types are involved).  An example of a name specification is:
 </pre>
 </div>
 
-<p>You may give a name to any <a href="#typesystem">type</a> except "<a 
-href="t_void">void</a>".  Type name aliases may be used anywhere a type is
-expected with the syntax "%mytype".</p>
+<p>You may give a name to any <a href="#typesystem">type</a> except
+   "<a href="t_void">void</a>".  Type name aliases may be used anywhere a type
+   is expected with the syntax "%mytype".</p>
 
 <p>Note that type names are aliases for the structural type that they indicate,
-and that you can therefore specify multiple names for the same type.  This often
-leads to confusing behavior when dumping out a .ll file.  Since LLVM IR uses
-structural typing, the name is not part of the type.  When printing out LLVM IR,
-the printer will pick <em>one name</em> to render all types of a particular
-shape.  This means that if you have code where two different source types end up
-having the same LLVM type, that the dumper will sometimes print the "wrong" or
-unexpected type.  This is an important design point and isn't going to
-change.</p>
+   and that you can therefore specify multiple names for the same type.  This
+   often leads to confusing behavior when dumping out a .ll file.  Since LLVM IR
+   uses structural typing, the name is not part of the type.  When printing out
+   LLVM IR, the printer will pick <em>one name</em> to render all types of a
+   particular shape.  This means that if you have code where two different
+   source types end up having the same LLVM type, that the dumper will sometimes
+   print the "wrong" or unexpected type.  This is an important design point and
+   isn't going to change.</p>
 
 </div>
 
@@ -769,48 +785,47 @@ change.</p>
 <div class="doc_text">
 
 <p>Global variables define regions of memory allocated at compilation time
-instead of run-time.  Global variables may optionally be initialized, may have
-an explicit section to be placed in, and may have an optional explicit alignment
-specified.  A variable may be defined as "thread_local", which means that it
-will not be shared by threads (each thread will have a separated copy of the
-variable).  A variable may be defined as a global "constant," which indicates
-that the contents of the variable will <b>never</b> be modified (enabling better
-optimization, allowing the global data to be placed in the read-only section of
-an executable, etc).  Note that variables that need runtime initialization
-cannot be marked "constant" as there is a store to the variable.</p>
-
-<p>
-LLVM explicitly allows <em>declarations</em> of global variables to be marked
-constant, even if the final definition of the global is not.  This capability
-can be used to enable slightly better optimization of the program, but requires
-the language definition to guarantee that optimizations based on the
-'constantness' are valid for the translation units that do not include the
-definition.
-</p>
-
-<p>As SSA values, global variables define pointer values that are in
-scope (i.e. they dominate) all basic blocks in the program.  Global
-variables always define a pointer to their "content" type because they
-describe a region of memory, and all memory objects in LLVM are
-accessed through pointers.</p>
-
-<p>A global variable may be declared to reside in a target-specifc numbered 
-address space. For targets that support them, address spaces may affect how
-optimizations are performed and/or what target instructions are used to access 
-the variable. The default address space is zero. The address space qualifier 
-must precede any other attributes.</p>
+   instead of run-time.  Global variables may optionally be initialized, may
+   have an explicit section to be placed in, and may have an optional explicit
+   alignment specified.  A variable may be defined as "thread_local", which
+   means that it will not be shared by threads (each thread will have a
+   separated copy of the variable).  A variable may be defined as a global
+   "constant," which indicates that the contents of the variable
+   will <b>never</b> be modified (enabling better optimization, allowing the
+   global data to be placed in the read-only section of an executable, etc).
+   Note that variables that need runtime initialization cannot be marked
+   "constant" as there is a store to the variable.</p>
+
+<p>LLVM explicitly allows <em>declarations</em> of global variables to be marked
+   constant, even if the final definition of the global is not.  This capability
+   can be used to enable slightly better optimization of the program, but
+   requires the language definition to guarantee that optimizations based on the
+   'constantness' are valid for the translation units that do not include the
+   definition.</p>
+
+<p>As SSA values, global variables define pointer values that are in scope
+   (i.e. they dominate) all basic blocks in the program.  Global variables
+   always define a pointer to their "content" type because they describe a
+   region of memory, and all memory objects in LLVM are accessed through
+   pointers.</p>
+
+<p>A global variable may be declared to reside in a target-specific numbered
+   address space. For targets that support them, address spaces may affect how
+   optimizations are performed and/or what target instructions are used to
+   access the variable. The default address space is zero. The address space
+   qualifier must precede any other attributes.</p>
 
 <p>LLVM allows an explicit section to be specified for globals.  If the target
-supports it, it will emit globals to the section specified.</p>
+   supports it, it will emit globals to the section specified.</p>
 
 <p>An explicit alignment may be specified for a global.  If not present, or if
-the alignment is set to zero, the alignment of the global is set by the target
-to whatever it feels convenient.  If an explicit alignment is specified, the 
-global is forced to have at least that much alignment.  All alignments must be
-a power of 2.</p>
+   the alignment is set to zero, the alignment of the global is set by the
+   target to whatever it feels convenient.  If an explicit alignment is
+   specified, the global is forced to have at least that much alignment.  All
+   alignments must be a power of 2.</p>
 
-<p>For example, the following defines a global in a numbered address space with 
-an initializer, section, and alignment:</p>
+<p>For example, the following defines a global in a numbered address space with
+   an initializer, section, and alignment:</p>
 
 <div class="doc_code">
 <pre>
@@ -828,74 +843,72 @@ an initializer, section, and alignment:</p>
 
 <div class="doc_text">
 
-<p>LLVM function definitions consist of the "<tt>define</tt>" keyord, 
-an optional <a href="#linkage">linkage type</a>, an optional 
-<a href="#visibility">visibility style</a>, an optional 
-<a href="#callingconv">calling convention</a>, a return type, an optional
-<a href="#paramattrs">parameter attribute</a> for the return type, a function 
-name, a (possibly empty) argument list (each with optional 
-<a href="#paramattrs">parameter attributes</a>), optional 
-<a href="#fnattrs">function attributes</a>, an optional section, 
-an optional alignment, an optional <a href="#gc">garbage collector name</a>, 
-an opening curly brace, a list of basic blocks, and a closing curly brace.
+<p>LLVM function definitions consist of the "<tt>define</tt>" keyord, an
+   optional <a href="#linkage">linkage type</a>, an optional
+   <a href="#visibility">visibility style</a>, an optional
+   <a href="#callingconv">calling convention</a>, a return type, an optional
+   <a href="#paramattrs">parameter attribute</a> for the return type, a function
+   name, a (possibly empty) argument list (each with optional
+   <a href="#paramattrs">parameter attributes</a>), optional
+   <a href="#fnattrs">function attributes</a>, an optional section, an optional
+   alignment, an optional <a href="#gc">garbage collector name</a>, an opening
+   curly brace, a list of basic blocks, and a closing curly brace.</p>
 
-LLVM function declarations consist of the "<tt>declare</tt>" keyword, an
-optional <a href="#linkage">linkage type</a>, an optional
-<a href="#visibility">visibility style</a>, an optional 
-<a href="#callingconv">calling convention</a>, a return type, an optional
-<a href="#paramattrs">parameter attribute</a> for the return type, a function 
-name, a possibly empty list of arguments, an optional alignment, and an optional
-<a href="#gc">garbage collector name</a>.</p>
+<p>LLVM function declarations consist of the "<tt>declare</tt>" keyword, an
+   optional <a href="#linkage">linkage type</a>, an optional
+   <a href="#visibility">visibility style</a>, an optional
+   <a href="#callingconv">calling convention</a>, a return type, an optional
+   <a href="#paramattrs">parameter attribute</a> for the return type, a function
+   name, a possibly empty list of arguments, an optional alignment, and an
+   optional <a href="#gc">garbage collector name</a>.</p>
 
 <p>A function definition contains a list of basic blocks, forming the CFG
-(Control Flow Graph) for
-the function.  Each basic block may optionally start with a label (giving the
-basic block a symbol table entry), contains a list of instructions, and ends
-with a <a href="#terminators">terminator</a> instruction (such as a branch or
-function return).</p>
+   (Control Flow Graph) for the function.  Each basic block may optionally start
+   with a label (giving the basic block a symbol table entry), contains a list
+   of instructions, and ends with a <a href="#terminators">terminator</a>
+   instruction (such as a branch or function return).</p>
 
 <p>The first basic block in a function is special in two ways: it is immediately
-executed on entrance to the function, and it is not allowed to have predecessor
-basic blocks (i.e. there can not be any branches to the entry block of a
-function).  Because the block can have no predecessors, it also cannot have any
-<a href="#i_phi">PHI nodes</a>.</p>
+   executed on entrance to the function, and it is not allowed to have
+   predecessor basic blocks (i.e. there can not be any branches to the entry
+   block of a function).  Because the block can have no predecessors, it also
+   cannot have any <a href="#i_phi">PHI nodes</a>.</p>
 
 <p>LLVM allows an explicit section to be specified for functions.  If the target
-supports it, it will emit functions to the section specified.</p>
+   supports it, it will emit functions to the section specified.</p>
 
 <p>An explicit alignment may be specified for a function.  If not present, or if
-the alignment is set to zero, the alignment of the function is set by the target
-to whatever it feels convenient.  If an explicit alignment is specified, the
-function is forced to have at least that much alignment.  All alignments must be
-a power of 2.</p>
-
-  <h5>Syntax:</h5>
+   the alignment is set to zero, the alignment of the function is set by the
+   target to whatever it feels convenient.  If an explicit alignment is
+   specified, the function is forced to have at least that much alignment.  All
+   alignments must be a power of 2.</p>
 
+<h5>Syntax:</h5>
 <div class="doc_code">
-<tt>
+<pre>
 define [<a href="#linkage">linkage</a>] [<a href="#visibility">visibility</a>]
-      [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>]
-      &lt;ResultType&gt; @&lt;FunctionName&gt; ([argument list])
-      [<a href="#fnattrs">fn Attrs</a>] [section "name"] [align N]
-      [<a href="#gc">gc</a>] { ... }
-</tt>
+       [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>]
+       &lt;ResultType&gt; @&lt;FunctionName&gt; ([argument list])
+       [<a href="#fnattrs">fn Attrs</a>] [section "name"] [align N]
+       [<a href="#gc">gc</a>] { ... }
+</pre>
 </div>
 
 </div>
 
-
 <!-- ======================================================================= -->
 <div class="doc_subsection">
   <a name="aliasstructure">Aliases</a>
 </div>
+
 <div class="doc_text">
-  <p>Aliases act as "second name" for the aliasee value (which can be either
-  function, global variable, another alias or bitcast of global value). Aliases
-  may have an optional <a href="#linkage">linkage type</a>, and an
-  optional <a href="#visibility">visibility style</a>.</p>
 
-  <h5>Syntax:</h5>
+<p>Aliases act as "second name" for the aliasee value (which can be either
+   function, global variable, another alias or bitcast of global value). Aliases
+   may have an optional <a href="#linkage">linkage type</a>, and an
+   optional <a href="#visibility">visibility style</a>.</p>
 
+<h5>Syntax:</h5>
 <div class="doc_code">
 <pre>
 @&lt;Name&gt; = alias [Linkage] [Visibility] &lt;AliaseeTy&gt; @&lt;Aliasee&gt;
@@ -904,21 +917,42 @@ define [<a href="#linkage">linkage</a>] [<a href="#visibility">visibility</a>]
 
 </div>
 
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+  <a name="namedmetadatastructure">Named Metadata</a>
+</div>
+
+<div class="doc_text">
+
+<p>Named metadata is a collection of metadata. <a href="#metadata">Metadata
+   nodes</a> (but not metadata strings) and null are the only valid operands for
+   a named metadata.</p>
+
+<h5>Syntax:</h5>
+<div class="doc_code">
+<pre>
+!1 = metadata !{metadata !"one"}
+!name = !{null, !1}
+</pre>
+</div>
 
+</div>
 
 <!-- ======================================================================= -->
 <div class="doc_subsection"><a name="paramattrs">Parameter Attributes</a></div>
+
 <div class="doc_text">
-  <p>The return type and each parameter of a function type may have a set of
-  <i>parameter attributes</i> associated with them. Parameter attributes are
-  used to communicate additional information about the result or parameters of
-  a function. Parameter attributes are considered to be part of the function,
-  not of the function type, so functions with different parameter attributes
-  can have the same function type.</p>
 
-  <p>Parameter attributes are simple keywords that follow the type specified. If
-  multiple parameter attributes are needed, they are space separated. For 
-  example:</p>
+<p>The return type and each parameter of a function type may have a set of
+   <i>parameter attributes</i> associated with them. Parameter attributes are
+   used to communicate additional information about the result or parameters of
+   a function. Parameter attributes are considered to be part of the function,
+   not of the function type, so functions with different parameter attributes
+   can have the same function type.</p>
+
+<p>Parameter attributes are simple keywords that follow the type specified. If
+   multiple parameter attributes are needed, they are space separated. For
+   example:</p>
 
 <div class="doc_code">
 <pre>
@@ -928,71 +962,72 @@ declare signext i8 @returns_signed_char()
 </pre>
 </div>
 
-  <p>Note that any attributes for the function result (<tt>nounwind</tt>,
-  <tt>readonly</tt>) come immediately after the argument list.</p>
-
-  <p>Currently, only the following parameter attributes are defined:</p>
-  <dl>
-    <dt><tt>zeroext</tt></dt>
-    <dd>This indicates to the code generator that the parameter or return value
-    should be zero-extended to a 32-bit value by the caller (for a parameter)
-    or the callee (for a return value).</dd>
-
-    <dt><tt>signext</tt></dt>
-    <dd>This indicates to the code generator that the parameter or return value
-    should be sign-extended to a 32-bit value by the caller (for a parameter)
-    or the callee (for a return value).</dd>
-
-    <dt><tt>inreg</tt></dt>
-    <dd>This indicates that this parameter or return value should be treated
-    in a special target-dependent fashion during while emitting code for a
-    function call or return (usually, by putting it in a register as opposed 
-    to memory, though some targets use it to distinguish between two different
-    kinds of registers).  Use of this attribute is target-specific.</dd>
-
-    <dt><tt><a name="byval">byval</a></tt></dt>
-    <dd>This indicates that the pointer parameter should really be passed by
-    value to the function.  The attribute implies that a hidden copy of the
-    pointee is made between the caller and the callee, so the callee is unable
-    to modify the value in the callee.  This attribute is only valid on LLVM
-    pointer arguments.  It is generally used to pass structs and arrays by
-    value, but is also valid on pointers to scalars.  The copy is considered to
-    belong to the caller not the callee (for example,
-    <tt><a href="#readonly">readonly</a></tt> functions should not write to
-    <tt>byval</tt> parameters). This is not a valid attribute for return
-    values.  The byval attribute also supports specifying an alignment with the
-    align attribute.  This has a target-specific effect on the code generator
-    that usually indicates a desired alignment for the synthesized stack 
-    slot.</dd>
-
-    <dt><tt>sret</tt></dt>
-    <dd>This indicates that the pointer parameter specifies the address of a
-    structure that is the return value of the function in the source program.
-    This pointer must be guaranteed by the caller to be valid: loads and stores
-    to the structure may be assumed by the callee to not to trap.  This may only
-    be applied to the first parameter. This is not a valid attribute for
-    return values. </dd>
-
-    <dt><tt>noalias</tt></dt>
-    <dd>This indicates that the pointer does not alias any global or any other
-    parameter.  The caller is responsible for ensuring that this is the
-    case. On a function return value, <tt>noalias</tt> additionally indicates
-    that the pointer does not alias any other pointers visible to the
-    caller. For further details, please see the discussion of the NoAlias
-    response in
-    <a href="http://llvm.org/docs/AliasAnalysis.html#MustMayNo">alias
-    analysis</a>.</dd>
-
-    <dt><tt>nocapture</tt></dt>
-    <dd>This indicates that the callee does not make any copies of the pointer
-    that outlive the callee itself. This is not a valid attribute for return
-    values.</dd>
-
-    <dt><tt>nest</tt></dt>
-    <dd>This indicates that the pointer parameter can be excised using the
-    <a href="#int_trampoline">trampoline intrinsics</a>. This is not a valid
-    attribute for return values.</dd>
-  </dl>
+<p>Note that any attributes for the function result (<tt>nounwind</tt>,
+   <tt>readonly</tt>) come immediately after the argument list.</p>
+
+<p>Currently, only the following parameter attributes are defined:</p>
+
+<dl>
+  <dt><tt><b>zeroext</b></tt></dt>
+  <dd>This indicates to the code generator that the parameter or return value
+      should be zero-extended to a 32-bit value by the caller (for a parameter)
+      or the callee (for a return value).</dd>
+
+  <dt><tt><b>signext</b></tt></dt>
+  <dd>This indicates to the code generator that the parameter or return value
+      should be sign-extended to a 32-bit value by the caller (for a parameter)
+      or the callee (for a return value).</dd>
+
+  <dt><tt><b>inreg</b></tt></dt>
+  <dd>This indicates that this parameter or return value should be treated in a
+      special target-dependent fashion during while emitting code for a function
+      call or return (usually, by putting it in a register as opposed to memory,
+      though some targets use it to distinguish between two different kinds of
+      registers).  Use of this attribute is target-specific.</dd>
+
+  <dt><tt><b><a name="byval">byval</a></b></tt></dt>
+  <dd>This indicates that the pointer parameter should really be passed by value
+      to the function.  The attribute implies that a hidden copy of the pointee
+      is made between the caller and the callee, so the callee is unable to
+      modify the value in the callee.  This attribute is only valid on LLVM
+      pointer arguments.  It is generally used to pass structs and arrays by
+      value, but is also valid on pointers to scalars.  The copy is considered
+      to belong to the caller not the callee (for example,
+      <tt><a href="#readonly">readonly</a></tt> functions should not write to
+      <tt>byval</tt> parameters). This is not a valid attribute for return
+      values.  The byval attribute also supports specifying an alignment with
+      the align attribute.  This has a target-specific effect on the code
+      generator that usually indicates a desired alignment for the synthesized
+      stack slot.</dd>
+
+  <dt><tt><b>sret</b></tt></dt>
+  <dd>This indicates that the pointer parameter specifies the address of a
+      structure that is the return value of the function in the source program.
+      This pointer must be guaranteed by the caller to be valid: loads and
+      stores to the structure may be assumed by the callee to not to trap.  This
+      may only be applied to the first parameter. This is not a valid attribute
+      for return values. </dd>
+
+  <dt><tt><b>noalias</b></tt></dt>
+  <dd>This indicates that the pointer does not alias any global or any other
+      parameter.  The caller is responsible for ensuring that this is the
+      case. On a function return value, <tt>noalias</tt> additionally indicates
+      that the pointer does not alias any other pointers visible to the
+      caller. For further details, please see the discussion of the NoAlias
+      response in
+      <a href="http://llvm.org/docs/AliasAnalysis.html#MustMayNo">alias
+      analysis</a>.</dd>
+
+  <dt><tt><b>nocapture</b></tt></dt>
+  <dd>This indicates that the callee does not make any copies of the pointer
+      that outlive the callee itself. This is not a valid attribute for return
+      values.</dd>
+
+  <dt><tt><b>nest</b></tt></dt>
+  <dd>This indicates that the pointer parameter can be excised using the
+      <a href="#int_trampoline">trampoline intrinsics</a>. This is not a valid
+      attribute for return values.</dd>
+</dl>
 
 </div>
 
@@ -1002,15 +1037,20 @@ declare signext i8 @returns_signed_char()
 </div>
 
 <div class="doc_text">
+
 <p>Each function may specify a garbage collector name, which is simply a
-string.</p>
+   string:</p>
 
-<div class="doc_code"><pre
->define void @f() gc "name" { ...</pre></div>
+<div class="doc_code">
+<pre>
+define void @f() gc "name" { ... }
+</pre>
+</div>
 
 <p>The compiler declares the supported values of <i>name</i>. Specifying a
-collector which will cause the compiler to alter its output in order to support
-the named garbage collection algorithm.</p>
+   collector which will cause the compiler to alter its output in order to
+   support the named garbage collection algorithm.</p>
+
 </div>
 
 <!-- ======================================================================= -->
@@ -1020,99 +1060,107 @@ the named garbage collection algorithm.</p>
 
 <div class="doc_text">
 
-<p>Function attributes are set to communicate additional information about 
-  a function. Function attributes are considered to be part of the function,
-  not of the function type, so functions with different parameter attributes
-  can have the same function type.</p>
+<p>Function attributes are set to communicate additional information about a
+   function. Function attributes are considered to be part of the function, not
+   of the function type, so functions with different parameter attributes can
+   have the same function type.</p>
 
-  <p>Function attributes are simple keywords that follow the type specified. If
-  multiple attributes are needed, they are space separated. For 
-  example:</p>
+<p>Function attributes are simple keywords that follow the type specified. If
+   multiple attributes are needed, they are space separated. For example:</p>
 
 <div class="doc_code">
 <pre>
 define void @f() noinline { ... }
 define void @f() alwaysinline { ... }
 define void @f() alwaysinline optsize { ... }
-define void @f() optsize
+define void @f() optsize { ... }
 </pre>
 </div>
 
 <dl>
-<dt><tt>alwaysinline</tt></dt>
-<dd>This attribute indicates that the inliner should attempt to inline this
-function into callers whenever possible, ignoring any active inlining size
-threshold for this caller.</dd>
-
-<dt><tt>noinline</tt></dt>
-<dd>This attribute indicates that the inliner should never inline this function
-in any situation. This attribute may not be used together with the
-<tt>alwaysinline</tt> attribute.</dd>
-
-<dt><tt>optsize</tt></dt>
-<dd>This attribute suggests that optimization passes and code generator passes
-make choices that keep the code size of this function low, and otherwise do
-optimizations specifically to reduce code size.</dd>
-
-<dt><tt>noreturn</tt></dt>
-<dd>This function attribute indicates that the function never returns normally.
-This produces undefined behavior at runtime if the function ever does
-dynamically return.</dd> 
-
-<dt><tt>nounwind</tt></dt>
-<dd>This function attribute indicates that the function never returns with an
-unwind or exceptional control flow.  If the function does unwind, its runtime
-behavior is undefined.</dd>
-
-<dt><tt>readnone</tt></dt>
-<dd>This attribute indicates that the function computes its result (or decides to
-unwind an exception) based strictly on its arguments, without dereferencing any
-pointer arguments or otherwise accessing any mutable state (e.g. memory, control
-registers, etc) visible to caller functions.  It does not write through any
-pointer arguments (including <tt><a href="#byval">byval</a></tt> arguments) and
-never changes any state visible to callers.  This means that it cannot unwind
-exceptions by calling the <tt>C++</tt> exception throwing methods, but could
-use the <tt>unwind</tt> instruction.</dd>
-
-<dt><tt><a name="readonly">readonly</a></tt></dt>
-<dd>This attribute indicates that the function does not write through any
-pointer arguments (including <tt><a href="#byval">byval</a></tt> arguments)
-or otherwise modify any state (e.g. memory, control registers, etc) visible to
-caller functions.  It may dereference pointer arguments and read state that may
-be set in the caller.  A readonly function always returns the same value (or
-unwinds an exception identically) when called with the same set of arguments
-and global state.  It cannot unwind an exception by calling the <tt>C++</tt>
-exception throwing methods, but may use the <tt>unwind</tt> instruction.</dd>
-
-<dt><tt><a name="ssp">ssp</a></tt></dt>
-<dd>This attribute indicates that the function should emit a stack smashing
-protector. It is in the form of a "canary"&mdash;a random value placed on the
-stack before the local variables that's checked upon return from the function to
-see if it has been overwritten. A heuristic is used to determine if a function
-needs stack protectors or not.
-
-<br><br>If a function that has an <tt>ssp</tt> attribute is inlined into a function
-that doesn't have an <tt>ssp</tt> attribute, then the resulting function will
-have an <tt>ssp</tt> attribute.</dd>
-
-<dt><tt>sspreq</tt></dt>
-<dd>This attribute indicates that the function should <em>always</em> emit a
-stack smashing protector. This overrides the <tt><a href="#ssp">ssp</a></tt>
-function attribute.
-
-If a function that has an <tt>sspreq</tt> attribute is inlined into a
-function that doesn't have an <tt>sspreq</tt> attribute or which has
-an <tt>ssp</tt> attribute, then the resulting function will have
-an <tt>sspreq</tt> attribute.</dd>
-
-<dt><tt>noredzone</tt></dt>
-<dd>This attribute indicates that the code generator should not use a
-red zone, even if the target-specific ABI normally permits it.
-</dd>
-
-<dt><tt>noimplicitfloat</tt></dt>
-<dd>This attributes disables implicit floating point instructions.</dd>
-
+  <dt><tt><b>alwaysinline</b></tt></dt>
+  <dd>This attribute indicates that the inliner should attempt to inline this
+      function into callers whenever possible, ignoring any active inlining size
+      threshold for this caller.</dd>
+
+  <dt><tt><b>inlinehint</b></tt></dt>
+  <dd>This attribute indicates that the source code contained a hint that inlining
+      this function is desirable (such as the "inline" keyword in C/C++).  It
+      is just a hint; it imposes no requirements on the inliner.</dd>
+
+  <dt><tt><b>noinline</b></tt></dt>
+  <dd>This attribute indicates that the inliner should never inline this
+      function in any situation. This attribute may not be used together with
+      the <tt>alwaysinline</tt> attribute.</dd>
+
+  <dt><tt><b>optsize</b></tt></dt>
+  <dd>This attribute suggests that optimization passes and code generator passes
+      make choices that keep the code size of this function low, and otherwise
+      do optimizations specifically to reduce code size.</dd>
+
+  <dt><tt><b>noreturn</b></tt></dt>
+  <dd>This function attribute indicates that the function never returns
+      normally.  This produces undefined behavior at runtime if the function
+      ever does dynamically return.</dd>
+
+  <dt><tt><b>nounwind</b></tt></dt>
+  <dd>This function attribute indicates that the function never returns with an
+      unwind or exceptional control flow.  If the function does unwind, its
+      runtime behavior is undefined.</dd>
+
+  <dt><tt><b>readnone</b></tt></dt>
+  <dd>This attribute indicates that the function computes its result (or decides
+      to unwind an exception) based strictly on its arguments, without
+      dereferencing any pointer arguments or otherwise accessing any mutable
+      state (e.g. memory, control registers, etc) visible to caller functions.
+      It does not write through any pointer arguments
+      (including <tt><a href="#byval">byval</a></tt> arguments) and never
+      changes any state visible to callers.  This means that it cannot unwind
+      exceptions by calling the <tt>C++</tt> exception throwing methods, but
+      could use the <tt>unwind</tt> instruction.</dd>
+
+  <dt><tt><b><a name="readonly">readonly</a></b></tt></dt>
+  <dd>This attribute indicates that the function does not write through any
+      pointer arguments (including <tt><a href="#byval">byval</a></tt>
+      arguments) or otherwise modify any state (e.g. memory, control registers,
+      etc) visible to caller functions.  It may dereference pointer arguments
+      and read state that may be set in the caller.  A readonly function always
+      returns the same value (or unwinds an exception identically) when called
+      with the same set of arguments and global state.  It cannot unwind an
+      exception by calling the <tt>C++</tt> exception throwing methods, but may
+      use the <tt>unwind</tt> instruction.</dd>
+
+  <dt><tt><b><a name="ssp">ssp</a></b></tt></dt>
+  <dd>This attribute indicates that the function should emit a stack smashing
+      protector. It is in the form of a "canary"&mdash;a random value placed on
+      the stack before the local variables that's checked upon return from the
+      function to see if it has been overwritten. A heuristic is used to
+      determine if a function needs stack protectors or not.<br>
+<br>
+      If a function that has an <tt>ssp</tt> attribute is inlined into a
+      function that doesn't have an <tt>ssp</tt> attribute, then the resulting
+      function will have an <tt>ssp</tt> attribute.</dd>
+
+  <dt><tt><b>sspreq</b></tt></dt>
+  <dd>This attribute indicates that the function should <em>always</em> emit a
+      stack smashing protector. This overrides
+      the <tt><a href="#ssp">ssp</a></tt> function attribute.<br>
+<br>
+      If a function that has an <tt>sspreq</tt> attribute is inlined into a
+      function that doesn't have an <tt>sspreq</tt> attribute or which has
+      an <tt>ssp</tt> attribute, then the resulting function will have
+      an <tt>sspreq</tt> attribute.</dd>
+
+  <dt><tt><b>noredzone</b></tt></dt>
+  <dd>This attribute indicates that the code generator should not use a red
+      zone, even if the target-specific ABI normally permits it.</dd>
+
+  <dt><tt><b>noimplicitfloat</b></tt></dt>
+  <dd>This attributes disables implicit floating point instructions.</dd>
+
+  <dt><tt><b>naked</b></tt></dt>
+  <dd>This attribute disables prologue / epilogue emission for the function.
+      This can have very system-specific consequences.</dd>
 </dl>
 
 </div>
@@ -1123,12 +1171,11 @@ red zone, even if the target-specific ABI normally permits it.
 </div>
 
 <div class="doc_text">
-<p>
-Modules may contain "module-level inline asm" blocks, which corresponds to the
-GCC "file scope inline asm" blocks.  These blocks are internally concatenated by
-LLVM and treated as a single unit, but may be separated in the .ll file if
-desired.  The syntax is very simple:
-</p>
+
+<p>Modules may contain "module-level inline asm" blocks, which corresponds to
+   the GCC "file scope inline asm" blocks.  These blocks are internally
+   concatenated by LLVM and treated as a single unit, but may be separated in
+   the <tt>.ll</tt> file if desired.  The syntax is very simple:</p>
 
 <div class="doc_code">
 <pre>
@@ -1139,13 +1186,11 @@ module asm "more can go here"
 
 <p>The strings can contain any character by escaping non-printable characters.
    The escape sequence used is simply "\xx" where "xx" is the two digit hex code
-   for the number.
-</p>
+   for the number.</p>
+
+<p>The inline asm code is simply printed to the machine code .s file when
+   assembly code is generated.</p>
 
-<p>
-  The inline asm code is simply printed to the machine code .s file when
-  assembly code is generated.
-</p>
 </div>
 
 <!-- ======================================================================= -->
@@ -1154,46 +1199,72 @@ module asm "more can go here"
 </div>
 
 <div class="doc_text">
+
 <p>A module may specify a target specific data layout string that specifies how
-data is to be laid out in memory. The syntax for the data layout is simply:</p>
-<pre>    target datalayout = "<i>layout specification</i>"</pre>
-<p>The <i>layout specification</i> consists of a list of specifications 
-separated by the minus sign character ('-').  Each specification starts with a 
-letter and may include other information after the letter to define some 
-aspect of the data layout.  The specifications accepted are as follows: </p>
+   data is to be laid out in memory. The syntax for the data layout is
+   simply:</p>
+
+<div class="doc_code">
+<pre>
+target datalayout = "<i>layout specification</i>"
+</pre>
+</div>
+
+<p>The <i>layout specification</i> consists of a list of specifications
+   separated by the minus sign character ('-').  Each specification starts with
+   a letter and may include other information after the letter to define some
+   aspect of the data layout.  The specifications accepted are as follows:</p>
+
 <dl>
   <dt><tt>E</tt></dt>
   <dd>Specifies that the target lays out data in big-endian form. That is, the
-  bits with the most significance have the lowest address location.</dd>
+      bits with the most significance have the lowest address location.</dd>
+
   <dt><tt>e</tt></dt>
   <dd>Specifies that the target lays out data in little-endian form. That is,
-  the bits with the least significance have the lowest address location.</dd>
+      the bits with the least significance have the lowest address
+      location.</dd>
+
   <dt><tt>p:<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
-  <dd>This specifies the <i>size</i> of a pointer and its <i>abi</i> and 
-  <i>preferred</i> alignments. All sizes are in bits. Specifying the <i>pref</i>
-  alignment is optional. If omitted, the preceding <tt>:</tt> should be omitted
-  too.</dd>
+  <dd>This specifies the <i>size</i> of a pointer and its <i>abi</i> and
+      <i>preferred</i> alignments. All sizes are in bits. Specifying
+      the <i>pref</i> alignment is optional. If omitted, the
+      preceding <tt>:</tt> should be omitted too.</dd>
+
   <dt><tt>i<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
   <dd>This specifies the alignment for an integer type of a given bit
-  <i>size</i>. The value of <i>size</i> must be in the range [1,2^23).</dd>
+      <i>size</i>. The value of <i>size</i> must be in the range [1,2^23).</dd>
+
   <dt><tt>v<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
-  <dd>This specifies the alignment for a vector type of a given bit 
-  <i>size</i>.</dd>
+  <dd>This specifies the alignment for a vector type of a given bit
+      <i>size</i>.</dd>
+
   <dt><tt>f<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
-  <dd>This specifies the alignment for a floating point type of a given bit 
-  <i>size</i>. The value of <i>size</i> must be either 32 (float) or 64
-  (double).</dd>
+  <dd>This specifies the alignment for a floating point type of a given bit
+      <i>size</i>. The value of <i>size</i> must be either 32 (float) or 64
+      (double).</dd>
+
   <dt><tt>a<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
   <dd>This specifies the alignment for an aggregate type of a given bit
-  <i>size</i>.</dd>
+      <i>size</i>.</dd>
+
   <dt><tt>s<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
   <dd>This specifies the alignment for a stack object of a given bit
-  <i>size</i>.</dd>
+      <i>size</i>.</dd>
+
+  <dt><tt>n<i>size1</i>:<i>size2</i>:<i>size3</i>...</tt></dt>
+  <dd>This specifies a set of native integer widths for the target CPU
+      in bits.  For example, it might contain "n32" for 32-bit PowerPC,
+      "n32:64" for PowerPC 64, or "n8:16:32:64" for X86-64.  Elements of
+      this set are considered to support most general arithmetic
+      operations efficiently.</dd>
 </dl>
+
 <p>When constructing the data layout for a given target, LLVM starts with a
-default set of specifications which are then (possibly) overriden by the
-specifications in the <tt>datalayout</tt> keyword. The default specifications
-are given in this list:</p>
+   default set of specifications which are then (possibly) overriden by the
+   specifications in the <tt>datalayout</tt> keyword. The default specifications
+   are given in this list:</p>
+
 <ul>
   <li><tt>E</tt> - big endian</li>
   <li><tt>p:32:64:64</tt> - 32-bit pointers with 64-bit alignment</li>
@@ -1210,22 +1281,80 @@ are given in this list:</p>
   <li><tt>a0:0:1</tt> - aggregates are 8-bit aligned</li>
   <li><tt>s0:64:64</tt> - stack objects are 64-bit aligned</li>
 </ul>
-<p>When LLVM is determining the alignment for a given type, it uses the 
-following rules:</p>
+
+<p>When LLVM is determining the alignment for a given type, it uses the
+   following rules:</p>
+
 <ol>
   <li>If the type sought is an exact match for one of the specifications, that
-  specification is used.</li>
+      specification is used.</li>
+
   <li>If no match is found, and the type sought is an integer type, then the
-  smallest integer type that is larger than the bitwidth of the sought type is
-  used. If none of the specifications are larger than the bitwidth then the the
-  largest integer type is used. For example, given the default specifications
-  above, the i7 type will use the alignment of i8 (next largest) while both
-  i65 and i256 will use the alignment of i64 (largest specified).</li>
+      smallest integer type that is larger than the bitwidth of the sought type
+      is used. If none of the specifications are larger than the bitwidth then
+      the the largest integer type is used. For example, given the default
+      specifications above, the i7 type will use the alignment of i8 (next
+      largest) while both i65 and i256 will use the alignment of i64 (largest
+      specified).</li>
+
   <li>If no match is found, and the type sought is a vector type, then the
-  largest vector type that is smaller than the sought vector type will be used
-  as a fall back.  This happens because &lt;128 x double&gt; can be implemented
-  in terms of 64 &lt;2 x double&gt;, for example.</li>
+      largest vector type that is smaller than the sought vector type will be
+      used as a fall back.  This happens because &lt;128 x double&gt; can be
+      implemented in terms of 64 &lt;2 x double&gt;, for example.</li>
 </ol>
+
+</div>
+
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+  <a name="pointeraliasing">Pointer Aliasing Rules</a>
+</div>
+
+<div class="doc_text">
+
+<p>Any memory access must be done through a pointer value associated
+with an address range of the memory access, otherwise the behavior
+is undefined. Pointer values are associated with address ranges
+according to the following rules:</p>
+
+<ul>
+  <li>A pointer value formed from a
+      <tt><a href="#i_getelementptr">getelementptr</a></tt> instruction
+      is associated with the addresses associated with the first operand
+      of the <tt>getelementptr</tt>.</li>
+  <li>An address of a global variable is associated with the address
+      range of the variable's storage.</li>
+  <li>The result value of an allocation instruction is associated with
+      the address range of the allocated storage.</li>
+  <li>A null pointer in the default address-space is associated with
+      no address.</li>
+  <li>A pointer value formed by an
+      <tt><a href="#i_inttoptr">inttoptr</a></tt> is associated with all
+      address ranges of all pointer values that contribute (directly or
+      indirectly) to the computation of the pointer's value.</li>
+  <li>The result value of a
+      <tt><a href="#i_bitcast">bitcast</a></tt> is associated with all
+      addresses associated with the operand of the <tt>bitcast</tt>.</li>
+  <li>An integer constant other than zero or a pointer value returned
+      from a function not defined within LLVM may be associated with address
+      ranges allocated through mechanisms other than those provided by
+      LLVM. Such ranges shall not overlap with any ranges of addresses
+      allocated by mechanisms provided by LLVM.</li>
+  </ul>
+
+<p>LLVM IR does not associate types with memory. The result type of a
+<tt><a href="#i_load">load</a></tt> merely indicates the size and
+alignment of the memory from which to load, as well as the
+interpretation of the value. The first operand of a
+<tt><a href="#i_store">store</a></tt> similarly only indicates the size
+and alignment of the store.</p>
+
+<p>Consequently, type-based alias analysis, aka TBAA, aka
+<tt>-fstrict-aliasing</tt>, is not applicable to general unadorned
+LLVM IR. <a href="#metadata">Metadata</a> may be used to encode
+additional information which specialized optimization passes may use
+to implement type-based alias analysis.</p>
+
 </div>
 
 <!-- *********************************************************************** -->
@@ -1235,22 +1364,22 @@ following rules:</p>
 <div class="doc_text">
 
 <p>The LLVM type system is one of the most important features of the
-intermediate representation.  Being typed enables a number of
-optimizations to be performed on the intermediate representation directly,
-without having to do
-extra analyses on the side before the transformation.  A strong type
-system makes it easier to read the generated code and enables novel
-analyses and transformations that are not feasible to perform on normal
-three address code representations.</p>
+   intermediate representation.  Being typed enables a number of optimizations
+   to be performed on the intermediate representation directly, without having
+   to do extra analyses on the side before the transformation.  A strong type
+   system makes it easier to read the generated code and enables novel analyses
+   and transformations that are not feasible to perform on normal three address
+   code representations.</p>
 
 </div>
 
 <!-- ======================================================================= -->
 <div class="doc_subsection"> <a name="t_classifications">Type
 Classifications</a> </div>
+
 <div class="doc_text">
-<p>The types fall into a few useful
-classifications:</p>
+
+<p>The types fall into a few useful classifications:</p>
 
 <table border="1" cellspacing="0" cellpadding="4">
   <tbody>
@@ -1297,18 +1426,55 @@ classifications:</p>
   </tbody>
 </table>
 
-<p>The <a href="#t_firstclass">first class</a> types are perhaps the
-most important.  Values of these types are the only ones which can be
-produced by instructions, passed as arguments, or used as operands to
-instructions.</p>
+<p>The <a href="#t_firstclass">first class</a> types are perhaps the most
+   important.  Values of these types are the only ones which can be produced by
+   instructions.</p>
+
 </div>
 
 <!-- ======================================================================= -->
 <div class="doc_subsection"> <a name="t_primitive">Primitive Types</a> </div>
 
 <div class="doc_text">
+
 <p>The primitive types are the fundamental building blocks of the LLVM
-system.</p>
+   system.</p>
+
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection"> <a name="t_integer">Integer Type</a> </div>
+
+<div class="doc_text">
+
+<h5>Overview:</h5>
+<p>The integer type is a very simple type that simply specifies an arbitrary
+   bit width for the integer type desired. Any bit width from 1 bit to
+   2<sup>23</sup>-1 (about 8 million) can be specified.</p>
+
+<h5>Syntax:</h5>
+<pre>
+  iN
+</pre>
+
+<p>The number of bits the integer will occupy is specified by the <tt>N</tt>
+   value.</p>
+
+<h5>Examples:</h5>
+<table class="layout">
+  <tr class="layout">
+    <td class="left"><tt>i1</tt></td>
+    <td class="left">a single-bit integer.</td>
+  </tr>
+  <tr class="layout">
+    <td class="left"><tt>i32</tt></td>
+    <td class="left">a 32-bit integer.</td>
+  </tr>
+  <tr class="layout">
+    <td class="left"><tt>i1942652</tt></td>
+    <td class="left">a really big integer of over 1 million bits.</td>
+  </tr>
+</table>
 
 </div>
 
@@ -1316,60 +1482,65 @@ system.</p>
 <div class="doc_subsubsection"> <a name="t_floating">Floating Point Types</a> </div>
 
 <div class="doc_text">
-      <table>
-        <tbody>
-          <tr><th>Type</th><th>Description</th></tr>
-          <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr>
-          <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr>
-          <tr><td><tt>fp128</tt></td><td>128-bit floating point value (112-bit mantissa)</td></tr>
-          <tr><td><tt>x86_fp80</tt></td><td>80-bit floating point value (X87)</td></tr>
-          <tr><td><tt>ppc_fp128</tt></td><td>128-bit floating point value (two 64-bits)</td></tr>
-        </tbody>
-      </table>
+
+<table>
+  <tbody>
+    <tr><th>Type</th><th>Description</th></tr>
+    <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr>
+    <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr>
+    <tr><td><tt>fp128</tt></td><td>128-bit floating point value (112-bit mantissa)</td></tr>
+    <tr><td><tt>x86_fp80</tt></td><td>80-bit floating point value (X87)</td></tr>
+    <tr><td><tt>ppc_fp128</tt></td><td>128-bit floating point value (two 64-bits)</td></tr>
+  </tbody>
+</table>
+
 </div>
 
 <!-- _______________________________________________________________________ -->
 <div class="doc_subsubsection"> <a name="t_void">Void Type</a> </div>
 
 <div class="doc_text">
+
 <h5>Overview:</h5>
 <p>The void type does not represent any value and has no size.</p>
 
 <h5>Syntax:</h5>
-
 <pre>
   void
 </pre>
+
 </div>
 
 <!-- _______________________________________________________________________ -->
 <div class="doc_subsubsection"> <a name="t_label">Label Type</a> </div>
 
 <div class="doc_text">
+
 <h5>Overview:</h5>
 <p>The label type represents code labels.</p>
 
 <h5>Syntax:</h5>
-
 <pre>
   label
 </pre>
+
 </div>
 
 <!-- _______________________________________________________________________ -->
 <div class="doc_subsubsection"> <a name="t_metadata">Metadata Type</a> </div>
 
 <div class="doc_text">
+
 <h5>Overview:</h5>
-<p>The metadata type represents embedded metadata. The only derived type that
-may contain metadata is <tt>metadata*</tt> or a function type that returns or
-takes metadata typed parameters, but not pointer to metadata types.</p>
+<p>The metadata type represents embedded metadata. No derived types may be
+   created from metadata except for <a href="#t_function">function</a>
+   arguments.
 
 <h5>Syntax:</h5>
-
 <pre>
   metadata
 </pre>
+
 </div>
 
 
@@ -1378,53 +1549,12 @@ takes metadata typed parameters, but not pointer to metadata types.</p>
 
 <div class="doc_text">
 
-<p>The real power in LLVM comes from the derived types in the system. 
-This is what allows a programmer to represent arrays, functions,
-pointers, and other useful types.  Note that these derived types may be
-recursive: For example, it is possible to have a two dimensional array.</p>
-
-</div>
-
-<!-- _______________________________________________________________________ -->
-<div class="doc_subsubsection"> <a name="t_integer">Integer Type</a> </div>
-
-<div class="doc_text">
-
-<h5>Overview:</h5>
-<p>The integer type is a very simple derived type that simply specifies an
-arbitrary bit width for the integer type desired. Any bit width from 1 bit to
-2^23-1 (about 8 million) can be specified.</p>
-
-<h5>Syntax:</h5>
-
-<pre>
-  iN
-</pre>
-
-<p>The number of bits the integer will occupy is specified by the <tt>N</tt>
-value.</p>
-
-<h5>Examples:</h5>
-<table class="layout">
-  <tr class="layout">
-    <td class="left"><tt>i1</tt></td>
-    <td class="left">a single-bit integer.</td>
-  </tr>
-  <tr class="layout">
-    <td class="left"><tt>i32</tt></td>
-    <td class="left">a 32-bit integer.</td>
-  </tr>
-  <tr class="layout">
-    <td class="left"><tt>i1942652</tt></td>
-    <td class="left">a really big integer of over 1 million bits.</td>
-  </tr>
-</table>
-
-<p>Note that the code generator does not yet support large integer types
-to be used as function return types. The specific limit on how large a
-return type the code generator can currently handle is target-dependent;
-currently it's often 64 bits for 32-bit targets and 128 bits for 64-bit
-targets.</p>
+<p>The real power in LLVM comes from the derived types in the system.  This is
+   what allows a programmer to represent arrays, functions, pointers, and other
+   useful types.  Each of these types contain one or more element types which
+   may be a primitive type, or another derived type.  For example, it is
+   possible to have a two dimensional array, using an array as the element type
+   of another array.</p>
 
 </div>
 
@@ -1434,19 +1564,17 @@ targets.</p>
 <div class="doc_text">
 
 <h5>Overview:</h5>
-
 <p>The array type is a very simple derived type that arranges elements
-sequentially in memory.  The array type requires a size (number of
-elements) and an underlying data type.</p>
+   sequentially in memory.  The array type requires a size (number of elements)
+   and an underlying data type.</p>
 
 <h5>Syntax:</h5>
-
 <pre>
   [&lt;# elements&gt; x &lt;elementtype&gt;]
 </pre>
 
-<p>The number of elements is a constant integer value; elementtype may
-be any type with a size.</p>
+<p>The number of elements is a constant integer value; <tt>elementtype</tt> may
+   be any type with a size.</p>
 
 <h5>Examples:</h5>
 <table class="layout">
@@ -1479,45 +1607,39 @@ be any type with a size.</p>
   </tr>
 </table>
 
-<p>Note that 'variable sized arrays' can be implemented in LLVM with a zero 
-length array.  Normally, accesses past the end of an array are undefined in
-LLVM (e.g. it is illegal to access the 5th element of a 3 element array).
-As a special case, however, zero length arrays are recognized to be variable
-length.  This allows implementation of 'pascal style arrays' with the  LLVM
-type "{ i32, [0 x float]}", for example.</p>
-
-<p>Note that the code generator does not yet support large aggregate types
-to be used as function return types. The specific limit on how large an
-aggregate return type the code generator can currently handle is
-target-dependent, and also dependent on the aggregate element types.</p>
+<p>There is no restriction on indexing beyond the end of the array implied by
+   a static type (though there are restrictions on indexing beyond the bounds
+   of an allocated object in some cases). This means that single-dimension
+   'variable sized array' addressing can be implemented in LLVM with a zero
+   length array type. An implementation of 'pascal style arrays' in LLVM could
+   use the type "<tt>{ i32, [0 x float]}</tt>", for example.</p>
 
 </div>
 
 <!-- _______________________________________________________________________ -->
 <div class="doc_subsubsection"> <a name="t_function">Function Type</a> </div>
+
 <div class="doc_text">
 
 <h5>Overview:</h5>
-
-<p>The function type can be thought of as a function signature.  It
-consists of a return type and a list of formal parameter types. The
-return type of a function type is a scalar type, a void type, or a struct type. 
-If the return type is a struct type then all struct elements must be of first 
-class types, and the struct must have at least one element.</p>
+<p>The function type can be thought of as a function signature.  It consists of
+   a return type and a list of formal parameter types. The return type of a
+   function type is a scalar type, a void type, or a struct type.  If the return
+   type is a struct type then all struct elements must be of first class types,
+   and the struct must have at least one element.</p>
 
 <h5>Syntax:</h5>
-
 <pre>
-  &lt;returntype list&gt; (&lt;parameter list&gt;)
+  &lt;returntype&gt; (&lt;parameter list&gt;)
 </pre>
 
 <p>...where '<tt>&lt;parameter list&gt;</tt>' is a comma-separated list of type
-specifiers.  Optionally, the parameter list may include a type <tt>...</tt>,
-which indicates that the function takes a variable number of arguments.
-Variable argument functions can access their arguments with the <a
- href="#int_varargs">variable argument handling intrinsic</a> functions.
-'<tt>&lt;returntype list&gt;</tt>' is a comma-separated list of
-<a href="#t_firstclass">first class</a> type specifiers.</p>
+   specifiers.  Optionally, the parameter list may include a type <tt>...</tt>,
+   which indicates that the function takes a variable number of arguments.
+   Variable argument functions can access their arguments with
+   the <a href="#int_varargs">variable argument handling intrinsic</a>
+   functions.  '<tt>&lt;returntype&gt;</tt>' is a any type except
+   <a href="#t_label">label</a>.</p>
 
 <h5>Examples:</h5>
 <table class="layout">
@@ -1528,41 +1650,50 @@ Variable argument functions can access their arguments with the <a
   </tr><tr class="layout">
     <td class="left"><tt>float&nbsp;(i16&nbsp;signext,&nbsp;i32&nbsp;*)&nbsp;*
     </tt></td>
-    <td class="left"><a href="#t_pointer">Pointer</a> to a function that takes 
-      an <tt>i16</tt> that should be sign extended and a 
-      <a href="#t_pointer">pointer</a> to <tt>i32</tt>, returning 
+    <td class="left"><a href="#t_pointer">Pointer</a> to a function that takes
+      an <tt>i16</tt> that should be sign extended and a
+      <a href="#t_pointer">pointer</a> to <tt>i32</tt>, returning
       <tt>float</tt>.
     </td>
   </tr><tr class="layout">
     <td class="left"><tt>i32 (i8*, ...)</tt></td>
-    <td class="left">A vararg function that takes at least one 
-      <a href="#t_pointer">pointer</a> to <tt>i8 </tt> (char in C), 
-      which returns an integer.  This is the signature for <tt>printf</tt> in 
+    <td class="left">A vararg function that takes at least one
+      <a href="#t_pointer">pointer</a> to <tt>i8 </tt> (char in C),
+      which returns an integer.  This is the signature for <tt>printf</tt> in
       LLVM.
     </td>
   </tr><tr class="layout">
     <td class="left"><tt>{i32, i32} (i32)</tt></td>
-    <td class="left">A function taking an <tt>i32</tt>, returning two 
-        <tt>i32</tt> values as an aggregate of type <tt>{ i32, i32 }</tt>
+    <td class="left">A function taking an <tt>i32</tt>, returning a
+        <a href="#t_struct">structure</a> containing two <tt>i32</tt> values
     </td>
   </tr>
 </table>
 
 </div>
+
 <!-- _______________________________________________________________________ -->
 <div class="doc_subsubsection"> <a name="t_struct">Structure Type</a> </div>
+
 <div class="doc_text">
+
 <h5>Overview:</h5>
-<p>The structure type is used to represent a collection of data members
-together in memory.  The packing of the field types is defined to match
-the ABI of the underlying processor.  The elements of a structure may
-be any type that has a size.</p>
-<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
-and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
-field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
-instruction.</p>
+<p>The structure type is used to represent a collection of data members together
+   in memory.  The packing of the field types is defined to match the ABI of the
+   underlying processor.  The elements of a structure may be any type that has a
+   size.</p>
+
+<p>Structures in memory are accessed using '<tt><a href="#i_load">load</a></tt>'
+   and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a field
+   with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
+   Structures in registers are accessed using the
+   '<tt><a href="#i_extractvalue">extractvalue</a></tt>' and
+   '<tt><a href="#i_insertvalue">insertvalue</a></tt>' instructions.</p>
 <h5>Syntax:</h5>
-<pre>  { &lt;type list&gt; }<br></pre>
+<pre>
+  { &lt;type list&gt; }
+</pre>
+
 <h5>Examples:</h5>
 <table class="layout">
   <tr class="layout">
@@ -1577,28 +1708,29 @@ instruction.</p>
   </tr>
 </table>
 
-<p>Note that the code generator does not yet support large aggregate types
-to be used as function return types. The specific limit on how large an
-aggregate return type the code generator can currently handle is
-target-dependent, and also dependent on the aggregate element types.</p>
-
 </div>
 
 <!-- _______________________________________________________________________ -->
 <div class="doc_subsubsection"> <a name="t_pstruct">Packed Structure Type</a>
 </div>
+
 <div class="doc_text">
+
 <h5>Overview:</h5>
 <p>The packed structure type is used to represent a collection of data members
-together in memory.  There is no padding between fields.  Further, the alignment
-of a packed structure is 1 byte.  The elements of a packed structure may
-be any type that has a size.</p>
-<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
-and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
-field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
-instruction.</p>
+   together in memory.  There is no padding between fields.  Further, the
+   alignment of a packed structure is 1 byte.  The elements of a packed
+   structure may be any type that has a size.</p>
+
+<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt> and
+   '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a field with
+   the '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.</p>
+
 <h5>Syntax:</h5>
-<pre>  &lt; { &lt;type list&gt; } &gt; <br></pre>
+<pre>
+  &lt; { &lt;type list&gt; } &gt;
+</pre>
+
 <h5>Examples:</h5>
 <table class="layout">
   <tr class="layout">
@@ -1613,23 +1745,28 @@ instruction.</p>
       an <tt>i32</tt>.</td>
   </tr>
 </table>
+
 </div>
 
 <!-- _______________________________________________________________________ -->
 <div class="doc_subsubsection"> <a name="t_pointer">Pointer Type</a> </div>
+
 <div class="doc_text">
+
 <h5>Overview:</h5>
-<p>As in many languages, the pointer type represents a pointer or
-reference to another object, which must live in memory. Pointer types may have 
-an optional address space attribute defining the target-specific numbered 
-address space where the pointed-to object resides. The default address space is 
-zero.</p>
+<p>As in many languages, the pointer type represents a pointer or reference to
+   another object, which must live in memory. Pointer types may have an optional
+   address space attribute defining the target-specific numbered address space
+   where the pointed-to object resides. The default address space is zero.</p>
 
-<p>Note that LLVM does not permit pointers to void (<tt>void*</tt>) nor does 
-it permit pointers to labels (<tt>label*</tt>).  Use <tt>i8*</tt> instead.</p>
+<p>Note that LLVM does not permit pointers to void (<tt>void*</tt>) nor does it
+   permit pointers to labels (<tt>label*</tt>).  Use <tt>i8*</tt> instead.</p>
 
 <h5>Syntax:</h5>
-<pre>  &lt;type&gt; *<br></pre>
+<pre>
+  &lt;type&gt; *
+</pre>
+
 <h5>Examples:</h5>
 <table class="layout">
   <tr class="layout">
@@ -1649,33 +1786,30 @@ it permit pointers to labels (<tt>label*</tt>).  Use <tt>i8*</tt> instead.</p>
      that resides in address space #5.</td>
   </tr>
 </table>
+
 </div>
 
 <!-- _______________________________________________________________________ -->
 <div class="doc_subsubsection"> <a name="t_vector">Vector Type</a> </div>
+
 <div class="doc_text">
 
 <h5>Overview:</h5>
-
-<p>A vector type is a simple derived type that represents a vector
-of elements.  Vector types are used when multiple primitive data 
-are operated in parallel using a single instruction (SIMD). 
-A vector type requires a size (number of
-elements) and an underlying primitive data type.  Vectors must have a power
-of two length (1, 2, 4, 8, 16 ...).  Vector types are
-considered <a href="#t_firstclass">first class</a>.</p>
+<p>A vector type is a simple derived type that represents a vector of elements.
+   Vector types are used when multiple primitive data are operated in parallel
+   using a single instruction (SIMD).  A vector type requires a size (number of
+   elements) and an underlying primitive data type.  Vector types are considered
+   <a href="#t_firstclass">first class</a>.</p>
 
 <h5>Syntax:</h5>
-
 <pre>
   &lt; &lt;# elements&gt; x &lt;elementtype&gt; &gt;
 </pre>
 
-<p>The number of elements is a constant integer value; elementtype may
-be any integer or floating point type.</p>
+<p>The number of elements is a constant integer value; elementtype may be any
+   integer or floating point type.</p>
 
 <h5>Examples:</h5>
-
 <table class="layout">
   <tr class="layout">
     <td class="left"><tt>&lt;4 x i32&gt;</tt></td>
@@ -1691,11 +1825,6 @@ be any integer or floating point type.</p>
   </tr>
 </table>
 
-<p>Note that the code generator does not yet support large vector types
-to be used as function return types. The specific limit on how large a
-vector return type codegen can currently handle is target-dependent;
-currently it's often a few times longer than a hardware vector register.</p>
-
 </div>
 
 <!-- _______________________________________________________________________ -->
@@ -1703,26 +1832,24 @@ currently it's often a few times longer than a hardware vector register.</p>
 <div class="doc_text">
 
 <h5>Overview:</h5>
-
 <p>Opaque types are used to represent unknown types in the system.  This
-corresponds (for example) to the C notion of a forward declared structure type.
-In LLVM, opaque types can eventually be resolved to any type (not just a
-structure type).</p>
+   corresponds (for example) to the C notion of a forward declared structure
+   type.  In LLVM, opaque types can eventually be resolved to any type (not just
+   a structure type).</p>
 
 <h5>Syntax:</h5>
-
 <pre>
   opaque
 </pre>
 
 <h5>Examples:</h5>
-
 <table class="layout">
   <tr class="layout">
     <td class="left"><tt>opaque</tt></td>
     <td class="left">An opaque type.</td>
   </tr>
 </table>
+
 </div>
 
 <!-- ======================================================================= -->
@@ -1731,12 +1858,13 @@ structure type).</p>
 </div>
 
 <div class="doc_text">
+
 <h5>Overview:</h5>
-<p>
-An "up reference" allows you to refer to a lexically enclosing type without
-requiring it to have a name. For instance, a structure declaration may contain a
-pointer to any of the types it is lexically a member of.  Example of up
-references (with their equivalent as named type declarations) include:</p>
+<p>An "up reference" allows you to refer to a lexically enclosing type without
+   requiring it to have a name. For instance, a structure declaration may
+   contain a pointer to any of the types it is lexically a member of.  Example
+   of up references (with their equivalent as named type declarations)
+   include:</p>
 
 <pre>
    { \2 * }                %x = type { %x* }
@@ -1744,24 +1872,20 @@ references (with their equivalent as named type declarations) include:</p>
    \1*                     %z = type %z*
 </pre>
 
-<p>
-An up reference is needed by the asmprinter for printing out cyclic types when
-there is no declared name for a type in the cycle.  Because the asmprinter does
-not want to print out an infinite type string, it needs a syntax to handle
-recursive types that have no names (all names are optional in llvm IR).
-</p>
+<p>An up reference is needed by the asmprinter for printing out cyclic types
+   when there is no declared name for a type in the cycle.  Because the
+   asmprinter does not want to print out an infinite type string, it needs a
+   syntax to handle recursive types that have no names (all names are optional
+   in llvm IR).</p>
 
 <h5>Syntax:</h5>
 <pre>
    \&lt;level&gt;
 </pre>
 
-<p>
-The level is the count of the lexical type that is being referred to.
-</p>
+<p>The level is the count of the lexical type that is being referred to.</p>
 
 <h5>Examples:</h5>
-
 <table class="layout">
   <tr class="layout">
     <td class="left"><tt>\1*</tt></td>
@@ -1773,8 +1897,8 @@ The level is the count of the lexical type that is being referred to.
                      structure.</td>
   </tr>
 </table>
-</div>
 
+</div>
 
 <!-- *********************************************************************** -->
 <div class="doc_section"> <a name="constants">Constants</a> </div>
@@ -1783,7 +1907,7 @@ The level is the count of the lexical type that is being referred to.
 <div class="doc_text">
 
 <p>LLVM has several different basic types of constants.  This section describes
-them all and their syntax.</p>
+   them all and their syntax.</p>
 
 </div>
 
@@ -1794,118 +1918,103 @@ them all and their syntax.</p>
 
 <dl>
   <dt><b>Boolean constants</b></dt>
-
   <dd>The two strings '<tt>true</tt>' and '<tt>false</tt>' are both valid
-  constants of the <tt><a href="#t_primitive">i1</a></tt> type.
-  </dd>
+      constants of the <tt><a href="#t_integer">i1</a></tt> type.</dd>
 
   <dt><b>Integer constants</b></dt>
-
-  <dd>Standard integers (such as '4') are constants of the <a
-  href="#t_integer">integer</a> type.  Negative numbers may be used with 
-  integer types.
-  </dd>
+  <dd>Standard integers (such as '4') are constants of
+      the <a href="#t_integer">integer</a> type.  Negative numbers may be used
+      with integer types.</dd>
 
   <dt><b>Floating point constants</b></dt>
-
   <dd>Floating point constants use standard decimal notation (e.g. 123.421),
-  exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal
-  notation (see below).  The assembler requires the exact decimal value of
-  a floating-point constant.  For example, the assembler accepts 1.25 but
-  rejects 1.3 because 1.3 is a repeating decimal in binary.  Floating point
-  constants must have a <a href="#t_floating">floating point</a> type. </dd>
+      exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal
+      notation (see below).  The assembler requires the exact decimal value of a
+      floating-point constant.  For example, the assembler accepts 1.25 but
+      rejects 1.3 because 1.3 is a repeating decimal in binary.  Floating point
+      constants must have a <a href="#t_floating">floating point</a> type. </dd>
 
   <dt><b>Null pointer constants</b></dt>
-
   <dd>The identifier '<tt>null</tt>' is recognized as a null pointer constant
-  and must be of <a href="#t_pointer">pointer type</a>.</dd>
-
+      and must be of <a href="#t_pointer">pointer type</a>.</dd>
 </dl>
 
-<p>The one non-intuitive notation for constants is the hexadecimal form
-of floating point constants.  For example, the form '<tt>double
-0x432ff973cafa8000</tt>' is equivalent to (but harder to read than) '<tt>double
-4.5e+15</tt>'.  The only time hexadecimal floating point constants are required
-(and the only time that they are generated by the disassembler) is when a 
-floating point constant must be emitted but it cannot be represented as a 
-decimal floating point number in a reasonable number of digits.  For example,
-NaN's, infinities, and other 
-special values are represented in their IEEE hexadecimal format so that 
-assembly and disassembly do not cause any bits to change in the constants.</p>
+<p>The one non-intuitive notation for constants is the hexadecimal form of
+   floating point constants.  For example, the form '<tt>double
+   0x432ff973cafa8000</tt>' is equivalent to (but harder to read than)
+   '<tt>double 4.5e+15</tt>'.  The only time hexadecimal floating point
+   constants are required (and the only time that they are generated by the
+   disassembler) is when a floating point constant must be emitted but it cannot
+   be represented as a decimal floating point number in a reasonable number of
+   digits.  For example, NaN's, infinities, and other special values are
+   represented in their IEEE hexadecimal format so that assembly and disassembly
+   do not cause any bits to change in the constants.</p>
+
 <p>When using the hexadecimal form, constants of types float and double are
-represented using the 16-digit form shown above (which matches the IEEE754
-representation for double); float values must, however, be exactly representable
-as IEE754 single precision.
-Hexadecimal format is always used for long
-double, and there are three forms of long double.  The 80-bit
-format used by x86 is represented as <tt>0xK</tt>
-followed by 20 hexadecimal digits.
-The 128-bit format used by PowerPC (two adjacent doubles) is represented
-by <tt>0xM</tt> followed by 32 hexadecimal digits.  The IEEE 128-bit
-format is represented
-by <tt>0xL</tt> followed by 32 hexadecimal digits; no currently supported
-target uses this format.  Long doubles will only work if they match
-the long double format on your target.  All hexadecimal formats are big-endian
-(sign bit at the left).</p>
+   represented using the 16-digit form shown above (which matches the IEEE754
+   representation for double); float values must, however, be exactly
+   representable as IEE754 single precision.  Hexadecimal format is always used
+   for long double, and there are three forms of long double.  The 80-bit format
+   used by x86 is represented as <tt>0xK</tt> followed by 20 hexadecimal digits.
+   The 128-bit format used by PowerPC (two adjacent doubles) is represented
+   by <tt>0xM</tt> followed by 32 hexadecimal digits.  The IEEE 128-bit format
+   is represented by <tt>0xL</tt> followed by 32 hexadecimal digits; no
+   currently supported target uses this format.  Long doubles will only work if
+   they match the long double format on your target.  All hexadecimal formats
+   are big-endian (sign bit at the left).</p>
+
 </div>
 
 <!-- ======================================================================= -->
 <div class="doc_subsection">
-<a name="aggregateconstants"> <!-- old anchor -->
-<a name="complexconstants">Complex Constants</a></a>
+<a name="aggregateconstants"></a> <!-- old anchor -->
+<a name="complexconstants">Complex Constants</a>
 </div>
 
 <div class="doc_text">
+
 <p>Complex constants are a (potentially recursive) combination of simple
-constants and smaller complex constants.</p>
+   constants and smaller complex constants.</p>
 
 <dl>
   <dt><b>Structure constants</b></dt>
-
   <dd>Structure constants are represented with notation similar to structure
-  type definitions (a comma separated list of elements, surrounded by braces
-  (<tt>{}</tt>)).  For example: "<tt>{ i32 4, float 17.0, i32* @G }</tt>",
-  where "<tt>@G</tt>" is declared as "<tt>@G = external global i32</tt>".  Structure constants
-  must have <a href="#t_struct">structure type</a>, and the number and
-  types of elements must match those specified by the type.
-  </dd>
+      type definitions (a comma separated list of elements, surrounded by braces
+      (<tt>{}</tt>)).  For example: "<tt>{ i32 4, float 17.0, i32* @G }</tt>",
+      where "<tt>@G</tt>" is declared as "<tt>@G = external global i32</tt>".
+      Structure constants must have <a href="#t_struct">structure type</a>, and
+      the number and types of elements must match those specified by the
+      type.</dd>
 
   <dt><b>Array constants</b></dt>
-
   <dd>Array constants are represented with notation similar to array type
-  definitions (a comma separated list of elements, surrounded by square brackets
-  (<tt>[]</tt>)).  For example: "<tt>[ i32 42, i32 11, i32 74 ]</tt>".  Array
-  constants must have <a href="#t_array">array type</a>, and the number and
-  types of elements must match those specified by the type.
-  </dd>
+     definitions (a comma separated list of elements, surrounded by square
+     brackets (<tt>[]</tt>)).  For example: "<tt>[ i32 42, i32 11, i32 74
+     ]</tt>".  Array constants must have <a href="#t_array">array type</a>, and
+     the number and types of elements must match those specified by the
+     type.</dd>
 
   <dt><b>Vector constants</b></dt>
-
   <dd>Vector constants are represented with notation similar to vector type
-  definitions (a comma separated list of elements, surrounded by
-  less-than/greater-than's (<tt>&lt;&gt;</tt>)).  For example: "<tt>&lt; i32 42,
-  i32 11, i32 74, i32 100 &gt;</tt>".  Vector constants must have <a
-  href="#t_vector">vector type</a>, and the number and types of elements must
-  match those specified by the type.
-  </dd>
+      definitions (a comma separated list of elements, surrounded by
+      less-than/greater-than's (<tt>&lt;&gt;</tt>)).  For example: "<tt>&lt; i32
+      42, i32 11, i32 74, i32 100 &gt;</tt>".  Vector constants must
+      have <a href="#t_vector">vector type</a>, and the number and types of
+      elements must match those specified by the type.</dd>
 
   <dt><b>Zero initialization</b></dt>
-
   <dd>The string '<tt>zeroinitializer</tt>' can be used to zero initialize a
-  value to zero of <em>any</em> type, including scalar and aggregate types.
-  This is often used to avoid having to print large zero initializers (e.g. for
-  large arrays) and is always exactly equivalent to using explicit zero
-  initializers.
-  </dd>
+      value to zero of <em>any</em> type, including scalar and aggregate types.
+      This is often used to avoid having to print large zero initializers
+      (e.g. for large arrays) and is always exactly equivalent to using explicit
+      zero initializers.</dd>
 
   <dt><b>Metadata node</b></dt>
-
   <dd>A metadata node is a structure-like constant with
-  <a href="#t_metadata">metadata type</a>.  For example:
-  "<tt>metadata !{ i32 0, metadata !"test" }</tt>".  Unlike other constants
-  that are meant to be interpreted as part of the instruction stream, metadata
-  is a place to attach additional information such as debug info.
-  </dd>
+      <a href="#t_metadata">metadata type</a>.  For example: "<tt>metadata !{
+      i32 0, metadata !"test" }</tt>".  Unlike other constants that are meant to
+      be interpreted as part of the instruction stream, metadata is a place to
+      attach additional information such as debug info.</dd>
 </dl>
 
 </div>
@@ -1917,12 +2026,12 @@ constants and smaller complex constants.</p>
 
 <div class="doc_text">
 
-<p>The addresses of <a href="#globalvars">global variables</a> and <a
-href="#functionstructure">functions</a> are always implicitly valid (link-time)
-constants.  These constants are explicitly referenced when the <a
-href="#identifiers">identifier for the global</a> is used and always have <a
-href="#t_pointer">pointer</a> type. For example, the following is a legal LLVM
-file:</p>
+<p>The addresses of <a href="#globalvars">global variables</a>
+   and <a href="#functionstructure">functions</a> are always implicitly valid
+   (link-time) constants.  These constants are explicitly referenced when
+   the <a href="#identifiers">identifier for the global</a> is used and always
+   have <a href="#t_pointer">pointer</a> type. For example, the following is a
+   legal LLVM file:</p>
 
 <div class="doc_code">
 <pre>
@@ -1937,15 +2046,180 @@ file:</p>
 <!-- ======================================================================= -->
 <div class="doc_subsection"><a name="undefvalues">Undefined Values</a></div>
 <div class="doc_text">
-  <p>The string '<tt>undef</tt>' is recognized as a type-less constant that has 
-  no specific value.  Undefined values may be of any type and be used anywhere 
-  a constant is permitted.</p>
 
-  <p>Undefined values indicate to the compiler that the program is well defined
-  no matter what value is used, giving the compiler more freedom to optimize.
-  </p>
+<p>The string '<tt>undef</tt>' can be used anywhere a constant is expected, and
+   indicates that the user of the value may receive an unspecified bit-pattern.
+   Undefined values may be of any type (other than label or void) and be used
+   anywhere a constant is permitted.</p>
+
+<p>Undefined values are useful because they indicate to the compiler that the
+   program is well defined no matter what value is used.  This gives the
+   compiler more freedom to optimize.  Here are some examples of (potentially
+   surprising) transformations that are valid (in pseudo IR):</p>
+
+
+<div class="doc_code">
+<pre>
+  %A = add %X, undef
+  %B = sub %X, undef
+  %C = xor %X, undef
+Safe:
+  %A = undef
+  %B = undef
+  %C = undef
+</pre>
+</div>
+
+<p>This is safe because all of the output bits are affected by the undef bits.
+Any output bit can have a zero or one depending on the input bits.</p>
+
+<div class="doc_code">
+<pre>
+  %A = or %X, undef
+  %B = and %X, undef
+Safe:
+  %A = -1
+  %B = 0
+Unsafe:
+  %A = undef
+  %B = undef
+</pre>
+</div>
+
+<p>These logical operations have bits that are not always affected by the input.
+For example, if "%X" has a zero bit, then the output of the 'and' operation will
+always be a zero, no matter what the corresponding bit from the undef is.  As
+such, it is unsafe to optimize or assume that the result of the and is undef.
+However, it is safe to assume that all bits of the undef could be 0, and
+optimize the and to 0.  Likewise, it is safe to assume that all the bits of
+the undef operand to the or could be set, allowing the or to be folded to
+-1.</p>
+
+<div class="doc_code">
+<pre>
+  %A = select undef, %X, %Y
+  %B = select undef, 42, %Y
+  %C = select %X, %Y, undef
+Safe:
+  %A = %X     (or %Y)
+  %B = 42     (or %Y)
+  %C = %Y
+Unsafe:
+  %A = undef
+  %B = undef
+  %C = undef
+</pre>
+</div>
+
+<p>This set of examples show that undefined select (and conditional branch)
+conditions can go "either way" but they have to come from one of the two
+operands.  In the %A example, if %X and %Y were both known to have a clear low
+bit, then %A would have to have a cleared low bit.  However, in the %C example,
+the optimizer is allowed to assume that the undef operand could be the same as
+%Y, allowing the whole select to be eliminated.</p>
+
+
+<div class="doc_code">
+<pre>
+  %A = xor undef, undef
+
+  %B = undef
+  %C = xor %B, %B
+
+  %D = undef
+  %E = icmp lt %D, 4
+  %F = icmp gte %D, 4
+
+Safe:
+  %A = undef
+  %B = undef
+  %C = undef
+  %D = undef
+  %E = undef
+  %F = undef
+</pre>
+</div>
+
+<p>This example points out that two undef operands are not necessarily the same.
+This can be surprising to people (and also matches C semantics) where they
+assume that "X^X" is always zero, even if X is undef.  This isn't true for a
+number of reasons, but the short answer is that an undef "variable" can
+arbitrarily change its value over its "live range".  This is true because the
+"variable" doesn't actually <em>have a live range</em>.  Instead, the value is
+logically read from arbitrary registers that happen to be around when needed,
+so the value is not necessarily consistent over time.  In fact, %A and %C need
+to have the same semantics or the core LLVM "replace all uses with" concept
+would not hold.</p>
+
+<div class="doc_code">
+<pre>
+  %A = fdiv undef, %X
+  %B = fdiv %X, undef
+Safe:
+  %A = undef
+b: unreachable
+</pre>
+</div>
+
+<p>These examples show the crucial difference between an <em>undefined
+value</em> and <em>undefined behavior</em>.  An undefined value (like undef) is
+allowed to have an arbitrary bit-pattern.  This means that the %A operation
+can be constant folded to undef because the undef could be an SNaN, and fdiv is
+not (currently) defined on SNaN's.  However, in the second example, we can make
+a more aggressive assumption: because the undef is allowed to be an arbitrary
+value, we are allowed to assume that it could be zero.  Since a divide by zero
+has <em>undefined behavior</em>, we are allowed to assume that the operation
+does not execute at all.  This allows us to delete the divide and all code after
+it: since the undefined operation "can't happen", the optimizer can assume that
+it occurs in dead code.
+</p>
+
+<div class="doc_code">
+<pre>
+a:  store undef -> %X
+b:  store %X -> undef
+Safe:
+a: &lt;deleted&gt;
+b: unreachable
+</pre>
+</div>
+
+<p>These examples reiterate the fdiv example: a store "of" an undefined value
+can be assumed to not have any effect: we can assume that the value is
+overwritten with bits that happen to match what was already there.  However, a
+store "to" an undefined location could clobber arbitrary memory, therefore, it
+has undefined behavior.</p>
+
 </div>
 
+<!-- ======================================================================= -->
+<div class="doc_subsection"><a name="blockaddress">Addresses of Basic
+    Blocks</a></div>
+<div class="doc_text">
+
+<p><b><tt>blockaddress(@function, %block)</tt></b></p>
+
+<p>The '<tt>blockaddress</tt>' constant computes the address of the specified
+   basic block in the specified function, and always has an i8* type.  Taking
+   the address of the entry block is illegal.</p>
+
+<p>This value only has defined behavior when used as an operand to the
+   '<a href="#i_indirectbr"><tt>indirectbr</tt></a>' instruction or for comparisons
+   against null.  Pointer equality tests between labels addresses is undefined
+   behavior - though, again, comparison against null is ok, and no label is
+   equal to the null pointer.  This may also be passed around as an opaque
+   pointer sized value as long as the bits are not inspected.  This allows
+   <tt>ptrtoint</tt> and arithmetic to be performed on these values so long as
+   the original value is reconstituted before the <tt>indirectbr</tt>.</p>
+
+<p>Finally, some targets may provide defined semantics when
+   using the value as the operand to an inline assembly, but that is target
+   specific.
+   </p>
+
+</div>
+
+
 <!-- ======================================================================= -->
 <div class="doc_subsection"><a name="constantexprs">Constant Expressions</a>
 </div>
@@ -1953,71 +2227,75 @@ file:</p>
 <div class="doc_text">
 
 <p>Constant expressions are used to allow expressions involving other constants
-to be used as constants.  Constant expressions may be of any <a
-href="#t_firstclass">first class</a> type and may involve any LLVM operation
-that does not have side effects (e.g. load and call are not supported).  The
-following is the syntax for constant expressions:</p>
+   to be used as constants.  Constant expressions may be of
+   any <a href="#t_firstclass">first class</a> type and may involve any LLVM
+   operation that does not have side effects (e.g. load and call are not
+   supported).  The following is the syntax for constant expressions:</p>
 
 <dl>
   <dt><b><tt>trunc ( CST to TYPE )</tt></b></dt>
-  <dd>Truncate a constant to another type. The bit size of CST must be larger 
-  than the bit size of TYPE. Both types must be integers.</dd>
+  <dd>Truncate a constant to another type. The bit size of CST must be larger
+      than the bit size of TYPE. Both types must be integers.</dd>
 
   <dt><b><tt>zext ( CST to TYPE )</tt></b></dt>
-  <dd>Zero extend a constant to another type. The bit size of CST must be 
-  smaller or equal to the bit size of TYPE.  Both types must be integers.</dd>
+  <dd>Zero extend a constant to another type. The bit size of CST must be
+      smaller or equal to the bit size of TYPE.  Both types must be
+      integers.</dd>
 
   <dt><b><tt>sext ( CST to TYPE )</tt></b></dt>
-  <dd>Sign extend a constant to another type. The bit size of CST must be 
-  smaller or equal to the bit size of TYPE.  Both types must be integers.</dd>
+  <dd>Sign extend a constant to another type. The bit size of CST must be
+      smaller or equal to the bit size of TYPE.  Both types must be
+      integers.</dd>
 
   <dt><b><tt>fptrunc ( CST to TYPE )</tt></b></dt>
-  <dd>Truncate a floating point constant to another floating point type. The 
-  size of CST must be larger than the size of TYPE. Both types must be 
-  floating point.</dd>
+  <dd>Truncate a floating point constant to another floating point type. The
+      size of CST must be larger than the size of TYPE. Both types must be
+      floating point.</dd>
 
   <dt><b><tt>fpext ( CST to TYPE )</tt></b></dt>
-  <dd>Floating point extend a constant to another type. The size of CST must be 
-  smaller or equal to the size of TYPE. Both types must be floating point.</dd>
+  <dd>Floating point extend a constant to another type. The size of CST must be
+      smaller or equal to the size of TYPE. Both types must be floating
+      point.</dd>
 
   <dt><b><tt>fptoui ( CST to TYPE )</tt></b></dt>
   <dd>Convert a floating point constant to the corresponding unsigned integer
-  constant. TYPE must be a scalar or vector integer type. CST must be of scalar
-  or vector floating point type. Both CST and TYPE must be scalars, or vectors
-  of the same number of elements. If the  value won't fit in the integer type,
-  the results are undefined.</dd>
+      constant. TYPE must be a scalar or vector integer type. CST must be of
+      scalar or vector floating point type. Both CST and TYPE must be scalars,
+      or vectors of the same number of elements. If the value won't fit in the
+      integer type, the results are undefined.</dd>
 
   <dt><b><tt>fptosi ( CST to TYPE )</tt></b></dt>
   <dd>Convert a floating point constant to the corresponding signed integer
-  constant.  TYPE must be a scalar or vector integer type. CST must be of scalar
-  or vector floating point type. Both CST and TYPE must be scalars, or vectors
-  of the same number of elements. If the  value won't fit in the integer type,
-  the results are undefined.</dd>
+      constant.  TYPE must be a scalar or vector integer type. CST must be of
+      scalar or vector floating point type. Both CST and TYPE must be scalars,
+      or vectors of the same number of elements. If the value won't fit in the
+      integer type, the results are undefined.</dd>
 
   <dt><b><tt>uitofp ( CST to TYPE )</tt></b></dt>
   <dd>Convert an unsigned integer constant to the corresponding floating point
-  constant. TYPE must be a scalar or vector floating point type. CST must be of
-  scalar or vector integer type. Both CST and TYPE must be scalars, or vectors
-  of the same number of elements. If the value won't fit in the floating point 
-  type, the results are undefined.</dd>
+      constant. TYPE must be a scalar or vector floating point type. CST must be
+      of scalar or vector integer type. Both CST and TYPE must be scalars, or
+      vectors of the same number of elements. If the value won't fit in the
+      floating point type, the results are undefined.</dd>
 
   <dt><b><tt>sitofp ( CST to TYPE )</tt></b></dt>
   <dd>Convert a signed integer constant to the corresponding floating point
-  constant. TYPE must be a scalar or vector floating point type. CST must be of
-  scalar or vector integer type. Both CST and TYPE must be scalars, or vectors
-  of the same number of elements. If the value won't fit in the floating point 
-  type, the results are undefined.</dd>
+      constant. TYPE must be a scalar or vector floating point type. CST must be
+      of scalar or vector integer type. Both CST and TYPE must be scalars, or
+      vectors of the same number of elements. If the value won't fit in the
+      floating point type, the results are undefined.</dd>
 
   <dt><b><tt>ptrtoint ( CST to TYPE )</tt></b></dt>
   <dd>Convert a pointer typed constant to the corresponding integer constant
-  TYPE must be an integer type. CST must be of pointer type. The CST value is
-  zero extended, truncated, or unchanged to make it fit in TYPE.</dd>
+      <tt>TYPE</tt> must be an integer type. <tt>CST</tt> must be of pointer
+      type. The <tt>CST</tt> value is zero extended, truncated, or unchanged to
+      make it fit in <tt>TYPE</tt>.</dd>
 
   <dt><b><tt>inttoptr ( CST to TYPE )</tt></b></dt>
-  <dd>Convert a integer constant to a pointer constant.  TYPE must be a
-  pointer type.  CST must be of integer type. The CST value is zero extended, 
-  truncated, or unchanged to make it fit in a pointer size. This one is 
-  <i>really</i> dangerous!</dd>
+  <dd>Convert a integer constant to a pointer constant.  TYPE must be a pointer
+      type.  CST must be of integer type. The CST value is zero extended,
+      truncated, or unchanged to make it fit in a pointer size. This one is
+      <i>really</i> dangerous!</dd>
 
   <dt><b><tt>bitcast ( CST to TYPE )</tt></b></dt>
   <dd>Convert a constant, CST, to another TYPE. The constraints of the operands
@@ -2025,16 +2303,14 @@ following is the syntax for constant expressions:</p>
       instruction</a>.</dd>
 
   <dt><b><tt>getelementptr ( CSTPTR, IDX0, IDX1, ... )</tt></b></dt>
-
+  <dt><b><tt>getelementptr inbounds ( CSTPTR, IDX0, IDX1, ... )</tt></b></dt>
   <dd>Perform the <a href="#i_getelementptr">getelementptr operation</a> on
-  constants.  As with the <a href="#i_getelementptr">getelementptr</a>
-  instruction, the index list may have zero or more indexes, which are required
-  to make sense for the type of "CSTPTR".</dd>
+      constants.  As with the <a href="#i_getelementptr">getelementptr</a>
+      instruction, the index list may have zero or more indexes, which are
+      required to make sense for the type of "CSTPTR".</dd>
 
   <dt><b><tt>select ( COND, VAL1, VAL2 )</tt></b></dt>
-
-  <dd>Perform the <a href="#i_select">select operation</a> on
-  constants.</dd>
+  <dd>Perform the <a href="#i_select">select operation</a> on constants.</dd>
 
   <dt><b><tt>icmp COND ( VAL1, VAL2 )</tt></b></dt>
   <dd>Performs the <a href="#i_icmp">icmp operation</a> on constants.</dd>
@@ -2042,140 +2318,227 @@ following is the syntax for constant expressions:</p>
   <dt><b><tt>fcmp COND ( VAL1, VAL2 )</tt></b></dt>
   <dd>Performs the <a href="#i_fcmp">fcmp operation</a> on constants.</dd>
 
-  <dt><b><tt>vicmp COND ( VAL1, VAL2 )</tt></b></dt>
-  <dd>Performs the <a href="#i_vicmp">vicmp operation</a> on constants.</dd>
+  <dt><b><tt>extractelement ( VAL, IDX )</tt></b></dt>
+  <dd>Perform the <a href="#i_extractelement">extractelement operation</a> on
+      constants.</dd>
 
-  <dt><b><tt>vfcmp COND ( VAL1, VAL2 )</tt></b></dt>
-  <dd>Performs the <a href="#i_vfcmp">vfcmp operation</a> on constants.</dd>
+  <dt><b><tt>insertelement ( VAL, ELT, IDX )</tt></b></dt>
+  <dd>Perform the <a href="#i_insertelement">insertelement operation</a> on
+    constants.</dd>
 
-  <dt><b><tt>extractelement ( VAL, IDX )</tt></b></dt>
+  <dt><b><tt>shufflevector ( VEC1, VEC2, IDXMASK )</tt></b></dt>
+  <dd>Perform the <a href="#i_shufflevector">shufflevector operation</a> on
+      constants.</dd>
 
-  <dd>Perform the <a href="#i_extractelement">extractelement
-  operation</a> on constants.</dd>
+  <dt><b><tt>OPCODE ( LHS, RHS )</tt></b></dt>
+  <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may
+      be any of the <a href="#binaryops">binary</a>
+      or <a href="#bitwiseops">bitwise binary</a> operations.  The constraints
+      on operands are the same as those for the corresponding instruction
+      (e.g. no bitwise operations on floating point values are allowed).</dd>
+</dl>
 
-  <dt><b><tt>insertelement ( VAL, ELT, IDX )</tt></b></dt>
+</div>
 
-  <dd>Perform the <a href="#i_insertelement">insertelement
-    operation</a> on constants.</dd>
+<!-- *********************************************************************** -->
+<div class="doc_section"> <a name="othervalues">Other Values</a> </div>
+<!-- *********************************************************************** -->
 
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+<a name="inlineasm">Inline Assembler Expressions</a>
+</div>
 
-  <dt><b><tt>shufflevector ( VEC1, VEC2, IDXMASK )</tt></b></dt>
+<div class="doc_text">
 
-  <dd>Perform the <a href="#i_shufflevector">shufflevector
-    operation</a> on constants.</dd>
+<p>LLVM supports inline assembler expressions (as opposed
+   to <a href="#moduleasm"> Module-Level Inline Assembly</a>) through the use of
+   a special value.  This value represents the inline assembler as a string
+   (containing the instructions to emit), a list of operand constraints (stored
+   as a string), a flag that indicates whether or not the inline asm
+   expression has side effects, and a flag indicating whether the function
+   containing the asm needs to align its stack conservatively.  An example
+   inline assembler expression is:</p>
 
-  <dt><b><tt>OPCODE ( LHS, RHS )</tt></b></dt>
+<div class="doc_code">
+<pre>
+i32 (i32) asm "bswap $0", "=r,r"
+</pre>
+</div>
+
+<p>Inline assembler expressions may <b>only</b> be used as the callee operand of
+   a <a href="#i_call"><tt>call</tt> instruction</a>.  Thus, typically we
+   have:</p>
+
+<div class="doc_code">
+<pre>
+%X = call i32 asm "<a href="#int_bswap">bswap</a> $0", "=r,r"(i32 %Y)
+</pre>
+</div>
+
+<p>Inline asms with side effects not visible in the constraint list must be
+   marked as having side effects.  This is done through the use of the
+   '<tt>sideeffect</tt>' keyword, like so:</p>
+
+<div class="doc_code">
+<pre>
+call void asm sideeffect "eieio", ""()
+</pre>
+</div>
+
+<p>In some cases inline asms will contain code that will not work unless the
+   stack is aligned in some way, such as calls or SSE instructions on x86,
+   yet will not contain code that does that alignment within the asm.
+   The compiler should make conservative assumptions about what the asm might
+   contain and should generate its usual stack alignment code in the prologue
+   if the '<tt>alignstack</tt>' keyword is present:</p>
+
+<div class="doc_code">
+<pre>
+call void asm alignstack "eieio", ""()
+</pre>
+</div>
+
+<p>If both keywords appear the '<tt>sideeffect</tt>' keyword must come
+   first.</p>
+
+<p>TODO: The format of the asm and constraints string still need to be
+   documented here.  Constraints on what can be done (e.g. duplication, moving,
+   etc need to be documented).  This is probably best done by reference to
+   another document that covers inline asm from a holistic perspective.</p>
 
-  <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may 
-  be any of the <a href="#binaryops">binary</a> or <a href="#bitwiseops">bitwise
-  binary</a> operations.  The constraints on operands are the same as those for
-  the corresponding instruction (e.g. no bitwise operations on floating point
-  values are allowed).</dd>
-</dl>
 </div>
 
 <!-- ======================================================================= -->
-<div class="doc_subsection"><a name="metadata">Embedded Metadata</a>
+<div class="doc_subsection"><a name="metadata">Metadata Nodes and Metadata
+  Strings</a>
 </div>
 
 <div class="doc_text">
 
-<p>Embedded metadata provides a way to attach arbitrary data to the
-instruction stream without affecting the behaviour of the program.  There are
-two metadata primitives, strings and nodes. All metadata has the
-<tt>metadata</tt> type and is identified in syntax by a preceding exclamation
-point ('<tt>!</tt>').
-</p>
+<p>LLVM IR allows metadata to be attached to instructions in the program that
+   can convey extra information about the code to the optimizers and code
+   generator.  One example application of metadata is source-level debug
+   information.  There are two metadata primitives: strings and nodes. All
+   metadata has the <tt>metadata</tt> type and is identified in syntax by a
+   preceding exclamation point ('<tt>!</tt>').</p>
 
 <p>A metadata string is a string surrounded by double quotes.  It can contain
-any character by escaping non-printable characters with "\xx" where "xx" is
-the two digit hex code.  For example: "<tt>!"test\00"</tt>".
-</p>
+   any character by escaping non-printable characters with "\xx" where "xx" is
+   the two digit hex code.  For example: "<tt>!"test\00"</tt>".</p>
 
 <p>Metadata nodes are represented with notation similar to structure constants
-(a comma separated list of elements, surrounded by braces and preceeded by an
-exclamation point).  For example: "<tt>!{ metadata !"test\00", i32 10}</tt>".
-</p>
+   (a comma separated list of elements, surrounded by braces and preceded by an
+   exclamation point).  For example: "<tt>!{ metadata !"test\00", i32
+   10}</tt>".  Metadata nodes can have any values as their operand.</p>
 
-<p>A metadata node will attempt to track changes to the values it holds. In
-the event that a value is deleted, it will be replaced with a typeless
-"<tt>null</tt>", such as "<tt>metadata !{null, i32 10}</tt>".</p> 
+<p>A <a href="#namedmetadatastructure">named metadata</a> is a collection of 
+   metadata nodes, which can be looked up in the module symbol table. For
+   example: "<tt>!foo =  metadata !{!4, !3}</tt>".
 
-<p>Optimizations may rely on metadata to provide additional information about
-the program that isn't available in the instructions, or that isn't easily
-computable. Similarly, the code generator may expect a certain metadata format
-to be used to express debugging information.</p>
 </div>
 
+
 <!-- *********************************************************************** -->
-<div class="doc_section"> <a name="othervalues">Other Values</a> </div>
+<div class="doc_section">
+  <a name="intrinsic_globals">Intrinsic Global Variables</a>
+</div>
 <!-- *********************************************************************** -->
 
+<p>LLVM has a number of "magic" global variables that contain data that affect
+code generation or other IR semantics.  These are documented here.  All globals
+of this sort should have a section specified as "<tt>llvm.metadata</tt>".  This
+section and all globals that start with "<tt>llvm.</tt>" are reserved for use
+by LLVM.</p>
+
 <!-- ======================================================================= -->
 <div class="doc_subsection">
-<a name="inlineasm">Inline Assembler Expressions</a>
+<a name="intg_used">The '<tt>llvm.used</tt>' Global Variable</a>
 </div>
 
 <div class="doc_text">
 
-<p>
-LLVM supports inline assembler expressions (as opposed to <a href="#moduleasm">
-Module-Level Inline Assembly</a>) through the use of a special value.  This
-value represents the inline assembler as a string (containing the instructions
-to emit), a list of operand constraints (stored as a string), and a flag that 
-indicates whether or not the inline asm expression has side effects.  An example
-inline assembler expression is:
-</p>
+<p>The <tt>@llvm.used</tt> global is an array with i8* element type which has <a
+href="#linkage_appending">appending linkage</a>.  This array contains a list of
+pointers to global variables and functions which may optionally have a pointer
+cast formed of bitcast or getelementptr.  For example, a legal use of it is:</p>
 
-<div class="doc_code">
 <pre>
-i32 (i32) asm "bswap $0", "=r,r"
+  @X = global i8 4
+  @Y = global i32 123
+
+  @llvm.used = appending global [2 x i8*] [
+     i8* @X,
+     i8* bitcast (i32* @Y to i8*)
+  ], section "llvm.metadata"
 </pre>
+
+<p>If a global variable appears in the <tt>@llvm.used</tt> list, then the
+compiler, assembler, and linker are required to treat the symbol as if there is
+a reference to the global that it cannot see.  For example, if a variable has
+internal linkage and no references other than that from the <tt>@llvm.used</tt>
+list, it cannot be deleted.  This is commonly used to represent references from
+inline asms and other things the compiler cannot "see", and corresponds to
+"attribute((used))" in GNU C.</p>
+
+<p>On some targets, the code generator must emit a directive to the assembler or
+object file to prevent the assembler and linker from molesting the symbol.</p>
+
 </div>
 
-<p>
-Inline assembler expressions may <b>only</b> be used as the callee operand of
-a <a href="#i_call"><tt>call</tt> instruction</a>.  Thus, typically we have:
-</p>
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+<a name="intg_compiler_used">The '<tt>llvm.compiler.used</tt>' Global Variable</a>
+</div>
+
+<div class="doc_text">
+
+<p>The <tt>@llvm.compiler.used</tt> directive is the same as the
+<tt>@llvm.used</tt> directive, except that it only prevents the compiler from
+touching the symbol.  On targets that support it, this allows an intelligent
+linker to optimize references to the symbol without being impeded as it would be
+by <tt>@llvm.used</tt>.</p>
+
+<p>This is a rare construct that should only be used in rare circumstances, and
+should not be exposed to source languages.</p>
 
-<div class="doc_code">
-<pre>
-%X = call i32 asm "<a href="#int_bswap">bswap</a> $0", "=r,r"(i32 %Y)
-</pre>
 </div>
 
-<p>
-Inline asms with side effects not visible in the constraint list must be marked
-as having side effects.  This is done through the use of the
-'<tt>sideeffect</tt>' keyword, like so:
-</p>
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+<a name="intg_global_ctors">The '<tt>llvm.global_ctors</tt>' Global Variable</a>
+</div>
+
+<div class="doc_text">
+
+<p>TODO: Describe this.</p>
 
-<div class="doc_code">
-<pre>
-call void asm sideeffect "eieio", ""()
-</pre>
 </div>
 
-<p>TODO: The format of the asm and constraints string still need to be
-documented here.  Constraints on what can be done (e.g. duplication, moving, etc
-need to be documented).  This is probably best done by reference to another 
-document that covers inline asm from a holistic perspective.
-</p>
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+<a name="intg_global_dtors">The '<tt>llvm.global_dtors</tt>' Global Variable</a>
+</div>
+
+<div class="doc_text">
+
+<p>TODO: Describe this.</p>
 
 </div>
 
+
 <!-- *********************************************************************** -->
 <div class="doc_section"> <a name="instref">Instruction Reference</a> </div>
 <!-- *********************************************************************** -->
 
 <div class="doc_text">
 
-<p>The LLVM instruction set consists of several different
-classifications of instructions: <a href="#terminators">terminator
-instructions</a>, <a href="#binaryops">binary instructions</a>,
-<a href="#bitwiseops">bitwise binary instructions</a>, <a
- href="#memoryops">memory instructions</a>, and <a href="#otherops">other
-instructions</a>.</p>
+<p>The LLVM instruction set consists of several different classifications of
+   instructions: <a href="#terminators">terminator
+   instructions</a>, <a href="#binaryops">binary instructions</a>,
+   <a href="#bitwiseops">bitwise binary instructions</a>,
+   <a href="#memoryops">memory instructions</a>, and
+   <a href="#otherops">other instructions</a>.</p>
 
 </div>
 
@@ -2185,25 +2548,30 @@ Instructions</a> </div>
 
 <div class="doc_text">
 
-<p>As mentioned <a href="#functionstructure">previously</a>, every
-basic block in a program ends with a "Terminator" instruction, which
-indicates which block should be executed after the current block is
-finished. These terminator instructions typically yield a '<tt>void</tt>'
-value: they produce control flow, not values (the one exception being
-the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p>
-<p>There are six different terminator instructions: the '<a
- href="#i_ret"><tt>ret</tt></a>' instruction, the '<a href="#i_br"><tt>br</tt></a>'
-instruction, the '<a href="#i_switch"><tt>switch</tt></a>' instruction,
-the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction, the '<a
- href="#i_unwind"><tt>unwind</tt></a>' instruction, and the '<a
- href="#i_unreachable"><tt>unreachable</tt></a>' instruction.</p>
+<p>As mentioned <a href="#functionstructure">previously</a>, every basic block
+   in a program ends with a "Terminator" instruction, which indicates which
+   block should be executed after the current block is finished. These
+   terminator instructions typically yield a '<tt>void</tt>' value: they produce
+   control flow, not values (the one exception being the
+   '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p>
+
+<p>There are six different terminator instructions: the
+   '<a href="#i_ret"><tt>ret</tt></a>' instruction, the
+   '<a href="#i_br"><tt>br</tt></a>' instruction, the
+   '<a href="#i_switch"><tt>switch</tt></a>' instruction, the
+   '<a href="#i_indirectbr">'<tt>indirectbr</tt></a>' Instruction, the
+   '<a href="#i_invoke"><tt>invoke</tt></a>' instruction, the
+   '<a href="#i_unwind"><tt>unwind</tt></a>' instruction, and the
+   '<a href="#i_unreachable"><tt>unreachable</tt></a>' instruction.</p>
 
 </div>
 
 <!-- _______________________________________________________________________ -->
 <div class="doc_subsubsection"> <a name="i_ret">'<tt>ret</tt>'
 Instruction</a> </div>
+
 <div class="doc_text">
+
 <h5>Syntax:</h5>
 <pre>
   ret &lt;type&gt; &lt;value&gt;       <i>; Return a value from a non-void function</i>
@@ -2211,122 +2579,121 @@ Instruction</a> </div>
 </pre>
 
 <h5>Overview:</h5>
+<p>The '<tt>ret</tt>' instruction is used to return control flow (and optionally
+   a value) from a function back to the caller.</p>
 
-<p>The '<tt>ret</tt>' instruction is used to return control flow (and
-optionally a value) from a function back to the caller.</p>
-<p>There are two forms of the '<tt>ret</tt>' instruction: one that
-returns a value and then causes control flow, and one that just causes
-control flow to occur.</p>
+<p>There are two forms of the '<tt>ret</tt>' instruction: one that returns a
+   value and then causes control flow, and one that just causes control flow to
+   occur.</p>
 
 <h5>Arguments:</h5>
+<p>The '<tt>ret</tt>' instruction optionally accepts a single argument, the
+   return value. The type of the return value must be a
+   '<a href="#t_firstclass">first class</a>' type.</p>
 
-<p>The '<tt>ret</tt>' instruction optionally accepts a single argument,
-the return value. The type of the return value must be a
-'<a href="#t_firstclass">first class</a>' type.</p>
-
-<p>A function is not <a href="#wellformed">well formed</a> if
-it it has a non-void return type and contains a '<tt>ret</tt>'
-instruction with no return value or a return value with a type that
-does not match its type, or if it has a void return type and contains
-a '<tt>ret</tt>' instruction with a return value.</p>
+<p>A function is not <a href="#wellformed">well formed</a> if it it has a
+   non-void return type and contains a '<tt>ret</tt>' instruction with no return
+   value or a return value with a type that does not match its type, or if it
+   has a void return type and contains a '<tt>ret</tt>' instruction with a
+   return value.</p>
 
 <h5>Semantics:</h5>
-
-<p>When the '<tt>ret</tt>' instruction is executed, control flow
-returns back to the calling function's context.  If the caller is a "<a
- href="#i_call"><tt>call</tt></a>" instruction, execution continues at
-the instruction after the call.  If the caller was an "<a
- href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues
-at the beginning of the "normal" destination block.  If the instruction
-returns a value, that value shall set the call or invoke instruction's
-return value.</p>
+<p>When the '<tt>ret</tt>' instruction is executed, control flow returns back to
+   the calling function's context.  If the caller is a
+   "<a href="#i_call"><tt>call</tt></a>" instruction, execution continues at the
+   instruction after the call.  If the caller was an
+   "<a href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues at
+   the beginning of the "normal" destination block.  If the instruction returns
+   a value, that value shall set the call or invoke instruction's return
+   value.</p>
 
 <h5>Example:</h5>
-
 <pre>
   ret i32 5                       <i>; Return an integer value of 5</i>
   ret void                        <i>; Return from a void function</i>
   ret { i32, i8 } { i32 4, i8 2 } <i>; Return a struct of values 4 and 2</i>
 </pre>
 
-<p>Note that the code generator does not yet fully support large
-   return values. The specific sizes that are currently supported are
-   dependent on the target. For integers, on 32-bit targets the limit
-   is often 64 bits, and on 64-bit targets the limit is often 128 bits.
-   For aggregate types, the current limits are dependent on the element
-   types; for example targets are often limited to 2 total integer
-   elements and 2 total floating-point elements.</p>
-
 </div>
 <!-- _______________________________________________________________________ -->
 <div class="doc_subsubsection"> <a name="i_br">'<tt>br</tt>' Instruction</a> </div>
+
 <div class="doc_text">
+
 <h5>Syntax:</h5>
-<pre>  br i1 &lt;cond&gt;, label &lt;iftrue&gt;, label &lt;iffalse&gt;<br>  br label &lt;dest&gt;          <i>; Unconditional branch</i>
+<pre>
+  br i1 &lt;cond&gt;, label &lt;iftrue&gt;, label &lt;iffalse&gt;<br>  br label &lt;dest&gt;          <i>; Unconditional branch</i>
 </pre>
+
 <h5>Overview:</h5>
-<p>The '<tt>br</tt>' instruction is used to cause control flow to
-transfer to a different basic block in the current function.  There are
-two forms of this instruction, corresponding to a conditional branch
-and an unconditional branch.</p>
+<p>The '<tt>br</tt>' instruction is used to cause control flow to transfer to a
+   different basic block in the current function.  There are two forms of this
+   instruction, corresponding to a conditional branch and an unconditional
+   branch.</p>
+
 <h5>Arguments:</h5>
-<p>The conditional branch form of the '<tt>br</tt>' instruction takes a
-single '<tt>i1</tt>' value and two '<tt>label</tt>' values.  The
-unconditional form of the '<tt>br</tt>' instruction takes a single 
-'<tt>label</tt>' value as a target.</p>
+<p>The conditional branch form of the '<tt>br</tt>' instruction takes a single
+   '<tt>i1</tt>' value and two '<tt>label</tt>' values.  The unconditional form
+   of the '<tt>br</tt>' instruction takes a single '<tt>label</tt>' value as a
+   target.</p>
+
 <h5>Semantics:</h5>
 <p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>i1</tt>'
-argument is evaluated.  If the value is <tt>true</tt>, control flows
-to the '<tt>iftrue</tt>' <tt>label</tt> argument.  If "cond" is <tt>false</tt>,
-control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p>
+   argument is evaluated.  If the value is <tt>true</tt>, control flows to the
+   '<tt>iftrue</tt>' <tt>label</tt> argument.  If "cond" is <tt>false</tt>,
+   control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p>
+
 <h5>Example:</h5>
-<pre>Test:<br>  %cond = <a href="#i_icmp">icmp</a> eq i32 %a, %b<br>  br i1 %cond, label %IfEqual, label %IfUnequal<br>IfEqual:<br>  <a
- href="#i_ret">ret</a> i32 1<br>IfUnequal:<br>  <a href="#i_ret">ret</a> i32 0<br></pre>
+<pre>
+Test:
+  %cond = <a href="#i_icmp">icmp</a> eq i32 %a, %b
+  br i1 %cond, label %IfEqual, label %IfUnequal
+IfEqual:
+  <a href="#i_ret">ret</a> i32 1
+IfUnequal:
+  <a href="#i_ret">ret</a> i32 0
+</pre>
+
 </div>
+
 <!-- _______________________________________________________________________ -->
 <div class="doc_subsubsection">
    <a name="i_switch">'<tt>switch</tt>' Instruction</a>
 </div>
 
 <div class="doc_text">
-<h5>Syntax:</h5>
 
+<h5>Syntax:</h5>
 <pre>
   switch &lt;intty&gt; &lt;value&gt;, label &lt;defaultdest&gt; [ &lt;intty&gt; &lt;val&gt;, label &lt;dest&gt; ... ]
 </pre>
 
 <h5>Overview:</h5>
-
 <p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of
-several different places.  It is a generalization of the '<tt>br</tt>'
-instruction, allowing a branch to occur to one of many possible
-destinations.</p>
-
+   several different places.  It is a generalization of the '<tt>br</tt>'
+   instruction, allowing a branch to occur to one of many possible
+   destinations.</p>
 
 <h5>Arguments:</h5>
-
 <p>The '<tt>switch</tt>' instruction uses three parameters: an integer
-comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination, and
-an array of pairs of comparison value constants and '<tt>label</tt>'s.  The
-table is not allowed to contain duplicate constant entries.</p>
+   comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination,
+   and an array of pairs of comparison value constants and '<tt>label</tt>'s.
+   The table is not allowed to contain duplicate constant entries.</p>
 
 <h5>Semantics:</h5>
-
 <p>The <tt>switch</tt> instruction specifies a table of values and
-destinations. When the '<tt>switch</tt>' instruction is executed, this
-table is searched for the given value.  If the value is found, control flow is
-transfered to the corresponding destination; otherwise, control flow is
-transfered to the default destination.</p>
+   destinations. When the '<tt>switch</tt>' instruction is executed, this table
+   is searched for the given value.  If the value is found, control flow is
+   transferred to the corresponding destination; otherwise, control flow is
+   transferred to the default destination.</p>
 
 <h5>Implementation:</h5>
-
 <p>Depending on properties of the target machine and the particular
-<tt>switch</tt> instruction, this instruction may be code generated in different
-ways.  For example, it could be generated as a series of chained conditional
-branches or with a lookup table.</p>
+   <tt>switch</tt> instruction, this instruction may be code generated in
+   different ways.  For example, it could be generated as a series of chained
+   conditional branches or with a lookup table.</p>
 
 <h5>Example:</h5>
-
 <pre>
  <i>; Emulate a conditional br instruction</i>
  %Val = <a href="#i_zext">zext</a> i1 %value to i32
@@ -2340,89 +2707,135 @@ branches or with a lookup table.</p>
                                      i32 1, label %onone
                                      i32 2, label %ontwo ]
 </pre>
+
 </div>
 
+
 <!-- _______________________________________________________________________ -->
 <div class="doc_subsubsection">
-  <a name="i_invoke">'<tt>invoke</tt>' Instruction</a>
+   <a name="i_indirectbr">'<tt>indirectbr</tt>' Instruction</a>
 </div>
 
 <div class="doc_text">
 
 <h5>Syntax:</h5>
+<pre>
+  indirectbr &lt;somety&gt;* &lt;address&gt;, [ label &lt;dest1&gt;, label &lt;dest2&gt;, ... ]
+</pre>
+
+<h5>Overview:</h5>
+
+<p>The '<tt>indirectbr</tt>' instruction implements an indirect branch to a label
+   within the current function, whose address is specified by
+   "<tt>address</tt>".  Address must be derived from a <a
+   href="#blockaddress">blockaddress</a> constant.</p>
 
+<h5>Arguments:</h5>
+
+<p>The '<tt>address</tt>' argument is the address of the label to jump to.  The
+   rest of the arguments indicate the full set of possible destinations that the
+   address may point to.  Blocks are allowed to occur multiple times in the
+   destination list, though this isn't particularly useful.</p>
+
+<p>This destination list is required so that dataflow analysis has an accurate
+   understanding of the CFG.</p>
+
+<h5>Semantics:</h5>
+
+<p>Control transfers to the block specified in the address argument.  All
+   possible destination blocks must be listed in the label list, otherwise this
+   instruction has undefined behavior.  This implies that jumps to labels
+   defined in other functions have undefined behavior as well.</p>
+
+<h5>Implementation:</h5>
+
+<p>This is typically implemented with a jump through a register.</p>
+
+<h5>Example:</h5>
+<pre>
+ indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
+</pre>
+
+</div>
+
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+  <a name="i_invoke">'<tt>invoke</tt>' Instruction</a>
+</div>
+
+<div class="doc_text">
+
+<h5>Syntax:</h5>
 <pre>
   &lt;result&gt; = invoke [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ptr to function ty&gt; &lt;function ptr val&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
                 to label &lt;normal label&gt; unwind label &lt;exception label&gt;
 </pre>
 
 <h5>Overview:</h5>
-
 <p>The '<tt>invoke</tt>' instruction causes control to transfer to a specified
-function, with the possibility of control flow transfer to either the
-'<tt>normal</tt>' label or the
-'<tt>exception</tt>' label.  If the callee function returns with the
-"<tt><a href="#i_ret">ret</a></tt>" instruction, control flow will return to the
-"normal" label.  If the callee (or any indirect callees) returns with the "<a
-href="#i_unwind"><tt>unwind</tt></a>" instruction, control is interrupted and
-continued at the dynamically nearest "exception" label.</p>
+   function, with the possibility of control flow transfer to either the
+   '<tt>normal</tt>' label or the '<tt>exception</tt>' label.  If the callee
+   function returns with the "<tt><a href="#i_ret">ret</a></tt>" instruction,
+   control flow will return to the "normal" label.  If the callee (or any
+   indirect callees) returns with the "<a href="#i_unwind"><tt>unwind</tt></a>"
+   instruction, control is interrupted and continued at the dynamically nearest
+   "exception" label.</p>
 
 <h5>Arguments:</h5>
-
 <p>This instruction requires several arguments:</p>
 
 <ol>
-  <li>
-    The optional "cconv" marker indicates which <a href="#callingconv">calling
-    convention</a> the call should use.  If none is specified, the call defaults
-    to using C calling conventions.
-  </li>
+  <li>The optional "cconv" marker indicates which <a href="#callingconv">calling
+      convention</a> the call should use.  If none is specified, the call
+      defaults to using C calling conventions.</li>
 
   <li>The optional <a href="#paramattrs">Parameter Attributes</a> list for
-   return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>', 
-   and '<tt>inreg</tt>' attributes are valid here.</li>
+      return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>', and
+      '<tt>inreg</tt>' attributes are valid here.</li>
 
   <li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to
-  function value being invoked.  In most cases, this is a direct function
-  invocation, but indirect <tt>invoke</tt>s are just as possible, branching off
-  an arbitrary pointer to function value.
-  </li>
+      function value being invoked.  In most cases, this is a direct function
+      invocation, but indirect <tt>invoke</tt>s are just as possible, branching
+      off an arbitrary pointer to function value.</li>
 
   <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a
-  function to be invoked. </li>
+      function to be invoked. </li>
 
   <li>'<tt>function args</tt>': argument list whose types match the function
-  signature argument types.  If the function signature indicates the function
-  accepts a variable number of arguments, the extra arguments can be
-  specified. </li>
+      signature argument types.  If the function signature indicates the
+      function accepts a variable number of arguments, the extra arguments can
+      be specified.</li>
 
   <li>'<tt>normal label</tt>': the label reached when the called function
-  executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li>
+      executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li>
 
   <li>'<tt>exception label</tt>': the label reached when a callee returns with
-  the <a href="#i_unwind"><tt>unwind</tt></a> instruction. </li>
+      the <a href="#i_unwind"><tt>unwind</tt></a> instruction. </li>
 
   <li>The optional <a href="#fnattrs">function attributes</a> list. Only
-  '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
-  '<tt>readnone</tt>' attributes are valid here.</li>
+      '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
+      '<tt>readnone</tt>' attributes are valid here.</li>
 </ol>
 
 <h5>Semantics:</h5>
-
-<p>This instruction is designed to operate as a standard '<tt><a
-href="#i_call">call</a></tt>' instruction in most regards.  The primary
-difference is that it establishes an association with a label, which is used by
-the runtime library to unwind the stack.</p>
+<p>This instruction is designed to operate as a standard
+   '<tt><a href="#i_call">call</a></tt>' instruction in most regards.  The
+   primary difference is that it establishes an association with a label, which
+   is used by the runtime library to unwind the stack.</p>
 
 <p>This instruction is used in languages with destructors to ensure that proper
-cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown
-exception.  Additionally, this is important for implementation of
-'<tt>catch</tt>' clauses in high-level languages that support them.</p>
+   cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown
+   exception.  Additionally, this is important for implementation of
+   '<tt>catch</tt>' clauses in high-level languages that support them.</p>
 
-<p>For the purposes of the SSA form, the definition of the value
-returned by the '<tt>invoke</tt>' instruction is deemed to occur on
-the edge from the current block to the "normal" label. If the callee
-unwinds then no return value is available.</p>
+<p>For the purposes of the SSA form, the definition of the value returned by the
+   '<tt>invoke</tt>' instruction is deemed to occur on the edge from the current
+   block to the "normal" label. If the callee unwinds then no return value is
+   available.</p>
+
+<p>Note that the code generator does not yet completely support unwind, and
+that the invoke/unwind semantics are likely to change in future versions.</p>
 
 <h5>Example:</h5>
 <pre>
@@ -2431,8 +2844,8 @@ unwinds then no return value is available.</p>
   %retval = invoke <a href="#callingconv">coldcc</a> i32 %Testfnptr(i32 15) to label %Continue
               unwind label %TestCleanup              <i>; {i32}:retval set</i>
 </pre>
-</div>
 
+</div>
 
 <!-- _______________________________________________________________________ -->
 
@@ -2447,20 +2860,22 @@ Instruction</a> </div>
 </pre>
 
 <h5>Overview:</h5>
-
 <p>The '<tt>unwind</tt>' instruction unwinds the stack, continuing control flow
-at the first callee in the dynamic call stack which used an <a
-href="#i_invoke"><tt>invoke</tt></a> instruction to perform the call.  This is
-primarily used to implement exception handling.</p>
+   at the first callee in the dynamic call stack which used
+   an <a href="#i_invoke"><tt>invoke</tt></a> instruction to perform the call.
+   This is primarily used to implement exception handling.</p>
 
 <h5>Semantics:</h5>
-
 <p>The '<tt>unwind</tt>' instruction causes execution of the current function to
-immediately halt.  The dynamic call stack is then searched for the first <a
-href="#i_invoke"><tt>invoke</tt></a> instruction on the call stack.  Once found,
-execution continues at the "exceptional" destination block specified by the
-<tt>invoke</tt> instruction.  If there is no <tt>invoke</tt> instruction in the
-dynamic call chain, undefined behavior results.</p>
+   immediately halt.  The dynamic call stack is then searched for the
+   first <a href="#i_invoke"><tt>invoke</tt></a> instruction on the call stack.
+   Once found, execution continues at the "exceptional" destination block
+   specified by the <tt>invoke</tt> instruction.  If there is no <tt>invoke</tt>
+   instruction in the dynamic call chain, undefined behavior results.</p>
+
+<p>Note that the code generator does not yet completely support unwind, and
+that the invoke/unwind semantics are likely to change in future versions.</p>
+
 </div>
 
 <!-- _______________________________________________________________________ -->
@@ -2476,29 +2891,31 @@ Instruction</a> </div>
 </pre>
 
 <h5>Overview:</h5>
-
 <p>The '<tt>unreachable</tt>' instruction has no defined semantics.  This
-instruction is used to inform the optimizer that a particular portion of the
-code is not reachable.  This can be used to indicate that the code after a
-no-return function cannot be reached, and other facts.</p>
+   instruction is used to inform the optimizer that a particular portion of the
+   code is not reachable.  This can be used to indicate that the code after a
+   no-return function cannot be reached, and other facts.</p>
 
 <h5>Semantics:</h5>
-
 <p>The '<tt>unreachable</tt>' instruction has no defined semantics.</p>
-</div>
-
 
+</div>
 
 <!-- ======================================================================= -->
 <div class="doc_subsection"> <a name="binaryops">Binary Operations</a> </div>
+
 <div class="doc_text">
-<p>Binary operators are used to do most of the computation in a
-program.  They require two operands of the same type, execute an operation on them, and
-produce a single value.  The operands might represent 
-multiple data, as is the case with the <a href="#t_vector">vector</a> data type. 
-The result value has the same type as its operands.</p>
+
+<p>Binary operators are used to do most of the computation in a program.  They
+   require two operands of the same type, execute an operation on them, and
+   produce a single value.  The operands might represent multiple data, as is
+   the case with the <a href="#t_vector">vector</a> data type.  The result value
+   has the same type as its operands.</p>
+
 <p>There are several different binary operators:</p>
+
 </div>
+
 <!-- _______________________________________________________________________ -->
 <div class="doc_subsubsection">
   <a name="i_add">'<tt>add</tt>' Instruction</a>
@@ -2507,39 +2924,42 @@ The result value has the same type as its operands.</p>
 <div class="doc_text">
 
 <h5>Syntax:</h5>
-
 <pre>
-  &lt;result&gt; = add &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
+  &lt;result&gt; = add &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;          <i>; yields {ty}:result</i>
+  &lt;result&gt; = add nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;      <i>; yields {ty}:result</i>
+  &lt;result&gt; = add nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;      <i>; yields {ty}:result</i>
+  &lt;result&gt; = add nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;  <i>; yields {ty}:result</i>
 </pre>
 
 <h5>Overview:</h5>
-
 <p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p>
 
 <h5>Arguments:</h5>
-
-<p>The two arguments to the '<tt>add</tt>' instruction must be <a
- href="#t_integer">integer</a> or
- <a href="#t_vector">vector</a> of integer values. Both arguments must
- have identical types.</p>
+<p>The two arguments to the '<tt>add</tt>' instruction must
+   be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
+   integer values. Both arguments must have identical types.</p>
 
 <h5>Semantics:</h5>
-
 <p>The value produced is the integer sum of the two operands.</p>
 
-<p>If the sum has unsigned overflow, the result returned is the
-mathematical result modulo 2<sup>n</sup>, where n is the bit width of
-the result.</p>
+<p>If the sum has unsigned overflow, the result returned is the mathematical
+   result modulo 2<sup>n</sup>, where n is the bit width of the result.</p>
 
-<p>Because LLVM integers use a two's complement representation, this
-instruction is appropriate for both signed and unsigned integers.</p>
+<p>Because LLVM integers use a two's complement representation, this instruction
+   is appropriate for both signed and unsigned integers.</p>
 
-<h5>Example:</h5>
+<p><tt>nuw</tt> and <tt>nsw</tt> stand for &quot;No Unsigned Wrap&quot;
+   and &quot;No Signed Wrap&quot;, respectively. If the <tt>nuw</tt> and/or
+   <tt>nsw</tt> keywords are present, the result value of the <tt>add</tt>
+   is undefined if unsigned and/or signed overflow, respectively, occurs.</p>
 
+<h5>Example:</h5>
 <pre>
   &lt;result&gt; = add i32 4, %var          <i>; yields {i32}:result = 4 + %var</i>
 </pre>
+
 </div>
+
 <!-- _______________________________________________________________________ -->
 <div class="doc_subsubsection">
   <a name="i_fadd">'<tt>fadd</tt>' Instruction</a>
@@ -2548,31 +2968,28 @@ instruction is appropriate for both signed and unsigned integers.</p>
 <div class="doc_text">
 
 <h5>Syntax:</h5>
-
 <pre>
   &lt;result&gt; = fadd &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
 </pre>
 
 <h5>Overview:</h5>
-
 <p>The '<tt>fadd</tt>' instruction returns the sum of its two operands.</p>
 
 <h5>Arguments:</h5>
-
 <p>The two arguments to the '<tt>fadd</tt>' instruction must be
-<a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
-floating point values. Both arguments must have identical types.</p>
+   <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
+   floating point values. Both arguments must have identical types.</p>
 
 <h5>Semantics:</h5>
-
 <p>The value produced is the floating point sum of the two operands.</p>
 
 <h5>Example:</h5>
-
 <pre>
   &lt;result&gt; = fadd float 4.0, %var          <i>; yields {float}:result = 4.0 + %var</i>
 </pre>
+
 </div>
+
 <!-- _______________________________________________________________________ -->
 <div class="doc_subsubsection">
    <a name="i_sub">'<tt>sub</tt>' Instruction</a>
@@ -2581,42 +2998,47 @@ floating point values. Both arguments must have identical types.</p>
 <div class="doc_text">
 
 <h5>Syntax:</h5>
-
 <pre>
-  &lt;result&gt; = sub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
+  &lt;result&gt; = sub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;          <i>; yields {ty}:result</i>
+  &lt;result&gt; = sub nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;      <i>; yields {ty}:result</i>
+  &lt;result&gt; = sub nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;      <i>; yields {ty}:result</i>
+  &lt;result&gt; = sub nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;  <i>; yields {ty}:result</i>
 </pre>
 
 <h5>Overview:</h5>
-
 <p>The '<tt>sub</tt>' instruction returns the difference of its two
-operands.</p>
+   operands.</p>
 
 <p>Note that the '<tt>sub</tt>' instruction is used to represent the
-'<tt>neg</tt>' instruction present in most other intermediate 
-representations.</p>
+   '<tt>neg</tt>' instruction present in most other intermediate
+   representations.</p>
 
 <h5>Arguments:</h5>
-
-<p>The two arguments to the '<tt>sub</tt>' instruction must be <a
- href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
- integer values.  Both arguments must have identical types.</p>
+<p>The two arguments to the '<tt>sub</tt>' instruction must
+   be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
+   integer values.  Both arguments must have identical types.</p>
 
 <h5>Semantics:</h5>
-
 <p>The value produced is the integer difference of the two operands.</p>
 
 <p>If the difference has unsigned overflow, the result returned is the
-mathematical result modulo 2<sup>n</sup>, where n is the bit width of
-the result.</p>
+   mathematical result modulo 2<sup>n</sup>, where n is the bit width of the
+   result.</p>
+
+<p>Because LLVM integers use a two's complement representation, this instruction
+   is appropriate for both signed and unsigned integers.</p>
 
-<p>Because LLVM integers use a two's complement representation, this
-instruction is appropriate for both signed and unsigned integers.</p>
+<p><tt>nuw</tt> and <tt>nsw</tt> stand for &quot;No Unsigned Wrap&quot;
+   and &quot;No Signed Wrap&quot;, respectively. If the <tt>nuw</tt> and/or
+   <tt>nsw</tt> keywords are present, the result value of the <tt>sub</tt>
+   is undefined if unsigned and/or signed overflow, respectively, occurs.</p>
 
 <h5>Example:</h5>
 <pre>
   &lt;result&gt; = sub i32 4, %var          <i>; yields {i32}:result = 4 - %var</i>
   &lt;result&gt; = sub i32 0, %val          <i>; yields {i32}:result = -%var</i>
 </pre>
+
 </div>
 
 <!-- _______________________________________________________________________ -->
@@ -2627,28 +3049,24 @@ instruction is appropriate for both signed and unsigned integers.</p>
 <div class="doc_text">
 
 <h5>Syntax:</h5>
-
 <pre>
   &lt;result&gt; = fsub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
 </pre>
 
 <h5>Overview:</h5>
-
 <p>The '<tt>fsub</tt>' instruction returns the difference of its two
-operands.</p>
+   operands.</p>
 
 <p>Note that the '<tt>fsub</tt>' instruction is used to represent the
-'<tt>fneg</tt>' instruction present in most other intermediate
-representations.</p>
+   '<tt>fneg</tt>' instruction present in most other intermediate
+   representations.</p>
 
 <h5>Arguments:</h5>
-
-<p>The two arguments to the '<tt>fsub</tt>' instruction must be <a
- <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a>
- of floating point values.  Both arguments must have identical types.</p>
+<p>The two arguments to the '<tt>fsub</tt>' instruction must be
+   <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
+   floating point values.  Both arguments must have identical types.</p>
 
 <h5>Semantics:</h5>
-
 <p>The value produced is the floating point difference of the two operands.</p>
 
 <h5>Example:</h5>
@@ -2656,6 +3074,7 @@ representations.</p>
   &lt;result&gt; = fsub float 4.0, %var           <i>; yields {float}:result = 4.0 - %var</i>
   &lt;result&gt; = fsub float -0.0, %val          <i>; yields {float}:result = -%var</i>
 </pre>
+
 </div>
 
 <!-- _______________________________________________________________________ -->
@@ -2666,34 +3085,45 @@ representations.</p>
 <div class="doc_text">
 
 <h5>Syntax:</h5>
-<pre>  &lt;result&gt; = mul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
+<pre>
+  &lt;result&gt; = mul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;          <i>; yields {ty}:result</i>
+  &lt;result&gt; = mul nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;      <i>; yields {ty}:result</i>
+  &lt;result&gt; = mul nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;      <i>; yields {ty}:result</i>
+  &lt;result&gt; = mul nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;  <i>; yields {ty}:result</i>
 </pre>
+
 <h5>Overview:</h5>
-<p>The  '<tt>mul</tt>' instruction returns the product of its two
-operands.</p>
+<p>The '<tt>mul</tt>' instruction returns the product of its two operands.</p>
 
 <h5>Arguments:</h5>
+<p>The two arguments to the '<tt>mul</tt>' instruction must
+   be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
+   integer values.  Both arguments must have identical types.</p>
 
-<p>The two arguments to the '<tt>mul</tt>' instruction must be <a
-href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
-values.  Both arguments must have identical types.</p>
 <h5>Semantics:</h5>
-
 <p>The value produced is the integer product of the two operands.</p>
 
-<p>If the result of the multiplication has unsigned overflow,
-the result returned is the mathematical result modulo 
-2<sup>n</sup>, where n is the bit width of the result.</p>
-<p>Because LLVM integers use a two's complement representation, and the
-result is the same width as the operands, this instruction returns the
-correct result for both signed and unsigned integers.  If a full product
-(e.g. <tt>i32</tt>x<tt>i32</tt>-><tt>i64</tt>) is needed, the operands
-should be sign-extended or zero-extended as appropriate to the
-width of the full product.</p>
+<p>If the result of the multiplication has unsigned overflow, the result
+   returned is the mathematical result modulo 2<sup>n</sup>, where n is the bit
+   width of the result.</p>
+
+<p>Because LLVM integers use a two's complement representation, and the result
+   is the same width as the operands, this instruction returns the correct
+   result for both signed and unsigned integers.  If a full product
+   (e.g. <tt>i32</tt>x<tt>i32</tt>-><tt>i64</tt>) is needed, the operands should
+   be sign-extended or zero-extended as appropriate to the width of the full
+   product.</p>
+
+<p><tt>nuw</tt> and <tt>nsw</tt> stand for &quot;No Unsigned Wrap&quot;
+   and &quot;No Signed Wrap&quot;, respectively. If the <tt>nuw</tt> and/or
+   <tt>nsw</tt> keywords are present, the result value of the <tt>mul</tt>
+   is undefined if unsigned and/or signed overflow, respectively, occurs.</p>
+
 <h5>Example:</h5>
-<pre>  &lt;result&gt; = mul i32 4, %var          <i>; yields {i32}:result = 4 * %var</i>
+<pre>
+  &lt;result&gt; = mul i32 4, %var          <i>; yields {i32}:result = 4 * %var</i>
 </pre>
+
 </div>
 
 <!-- _______________________________________________________________________ -->
@@ -2704,140 +3134,170 @@ width of the full product.</p>
 <div class="doc_text">
 
 <h5>Syntax:</h5>
-<pre>  &lt;result&gt; = fmul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
+<pre>
+  &lt;result&gt; = fmul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
 </pre>
+
 <h5>Overview:</h5>
-<p>The  '<tt>fmul</tt>' instruction returns the product of its two
-operands.</p>
+<p>The '<tt>fmul</tt>' instruction returns the product of its two operands.</p>
 
 <h5>Arguments:</h5>
-
 <p>The two arguments to the '<tt>fmul</tt>' instruction must be
-<a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a>
-of floating point values.  Both arguments must have identical types.</p>
+   <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
+   floating point values.  Both arguments must have identical types.</p>
 
 <h5>Semantics:</h5>
-
 <p>The value produced is the floating point product of the two operands.</p>
 
 <h5>Example:</h5>
-<pre>  &lt;result&gt; = fmul float 4.0, %var          <i>; yields {float}:result = 4.0 * %var</i>
+<pre>
+  &lt;result&gt; = fmul float 4.0, %var          <i>; yields {float}:result = 4.0 * %var</i>
 </pre>
+
 </div>
 
 <!-- _______________________________________________________________________ -->
 <div class="doc_subsubsection"> <a name="i_udiv">'<tt>udiv</tt>' Instruction
 </a></div>
+
 <div class="doc_text">
+
 <h5>Syntax:</h5>
-<pre>  &lt;result&gt; = udiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
+<pre>
+  &lt;result&gt; = udiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
 </pre>
+
 <h5>Overview:</h5>
-<p>The '<tt>udiv</tt>' instruction returns the quotient of its two
-operands.</p>
+<p>The '<tt>udiv</tt>' instruction returns the quotient of its two operands.</p>
 
 <h5>Arguments:</h5>
-
-<p>The two arguments to the '<tt>udiv</tt>' instruction must be 
-<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
-values.  Both arguments must have identical types.</p>
+<p>The two arguments to the '<tt>udiv</tt>' instruction must be
+   <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
+   values.  Both arguments must have identical types.</p>
 
 <h5>Semantics:</h5>
-
 <p>The value produced is the unsigned integer quotient of the two operands.</p>
+
 <p>Note that unsigned integer division and signed integer division are distinct
-operations; for signed integer division, use '<tt>sdiv</tt>'.</p>
+   operations; for signed integer division, use '<tt>sdiv</tt>'.</p>
+
 <p>Division by zero leads to undefined behavior.</p>
+
 <h5>Example:</h5>
-<pre>  &lt;result&gt; = udiv i32 4, %var          <i>; yields {i32}:result = 4 / %var</i>
+<pre>
+  &lt;result&gt; = udiv i32 4, %var          <i>; yields {i32}:result = 4 / %var</i>
 </pre>
+
 </div>
+
 <!-- _______________________________________________________________________ -->
 <div class="doc_subsubsection"> <a name="i_sdiv">'<tt>sdiv</tt>' Instruction
 </a> </div>
+
 <div class="doc_text">
+
 <h5>Syntax:</h5>
 <pre>
-  &lt;result&gt; = sdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
+  &lt;result&gt; = sdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;         <i>; yields {ty}:result</i>
+  &lt;result&gt; = sdiv exact &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
 </pre>
 
 <h5>Overview:</h5>
-
-<p>The '<tt>sdiv</tt>' instruction returns the quotient of its two
-operands.</p>
+<p>The '<tt>sdiv</tt>' instruction returns the quotient of its two operands.</p>
 
 <h5>Arguments:</h5>
-
-<p>The two arguments to the '<tt>sdiv</tt>' instruction must be 
-<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
-values.  Both arguments must have identical types.</p>
+<p>The two arguments to the '<tt>sdiv</tt>' instruction must be
+   <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
+   values.  Both arguments must have identical types.</p>
 
 <h5>Semantics:</h5>
-<p>The value produced is the signed integer quotient of the two operands rounded towards zero.</p>
+<p>The value produced is the signed integer quotient of the two operands rounded
+   towards zero.</p>
+
 <p>Note that signed integer division and unsigned integer division are distinct
-operations; for unsigned integer division, use '<tt>udiv</tt>'.</p>
+   operations; for unsigned integer division, use '<tt>udiv</tt>'.</p>
+
 <p>Division by zero leads to undefined behavior. Overflow also leads to
-undefined behavior; this is a rare case, but can occur, for example,
-by doing a 32-bit division of -2147483648 by -1.</p>
+   undefined behavior; this is a rare case, but can occur, for example, by doing
+   a 32-bit division of -2147483648 by -1.</p>
+
+<p>If the <tt>exact</tt> keyword is present, the result value of the
+   <tt>sdiv</tt> is undefined if the result would be rounded or if overflow
+   would occur.</p>
+
 <h5>Example:</h5>
-<pre>  &lt;result&gt; = sdiv i32 4, %var          <i>; yields {i32}:result = 4 / %var</i>
+<pre>
+  &lt;result&gt; = sdiv i32 4, %var          <i>; yields {i32}:result = 4 / %var</i>
 </pre>
+
 </div>
+
 <!-- _______________________________________________________________________ -->
 <div class="doc_subsubsection"> <a name="i_fdiv">'<tt>fdiv</tt>'
 Instruction</a> </div>
+
 <div class="doc_text">
+
 <h5>Syntax:</h5>
 <pre>
   &lt;result&gt; = fdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
 </pre>
-<h5>Overview:</h5>
 
-<p>The '<tt>fdiv</tt>' instruction returns the quotient of its two
-operands.</p>
+<h5>Overview:</h5>
+<p>The '<tt>fdiv</tt>' instruction returns the quotient of its two operands.</p>
 
 <h5>Arguments:</h5>
-
 <p>The two arguments to the '<tt>fdiv</tt>' instruction must be
-<a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a>
-of floating point values.  Both arguments must have identical types.</p>
+   <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
+   floating point values.  Both arguments must have identical types.</p>
 
 <h5>Semantics:</h5>
-
 <p>The value produced is the floating point quotient of the two operands.</p>
 
 <h5>Example:</h5>
-
 <pre>
   &lt;result&gt; = fdiv float 4.0, %var          <i>; yields {float}:result = 4.0 / %var</i>
 </pre>
+
 </div>
 
 <!-- _______________________________________________________________________ -->
 <div class="doc_subsubsection"> <a name="i_urem">'<tt>urem</tt>' Instruction</a>
 </div>
+
 <div class="doc_text">
+
 <h5>Syntax:</h5>
-<pre>  &lt;result&gt; = urem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
+<pre>
+  &lt;result&gt; = urem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
 </pre>
+
 <h5>Overview:</h5>
-<p>The '<tt>urem</tt>' instruction returns the remainder from the
-unsigned division of its two arguments.</p>
+<p>The '<tt>urem</tt>' instruction returns the remainder from the unsigned
+   division of its two arguments.</p>
+
 <h5>Arguments:</h5>
-<p>The two arguments to the '<tt>urem</tt>' instruction must be 
-<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
-values.  Both arguments must have identical types.</p>
+<p>The two arguments to the '<tt>urem</tt>' instruction must be
+   <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
+   values.  Both arguments must have identical types.</p>
+
 <h5>Semantics:</h5>
 <p>This instruction returns the unsigned integer <i>remainder</i> of a division.
-This instruction always performs an unsigned division to get the remainder.</p>
+   This instruction always performs an unsigned division to get the
+   remainder.</p>
+
 <p>Note that unsigned integer remainder and signed integer remainder are
-distinct operations; for signed integer remainder, use '<tt>srem</tt>'.</p>
+   distinct operations; for signed integer remainder, use '<tt>srem</tt>'.</p>
+
 <p>Taking the remainder of a division by zero leads to undefined behavior.</p>
+
 <h5>Example:</h5>
-<pre>  &lt;result&gt; = urem i32 4, %var          <i>; yields {i32}:result = 4 % %var</i>
+<pre>
+  &lt;result&gt; = urem i32 4, %var          <i>; yields {i32}:result = 4 % %var</i>
 </pre>
 
 </div>
+
 <!-- _______________________________________________________________________ -->
 <div class="doc_subsubsection">
   <a name="i_srem">'<tt>srem</tt>' Instruction</a>
@@ -2846,47 +3306,48 @@ distinct operations; for signed integer remainder, use '<tt>srem</tt>'.</p>
 <div class="doc_text">
 
 <h5>Syntax:</h5>
-
 <pre>
   &lt;result&gt; = srem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
 </pre>
 
 <h5>Overview:</h5>
-
-<p>The '<tt>srem</tt>' instruction returns the remainder from the
-signed division of its two operands. This instruction can also take
-<a href="#t_vector">vector</a> versions of the values in which case
-the elements must be integers.</p>
+<p>The '<tt>srem</tt>' instruction returns the remainder from the signed
+   division of its two operands. This instruction can also take
+   <a href="#t_vector">vector</a> versions of the values in which case the
+   elements must be integers.</p>
 
 <h5>Arguments:</h5>
-
-<p>The two arguments to the '<tt>srem</tt>' instruction must be 
-<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
-values.  Both arguments must have identical types.</p>
+<p>The two arguments to the '<tt>srem</tt>' instruction must be
+   <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
+   values.  Both arguments must have identical types.</p>
 
 <h5>Semantics:</h5>
-
 <p>This instruction returns the <i>remainder</i> of a division (where the result
-has the same sign as the dividend, <tt>op1</tt>), not the <i>modulo</i> 
-operator (where the result has the same sign as the divisor, <tt>op2</tt>) of 
-a value.  For more information about the difference, see <a
- href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The
-Math Forum</a>. For a table of how this is implemented in various languages,
-please see <a href="http://en.wikipedia.org/wiki/Modulo_operation">
-Wikipedia: modulo operation</a>.</p>
+   has the same sign as the dividend, <tt>op1</tt>), not the <i>modulo</i>
+   operator (where the result has the same sign as the divisor, <tt>op2</tt>) of
+   a value.  For more information about the difference,
+   see <a href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The
+   Math Forum</a>. For a table of how this is implemented in various languages,
+   please see <a href="http://en.wikipedia.org/wiki/Modulo_operation">
+   Wikipedia: modulo operation</a>.</p>
+
 <p>Note that signed integer remainder and unsigned integer remainder are
-distinct operations; for unsigned integer remainder, use '<tt>urem</tt>'.</p>
+   distinct operations; for unsigned integer remainder, use '<tt>urem</tt>'.</p>
+
 <p>Taking the remainder of a division by zero leads to undefined behavior.
-Overflow also leads to undefined behavior; this is a rare case, but can occur,
-for example, by taking the remainder of a 32-bit division of -2147483648 by -1.
-(The remainder doesn't actually overflow, but this rule lets srem be 
-implemented using instructions that return both the result of the division
-and the remainder.)</p>
+   Overflow also leads to undefined behavior; this is a rare case, but can
+   occur, for example, by taking the remainder of a 32-bit division of
+   -2147483648 by -1.  (The remainder doesn't actually overflow, but this rule
+   lets srem be implemented using instructions that return both the result of
+   the division and the remainder.)</p>
+
 <h5>Example:</h5>
-<pre>  &lt;result&gt; = srem i32 4, %var          <i>; yields {i32}:result = 4 % %var</i>
+<pre>
+  &lt;result&gt; = srem i32 4, %var          <i>; yields {i32}:result = 4 % %var</i>
 </pre>
 
 </div>
+
 <!-- _______________________________________________________________________ -->
 <div class="doc_subsubsection">
   <a name="i_frem">'<tt>frem</tt>' Instruction</a> </div>
@@ -2894,99 +3355,110 @@ and the remainder.)</p>
 <div class="doc_text">
 
 <h5>Syntax:</h5>
-<pre>  &lt;result&gt; = frem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
+<pre>
+  &lt;result&gt; = frem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
 </pre>
+
 <h5>Overview:</h5>
-<p>The '<tt>frem</tt>' instruction returns the remainder from the
-division of its two operands.</p>
+<p>The '<tt>frem</tt>' instruction returns the remainder from the division of
+   its two operands.</p>
+
 <h5>Arguments:</h5>
 <p>The two arguments to the '<tt>frem</tt>' instruction must be
-<a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a>
-of floating point values.  Both arguments must have identical types.</p>
+   <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
+   floating point values.  Both arguments must have identical types.</p>
 
 <h5>Semantics:</h5>
-
-<p>This instruction returns the <i>remainder</i> of a division.
-The remainder has the same sign as the dividend.</p>
+<p>This instruction returns the <i>remainder</i> of a division.  The remainder
+   has the same sign as the dividend.</p>
 
 <h5>Example:</h5>
-
 <pre>
   &lt;result&gt; = frem float 4.0, %var          <i>; yields {float}:result = 4.0 % %var</i>
 </pre>
+
 </div>
 
 <!-- ======================================================================= -->
 <div class="doc_subsection"> <a name="bitwiseops">Bitwise Binary
 Operations</a> </div>
+
 <div class="doc_text">
-<p>Bitwise binary operators are used to do various forms of
-bit-twiddling in a program.  They are generally very efficient
-instructions and can commonly be strength reduced from other
-instructions.  They require two operands of the same type, execute an operation on them,
-and produce a single value.  The resulting value is the same type as its operands.</p>
+
+<p>Bitwise binary operators are used to do various forms of bit-twiddling in a
+   program.  They are generally very efficient instructions and can commonly be
+   strength reduced from other instructions.  They require two operands of the
+   same type, execute an operation on them, and produce a single value.  The
+   resulting value is the same type as its operands.</p>
+
 </div>
 
 <!-- _______________________________________________________________________ -->
 <div class="doc_subsubsection"> <a name="i_shl">'<tt>shl</tt>'
 Instruction</a> </div>
+
 <div class="doc_text">
+
 <h5>Syntax:</h5>
-<pre>  &lt;result&gt; = shl &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
+<pre>
+  &lt;result&gt; = shl &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
 </pre>
 
 <h5>Overview:</h5>
-
-<p>The '<tt>shl</tt>' instruction returns the first operand shifted to
-the left a specified number of bits.</p>
+<p>The '<tt>shl</tt>' instruction returns the first operand shifted to the left
+   a specified number of bits.</p>
 
 <h5>Arguments:</h5>
+<p>Both arguments to the '<tt>shl</tt>' instruction must be the
+    same <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
+    integer type.  '<tt>op2</tt>' is treated as an unsigned value.</p>
 
-<p>Both arguments to the '<tt>shl</tt>' instruction must be the same <a
- href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer 
-type.  '<tt>op2</tt>' is treated as an unsigned value.</p>
 <h5>Semantics:</h5>
+<p>The value produced is <tt>op1</tt> * 2<sup><tt>op2</tt></sup> mod
+   2<sup>n</sup>, where <tt>n</tt> is the width of the result.  If <tt>op2</tt>
+   is (statically or dynamically) negative or equal to or larger than the number
+   of bits in <tt>op1</tt>, the result is undefined.  If the arguments are
+   vectors, each vector element of <tt>op1</tt> is shifted by the corresponding
+   shift amount in <tt>op2</tt>.</p>
 
-<p>The value produced is <tt>op1</tt> * 2<sup><tt>op2</tt></sup> mod 2<sup>n</sup>,
-where n is the width of the result.  If <tt>op2</tt> is (statically or dynamically) negative or
-equal to or larger than the number of bits in <tt>op1</tt>, the result is undefined.
-If the arguments are vectors, each vector element of <tt>op1</tt> is shifted by the
-corresponding shift amount in <tt>op2</tt>.</p>
-
-<h5>Example:</h5><pre>
+<h5>Example:</h5>
+<pre>
   &lt;result&gt; = shl i32 4, %var   <i>; yields {i32}: 4 &lt;&lt; %var</i>
   &lt;result&gt; = shl i32 4, 2      <i>; yields {i32}: 16</i>
   &lt;result&gt; = shl i32 1, 10     <i>; yields {i32}: 1024</i>
   &lt;result&gt; = shl i32 1, 32     <i>; undefined</i>
   &lt;result&gt; = shl &lt;2 x i32&gt; &lt; i32 1, i32 1&gt;, &lt; i32 1, i32 2&gt;   <i>; yields: result=&lt;2 x i32&gt; &lt; i32 2, i32 4&gt;</i>
 </pre>
+
 </div>
+
 <!-- _______________________________________________________________________ -->
 <div class="doc_subsubsection"> <a name="i_lshr">'<tt>lshr</tt>'
 Instruction</a> </div>
+
 <div class="doc_text">
+
 <h5>Syntax:</h5>
-<pre>  &lt;result&gt; = lshr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
+<pre>
+  &lt;result&gt; = lshr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
 </pre>
 
 <h5>Overview:</h5>
-<p>The '<tt>lshr</tt>' instruction (logical shift right) returns the first 
-operand shifted to the right a specified number of bits with zero fill.</p>
+<p>The '<tt>lshr</tt>' instruction (logical shift right) returns the first
+   operand shifted to the right a specified number of bits with zero fill.</p>
 
 <h5>Arguments:</h5>
-<p>Both arguments to the '<tt>lshr</tt>' instruction must be the same 
-<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer 
-type.  '<tt>op2</tt>' is treated as an unsigned value.</p>
+<p>Both arguments to the '<tt>lshr</tt>' instruction must be the same
+   <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
+   type. '<tt>op2</tt>' is treated as an unsigned value.</p>
 
 <h5>Semantics:</h5>
-
 <p>This instruction always performs a logical shift right operation. The most
-significant bits of the result will be filled with zero bits after the 
-shift.  If <tt>op2</tt> is (statically or dynamically) equal to or larger than
-the number of bits in <tt>op1</tt>, the result is undefined. If the arguments are
-vectors, each vector element of <tt>op1</tt> is shifted by the corresponding shift
-amount in <tt>op2</tt>.</p>
+   significant bits of the result will be filled with zero bits after the shift.
+   If <tt>op2</tt> is (statically or dynamically) equal to or larger than the
+   number of bits in <tt>op1</tt>, the result is undefined. If the arguments are
+   vectors, each vector element of <tt>op1</tt> is shifted by the corresponding
+   shift amount in <tt>op2</tt>.</p>
 
 <h5>Example:</h5>
 <pre>
@@ -2997,6 +3469,7 @@ amount in <tt>op2</tt>.</p>
   &lt;result&gt; = lshr i32 1, 32  <i>; undefined</i>
   &lt;result&gt; = lshr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 2&gt;   <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0x7FFFFFFF, i32 1&gt;</i>
 </pre>
+
 </div>
 
 <!-- _______________________________________________________________________ -->
@@ -3005,25 +3478,27 @@ Instruction</a> </div>
 <div class="doc_text">
 
 <h5>Syntax:</h5>
-<pre>  &lt;result&gt; = ashr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
+<pre>
+  &lt;result&gt; = ashr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
 </pre>
 
 <h5>Overview:</h5>
-<p>The '<tt>ashr</tt>' instruction (arithmetic shift right) returns the first 
-operand shifted to the right a specified number of bits with sign extension.</p>
+<p>The '<tt>ashr</tt>' instruction (arithmetic shift right) returns the first
+   operand shifted to the right a specified number of bits with sign
+   extension.</p>
 
 <h5>Arguments:</h5>
-<p>Both arguments to the '<tt>ashr</tt>' instruction must be the same 
-<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer 
-type.  '<tt>op2</tt>' is treated as an unsigned value.</p>
+<p>Both arguments to the '<tt>ashr</tt>' instruction must be the same
+   <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
+   type.  '<tt>op2</tt>' is treated as an unsigned value.</p>
 
 <h5>Semantics:</h5>
-<p>This instruction always performs an arithmetic shift right operation, 
-The most significant bits of the result will be filled with the sign bit 
-of <tt>op1</tt>.  If <tt>op2</tt> is (statically or dynamically) equal to or
-larger than the number of bits in <tt>op1</tt>, the result is undefined. If the
-arguments are vectors, each vector element of <tt>op1</tt> is shifted by the
-corresponding shift amount in <tt>op2</tt>.</p>
+<p>This instruction always performs an arithmetic shift right operation, The
+   most significant bits of the result will be filled with the sign bit
+   of <tt>op1</tt>.  If <tt>op2</tt> is (statically or dynamically) equal to or
+   larger than the number of bits in <tt>op1</tt>, the result is undefined. If
+   the arguments are vectors, each vector element of <tt>op1</tt> is shifted by
+   the corresponding shift amount in <tt>op2</tt>.</p>
 
 <h5>Example:</h5>
 <pre>
@@ -3034,6 +3509,7 @@ corresponding shift amount in <tt>op2</tt>.</p>
   &lt;result&gt; = ashr i32 1, 32  <i>; undefined</i>
   &lt;result&gt; = ashr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 3&gt;   <i>; yields: result=&lt;2 x i32&gt; &lt; i32 -1, i32 0&gt;</i>
 </pre>
+
 </div>
 
 <!-- _______________________________________________________________________ -->
@@ -3043,26 +3519,22 @@ Instruction</a> </div>
 <div class="doc_text">
 
 <h5>Syntax:</h5>
-
 <pre>
   &lt;result&gt; = and &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
 </pre>
 
 <h5>Overview:</h5>
-
-<p>The '<tt>and</tt>' instruction returns the bitwise logical and of
-its two operands.</p>
+<p>The '<tt>and</tt>' instruction returns the bitwise logical and of its two
+   operands.</p>
 
 <h5>Arguments:</h5>
-
-<p>The two arguments to the '<tt>and</tt>' instruction must be 
-<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
-values.  Both arguments must have identical types.</p>
+<p>The two arguments to the '<tt>and</tt>' instruction must be
+   <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
+   values.  Both arguments must have identical types.</p>
 
 <h5>Semantics:</h5>
 <p>The truth table used for the '<tt>and</tt>' instruction is:</p>
-<p> </p>
-<div>
+
 <table border="1" cellspacing="0" cellpadding="4">
   <tbody>
     <tr>
@@ -3092,7 +3564,7 @@ values.  Both arguments must have identical types.</p>
     </tr>
   </tbody>
 </table>
-</div>
+
 <h5>Example:</h5>
 <pre>
   &lt;result&gt; = and i32 4, %var         <i>; yields {i32}:result = 4 &amp; %var</i>
@@ -3102,22 +3574,26 @@ values.  Both arguments must have identical types.</p>
 </div>
 <!-- _______________________________________________________________________ -->
 <div class="doc_subsubsection"> <a name="i_or">'<tt>or</tt>' Instruction</a> </div>
+
 <div class="doc_text">
+
 <h5>Syntax:</h5>
-<pre>  &lt;result&gt; = or &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
+<pre>
+  &lt;result&gt; = or &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
 </pre>
+
 <h5>Overview:</h5>
-<p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive
-or of its two operands.</p>
+<p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive or of its
+   two operands.</p>
+
 <h5>Arguments:</h5>
+<p>The two arguments to the '<tt>or</tt>' instruction must be
+   <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
+   values.  Both arguments must have identical types.</p>
 
-<p>The two arguments to the '<tt>or</tt>' instruction must be 
-<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
-values.  Both arguments must have identical types.</p>
 <h5>Semantics:</h5>
 <p>The truth table used for the '<tt>or</tt>' instruction is:</p>
-<p> </p>
-<div>
+
 <table border="1" cellspacing="0" cellpadding="4">
   <tbody>
     <tr>
@@ -3147,34 +3623,40 @@ values.  Both arguments must have identical types.</p>
     </tr>
   </tbody>
 </table>
-</div>
+
 <h5>Example:</h5>
-<pre>  &lt;result&gt; = or i32 4, %var         <i>; yields {i32}:result = 4 | %var</i>
+<pre>
+  &lt;result&gt; = or i32 4, %var         <i>; yields {i32}:result = 4 | %var</i>
   &lt;result&gt; = or i32 15, 40          <i>; yields {i32}:result = 47</i>
   &lt;result&gt; = or i32 4, 8            <i>; yields {i32}:result = 12</i>
 </pre>
+
 </div>
+
 <!-- _______________________________________________________________________ -->
 <div class="doc_subsubsection"> <a name="i_xor">'<tt>xor</tt>'
 Instruction</a> </div>
+
 <div class="doc_text">
+
 <h5>Syntax:</h5>
-<pre>  &lt;result&gt; = xor &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
+<pre>
+  &lt;result&gt; = xor &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
 </pre>
+
 <h5>Overview:</h5>
-<p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive
-or of its two operands.  The <tt>xor</tt> is used to implement the
-"one's complement" operation, which is the "~" operator in C.</p>
+<p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive or of
+   its two operands.  The <tt>xor</tt> is used to implement the "one's
+   complement" operation, which is the "~" operator in C.</p>
+
 <h5>Arguments:</h5>
-<p>The two arguments to the '<tt>xor</tt>' instruction must be 
-<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
-values.  Both arguments must have identical types.</p>
+<p>The two arguments to the '<tt>xor</tt>' instruction must be
+   <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
+   values.  Both arguments must have identical types.</p>
 
 <h5>Semantics:</h5>
-
 <p>The truth table used for the '<tt>xor</tt>' instruction is:</p>
-<p> </p>
-<div>
+
 <table border="1" cellspacing="0" cellpadding="4">
   <tbody>
     <tr>
@@ -3204,29 +3686,30 @@ values.  Both arguments must have identical types.</p>
     </tr>
   </tbody>
 </table>
-</div>
-<p> </p>
+
 <h5>Example:</h5>
-<pre>  &lt;result&gt; = xor i32 4, %var         <i>; yields {i32}:result = 4 ^ %var</i>
+<pre>
+  &lt;result&gt; = xor i32 4, %var         <i>; yields {i32}:result = 4 ^ %var</i>
   &lt;result&gt; = xor i32 15, 40          <i>; yields {i32}:result = 39</i>
   &lt;result&gt; = xor i32 4, 8            <i>; yields {i32}:result = 12</i>
   &lt;result&gt; = xor i32 %V, -1          <i>; yields {i32}:result = ~%V</i>
 </pre>
+
 </div>
 
 <!-- ======================================================================= -->
-<div class="doc_subsection"> 
+<div class="doc_subsection">
   <a name="vectorops">Vector Operations</a>
 </div>
 
 <div class="doc_text">
 
 <p>LLVM supports several instructions to represent vector operations in a
-target-independent manner.  These instructions cover the element-access and
-vector-specific operations needed to process vectors effectively.  While LLVM
-does directly support these vector operations, many sophisticated algorithms
-will want to use target-specific intrinsics to take full advantage of a specific
-target.</p>
+   target-independent manner.  These instructions cover the element-access and
+   vector-specific operations needed to process vectors effectively.  While LLVM
+   does directly support these vector operations, many sophisticated algorithms
+   will want to use target-specific intrinsics to take full advantage of a
+   specific target.</p>
 
 </div>
 
@@ -3238,366 +3721,216 @@ target.</p>
 <div class="doc_text">
 
 <h5>Syntax:</h5>
-
-<pre>
-  &lt;result&gt; = extractelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, i32 &lt;idx&gt;    <i>; yields &lt;ty&gt;</i>
-</pre>
-
-<h5>Overview:</h5>
-
-<p>
-The '<tt>extractelement</tt>' instruction extracts a single scalar
-element from a vector at a specified index.
-</p>
-
-
-<h5>Arguments:</h5>
-
-<p>
-The first operand of an '<tt>extractelement</tt>' instruction is a
-value of <a href="#t_vector">vector</a> type.  The second operand is
-an index indicating the position from which to extract the element.
-The index may be a variable.</p>
-
-<h5>Semantics:</h5>
-
-<p>
-The result is a scalar of the same type as the element type of
-<tt>val</tt>.  Its value is the value at position <tt>idx</tt> of
-<tt>val</tt>.  If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
-results are undefined.
-</p>
-
-<h5>Example:</h5>
-
-<pre>
-  %result = extractelement &lt;4 x i32&gt; %vec, i32 0    <i>; yields i32</i>
-</pre>
-</div>
-
-
-<!-- _______________________________________________________________________ -->
-<div class="doc_subsubsection">
-   <a name="i_insertelement">'<tt>insertelement</tt>' Instruction</a>
-</div>
-
-<div class="doc_text">
-
-<h5>Syntax:</h5>
-
-<pre>
-  &lt;result&gt; = insertelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt;, i32 &lt;idx&gt;    <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
-</pre>
-
-<h5>Overview:</h5>
-
-<p>
-The '<tt>insertelement</tt>' instruction inserts a scalar
-element into a vector at a specified index.
-</p>
-
-
-<h5>Arguments:</h5>
-
-<p>
-The first operand of an '<tt>insertelement</tt>' instruction is a
-value of <a href="#t_vector">vector</a> type.  The second operand is a
-scalar value whose type must equal the element type of the first
-operand.  The third operand is an index indicating the position at
-which to insert the value.  The index may be a variable.</p>
-
-<h5>Semantics:</h5>
-
-<p>
-The result is a vector of the same type as <tt>val</tt>.  Its
-element values are those of <tt>val</tt> except at position
-<tt>idx</tt>, where it gets the value <tt>elt</tt>.  If <tt>idx</tt>
-exceeds the length of <tt>val</tt>, the results are undefined.
-</p>
-
-<h5>Example:</h5>
-
-<pre>
-  %result = insertelement &lt;4 x i32&gt; %vec, i32 1, i32 0    <i>; yields &lt;4 x i32&gt;</i>
-</pre>
-</div>
-
-<!-- _______________________________________________________________________ -->
-<div class="doc_subsubsection">
-   <a name="i_shufflevector">'<tt>shufflevector</tt>' Instruction</a>
-</div>
-
-<div class="doc_text">
-
-<h5>Syntax:</h5>
-
-<pre>
-  &lt;result&gt; = shufflevector &lt;n x &lt;ty&gt;&gt; &lt;v1&gt;, &lt;n x &lt;ty&gt;&gt; &lt;v2&gt;, &lt;m x i32&gt; &lt;mask&gt;    <i>; yields &lt;m x &lt;ty&gt;&gt;</i>
-</pre>
-
-<h5>Overview:</h5>
-
-<p>
-The '<tt>shufflevector</tt>' instruction constructs a permutation of elements
-from two input vectors, returning a vector with the same element type as
-the input and length that is the same as the shuffle mask.
-</p>
-
-<h5>Arguments:</h5>
-
-<p>
-The first two operands of a '<tt>shufflevector</tt>' instruction are vectors 
-with types that match each other. The third argument is a shuffle mask whose
-element type is always 'i32'.  The result of the instruction is a vector whose
-length is the same as the shuffle mask and whose element type is the same as
-the element type of the first two operands.
-</p>
-
-<p>
-The shuffle mask operand is required to be a constant vector with either
-constant integer or undef values.
-</p>
-
-<h5>Semantics:</h5>
-
-<p>
-The elements of the two input vectors are numbered from left to right across
-both of the vectors.  The shuffle mask operand specifies, for each element of
-the result vector, which element of the two input vectors the result element
-gets.  The element selector may be undef (meaning "don't care") and the second
-operand may be undef if performing a shuffle from only one vector.
-</p>
-
-<h5>Example:</h5>
-
-<pre>
-  %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2, 
-                          &lt;4 x i32&gt; &lt;i32 0, i32 4, i32 1, i32 5&gt;  <i>; yields &lt;4 x i32&gt;</i>
-  %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; undef, 
-                          &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt;  <i>; yields &lt;4 x i32&gt;</i> - Identity shuffle.
-  %result = shufflevector &lt;8 x i32&gt; %v1, &lt;8 x i32&gt; undef, 
-                          &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt;  <i>; yields &lt;4 x i32&gt;</i>
-  %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2, 
-                          &lt;8 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 &gt;  <i>; yields &lt;8 x i32&gt;</i>
+<pre>
+  &lt;result&gt; = extractelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, i32 &lt;idx&gt;    <i>; yields &lt;ty&gt;</i>
 </pre>
-</div>
 
+<h5>Overview:</h5>
+<p>The '<tt>extractelement</tt>' instruction extracts a single scalar element
+   from a vector at a specified index.</p>
 
-<!-- ======================================================================= -->
-<div class="doc_subsection"> 
-  <a name="aggregateops">Aggregate Operations</a>
-</div>
 
-<div class="doc_text">
+<h5>Arguments:</h5>
+<p>The first operand of an '<tt>extractelement</tt>' instruction is a value
+   of <a href="#t_vector">vector</a> type.  The second operand is an index
+   indicating the position from which to extract the element.  The index may be
+   a variable.</p>
 
-<p>LLVM supports several instructions for working with aggregate values.
-</p>
+<h5>Semantics:</h5>
+<p>The result is a scalar of the same type as the element type of
+   <tt>val</tt>.  Its value is the value at position <tt>idx</tt> of
+   <tt>val</tt>.  If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
+   results are undefined.</p>
+
+<h5>Example:</h5>
+<pre>
+  &lt;result&gt; = extractelement &lt;4 x i32&gt; %vec, i32 0    <i>; yields i32</i>
+</pre>
 
 </div>
 
 <!-- _______________________________________________________________________ -->
 <div class="doc_subsubsection">
-   <a name="i_extractvalue">'<tt>extractvalue</tt>' Instruction</a>
+   <a name="i_insertelement">'<tt>insertelement</tt>' Instruction</a>
 </div>
 
 <div class="doc_text">
 
 <h5>Syntax:</h5>
-
 <pre>
-  &lt;result&gt; = extractvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;idx&gt;{, &lt;idx&gt;}*
+  &lt;result&gt; = insertelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt;, i32 &lt;idx&gt;    <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
 </pre>
 
 <h5>Overview:</h5>
-
-<p>
-The '<tt>extractvalue</tt>' instruction extracts the value of a struct field
-or array element from an aggregate value.
-</p>
-
+<p>The '<tt>insertelement</tt>' instruction inserts a scalar element into a
+   vector at a specified index.</p>
 
 <h5>Arguments:</h5>
-
-<p>
-The first operand of an '<tt>extractvalue</tt>' instruction is a
-value of <a href="#t_struct">struct</a> or <a href="#t_array">array</a>
-type.  The operands are constant indices to specify which value to extract
-in a similar manner as indices in a
-'<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
-</p>
+<p>The first operand of an '<tt>insertelement</tt>' instruction is a value
+   of <a href="#t_vector">vector</a> type.  The second operand is a scalar value
+   whose type must equal the element type of the first operand.  The third
+   operand is an index indicating the position at which to insert the value.
+   The index may be a variable.</p>
 
 <h5>Semantics:</h5>
-
-<p>
-The result is the value at the position in the aggregate specified by
-the index operands.
-</p>
+<p>The result is a vector of the same type as <tt>val</tt>.  Its element values
+   are those of <tt>val</tt> except at position <tt>idx</tt>, where it gets the
+   value <tt>elt</tt>.  If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
+   results are undefined.</p>
 
 <h5>Example:</h5>
-
 <pre>
-  %result = extractvalue {i32, float} %agg, 0    <i>; yields i32</i>
+  &lt;result&gt; = insertelement &lt;4 x i32&gt; %vec, i32 1, i32 0    <i>; yields &lt;4 x i32&gt;</i>
 </pre>
-</div>
 
+</div>
 
 <!-- _______________________________________________________________________ -->
 <div class="doc_subsubsection">
-   <a name="i_insertvalue">'<tt>insertvalue</tt>' Instruction</a>
+   <a name="i_shufflevector">'<tt>shufflevector</tt>' Instruction</a>
 </div>
 
 <div class="doc_text">
 
 <h5>Syntax:</h5>
-
 <pre>
-  &lt;result&gt; = insertvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;ty&gt; &lt;val&gt;, &lt;idx&gt;    <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
+  &lt;result&gt; = shufflevector &lt;n x &lt;ty&gt;&gt; &lt;v1&gt;, &lt;n x &lt;ty&gt;&gt; &lt;v2&gt;, &lt;m x i32&gt; &lt;mask&gt;    <i>; yields &lt;m x &lt;ty&gt;&gt;</i>
 </pre>
 
 <h5>Overview:</h5>
-
-<p>
-The '<tt>insertvalue</tt>' instruction inserts a value
-into a struct field or array element in an aggregate.
-</p>
-
+<p>The '<tt>shufflevector</tt>' instruction constructs a permutation of elements
+   from two input vectors, returning a vector with the same element type as the
+   input and length that is the same as the shuffle mask.</p>
 
 <h5>Arguments:</h5>
+<p>The first two operands of a '<tt>shufflevector</tt>' instruction are vectors
+   with types that match each other. The third argument is a shuffle mask whose
+   element type is always 'i32'.  The result of the instruction is a vector
+   whose length is the same as the shuffle mask and whose element type is the
+   same as the element type of the first two operands.</p>
 
-<p>
-The first operand of an '<tt>insertvalue</tt>' instruction is a
-value of <a href="#t_struct">struct</a> or <a href="#t_array">array</a> type.
-The second operand is a first-class value to insert.
-The following operands are constant indices
-indicating the position at which to insert the value in a similar manner as
-indices in a
-'<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
-The value to insert must have the same type as the value identified
-by the indices.
-</p>
+<p>The shuffle mask operand is required to be a constant vector with either
+   constant integer or undef values.</p>
 
 <h5>Semantics:</h5>
-
-<p>
-The result is an aggregate of the same type as <tt>val</tt>.  Its
-value is that of <tt>val</tt> except that the value at the position
-specified by the indices is that of <tt>elt</tt>.
-</p>
+<p>The elements of the two input vectors are numbered from left to right across
+   both of the vectors.  The shuffle mask operand specifies, for each element of
+   the result vector, which element of the two input vectors the result element
+   gets.  The element selector may be undef (meaning "don't care") and the
+   second operand may be undef if performing a shuffle from only one vector.</p>
 
 <h5>Example:</h5>
-
 <pre>
-  %result = insertvalue {i32, float} %agg, i32 1, 0    <i>; yields {i32, float}</i>
+  &lt;result&gt; = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
+                          &lt;4 x i32&gt; &lt;i32 0, i32 4, i32 1, i32 5&gt;  <i>; yields &lt;4 x i32&gt;</i>
+  &lt;result&gt; = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; undef,
+                          &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt;  <i>; yields &lt;4 x i32&gt;</i> - Identity shuffle.
+  &lt;result&gt; = shufflevector &lt;8 x i32&gt; %v1, &lt;8 x i32&gt; undef,
+                          &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt;  <i>; yields &lt;4 x i32&gt;</i>
+  &lt;result&gt; = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
+                          &lt;8 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 &gt;  <i>; yields &lt;8 x i32&gt;</i>
 </pre>
-</div>
 
+</div>
 
 <!-- ======================================================================= -->
-<div class="doc_subsection"> 
-  <a name="memoryops">Memory Access and Addressing Operations</a>
+<div class="doc_subsection">
+  <a name="aggregateops">Aggregate Operations</a>
 </div>
 
 <div class="doc_text">
 
-<p>A key design point of an SSA-based representation is how it
-represents memory.  In LLVM, no memory locations are in SSA form, which
-makes things very simple.  This section describes how to read, write,
-allocate, and free memory in LLVM.</p>
+<p>LLVM supports several instructions for working with aggregate values.</p>
 
 </div>
 
 <!-- _______________________________________________________________________ -->
 <div class="doc_subsubsection">
-  <a name="i_malloc">'<tt>malloc</tt>' Instruction</a>
+   <a name="i_extractvalue">'<tt>extractvalue</tt>' Instruction</a>
 </div>
 
 <div class="doc_text">
 
 <h5>Syntax:</h5>
-
 <pre>
-  &lt;result&gt; = malloc &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;]     <i>; yields {type*}:result</i>
+  &lt;result&gt; = extractvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;idx&gt;{, &lt;idx&gt;}*
 </pre>
 
 <h5>Overview:</h5>
-
-<p>The '<tt>malloc</tt>' instruction allocates memory from the system
-heap and returns a pointer to it. The object is always allocated in the generic 
-address space (address space zero).</p>
+<p>The '<tt>extractvalue</tt>' instruction extracts the value of a struct field
+   or array element from an aggregate value.</p>
 
 <h5>Arguments:</h5>
-
-<p>The '<tt>malloc</tt>' instruction allocates
-<tt>sizeof(&lt;type&gt;)*NumElements</tt>
-bytes of memory from the operating system and returns a pointer of the
-appropriate type to the program.  If "NumElements" is specified, it is the
-number of elements allocated, otherwise "NumElements" is defaulted to be one.
-If a constant alignment is specified, the value result of the allocation is
-guaranteed to be aligned to at least that boundary.  If not specified, or if
-zero, the target can choose to align the allocation on any convenient boundary
-compatible with the type.</p>
-
-<p>'<tt>type</tt>' must be a sized type.</p>
+<p>The first operand of an '<tt>extractvalue</tt>' instruction is a value
+   of <a href="#t_struct">struct</a> or <a href="#t_array">array</a> type.  The
+   operands are constant indices to specify which value to extract in a similar
+   manner as indices in a
+   '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.</p>
 
 <h5>Semantics:</h5>
-
-<p>Memory is allocated using the system "<tt>malloc</tt>" function, and
-a pointer is returned.  The result of a zero byte allocation is undefined.  The
-result is null if there is insufficient memory available.</p>
+<p>The result is the value at the position in the aggregate specified by the
+   index operands.</p>
 
 <h5>Example:</h5>
-
 <pre>
-  %array  = malloc [4 x i8]                     <i>; yields {[%4 x i8]*}:array</i>
-
-  %size   = <a href="#i_add">add</a> i32 2, 2                        <i>; yields {i32}:size = i32 4</i>
-  %array1 = malloc i8, i32 4                    <i>; yields {i8*}:array1</i>
-  %array2 = malloc [12 x i8], i32 %size         <i>; yields {[12 x i8]*}:array2</i>
-  %array3 = malloc i32, i32 4, align 1024       <i>; yields {i32*}:array3</i>
-  %array4 = malloc i32, align 1024              <i>; yields {i32*}:array4</i>
+  &lt;result&gt; = extractvalue {i32, float} %agg, 0    <i>; yields i32</i>
 </pre>
 
-<p>Note that the code generator does not yet respect the
-   alignment value.</p>
-
 </div>
 
 <!-- _______________________________________________________________________ -->
 <div class="doc_subsubsection">
-  <a name="i_free">'<tt>free</tt>' Instruction</a>
+   <a name="i_insertvalue">'<tt>insertvalue</tt>' Instruction</a>
 </div>
 
 <div class="doc_text">
 
 <h5>Syntax:</h5>
-
 <pre>
-  free &lt;type&gt; &lt;value&gt;                           <i>; yields {void}</i>
+  &lt;result&gt; = insertvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt;, &lt;idx&gt;    <i>; yields &lt;aggregate type&gt;</i>
 </pre>
 
 <h5>Overview:</h5>
+<p>The '<tt>insertvalue</tt>' instruction inserts a value into a struct field or
+   array element in an aggregate.</p>
 
-<p>The '<tt>free</tt>' instruction returns memory back to the unused
-memory heap to be reallocated in the future.</p>
 
 <h5>Arguments:</h5>
-
-<p>'<tt>value</tt>' shall be a pointer value that points to a value
-that was allocated with the '<tt><a href="#i_malloc">malloc</a></tt>'
-instruction.</p>
+<p>The first operand of an '<tt>insertvalue</tt>' instruction is a value
+   of <a href="#t_struct">struct</a> or <a href="#t_array">array</a> type.  The
+   second operand is a first-class value to insert.  The following operands are
+   constant indices indicating the position at which to insert the value in a
+   similar manner as indices in a
+   '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.  The
+   value to insert must have the same type as the value identified by the
+   indices.</p>
 
 <h5>Semantics:</h5>
-
-<p>Access to the memory pointed to by the pointer is no longer defined
-after this instruction executes.  If the pointer is null, the operation
-is a noop.</p>
+<p>The result is an aggregate of the same type as <tt>val</tt>.  Its value is
+   that of <tt>val</tt> except that the value at the position specified by the
+   indices is that of <tt>elt</tt>.</p>
 
 <h5>Example:</h5>
-
 <pre>
-  %array  = <a href="#i_malloc">malloc</a> [4 x i8]                     <i>; yields {[4 x i8]*}:array</i>
-            free   [4 x i8]* %array
+  %agg1 = insertvalue {i32, float} undef, i32 1, 0         <i>; yields {i32 1, float undef}</i>
+  %agg2 = insertvalue {i32, float} %agg1, float %val, 1    <i>; yields {i32 1, float %val}</i>
 </pre>
+
+</div>
+
+
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+  <a name="memoryops">Memory Access and Addressing Operations</a>
+</div>
+
+<div class="doc_text">
+
+<p>A key design point of an SSA-based representation is how it represents
+   memory.  In LLVM, no memory locations are in SSA form, which makes things
+   very simple.  This section describes how to read, write, and allocate
+   memory in LLVM.</p>
+
 </div>
 
 <!-- _______________________________________________________________________ -->
@@ -3608,137 +3941,150 @@ is a noop.</p>
 <div class="doc_text">
 
 <h5>Syntax:</h5>
-
 <pre>
   &lt;result&gt; = alloca &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;]     <i>; yields {type*}:result</i>
 </pre>
 
 <h5>Overview:</h5>
-
 <p>The '<tt>alloca</tt>' instruction allocates memory on the stack frame of the
-currently executing function, to be automatically released when this function
-returns to its caller. The object is always allocated in the generic address 
-space (address space zero).</p>
+   currently executing function, to be automatically released when this function
+   returns to its caller. The object is always allocated in the generic address
+   space (address space zero).</p>
 
 <h5>Arguments:</h5>
-
-<p>The '<tt>alloca</tt>' instruction allocates <tt>sizeof(&lt;type&gt;)*NumElements</tt>
-bytes of memory on the runtime stack, returning a pointer of the
-appropriate type to the program.  If "NumElements" is specified, it is the
-number of elements allocated, otherwise "NumElements" is defaulted to be one.
-If a constant alignment is specified, the value result of the allocation is
-guaranteed to be aligned to at least that boundary.  If not specified, or if
-zero, the target can choose to align the allocation on any convenient boundary
-compatible with the type.</p>
+<p>The '<tt>alloca</tt>' instruction
+   allocates <tt>sizeof(&lt;type&gt;)*NumElements</tt> bytes of memory on the
+   runtime stack, returning a pointer of the appropriate type to the program.
+   If "NumElements" is specified, it is the number of elements allocated,
+   otherwise "NumElements" is defaulted to be one.  If a constant alignment is
+   specified, the value result of the allocation is guaranteed to be aligned to
+   at least that boundary.  If not specified, or if zero, the target can choose
+   to align the allocation on any convenient boundary compatible with the
+   type.</p>
 
 <p>'<tt>type</tt>' may be any sized type.</p>
 
 <h5>Semantics:</h5>
-
 <p>Memory is allocated; a pointer is returned.  The operation is undefined if
-there is insufficient stack space for the allocation.  '<tt>alloca</tt>'d
-memory is automatically released when the function returns.  The '<tt>alloca</tt>'
-instruction is commonly used to represent automatic variables that must
-have an address available.  When the function returns (either with the <tt><a
href="#i_ret">ret</a></tt> or <tt><a href="#i_unwind">unwind</a></tt>
-instructions), the memory is reclaimed.  Allocating zero bytes
-is legal, but the result is undefined.</p>
+   there is insufficient stack space for the allocation.  '<tt>alloca</tt>'d
+   memory is automatically released when the function returns.  The
+   '<tt>alloca</tt>' instruction is commonly used to represent automatic
+   variables that must have an address available.  When the function returns
  (either with the <tt><a href="#i_ret">ret</a></tt>
+   or <tt><a href="#i_unwind">unwind</a></tt> instructions), the memory is
+   reclaimed.  Allocating zero bytes is legal, but the result is undefined.</p>
 
 <h5>Example:</h5>
-
 <pre>
   %ptr = alloca i32                             <i>; yields {i32*}:ptr</i>
   %ptr = alloca i32, i32 4                      <i>; yields {i32*}:ptr</i>
   %ptr = alloca i32, i32 4, align 1024          <i>; yields {i32*}:ptr</i>
   %ptr = alloca i32, align 1024                 <i>; yields {i32*}:ptr</i>
 </pre>
+
 </div>
 
 <!-- _______________________________________________________________________ -->
 <div class="doc_subsubsection"> <a name="i_load">'<tt>load</tt>'
 Instruction</a> </div>
+
 <div class="doc_text">
+
 <h5>Syntax:</h5>
-<pre>  &lt;result&gt; = load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br>  &lt;result&gt; = volatile load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br></pre>
+<pre>
+  &lt;result&gt; = load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]
+  &lt;result&gt; = volatile load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]
+</pre>
+
 <h5>Overview:</h5>
 <p>The '<tt>load</tt>' instruction is used to read from memory.</p>
+
 <h5>Arguments:</h5>
-<p>The argument to the '<tt>load</tt>' instruction specifies the memory
-address from which to load.  The pointer must point to a <a
- href="#t_firstclass">first class</a> type.  If the <tt>load</tt> is
-marked as <tt>volatile</tt>, then the optimizer is not allowed to modify
-the number or order of execution of this <tt>load</tt> with other
-volatile <tt>load</tt> and <tt><a href="#i_store">store</a></tt>
-instructions. </p>
-<p>
-The optional constant "align" argument specifies the alignment of the operation
-(that is, the alignment of the memory address). A value of 0 or an
-omitted "align" argument means that the operation has the preferential
-alignment for the target. It is the responsibility of the code emitter
-to ensure that the alignment information is correct. Overestimating
-the alignment results in an undefined behavior. Underestimating the
-alignment may produce less efficient code. An alignment of 1 is always
-safe.
-</p>
+<p>The argument to the '<tt>load</tt>' instruction specifies the memory address
+   from which to load.  The pointer must point to
+   a <a href="#t_firstclass">first class</a> type.  If the <tt>load</tt> is
+   marked as <tt>volatile</tt>, then the optimizer is not allowed to modify the
+   number or order of execution of this <tt>load</tt> with other
+   volatile <tt>load</tt> and <tt><a href="#i_store">store</a></tt>
+   instructions. </p>
+
+<p>The optional constant "align" argument specifies the alignment of the
+   operation (that is, the alignment of the memory address). A value of 0 or an
+   omitted "align" argument means that the operation has the preferential
+   alignment for the target. It is the responsibility of the code emitter to
+   ensure that the alignment information is correct. Overestimating the
+   alignment results in an undefined behavior. Underestimating the alignment may
+   produce less efficient code. An alignment of 1 is always safe.</p>
+
 <h5>Semantics:</h5>
-<p>The location of memory pointed to is loaded.  If the value being loaded
-is of scalar type then the number of bytes read does not exceed the minimum
-number of bytes needed to hold all bits of the type.  For example, loading an
-<tt>i24</tt> reads at most three bytes.  When loading a value of a type like
-<tt>i20</tt> with a size that is not an integral number of bytes, the result
-is undefined if the value was not originally written using a store of the
-same type.</p>
+<p>The location of memory pointed to is loaded.  If the value being loaded is of
+   scalar type then the number of bytes read does not exceed the minimum number
+   of bytes needed to hold all bits of the type.  For example, loading an
+   <tt>i24</tt> reads at most three bytes.  When loading a value of a type like
+   <tt>i20</tt> with a size that is not an integral number of bytes, the result
+   is undefined if the value was not originally written using a store of the
+   same type.</p>
+
 <h5>Examples:</h5>
-<pre>  %ptr = <a href="#i_alloca">alloca</a> i32                               <i>; yields {i32*}:ptr</i>
-  <a
- href="#i_store">store</a> i32 3, i32* %ptr                          <i>; yields {void}</i>
+<pre>
+  %ptr = <a href="#i_alloca">alloca</a> i32                               <i>; yields {i32*}:ptr</i>
 <a href="#i_store">store</a> i32 3, i32* %ptr                          <i>; yields {void}</i>
   %val = load i32* %ptr                           <i>; yields {i32}:val = i32 3</i>
 </pre>
+
 </div>
+
 <!-- _______________________________________________________________________ -->
 <div class="doc_subsubsection"> <a name="i_store">'<tt>store</tt>'
 Instruction</a> </div>
+
 <div class="doc_text">
+
 <h5>Syntax:</h5>
-<pre>  store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]                   <i>; yields {void}</i>
+<pre>
+  store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]                   <i>; yields {void}</i>
   volatile store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]          <i>; yields {void}</i>
 </pre>
+
 <h5>Overview:</h5>
 <p>The '<tt>store</tt>' instruction is used to write to memory.</p>
+
 <h5>Arguments:</h5>
-<p>There are two arguments to the '<tt>store</tt>' instruction: a value
-to store and an address at which to store it.  The type of the '<tt>&lt;pointer&gt;</tt>'
-operand must be a pointer to the <a href="#t_firstclass">first class</a> type
-of the '<tt>&lt;value&gt;</tt>'
-operand. If the <tt>store</tt> is marked as <tt>volatile</tt>, then the
-optimizer is not allowed to modify the number or order of execution of
-this <tt>store</tt> with other volatile <tt>load</tt> and <tt><a
href="#i_store">store</a></tt> instructions.</p>
-<p>
-The optional constant "align" argument specifies the alignment of the operation
-(that is, the alignment of the memory address). A value of 0 or an
-omitted "align" argument means that the operation has the preferential
-alignment for the target. It is the responsibility of the code emitter
-to ensure that the alignment information is correct. Overestimating
-the alignment results in an undefined behavior. Underestimating the
-alignment may produce less efficient code. An alignment of 1 is always
-safe.
-</p>
+<p>There are two arguments to the '<tt>store</tt>' instruction: a value to store
+   and an address at which to store it.  The type of the
+   '<tt>&lt;pointer&gt;</tt>' operand must be a pointer to
+   the <a href="#t_firstclass">first class</a> type of the
+   '<tt>&lt;value&gt;</tt>' operand. If the <tt>store</tt> is marked
+   as <tt>volatile</tt>, then the optimizer is not allowed to modify the number
+   or order of execution of this <tt>store</tt> with other
  volatile <tt>load</tt> and <tt><a href="#i_store">store</a></tt>
+   instructions.</p>
+
+<p>The optional constant "align" argument specifies the alignment of the
+   operation (that is, the alignment of the memory address). A value of 0 or an
+   omitted "align" argument means that the operation has the preferential
+   alignment for the target. It is the responsibility of the code emitter to
+   ensure that the alignment information is correct. Overestimating the
+   alignment results in an undefined behavior. Underestimating the alignment may
+   produce less efficient code. An alignment of 1 is always safe.</p>
+
 <h5>Semantics:</h5>
-<p>The contents of memory are updated to contain '<tt>&lt;value&gt;</tt>'
-at the location specified by the '<tt>&lt;pointer&gt;</tt>' operand.
-If '<tt>&lt;value&gt;</tt>' is of scalar type then the number of bytes
-written does not exceed the minimum number of bytes needed to hold all
-bits of the type.  For example, storing an <tt>i24</tt> writes at most
-three bytes.  When writing a value of a type like <tt>i20</tt> with a
-size that is not an integral number of bytes, it is unspecified what
-happens to the extra bits that do not belong to the type, but they will
-typically be overwritten.</p>
+<p>The contents of memory are updated to contain '<tt>&lt;value&gt;</tt>' at the
+   location specified by the '<tt>&lt;pointer&gt;</tt>' operand.  If
+   '<tt>&lt;value&gt;</tt>' is of scalar type then the number of bytes written
+   does not exceed the minimum number of bytes needed to hold all bits of the
+   type.  For example, storing an <tt>i24</tt> writes at most three bytes.  When
+   writing a value of a type like <tt>i20</tt> with a size that is not an
+   integral number of bytes, it is unspecified what happens to the extra bits
+   that do not belong to the type, but they will typically be overwritten.</p>
+
 <h5>Example:</h5>
-<pre>  %ptr = <a href="#i_alloca">alloca</a> i32                               <i>; yields {i32*}:ptr</i>
+<pre>
+  %ptr = <a href="#i_alloca">alloca</a> i32                               <i>; yields {i32*}:ptr</i>
   store i32 3, i32* %ptr                          <i>; yields {void}</i>
   %val = <a href="#i_load">load</a> i32* %ptr                           <i>; yields {i32}:val = i32 3</i>
 </pre>
+
 </div>
 
 <!-- _______________________________________________________________________ -->
@@ -3747,38 +4093,39 @@ typically be overwritten.</p>
 </div>
 
 <div class="doc_text">
+
 <h5>Syntax:</h5>
 <pre>
   &lt;result&gt; = getelementptr &lt;pty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
+  &lt;result&gt; = getelementptr inbounds &lt;pty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
 </pre>
 
 <h5>Overview:</h5>
-
-<p>
-The '<tt>getelementptr</tt>' instruction is used to get the address of a
-subelement of an aggregate data structure. It performs address calculation only
-and does not access memory.</p>
+<p>The '<tt>getelementptr</tt>' instruction is used to get the address of a
+   subelement of an aggregate data structure. It performs address calculation
+   only and does not access memory.</p>
 
 <h5>Arguments:</h5>
-
 <p>The first argument is always a pointer, and forms the basis of the
-calculation. The remaining arguments are indices, that indicate which of the
-elements of the aggregate object are indexed. The interpretation of each index
-is dependent on the type being indexed into. The first index always indexes the
-pointer value given as the first argument, the second index indexes a value of
-the type pointed to (not necessarily the value directly pointed to, since the
-first index can be non-zero), etc. The first type indexed into must be a pointer
-value, subsequent types can be arrays, vectors and structs. Note that subsequent
-types being indexed into can never be pointers, since that would require loading
-the pointer before continuing calculation.</p>
+   calculation. The remaining arguments are indices that indicate which of the
+   elements of the aggregate object are indexed. The interpretation of each
+   index is dependent on the type being indexed into. The first index always
+   indexes the pointer value given as the first argument, the second index
+   indexes a value of the type pointed to (not necessarily the value directly
+   pointed to, since the first index can be non-zero), etc. The first type
+   indexed into must be a pointer value, subsequent types can be arrays, vectors
+   and structs. Note that subsequent types being indexed into can never be
+   pointers, since that would require loading the pointer before continuing
+   calculation.</p>
 
 <p>The type of each index argument depends on the type it is indexing into.
-When indexing into a (packed) structure, only <tt>i32</tt> integer
-<b>constants</b> are allowed.  When indexing into an array, pointer or vector,
-integers of any width are allowed (also non-constants).</p>
+   When indexing into a (optionally packed) structure, only <tt>i32</tt> integer
+   <b>constants</b> are allowed.  When indexing into an array, pointer or
+   vector, integers of any width are allowed, and they are not required to be
+   constant.</p>
 
-<p>For example, let's consider a C code fragment and how it gets
-compiled to LLVM:</p>
+<p>For example, let's consider a C code fragment and how it gets compiled to
+   LLVM:</p>
 
 <div class="doc_code">
 <pre>
@@ -3806,7 +4153,7 @@ int *foo(struct ST *s) {
 %RT = <a href="#namedtypes">type</a> { i8 , [10 x [20 x i32]], i8  }
 %ST = <a href="#namedtypes">type</a> { i32, double, %RT }
 
-define i32* %foo(%ST* %s) {
+define i32* @foo(%ST* %s) {
 entry:
   %reg = getelementptr %ST* %s, i32 1, i32 2, i32 1, i32 5, i32 13
   ret i32* %reg
@@ -3815,23 +4162,22 @@ entry:
 </div>
 
 <h5>Semantics:</h5>
-
 <p>In the example above, the first index is indexing into the '<tt>%ST*</tt>'
-type, which is a pointer, yielding a '<tt>%ST</tt>' = '<tt>{ i32, double, %RT
-}</tt>' type, a structure.  The second index indexes into the third element of
-the structure, yielding a '<tt>%RT</tt>' = '<tt>{ i8 , [10 x [20 x i32]],
-i8  }</tt>' type, another structure.  The third index indexes into the second
-element of the structure, yielding a '<tt>[10 x [20 x i32]]</tt>' type, an
-array.  The two dimensions of the array are subscripted into, yielding an
-'<tt>i32</tt>' type.  The '<tt>getelementptr</tt>' instruction returns a pointer
-to this element, thus computing a value of '<tt>i32*</tt>' type.</p>
+   type, which is a pointer, yielding a '<tt>%ST</tt>' = '<tt>{ i32, double, %RT
+   }</tt>' type, a structure.  The second index indexes into the third element
+   of the structure, yielding a '<tt>%RT</tt>' = '<tt>{ i8 , [10 x [20 x i32]],
+   i8 }</tt>' type, another structure.  The third index indexes into the second
+   element of the structure, yielding a '<tt>[10 x [20 x i32]]</tt>' type, an
+   array.  The two dimensions of the array are subscripted into, yielding an
+   '<tt>i32</tt>' type.  The '<tt>getelementptr</tt>' instruction returns a
+   pointer to this element, thus computing a value of '<tt>i32*</tt>' type.</p>
 
-<p>Note that it is perfectly legal to index partially through a
-structure, returning a pointer to an inner element.  Because of this,
-the LLVM code for the given testcase is equivalent to:</p>
+<p>Note that it is perfectly legal to index partially through a structure,
+   returning a pointer to an inner element.  Because of this, the LLVM code for
+   the given testcase is equivalent to:</p>
 
 <pre>
-  define i32* %foo(%ST* %s) {
+  define i32* @foo(%ST* %s) {
     %t1 = getelementptr %ST* %s, i32 1                        <i>; yields %ST*:%t1</i>
     %t2 = getelementptr %ST* %t1, i32 0, i32 2                <i>; yields %RT*:%t2</i>
     %t3 = getelementptr %RT* %t2, i32 0, i32 1                <i>; yields [10 x [20 x i32]]*:%t3</i>
@@ -3841,20 +4187,27 @@ the LLVM code for the given testcase is equivalent to:</p>
   }
 </pre>
 
-<p>Note that it is undefined to access an array out of bounds: array
-and pointer indexes must always be within the defined bounds of the
-array type when accessed with an instruction that dereferences the
-pointer (e.g. a load or store instruction).  The one exception for
-this rule is zero length arrays.  These arrays are defined to be
-accessible as variable length arrays, which requires access beyond the
-zero'th element.</p>
+<p>If the <tt>inbounds</tt> keyword is present, the result value of the
+   <tt>getelementptr</tt> is undefined if the base pointer is not an
+   <i>in bounds</i> address of an allocated object, or if any of the addresses
+   that would be formed by successive addition of the offsets implied by the
+   indices to the base address with infinitely precise arithmetic are not an
+   <i>in bounds</i> address of that allocated object.
+   The <i>in bounds</i> addresses for an allocated object are all the addresses
+   that point into the object, plus the address one byte past the end.</p>
 
-<p>The getelementptr instruction is often confusing.  For some more insight
-into how it works, see <a href="GetElementPtr.html">the getelementptr 
-FAQ</a>.</p>
+<p>If the <tt>inbounds</tt> keyword is not present, the offsets are added to
+   the base address with silently-wrapping two's complement arithmetic, and
+   the result value of the <tt>getelementptr</tt> may be outside the object
+   pointed to by the base pointer. The result value may not necessarily be
+   used to access memory though, even if it happens to point into allocated
+   storage. See the <a href="#pointeraliasing">Pointer Aliasing Rules</a>
+   section for more information.</p>
 
-<h5>Example:</h5>
+<p>The getelementptr instruction is often confusing.  For some more insight into
+   how it works, see <a href="GetElementPtr.html">the getelementptr FAQ</a>.</p>
 
+<h5>Example:</h5>
 <pre>
     <i>; yields [12 x i8]*:aptr</i>
     %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
@@ -3865,15 +4218,19 @@ FAQ</a>.</p>
     <i>; yields i32*:iptr</i>
     %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
 </pre>
+
 </div>
 
 <!-- ======================================================================= -->
 <div class="doc_subsection"> <a name="convertops">Conversion Operations</a>
 </div>
+
 <div class="doc_text">
+
 <p>The instructions in this category are the conversion instructions (casting)
-which all take a single operand and a type. They perform various bit conversions
-on the operand.</p>
+   which all take a single operand and a type. They perform various bit
+   conversions on the operand.</p>
+
 </div>
 
 <!-- _______________________________________________________________________ -->
@@ -3888,31 +4245,30 @@ on the operand.</p>
 </pre>
 
 <h5>Overview:</h5>
-<p>
-The '<tt>trunc</tt>' instruction truncates its operand to the type <tt>ty2</tt>.
-</p>
+<p>The '<tt>trunc</tt>' instruction truncates its operand to the
+   type <tt>ty2</tt>.</p>
 
 <h5>Arguments:</h5>
-<p>
-The '<tt>trunc</tt>' instruction takes a <tt>value</tt> to trunc, which must 
-be an <a href="#t_integer">integer</a> type, and a type that specifies the size 
-and type of the result, which must be an <a href="#t_integer">integer</a> 
-type. The bit size of <tt>value</tt> must be larger than the bit size of 
-<tt>ty2</tt>. Equal sized types are not allowed.</p>
+<p>The '<tt>trunc</tt>' instruction takes a <tt>value</tt> to trunc, which must
+   be an <a href="#t_integer">integer</a> type, and a type that specifies the
+   size and type of the result, which must be
+   an <a href="#t_integer">integer</a> type. The bit size of <tt>value</tt> must
+   be larger than the bit size of <tt>ty2</tt>. Equal sized types are not
+   allowed.</p>
 
 <h5>Semantics:</h5>
-<p>
-The '<tt>trunc</tt>' instruction truncates the high order bits in <tt>value</tt>
-and converts the remaining bits to <tt>ty2</tt>. Since the source size must be
-larger than the destination size, <tt>trunc</tt> cannot be a <i>no-op cast</i>.
-It will always truncate bits.</p>
+<p>The '<tt>trunc</tt>' instruction truncates the high order bits
+   in <tt>value</tt> and converts the remaining bits to <tt>ty2</tt>. Since the
+   source size must be larger than the destination size, <tt>trunc</tt> cannot
+   be a <i>no-op cast</i>.  It will always truncate bits.</p>
 
 <h5>Example:</h5>
 <pre>
   %X = trunc i32 257 to i8              <i>; yields i8:1</i>
   %Y = trunc i32 123 to i1              <i>; yields i1:true</i>
-  %Y = trunc i32 122 to i1              <i>; yields i1:false</i>
+  %Z = trunc i32 122 to i1              <i>; yields i1:false</i>
 </pre>
+
 </div>
 
 <!-- _______________________________________________________________________ -->
@@ -3927,20 +4283,20 @@ It will always truncate bits.</p>
 </pre>
 
 <h5>Overview:</h5>
-<p>The '<tt>zext</tt>' instruction zero extends its operand to type 
-<tt>ty2</tt>.</p>
+<p>The '<tt>zext</tt>' instruction zero extends its operand to type
+   <tt>ty2</tt>.</p>
 
 
 <h5>Arguments:</h5>
-<p>The '<tt>zext</tt>' instruction takes a value to cast, which must be of 
-<a href="#t_integer">integer</a> type, and a type to cast it to, which must
-also be of <a href="#t_integer">integer</a> type. The bit size of the
-<tt>value</tt> must be smaller than the bit size of the destination type, 
-<tt>ty2</tt>.</p>
+<p>The '<tt>zext</tt>' instruction takes a value to cast, which must be of
+   <a href="#t_integer">integer</a> type, and a type to cast it to, which must
+   also be of <a href="#t_integer">integer</a> type. The bit size of the
+   <tt>value</tt> must be smaller than the bit size of the destination type,
+   <tt>ty2</tt>.</p>
 
 <h5>Semantics:</h5>
 <p>The <tt>zext</tt> fills the high order bits of the <tt>value</tt> with zero
-bits until it reaches the size of the destination type, <tt>ty2</tt>.</p>
+   bits until it reaches the size of the destination type, <tt>ty2</tt>.</p>
 
 <p>When zero extending from i1, the result will always be either 0 or 1.</p>
 
@@ -3949,6 +4305,7 @@ bits until it reaches the size of the destination type, <tt>ty2</tt>.</p>
   %X = zext i32 257 to i64              <i>; yields i64:257</i>
   %Y = zext i1 true to i32              <i>; yields i32:1</i>
 </pre>
+
 </div>
 
 <!-- _______________________________________________________________________ -->
@@ -3966,18 +4323,16 @@ bits until it reaches the size of the destination type, <tt>ty2</tt>.</p>
 <p>The '<tt>sext</tt>' sign extends <tt>value</tt> to the type <tt>ty2</tt>.</p>
 
 <h5>Arguments:</h5>
-<p>
-The '<tt>sext</tt>' instruction takes a value to cast, which must be of 
-<a href="#t_integer">integer</a> type, and a type to cast it to, which must
-also be of <a href="#t_integer">integer</a> type.  The bit size of the
-<tt>value</tt> must be smaller than the bit size of the destination type, 
-<tt>ty2</tt>.</p>
+<p>The '<tt>sext</tt>' instruction takes a value to cast, which must be of
+   <a href="#t_integer">integer</a> type, and a type to cast it to, which must
+   also be of <a href="#t_integer">integer</a> type.  The bit size of the
+   <tt>value</tt> must be smaller than the bit size of the destination type,
+   <tt>ty2</tt>.</p>
 
 <h5>Semantics:</h5>
-<p>
-The '<tt>sext</tt>' instruction performs a sign extension by copying the sign
-bit (highest order bit) of the <tt>value</tt> until it reaches the bit size of
-the type <tt>ty2</tt>.</p>
+<p>The '<tt>sext</tt>' instruction performs a sign extension by copying the sign
+   bit (highest order bit) of the <tt>value</tt> until it reaches the bit size
+   of the type <tt>ty2</tt>.</p>
 
 <p>When sign extending from i1, the extension always results in -1 or 0.</p>
 
@@ -3986,6 +4341,7 @@ the type <tt>ty2</tt>.</p>
   %X = sext i8  -1 to i16              <i>; yields i16   :65535</i>
   %Y = sext i1 true to i32             <i>; yields i32:-1</i>
 </pre>
+
 </div>
 
 <!-- _______________________________________________________________________ -->
@@ -3996,34 +4352,34 @@ the type <tt>ty2</tt>.</p>
 <div class="doc_text">
 
 <h5>Syntax:</h5>
-
 <pre>
   &lt;result&gt; = fptrunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
 </pre>
 
 <h5>Overview:</h5>
 <p>The '<tt>fptrunc</tt>' instruction truncates <tt>value</tt> to type
-<tt>ty2</tt>.</p>
-
+   <tt>ty2</tt>.</p>
 
 <h5>Arguments:</h5>
 <p>The '<tt>fptrunc</tt>' instruction takes a <a href="#t_floating">floating
-  point</a> value to cast and a <a href="#t_floating">floating point</a> type to
-cast it to. The size of <tt>value</tt> must be larger than the size of
-<tt>ty2</tt>. This implies that <tt>fptrunc</tt> cannot be used to make a 
-<i>no-op cast</i>.</p>
+   point</a> value to cast and a <a href="#t_floating">floating point</a> type
+   to cast it to. The size of <tt>value</tt> must be larger than the size of
+   <tt>ty2</tt>. This implies that <tt>fptrunc</tt> cannot be used to make a
+   <i>no-op cast</i>.</p>
 
 <h5>Semantics:</h5>
-<p> The '<tt>fptrunc</tt>' instruction truncates a <tt>value</tt> from a larger
-<a href="#t_floating">floating point</a> type to a smaller 
-<a href="#t_floating">floating point</a> type.  If the value cannot fit within 
-the destination type, <tt>ty2</tt>, then the results are undefined.</p>
+<p>The '<tt>fptrunc</tt>' instruction truncates a <tt>value</tt> from a larger
+   <a href="#t_floating">floating point</a> type to a smaller
+   <a href="#t_floating">floating point</a> type.  If the value cannot fit
+   within the destination type, <tt>ty2</tt>, then the results are
+   undefined.</p>
 
 <h5>Example:</h5>
 <pre>
   %X = fptrunc double 123.0 to float         <i>; yields float:123.0</i>
   %Y = fptrunc double 1.0E+300 to float      <i>; yields undefined</i>
 </pre>
+
 </div>
 
 <!-- _______________________________________________________________________ -->
@@ -4039,26 +4395,27 @@ the destination type, <tt>ty2</tt>, then the results are undefined.</p>
 
 <h5>Overview:</h5>
 <p>The '<tt>fpext</tt>' extends a floating point <tt>value</tt> to a larger
-floating point value.</p>
+   floating point value.</p>
 
 <h5>Arguments:</h5>
-<p>The '<tt>fpext</tt>' instruction takes a 
-<a href="#t_floating">floating point</a> <tt>value</tt> to cast, 
-and a <a href="#t_floating">floating point</a> type to cast it to. The source
-type must be smaller than the destination type.</p>
+<p>The '<tt>fpext</tt>' instruction takes a
+   <a href="#t_floating">floating point</a> <tt>value</tt> to cast, and
+   a <a href="#t_floating">floating point</a> type to cast it to. The source
+   type must be smaller than the destination type.</p>
 
 <h5>Semantics:</h5>
 <p>The '<tt>fpext</tt>' instruction extends the <tt>value</tt> from a smaller
-<a href="#t_floating">floating point</a> type to a larger 
-<a href="#t_floating">floating point</a> type. The <tt>fpext</tt> cannot be 
-used to make a <i>no-op cast</i> because it always changes bits. Use 
-<tt>bitcast</tt> to make a <i>no-op cast</i> for a floating point cast.</p>
+   <a href="#t_floating">floating point</a> type to a larger
+   <a href="#t_floating">floating point</a> type. The <tt>fpext</tt> cannot be
+   used to make a <i>no-op cast</i> because it always changes bits. Use
+   <tt>bitcast</tt> to make a <i>no-op cast</i> for a floating point cast.</p>
 
 <h5>Example:</h5>
 <pre>
   %X = fpext float 3.1415 to double        <i>; yields double:3.1415</i>
   %Y = fpext float 1.0 to float            <i>; yields float:1.0 (no-op)</i>
 </pre>
+
 </div>
 
 <!-- _______________________________________________________________________ -->
@@ -4074,28 +4431,28 @@ used to make a <i>no-op cast</i> because it always changes bits. Use
 
 <h5>Overview:</h5>
 <p>The '<tt>fptoui</tt>' converts a floating point <tt>value</tt> to its
-unsigned integer equivalent of type <tt>ty2</tt>.
-</p>
+   unsigned integer equivalent of type <tt>ty2</tt>.</p>
 
 <h5>Arguments:</h5>
-<p>The '<tt>fptoui</tt>' instruction takes a value to cast, which must be a 
-scalar or vector <a href="#t_floating">floating point</a> value, and a type 
-to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> 
-type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
-vector integer type with the same number of elements as <tt>ty</tt></p>
+<p>The '<tt>fptoui</tt>' instruction takes a value to cast, which must be a
+   scalar or vector <a href="#t_floating">floating point</a> value, and a type
+   to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
+   type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
+   vector integer type with the same number of elements as <tt>ty</tt></p>
 
 <h5>Semantics:</h5>
-<p> The '<tt>fptoui</tt>' instruction converts its 
-<a href="#t_floating">floating point</a> operand into the nearest (rounding
-towards zero) unsigned integer value. If the value cannot fit in <tt>ty2</tt>,
-the results are undefined.</p>
+<p>The '<tt>fptoui</tt>' instruction converts its
+   <a href="#t_floating">floating point</a> operand into the nearest (rounding
+   towards zero) unsigned integer value. If the value cannot fit
+   in <tt>ty2</tt>, the results are undefined.</p>
 
 <h5>Example:</h5>
 <pre>
   %X = fptoui double 123.0 to i32      <i>; yields i32:123</i>
   %Y = fptoui float 1.0E+300 to i1     <i>; yields undefined:1</i>
-  %X = fptoui float 1.04E+17 to i8     <i>; yields undefined:1</i>
+  %Z = fptoui float 1.04E+17 to i8     <i>; yields undefined:1</i>
 </pre>
+
 </div>
 
 <!-- _______________________________________________________________________ -->
@@ -4110,29 +4467,30 @@ the results are undefined.</p>
 </pre>
 
 <h5>Overview:</h5>
-<p>The '<tt>fptosi</tt>' instruction converts 
-<a href="#t_floating">floating point</a> <tt>value</tt> to type <tt>ty2</tt>.
-</p>
+<p>The '<tt>fptosi</tt>' instruction converts
+   <a href="#t_floating">floating point</a> <tt>value</tt> to
+   type <tt>ty2</tt>.</p>
 
 <h5>Arguments:</h5>
-<p> The '<tt>fptosi</tt>' instruction takes a value to cast, which must be a 
-scalar or vector <a href="#t_floating">floating point</a> value, and a type 
-to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> 
-type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
-vector integer type with the same number of elements as <tt>ty</tt></p>
+<p>The '<tt>fptosi</tt>' instruction takes a value to cast, which must be a
+   scalar or vector <a href="#t_floating">floating point</a> value, and a type
+   to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
+   type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
+   vector integer type with the same number of elements as <tt>ty</tt></p>
 
 <h5>Semantics:</h5>
-<p>The '<tt>fptosi</tt>' instruction converts its 
-<a href="#t_floating">floating point</a> operand into the nearest (rounding
-towards zero) signed integer value. If the value cannot fit in <tt>ty2</tt>,
-the results are undefined.</p>
+<p>The '<tt>fptosi</tt>' instruction converts its
+   <a href="#t_floating">floating point</a> operand into the nearest (rounding
+   towards zero) signed integer value. If the value cannot fit in <tt>ty2</tt>,
+   the results are undefined.</p>
 
 <h5>Example:</h5>
 <pre>
   %X = fptosi double -123.0 to i32      <i>; yields i32:-123</i>
   %Y = fptosi float 1.0E-247 to i1      <i>; yields undefined:1</i>
-  %X = fptosi float 1.04E+17 to i8      <i>; yields undefined:1</i>
+  %Z = fptosi float 1.04E+17 to i8      <i>; yields undefined:1</i>
 </pre>
+
 </div>
 
 <!-- _______________________________________________________________________ -->
@@ -4148,25 +4506,27 @@ the results are undefined.</p>
 
 <h5>Overview:</h5>
 <p>The '<tt>uitofp</tt>' instruction regards <tt>value</tt> as an unsigned
-integer and converts that value to the <tt>ty2</tt> type.</p>
+   integer and converts that value to the <tt>ty2</tt> type.</p>
 
 <h5>Arguments:</h5>
 <p>The '<tt>uitofp</tt>' instruction takes a value to cast, which must be a
-scalar or vector <a href="#t_integer">integer</a> value, and a type to cast it
-to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a> 
-type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
-floating point type with the same number of elements as <tt>ty</tt></p>
+   scalar or vector <a href="#t_integer">integer</a> value, and a type to cast
+   it to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
+   type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
+   floating point type with the same number of elements as <tt>ty</tt></p>
 
 <h5>Semantics:</h5>
 <p>The '<tt>uitofp</tt>' instruction interprets its operand as an unsigned
-integer quantity and converts it to the corresponding floating point value. If
-the value cannot fit in the floating point value, the results are undefined.</p>
+   integer quantity and converts it to the corresponding floating point
+   value. If the value cannot fit in the floating point value, the results are
+   undefined.</p>
 
 <h5>Example:</h5>
 <pre>
   %X = uitofp i32 257 to float         <i>; yields float:257.0</i>
   %Y = uitofp i8 -1 to double          <i>; yields double:255.0</i>
 </pre>
+
 </div>
 
 <!-- _______________________________________________________________________ -->
@@ -4181,26 +4541,27 @@ the value cannot fit in the floating point value, the results are undefined.</p>
 </pre>
 
 <h5>Overview:</h5>
-<p>The '<tt>sitofp</tt>' instruction regards <tt>value</tt> as a signed
-integer and converts that value to the <tt>ty2</tt> type.</p>
+<p>The '<tt>sitofp</tt>' instruction regards <tt>value</tt> as a signed integer
+   and converts that value to the <tt>ty2</tt> type.</p>
 
 <h5>Arguments:</h5>
 <p>The '<tt>sitofp</tt>' instruction takes a value to cast, which must be a
-scalar or vector <a href="#t_integer">integer</a> value, and a type to cast it
-to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a> 
-type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
-floating point type with the same number of elements as <tt>ty</tt></p>
+   scalar or vector <a href="#t_integer">integer</a> value, and a type to cast
+   it to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
+   type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
+   floating point type with the same number of elements as <tt>ty</tt></p>
 
 <h5>Semantics:</h5>
-<p>The '<tt>sitofp</tt>' instruction interprets its operand as a signed
-integer quantity and converts it to the corresponding floating point value. If
-the value cannot fit in the floating point value, the results are undefined.</p>
+<p>The '<tt>sitofp</tt>' instruction interprets its operand as a signed integer
+   quantity and converts it to the corresponding floating point value. If the
+   value cannot fit in the floating point value, the results are undefined.</p>
 
 <h5>Example:</h5>
 <pre>
   %X = sitofp i32 257 to float         <i>; yields float:257.0</i>
   %Y = sitofp i8 -1 to double          <i>; yields double:-1.0</i>
 </pre>
+
 </div>
 
 <!-- _______________________________________________________________________ -->
@@ -4215,28 +4576,29 @@ the value cannot fit in the floating point value, the results are undefined.</p>
 </pre>
 
 <h5>Overview:</h5>
-<p>The '<tt>ptrtoint</tt>' instruction converts the pointer <tt>value</tt> to 
-the integer type <tt>ty2</tt>.</p>
+<p>The '<tt>ptrtoint</tt>' instruction converts the pointer <tt>value</tt> to
+   the integer type <tt>ty2</tt>.</p>
 
 <h5>Arguments:</h5>
-<p>The '<tt>ptrtoint</tt>' instruction takes a <tt>value</tt> to cast, which 
-must be a <a href="#t_pointer">pointer</a> value, and a type to cast it to
-<tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> type.</p>
+<p>The '<tt>ptrtoint</tt>' instruction takes a <tt>value</tt> to cast, which
+   must be a <a href="#t_pointer">pointer</a> value, and a type to cast it to
+   <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> type.</p>
 
 <h5>Semantics:</h5>
 <p>The '<tt>ptrtoint</tt>' instruction converts <tt>value</tt> to integer type
-<tt>ty2</tt> by interpreting the pointer value as an integer and either 
-truncating or zero extending that value to the size of the integer type. If
-<tt>value</tt> is smaller than <tt>ty2</tt> then a zero extension is done. If
-<tt>value</tt> is larger than <tt>ty2</tt> then a truncation is done. If they
-are the same size, then nothing is done (<i>no-op cast</i>) other than a type
-change.</p>
+   <tt>ty2</tt> by interpreting the pointer value as an integer and either
+   truncating or zero extending that value to the size of the integer type. If
+   <tt>value</tt> is smaller than <tt>ty2</tt> then a zero extension is done. If
+   <tt>value</tt> is larger than <tt>ty2</tt> then a truncation is done. If they
+   are the same size, then nothing is done (<i>no-op cast</i>) other than a type
+   change.</p>
 
 <h5>Example:</h5>
 <pre>
   %X = ptrtoint i32* %X to i8           <i>; yields truncation on 32-bit architecture</i>
   %Y = ptrtoint i32* %x to i64          <i>; yields zero extension on 32-bit architecture</i>
 </pre>
+
 </div>
 
 <!-- _______________________________________________________________________ -->
@@ -4251,28 +4613,29 @@ change.</p>
 </pre>
 
 <h5>Overview:</h5>
-<p>The '<tt>inttoptr</tt>' instruction converts an integer <tt>value</tt> to 
-a pointer type, <tt>ty2</tt>.</p>
+<p>The '<tt>inttoptr</tt>' instruction converts an integer <tt>value</tt> to a
+   pointer type, <tt>ty2</tt>.</p>
 
 <h5>Arguments:</h5>
 <p>The '<tt>inttoptr</tt>' instruction takes an <a href="#t_integer">integer</a>
-value to cast, and a type to cast it to, which must be a 
-<a href="#t_pointer">pointer</a> type.</p>
+   value to cast, and a type to cast it to, which must be a
+   <a href="#t_pointer">pointer</a> type.</p>
 
 <h5>Semantics:</h5>
 <p>The '<tt>inttoptr</tt>' instruction converts <tt>value</tt> to type
-<tt>ty2</tt> by applying either a zero extension or a truncation depending on
-the size of the integer <tt>value</tt>. If <tt>value</tt> is larger than the
-size of a pointer then a truncation is done. If <tt>value</tt> is smaller than
-the size of a pointer then a zero extension is done. If they are the same size,
-nothing is done (<i>no-op cast</i>).</p>
+   <tt>ty2</tt> by applying either a zero extension or a truncation depending on
+   the size of the integer <tt>value</tt>. If <tt>value</tt> is larger than the
+   size of a pointer then a truncation is done. If <tt>value</tt> is smaller
+   than the size of a pointer then a zero extension is done. If they are the
+   same size, nothing is done (<i>no-op cast</i>).</p>
 
 <h5>Example:</h5>
 <pre>
   %X = inttoptr i32 255 to i32*          <i>; yields zero extension on 64-bit architecture</i>
-  %X = inttoptr i32 255 to i32*          <i>; yields no-op on 32-bit architecture</i>
-  %Y = inttoptr i64 0 to i32*            <i>; yields truncation on 32-bit architecture</i>
+  %Y = inttoptr i32 255 to i32*          <i>; yields no-op on 32-bit architecture</i>
+  %Z = inttoptr i64 0 to i32*            <i>; yields truncation on 32-bit architecture</i>
 </pre>
+
 </div>
 
 <!-- _______________________________________________________________________ -->
@@ -4287,61 +4650,68 @@ nothing is done (<i>no-op cast</i>).</p>
 </pre>
 
 <h5>Overview:</h5>
-
 <p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
-<tt>ty2</tt> without changing any bits.</p>
+   <tt>ty2</tt> without changing any bits.</p>
 
 <h5>Arguments:</h5>
-
-<p>The '<tt>bitcast</tt>' instruction takes a value to cast, which must be 
-a non-aggregate first class value, and a type to cast it to, which must also be
-a non-aggregate <a href="#t_firstclass">first class</a> type. The bit sizes of
-<tt>value</tt>
-and the destination type, <tt>ty2</tt>, must be identical. If the source
-type is a pointer, the destination type must also be a pointer.  This
-instruction supports bitwise conversion of vectors to integers and to vectors
-of other types (as long as they have the same size).</p>
+<p>The '<tt>bitcast</tt>' instruction takes a value to cast, which must be a
+   non-aggregate first class value, and a type to cast it to, which must also be
+   a non-aggregate <a href="#t_firstclass">first class</a> type. The bit sizes
+   of <tt>value</tt> and the destination type, <tt>ty2</tt>, must be
+   identical. If the source type is a pointer, the destination type must also be
+   a pointer.  This instruction supports bitwise conversion of vectors to
+   integers and to vectors of other types (as long as they have the same
+   size).</p>
 
 <h5>Semantics:</h5>
 <p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
-<tt>ty2</tt>. It is always a <i>no-op cast</i> because no bits change with 
-this conversion.  The conversion is done as if the <tt>value</tt> had been 
-stored to memory and read back as type <tt>ty2</tt>. Pointer types may only be
-converted to other pointer types with this instruction. To convert pointers to 
-other types, use the <a href="#i_inttoptr">inttoptr</a> or 
-<a href="#i_ptrtoint">ptrtoint</a> instructions first.</p>
+   <tt>ty2</tt>. It is always a <i>no-op cast</i> because no bits change with
+   this conversion.  The conversion is done as if the <tt>value</tt> had been
+   stored to memory and read back as type <tt>ty2</tt>. Pointer types may only
+   be converted to other pointer types with this instruction. To convert
+   pointers to other types, use the <a href="#i_inttoptr">inttoptr</a> or
+   <a href="#i_ptrtoint">ptrtoint</a> instructions first.</p>
 
 <h5>Example:</h5>
 <pre>
   %X = bitcast i8 255 to i8              <i>; yields i8 :-1</i>
   %Y = bitcast i32* %x to sint*          <i>; yields sint*:%x</i>
-  %Z = bitcast &lt;2 x int&gt; %V to i64;      <i>; yields i64: %V</i>   
+  %Z = bitcast &lt;2 x int&gt; %V to i64;      <i>; yields i64: %V</i>
 </pre>
+
 </div>
 
 <!-- ======================================================================= -->
 <div class="doc_subsection"> <a name="otherops">Other Operations</a> </div>
+
 <div class="doc_text">
-<p>The instructions in this category are the "miscellaneous"
-instructions, which defy better classification.</p>
+
+<p>The instructions in this category are the "miscellaneous" instructions, which
+   defy better classification.</p>
+
 </div>
 
 <!-- _______________________________________________________________________ -->
 <div class="doc_subsubsection"><a name="i_icmp">'<tt>icmp</tt>' Instruction</a>
 </div>
+
 <div class="doc_text">
+
 <h5>Syntax:</h5>
-<pre>  &lt;result&gt; = icmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
+<pre>
+  &lt;result&gt; = icmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
 </pre>
+
 <h5>Overview:</h5>
-<p>The '<tt>icmp</tt>' instruction returns a boolean value or
-a vector of boolean values based on comparison
-of its two integer, integer vector, or pointer operands.</p>
+<p>The '<tt>icmp</tt>' instruction returns a boolean value or a vector of
+   boolean values based on comparison of its two integer, integer vector, or
+   pointer operands.</p>
+
 <h5>Arguments:</h5>
 <p>The '<tt>icmp</tt>' instruction takes three operands. The first operand is
-the condition code indicating the kind of comparison to perform. It is not
-a value, just a keyword. The possible condition code are:
-</p>
+   the condition code indicating the kind of comparison to perform. It is not a
+   value, just a keyword. The possible condition code are:</p>
+
 <ol>
   <li><tt>eq</tt>: equal</li>
   <li><tt>ne</tt>: not equal </li>
@@ -4354,48 +4724,63 @@ a value, just a keyword. The possible condition code are:
   <li><tt>slt</tt>: signed less than</li>
   <li><tt>sle</tt>: signed less or equal</li>
 </ol>
+
 <p>The remaining two arguments must be <a href="#t_integer">integer</a> or
-<a href="#t_pointer">pointer</a>
-or integer <a href="#t_vector">vector</a> typed.
-They must also be identical types.</p>
+   <a href="#t_pointer">pointer</a> or integer <a href="#t_vector">vector</a>
+   typed.  They must also be identical types.</p>
+
 <h5>Semantics:</h5>
-<p>The '<tt>icmp</tt>' compares <tt>op1</tt> and <tt>op2</tt> according to 
-the condition code given as <tt>cond</tt>. The comparison performed always
-yields either an <a href="#t_primitive"><tt>i1</tt></a> or vector of <tt>i1</tt> result, as follows: 
-</p>
+<p>The '<tt>icmp</tt>' compares <tt>op1</tt> and <tt>op2</tt> according to the
+   condition code given as <tt>cond</tt>. The comparison performed always yields
+   either an <a href="#t_integer"><tt>i1</tt></a> or vector of <tt>i1</tt>
+   result, as follows:</p>
+
 <ol>
-  <li><tt>eq</tt>: yields <tt>true</tt> if the operands are equal, 
-  <tt>false</tt> otherwise. No sign interpretation is necessary or performed.
-  </li>
-  <li><tt>ne</tt>: yields <tt>true</tt> if the operands are unequal, 
-  <tt>false</tt> otherwise. No sign interpretation is necessary or performed.</li>
+  <li><tt>eq</tt>: yields <tt>true</tt> if the operands are equal,
+      <tt>false</tt> otherwise. No sign interpretation is necessary or
+      performed.</li>
+
+  <li><tt>ne</tt>: yields <tt>true</tt> if the operands are unequal,
+      <tt>false</tt> otherwise. No sign interpretation is necessary or
+      performed.</li>
+
   <li><tt>ugt</tt>: interprets the operands as unsigned values and yields
-  <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
+      <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
+
   <li><tt>uge</tt>: interprets the operands as unsigned values and yields
-  <tt>true</tt> if <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
+      <tt>true</tt> if <tt>op1</tt> is greater than or equal
+      to <tt>op2</tt>.</li>
+
   <li><tt>ult</tt>: interprets the operands as unsigned values and yields
-  <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
+      <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
+
   <li><tt>ule</tt>: interprets the operands as unsigned values and yields
-  <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
+      <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
+
   <li><tt>sgt</tt>: interprets the operands as signed values and yields
-  <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
+      <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
+
   <li><tt>sge</tt>: interprets the operands as signed values and yields
-  <tt>true</tt> if <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
+      <tt>true</tt> if <tt>op1</tt> is greater than or equal
+      to <tt>op2</tt>.</li>
+
   <li><tt>slt</tt>: interprets the operands as signed values and yields
-  <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
+      <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
+
   <li><tt>sle</tt>: interprets the operands as signed values and yields
-  <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
+      <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
 </ol>
+
 <p>If the operands are <a href="#t_pointer">pointer</a> typed, the pointer
-values are compared as if they were integers.</p>
-<p>If the operands are integer vectors, then they are compared
-element by element. The result is an <tt>i1</tt> vector with
-the same number of elements as the values being compared.
-Otherwise, the result is an <tt>i1</tt>.
-</p>
+   values are compared as if they were integers.</p>
+
+<p>If the operands are integer vectors, then they are compared element by
+   element. The result is an <tt>i1</tt> vector with the same number of elements
+   as the values being compared.  Otherwise, the result is an <tt>i1</tt>.</p>
 
 <h5>Example:</h5>
-<pre>  &lt;result&gt; = icmp eq i32 4, 5          <i>; yields: result=false</i>
+<pre>
+  &lt;result&gt; = icmp eq i32 4, 5          <i>; yields: result=false</i>
   &lt;result&gt; = icmp ne float* %X, %X     <i>; yields: result=false</i>
   &lt;result&gt; = icmp ult i16  4, 5        <i>; yields: result=true</i>
   &lt;result&gt; = icmp sgt i16  4, 5        <i>; yields: result=false</i>
@@ -4411,25 +4796,30 @@ Otherwise, the result is an <tt>i1</tt>.
 <!-- _______________________________________________________________________ -->
 <div class="doc_subsubsection"><a name="i_fcmp">'<tt>fcmp</tt>' Instruction</a>
 </div>
+
 <div class="doc_text">
+
 <h5>Syntax:</h5>
-<pre>  &lt;result&gt; = fcmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;     <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
+<pre>
+  &lt;result&gt; = fcmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;     <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
 </pre>
+
 <h5>Overview:</h5>
-<p>The '<tt>fcmp</tt>' instruction returns a boolean value
-or vector of boolean values based on comparison
-of its operands.</p>
-<p>
-If the operands are floating point scalars, then the result
-type is a boolean (<a href="#t_primitive"><tt>i1</tt></a>).
-</p>
-<p>If the operands are floating point vectors, then the result type
-is a vector of boolean with the same number of elements as the
-operands being compared.</p>
+<p>The '<tt>fcmp</tt>' instruction returns a boolean value or vector of boolean
+   values based on comparison of its operands.</p>
+
+<p>If the operands are floating point scalars, then the result type is a boolean
+(<a href="#t_integer"><tt>i1</tt></a>).</p>
+
+<p>If the operands are floating point vectors, then the result type is a vector
+   of boolean with the same number of elements as the operands being
+   compared.</p>
+
 <h5>Arguments:</h5>
 <p>The '<tt>fcmp</tt>' instruction takes three operands. The first operand is
-the condition code indicating the kind of comparison to perform. It is not
-a value, just a keyword. The possible condition code are:</p>
+   the condition code indicating the kind of comparison to perform. It is not a
+   value, just a keyword. The possible condition code are:</p>
+
 <ol>
   <li><tt>false</tt>: no comparison, always returns false</li>
   <li><tt>oeq</tt>: ordered and equal</li>
@@ -4448,52 +4838,71 @@ a value, just a keyword. The possible condition code are:</p>
   <li><tt>uno</tt>: unordered (either nans)</li>
   <li><tt>true</tt>: no comparison, always returns true</li>
 </ol>
+
 <p><i>Ordered</i> means that neither operand is a QNAN while
-<i>unordered</i> means that either operand may be a QNAN.</p>
-<p>Each of <tt>val1</tt> and <tt>val2</tt> arguments must be
-either a <a href="#t_floating">floating point</a> type
-or a <a href="#t_vector">vector</a> of floating point type.
-They must have identical types.</p>
+   <i>unordered</i> means that either operand may be a QNAN.</p>
+
+<p>Each of <tt>val1</tt> and <tt>val2</tt> arguments must be either
+   a <a href="#t_floating">floating point</a> type or
+   a <a href="#t_vector">vector</a> of floating point type.  They must have
+   identical types.</p>
+
 <h5>Semantics:</h5>
 <p>The '<tt>fcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
-according to the condition code given as <tt>cond</tt>.
-If the operands are vectors, then the vectors are compared
-element by element.
-Each comparison performed 
-always yields an <a href="#t_primitive">i1</a> result, as follows:</p>
+   according to the condition code given as <tt>cond</tt>.  If the operands are
+   vectors, then the vectors are compared element by element.  Each comparison
+   performed always yields an <a href="#t_integer">i1</a> result, as
+   follows:</p>
+
 <ol>
   <li><tt>false</tt>: always yields <tt>false</tt>, regardless of operands.</li>
-  <li><tt>oeq</tt>: yields <tt>true</tt> if both operands are not a QNAN and 
-  <tt>op1</tt> is equal to <tt>op2</tt>.</li>
+
+  <li><tt>oeq</tt>: yields <tt>true</tt> if both operands are not a QNAN and
+      <tt>op1</tt> is equal to <tt>op2</tt>.</li>
+
   <li><tt>ogt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
-  <tt>op1</tt> is greather than <tt>op2</tt>.</li>
-  <li><tt>oge</tt>: yields <tt>true</tt> if both operands are not a QNAN and 
-  <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
-  <li><tt>olt</tt>: yields <tt>true</tt> if both operands are not a QNAN and 
-  <tt>op1</tt> is less than <tt>op2</tt>.</li>
-  <li><tt>ole</tt>: yields <tt>true</tt> if both operands are not a QNAN and 
-  <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
-  <li><tt>one</tt>: yields <tt>true</tt> if both operands are not a QNAN and 
-  <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
+      <tt>op1</tt> is greather than <tt>op2</tt>.</li>
+
+  <li><tt>oge</tt>: yields <tt>true</tt> if both operands are not a QNAN and
+      <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
+
+  <li><tt>olt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
+      <tt>op1</tt> is less than <tt>op2</tt>.</li>
+
+  <li><tt>ole</tt>: yields <tt>true</tt> if both operands are not a QNAN and
+      <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
+
+  <li><tt>one</tt>: yields <tt>true</tt> if both operands are not a QNAN and
+      <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
+
   <li><tt>ord</tt>: yields <tt>true</tt> if both operands are not a QNAN.</li>
-  <li><tt>ueq</tt>: yields <tt>true</tt> if either operand is a QNAN or 
-  <tt>op1</tt> is equal to <tt>op2</tt>.</li>
-  <li><tt>ugt</tt>: yields <tt>true</tt> if either operand is a QNAN or 
-  <tt>op1</tt> is greater than <tt>op2</tt>.</li>
-  <li><tt>uge</tt>: yields <tt>true</tt> if either operand is a QNAN or 
-  <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
-  <li><tt>ult</tt>: yields <tt>true</tt> if either operand is a QNAN or 
-  <tt>op1</tt> is less than <tt>op2</tt>.</li>
-  <li><tt>ule</tt>: yields <tt>true</tt> if either operand is a QNAN or 
-  <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
-  <li><tt>une</tt>: yields <tt>true</tt> if either operand is a QNAN or 
-  <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
+
+  <li><tt>ueq</tt>: yields <tt>true</tt> if either operand is a QNAN or
+      <tt>op1</tt> is equal to <tt>op2</tt>.</li>
+
+  <li><tt>ugt</tt>: yields <tt>true</tt> if either operand is a QNAN or
+      <tt>op1</tt> is greater than <tt>op2</tt>.</li>
+
+  <li><tt>uge</tt>: yields <tt>true</tt> if either operand is a QNAN or
+      <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
+
+  <li><tt>ult</tt>: yields <tt>true</tt> if either operand is a QNAN or
+      <tt>op1</tt> is less than <tt>op2</tt>.</li>
+
+  <li><tt>ule</tt>: yields <tt>true</tt> if either operand is a QNAN or
+      <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
+
+  <li><tt>une</tt>: yields <tt>true</tt> if either operand is a QNAN or
+      <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
+
   <li><tt>uno</tt>: yields <tt>true</tt> if either operand is a QNAN.</li>
+
   <li><tt>true</tt>: always yields <tt>true</tt>, regardless of operands.</li>
 </ol>
 
 <h5>Example:</h5>
-<pre>  &lt;result&gt; = fcmp oeq float 4.0, 5.0    <i>; yields: result=false</i>
+<pre>
+  &lt;result&gt; = fcmp oeq float 4.0, 5.0    <i>; yields: result=false</i>
   &lt;result&gt; = fcmp one float 4.0, 5.0    <i>; yields: result=true</i>
   &lt;result&gt; = fcmp olt float 4.0, 5.0    <i>; yields: result=true</i>
   &lt;result&gt; = fcmp ueq double 1.0, 2.0   <i>; yields: result=false</i>
@@ -4504,109 +4913,6 @@ always yields an <a href="#t_primitive">i1</a> result, as follows:</p>
 
 </div>
 
-<!-- _______________________________________________________________________ -->
-<div class="doc_subsubsection">
-  <a name="i_vicmp">'<tt>vicmp</tt>' Instruction</a>
-</div>
-<div class="doc_text">
-<h5>Syntax:</h5>
-<pre>  &lt;result&gt; = vicmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
-</pre>
-<h5>Overview:</h5>
-<p>The '<tt>vicmp</tt>' instruction returns an integer vector value based on
-element-wise comparison of its two integer vector operands.</p>
-<h5>Arguments:</h5>
-<p>The '<tt>vicmp</tt>' instruction takes three operands. The first operand is
-the condition code indicating the kind of comparison to perform. It is not
-a value, just a keyword. The possible condition code are:</p>
-<ol>
-  <li><tt>eq</tt>: equal</li>
-  <li><tt>ne</tt>: not equal </li>
-  <li><tt>ugt</tt>: unsigned greater than</li>
-  <li><tt>uge</tt>: unsigned greater or equal</li>
-  <li><tt>ult</tt>: unsigned less than</li>
-  <li><tt>ule</tt>: unsigned less or equal</li>
-  <li><tt>sgt</tt>: signed greater than</li>
-  <li><tt>sge</tt>: signed greater or equal</li>
-  <li><tt>slt</tt>: signed less than</li>
-  <li><tt>sle</tt>: signed less or equal</li>
-</ol>
-<p>The remaining two arguments must be <a href="#t_vector">vector</a> or
-<a href="#t_integer">integer</a> typed. They must also be identical types.</p>
-<h5>Semantics:</h5>
-<p>The '<tt>vicmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
-according to the condition code given as <tt>cond</tt>. The comparison yields a 
-<a href="#t_vector">vector</a> of <a href="#t_integer">integer</a> result, of
-identical type as the values being compared.  The most significant bit in each
-element is 1 if the element-wise comparison evaluates to true, and is 0
-otherwise.  All other bits of the result are undefined.  The condition codes
-are evaluated identically to the <a href="#i_icmp">'<tt>icmp</tt>'
-instruction</a>.</p>
-
-<h5>Example:</h5>
-<pre>
-  &lt;result&gt; = vicmp eq &lt;2 x i32&gt; &lt; i32 4, i32 0&gt;, &lt; i32 5, i32 0&gt;   <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0, i32 -1 &gt;</i>
-  &lt;result&gt; = vicmp ult &lt;2 x i8 &gt; &lt; i8 1, i8 2&gt;, &lt; i8 2, i8 2 &gt;        <i>; yields: result=&lt;2 x i8&gt; &lt; i8 -1, i8 0 &gt;</i>
-</pre>
-</div>
-
-<!-- _______________________________________________________________________ -->
-<div class="doc_subsubsection">
-  <a name="i_vfcmp">'<tt>vfcmp</tt>' Instruction</a>
-</div>
-<div class="doc_text">
-<h5>Syntax:</h5>
-<pre>  &lt;result&gt; = vfcmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;</pre>
-<h5>Overview:</h5>
-<p>The '<tt>vfcmp</tt>' instruction returns an integer vector value based on
-element-wise comparison of its two floating point vector operands.  The output
-elements have the same width as the input elements.</p>
-<h5>Arguments:</h5>
-<p>The '<tt>vfcmp</tt>' instruction takes three operands. The first operand is
-the condition code indicating the kind of comparison to perform. It is not
-a value, just a keyword. The possible condition code are:</p>
-<ol>
-  <li><tt>false</tt>: no comparison, always returns false</li>
-  <li><tt>oeq</tt>: ordered and equal</li>
-  <li><tt>ogt</tt>: ordered and greater than </li>
-  <li><tt>oge</tt>: ordered and greater than or equal</li>
-  <li><tt>olt</tt>: ordered and less than </li>
-  <li><tt>ole</tt>: ordered and less than or equal</li>
-  <li><tt>one</tt>: ordered and not equal</li>
-  <li><tt>ord</tt>: ordered (no nans)</li>
-  <li><tt>ueq</tt>: unordered or equal</li>
-  <li><tt>ugt</tt>: unordered or greater than </li>
-  <li><tt>uge</tt>: unordered or greater than or equal</li>
-  <li><tt>ult</tt>: unordered or less than </li>
-  <li><tt>ule</tt>: unordered or less than or equal</li>
-  <li><tt>une</tt>: unordered or not equal</li>
-  <li><tt>uno</tt>: unordered (either nans)</li>
-  <li><tt>true</tt>: no comparison, always returns true</li>
-</ol>
-<p>The remaining two arguments must be <a href="#t_vector">vector</a> of 
-<a href="#t_floating">floating point</a> typed. They must also be identical
-types.</p>
-<h5>Semantics:</h5>
-<p>The '<tt>vfcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
-according to  the condition code given as <tt>cond</tt>. The comparison yields a 
-<a href="#t_vector">vector</a> of <a href="#t_integer">integer</a> result, with
-an identical number of elements as the values being compared, and each element
-having identical with to the width of the floating point elements. The most 
-significant bit in each element is 1 if the element-wise comparison evaluates to
-true, and is 0 otherwise.  All other bits of the result are undefined.  The
-condition codes are evaluated identically to the 
-<a href="#i_fcmp">'<tt>fcmp</tt>' instruction</a>.</p>
-
-<h5>Example:</h5>
-<pre>
-  <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0, i32 -1 &gt;</i>
-  &lt;result&gt; = vfcmp oeq &lt;2 x float&gt; &lt; float 4, float 0 &gt;, &lt; float 5, float 0 &gt;
-  
-  <i>; yields: result=&lt;2 x i64&gt; &lt; i64 -1, i64 0 &gt;</i>
-  &lt;result&gt; = vfcmp ult &lt;2 x double&gt; &lt; double 1, double 2 &gt;, &lt; double 2, double 2&gt;
-</pre>
-</div>
-
 <!-- _______________________________________________________________________ -->
 <div class="doc_subsubsection">
   <a name="i_phi">'<tt>phi</tt>' Instruction</a>
@@ -4615,34 +4921,35 @@ condition codes are evaluated identically to the
 <div class="doc_text">
 
 <h5>Syntax:</h5>
+<pre>
+  &lt;result&gt; = phi &lt;ty&gt; [ &lt;val0&gt;, &lt;label0&gt;], ...
+</pre>
 
-<pre>  &lt;result&gt; = phi &lt;ty&gt; [ &lt;val0&gt;, &lt;label0&gt;], ...<br></pre>
 <h5>Overview:</h5>
-<p>The '<tt>phi</tt>' instruction is used to implement the &#966; node in
-the SSA graph representing the function.</p>
-<h5>Arguments:</h5>
-
-<p>The type of the incoming values is specified with the first type
-field. After this, the '<tt>phi</tt>' instruction takes a list of pairs
-as arguments, with one pair for each predecessor basic block of the
-current block.  Only values of <a href="#t_firstclass">first class</a>
-type may be used as the value arguments to the PHI node.  Only labels
-may be used as the label arguments.</p>
+<p>The '<tt>phi</tt>' instruction is used to implement the &#966; node in the
+   SSA graph representing the function.</p>
 
-<p>There must be no non-phi instructions between the start of a basic
-block and the PHI instructions: i.e. PHI instructions must be first in
-a basic block.</p>
-
-<p>For the purposes of the SSA form, the use of each incoming value is
-deemed to occur on the edge from the corresponding predecessor block
-to the current block (but after any definition of an '<tt>invoke</tt>'
-instruction's return value on the same edge).</p>
+<h5>Arguments:</h5>
+<p>The type of the incoming values is specified with the first type field. After
+   this, the '<tt>phi</tt>' instruction takes a list of pairs as arguments, with
+   one pair for each predecessor basic block of the current block.  Only values
+   of <a href="#t_firstclass">first class</a> type may be used as the value
+   arguments to the PHI node.  Only labels may be used as the label
+   arguments.</p>
+
+<p>There must be no non-phi instructions between the start of a basic block and
+   the PHI instructions: i.e. PHI instructions must be first in a basic
+   block.</p>
+
+<p>For the purposes of the SSA form, the use of each incoming value is deemed to
+   occur on the edge from the corresponding predecessor block to the current
+   block (but after any definition of an '<tt>invoke</tt>' instruction's return
+   value on the same edge).</p>
 
 <h5>Semantics:</h5>
-
 <p>At runtime, the '<tt>phi</tt>' instruction logically takes on the value
-specified by the pair corresponding to the predecessor basic block that executed
-just prior to the current block.</p>
+   specified by the pair corresponding to the predecessor basic block that
+   executed just prior to the current block.</p>
 
 <h5>Example:</h5>
 <pre>
@@ -4651,6 +4958,7 @@ Loop:       ; Infinite loop that counts from 0 on up...
   %nextindvar = add i32 %indvar, 1
   br label %Loop
 </pre>
+
 </div>
 
 <!-- _______________________________________________________________________ -->
@@ -4661,7 +4969,6 @@ Loop:       ; Infinite loop that counts from 0 on up...
 <div class="doc_text">
 
 <h5>Syntax:</h5>
-
 <pre>
   &lt;result&gt; = select <i>selty</i> &lt;cond&gt;, &lt;ty&gt; &lt;val1&gt;, &lt;ty&gt; &lt;val2&gt;             <i>; yields ty</i>
 
@@ -4669,38 +4976,25 @@ Loop:       ; Infinite loop that counts from 0 on up...
 </pre>
 
 <h5>Overview:</h5>
-
-<p>
-The '<tt>select</tt>' instruction is used to choose one value based on a
-condition, without branching.
-</p>
+<p>The '<tt>select</tt>' instruction is used to choose one value based on a
+   condition, without branching.</p>
 
 
 <h5>Arguments:</h5>
-
-<p>
-The '<tt>select</tt>' instruction requires an 'i1' value or
-a vector of 'i1' values indicating the
-condition, and two values of the same <a href="#t_firstclass">first class</a>
-type.  If the val1/val2 are vectors and
-the condition is a scalar, then entire vectors are selected, not
-individual elements.
-</p>
+<p>The '<tt>select</tt>' instruction requires an 'i1' value or a vector of 'i1'
+   values indicating the condition, and two values of the
+   same <a href="#t_firstclass">first class</a> type.  If the val1/val2 are
+   vectors and the condition is a scalar, then entire vectors are selected, not
+   individual elements.</p>
 
 <h5>Semantics:</h5>
+<p>If the condition is an i1 and it evaluates to 1, the instruction returns the
+   first value argument; otherwise, it returns the second value argument.</p>
 
-<p>
-If the condition is an i1 and it evaluates to 1, the instruction returns the first
-value argument; otherwise, it returns the second value argument.
-</p>
-<p>
-If the condition is a vector of i1, then the value arguments must
-be vectors of the same size, and the selection is done element 
-by element.
-</p>
+<p>If the condition is a vector of i1, then the value arguments must be vectors
+   of the same size, and the selection is done element by element.</p>
 
 <h5>Example:</h5>
-
 <pre>
   %X = select i1 true, i8 17, i8 42          <i>; yields i8:17</i>
 </pre>
@@ -4710,7 +5004,6 @@ by element.
 
 </div>
 
-
 <!-- _______________________________________________________________________ -->
 <div class="doc_subsubsection">
   <a name="i_call">'<tt>call</tt>' Instruction</a>
@@ -4724,75 +5017,76 @@ by element.
 </pre>
 
 <h5>Overview:</h5>
-
 <p>The '<tt>call</tt>' instruction represents a simple function call.</p>
 
 <h5>Arguments:</h5>
-
 <p>This instruction requires several arguments:</p>
 
 <ol>
-  <li>
-    <p>The optional "tail" marker indicates whether the callee function accesses
-    any allocas or varargs in the caller.  If the "tail" marker is present, the
-    function call is eligible for tail call optimization.  Note that calls may
-    be marked "tail" even if they do not occur before a <a
-    href="#i_ret"><tt>ret</tt></a> instruction.</p>
-  </li>
-  <li>
-    <p>The optional "cconv" marker indicates which <a href="#callingconv">calling
-    convention</a> the call should use.  If none is specified, the call defaults
-    to using C calling conventions.</p>
+  <li>The optional "tail" marker indicates that the callee function does not
+      access any allocas or varargs in the caller.  Note that calls may be
+      marked "tail" even if they do not occur before
+      a <a href="#i_ret"><tt>ret</tt></a> instruction.  If the "tail" marker is
+      present, the function call is eligible for tail call optimization,
+      but <a href="CodeGenerator.html#tailcallopt">might not in fact be
+      optimized into a jump</a>.  As of this writing, the extra requirements for
+      a call to actually be optimized are:
+      <ul>
+        <li>Caller and callee both have the calling
+            convention <tt>fastcc</tt>.</li>
+        <li>The call is in tail position (ret immediately follows call and ret
+            uses value of call or is void).</li>
+        <li>Option <tt>-tailcallopt</tt> is enabled,
+            or <code>llvm::PerformTailCallOpt</code> is <code>true</code>.</li>
+        <li><a href="CodeGenerator.html#tailcallopt">Platform specific
+            constraints are met.</a></li>
+      </ul>
   </li>
 
-  <li>
-    <p>The optional <a href="#paramattrs">Parameter Attributes</a> list for
-    return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>', 
-    and '<tt>inreg</tt>' attributes are valid here.</p>
-  </li>
+  <li>The optional "cconv" marker indicates which <a href="#callingconv">calling
+      convention</a> the call should use.  If none is specified, the call
+      defaults to using C calling conventions.  The calling convention of the
+      call must match the calling convention of the target function, or else the
+      behavior is undefined.</li>
 
-  <li>
-    <p>'<tt>ty</tt>': the type of the call instruction itself which is also
-    the type of the return value.  Functions that return no value are marked
-    <tt><a href="#t_void">void</a></tt>.</p>
-  </li>
-  <li>
-    <p>'<tt>fnty</tt>': shall be the signature of the pointer to function
-    value being invoked.  The argument types must match the types implied by
-    this signature.  This type can be omitted if the function is not varargs
-    and if the function type does not return a pointer to a function.</p>
-  </li>
-  <li>
-    <p>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to
-    be invoked. In most cases, this is a direct function invocation, but
-    indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer
-    to function value.</p>
-  </li>
-  <li>
-    <p>'<tt>function args</tt>': argument list whose types match the
-    function signature argument types. All arguments must be of 
-    <a href="#t_firstclass">first class</a> type. If the function signature 
-    indicates the function accepts a variable number of arguments, the extra 
-    arguments can be specified.</p>
-  </li>
-  <li> 
-  <p>The optional <a href="#fnattrs">function attributes</a> list. Only
-  '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
-  '<tt>readnone</tt>' attributes are valid here.</p>
-  </li>
+  <li>The optional <a href="#paramattrs">Parameter Attributes</a> list for
+      return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>', and
+      '<tt>inreg</tt>' attributes are valid here.</li>
+
+  <li>'<tt>ty</tt>': the type of the call instruction itself which is also the
+      type of the return value.  Functions that return no value are marked
+      <tt><a href="#t_void">void</a></tt>.</li>
+
+  <li>'<tt>fnty</tt>': shall be the signature of the pointer to function value
+      being invoked.  The argument types must match the types implied by this
+      signature.  This type can be omitted if the function is not varargs and if
+      the function type does not return a pointer to a function.</li>
+
+  <li>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to
+      be invoked. In most cases, this is a direct function invocation, but
+      indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer
+      to function value.</li>
+
+  <li>'<tt>function args</tt>': argument list whose types match the function
+      signature argument types. All arguments must be of
+      <a href="#t_firstclass">first class</a> type. If the function signature
+      indicates the function accepts a variable number of arguments, the extra
+      arguments can be specified.</li>
+
+  <li>The optional <a href="#fnattrs">function attributes</a> list. Only
+      '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
+      '<tt>readnone</tt>' attributes are valid here.</li>
 </ol>
 
 <h5>Semantics:</h5>
-
-<p>The '<tt>call</tt>' instruction is used to cause control flow to
-transfer to a specified function, with its incoming arguments bound to
-the specified values. Upon a '<tt><a href="#i_ret">ret</a></tt>'
-instruction in the called function, control flow continues with the
-instruction after the function call, and the return value of the
-function is bound to the result argument.</p>
+<p>The '<tt>call</tt>' instruction is used to cause control flow to transfer to
+   a specified function, with its incoming arguments bound to the specified
+   values. Upon a '<tt><a href="#i_ret">ret</a></tt>' instruction in the called
+   function, control flow continues with the instruction after the function
+   call, and the return value of the function is bound to the result
+   argument.</p>
 
 <h5>Example:</h5>
-
 <pre>
   %retval = call i32 @test(i32 %argc)
   call i32 (i8 *, ...)* @printf(i8 * %msg, i32 12, i8 42)      <i>; yields i32</i>
@@ -4808,6 +5102,12 @@ function is bound to the result argument.</p>
   %ZZ = call zeroext i32 @bar()                     <i>; Return value is %zero extended</i>
 </pre>
 
+<p>llvm treats calls to some functions with names and arguments that match the
+standard C99 library as being the C99 library functions, and may perform
+optimizations or generate code for them under that assumption.  This is
+something we'd like to change in the future to provide better support for
+freestanding environments and non-C-based langauges.</p>
+
 </div>
 
 <!-- _______________________________________________________________________ -->
@@ -4818,47 +5118,41 @@ function is bound to the result argument.</p>
 <div class="doc_text">
 
 <h5>Syntax:</h5>
-
 <pre>
   &lt;resultval&gt; = va_arg &lt;va_list*&gt; &lt;arglist&gt;, &lt;argty&gt;
 </pre>
 
 <h5>Overview:</h5>
-
 <p>The '<tt>va_arg</tt>' instruction is used to access arguments passed through
-the "variable argument" area of a function call.  It is used to implement the
-<tt>va_arg</tt> macro in C.</p>
+   the "variable argument" area of a function call.  It is used to implement the
+   <tt>va_arg</tt> macro in C.</p>
 
 <h5>Arguments:</h5>
-
-<p>This instruction takes a <tt>va_list*</tt> value and the type of
-the argument. It returns a value of the specified argument type and
-increments the <tt>va_list</tt> to point to the next argument.  The
-actual type of <tt>va_list</tt> is target specific.</p>
+<p>This instruction takes a <tt>va_list*</tt> value and the type of the
+   argument. It returns a value of the specified argument type and increments
+   the <tt>va_list</tt> to point to the next argument.  The actual type
+   of <tt>va_list</tt> is target specific.</p>
 
 <h5>Semantics:</h5>
-
-<p>The '<tt>va_arg</tt>' instruction loads an argument of the specified
-type from the specified <tt>va_list</tt> and causes the
-<tt>va_list</tt> to point to the next argument.  For more information,
-see the variable argument handling <a href="#int_varargs">Intrinsic
-Functions</a>.</p>
+<p>The '<tt>va_arg</tt>' instruction loads an argument of the specified type
+   from the specified <tt>va_list</tt> and causes the <tt>va_list</tt> to point
+   to the next argument.  For more information, see the variable argument
+   handling <a href="#int_varargs">Intrinsic Functions</a>.</p>
 
 <p>It is legal for this instruction to be called in a function which does not
-take a variable number of arguments, for example, the <tt>vfprintf</tt>
-function.</p>
+   take a variable number of arguments, for example, the <tt>vfprintf</tt>
+   function.</p>
 
-<p><tt>va_arg</tt> is an LLVM instruction instead of an <a
-href="#intrinsics">intrinsic function</a> because it takes a type as an
-argument.</p>
+<p><tt>va_arg</tt> is an LLVM instruction instead of
+   an <a href="#intrinsics">intrinsic function</a> because it takes a type as an
+   argument.</p>
 
 <h5>Example:</h5>
-
 <p>See the <a href="#int_varargs">variable argument processing</a> section.</p>
 
-<p>Note that the code generator does not yet fully support va_arg
-   on many targets. Also, it does not currently support va_arg with
-   aggregate types on any target.</p>
+<p>Note that the code generator does not yet fully support va_arg on many
+   targets. Also, it does not currently support va_arg with aggregate types on
+   any target.</p>
 
 </div>
 
@@ -4869,45 +5163,45 @@ argument.</p>
 <div class="doc_text">
 
 <p>LLVM supports the notion of an "intrinsic function".  These functions have
-well known names and semantics and are required to follow certain restrictions.
-Overall, these intrinsics represent an extension mechanism for the LLVM 
-language that does not require changing all of the transformations in LLVM when 
-adding to the language (or the bitcode reader/writer, the parser, etc...).</p>
+   well known names and semantics and are required to follow certain
+   restrictions.  Overall, these intrinsics represent an extension mechanism for
+   the LLVM language that does not require changing all of the transformations
+   in LLVM when adding to the language (or the bitcode reader/writer, the
+   parser, etc...).</p>
 
 <p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix. This
-prefix is reserved in LLVM for intrinsic names; thus, function names may not
-begin with this prefix.  Intrinsic functions must always be external functions:
-you cannot define the body of intrinsic functions.  Intrinsic functions may
-only be used in call or invoke instructions: it is illegal to take the address
-of an intrinsic function.  Additionally, because intrinsic functions are part
-of the LLVM language, it is required if any are added that they be documented
-here.</p>
-
-<p>Some intrinsic functions can be overloaded, i.e., the intrinsic represents 
-a family of functions that perform the same operation but on different data 
-types. Because LLVM can represent over 8 million different integer types, 
-overloading is used commonly to allow an intrinsic function to operate on any 
-integer type. One or more of the argument types or the result type can be 
-overloaded to accept any integer type. Argument types may also be defined as 
-exactly matching a previous argument's type or the result type. This allows an 
-intrinsic function which accepts multiple arguments, but needs all of them to 
-be of the same type, to only be overloaded with respect to a single argument or 
-the result.</p>
-
-<p>Overloaded intrinsics will have the names of its overloaded argument types 
-encoded into its function name, each preceded by a period. Only those types 
-which are overloaded result in a name suffix. Arguments whose type is matched 
-against another type do not. For example, the <tt>llvm.ctpop</tt> function can 
-take an integer of any width and returns an integer of exactly the same integer 
-width. This leads to a family of functions such as
-<tt>i8 @llvm.ctpop.i8(i8 %val)</tt> and <tt>i29 @llvm.ctpop.i29(i29 %val)</tt>.
-Only one type, the return type, is overloaded, and only one type suffix is 
-required. Because the argument's type is matched against the return type, it 
-does not require its own name suffix.</p>
-
-<p>To learn how to add an intrinsic function, please see the 
-<a href="ExtendingLLVM.html">Extending LLVM Guide</a>.
-</p>
+   prefix is reserved in LLVM for intrinsic names; thus, function names may not
+   begin with this prefix.  Intrinsic functions must always be external
+   functions: you cannot define the body of intrinsic functions.  Intrinsic
+   functions may only be used in call or invoke instructions: it is illegal to
+   take the address of an intrinsic function.  Additionally, because intrinsic
+   functions are part of the LLVM language, it is required if any are added that
+   they be documented here.</p>
+
+<p>Some intrinsic functions can be overloaded, i.e., the intrinsic represents a
+   family of functions that perform the same operation but on different data
+   types. Because LLVM can represent over 8 million different integer types,
+   overloading is used commonly to allow an intrinsic function to operate on any
+   integer type. One or more of the argument types or the result type can be
+   overloaded to accept any integer type. Argument types may also be defined as
+   exactly matching a previous argument's type or the result type. This allows
+   an intrinsic function which accepts multiple arguments, but needs all of them
+   to be of the same type, to only be overloaded with respect to a single
+   argument or the result.</p>
+
+<p>Overloaded intrinsics will have the names of its overloaded argument types
+   encoded into its function name, each preceded by a period. Only those types
+   which are overloaded result in a name suffix. Arguments whose type is matched
+   against another type do not. For example, the <tt>llvm.ctpop</tt> function
+   can take an integer of any width and returns an integer of exactly the same
+   integer width. This leads to a family of functions such as
+   <tt>i8 @llvm.ctpop.i8(i8 %val)</tt> and <tt>i29 @llvm.ctpop.i29(i29
+   %val)</tt>.  Only one type, the return type, is overloaded, and only one type
+   suffix is required. Because the argument's type is matched against the return
+   type, it does not require its own name suffix.</p>
+
+<p>To learn how to add an intrinsic function, please see the
+   <a href="ExtendingLLVM.html">Extending LLVM Guide</a>.</p>
 
 </div>
 
@@ -4918,20 +5212,19 @@ does not require its own name suffix.</p>
 
 <div class="doc_text">
 
-<p>Variable argument support is defined in LLVM with the <a
- href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three
-intrinsic functions.  These functions are related to the similarly
-named macros defined in the <tt>&lt;stdarg.h&gt;</tt> header file.</p>
+<p>Variable argument support is defined in LLVM with
  the <a href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three
+   intrinsic functions.  These functions are related to the similarly named
+   macros defined in the <tt>&lt;stdarg.h&gt;</tt> header file.</p>
 
-<p>All of these functions operate on arguments that use a
-target-specific value type "<tt>va_list</tt>".  The LLVM assembly
-language reference manual does not define what this type is, so all
-transformations should be prepared to handle these functions regardless of
-the type used.</p>
+<p>All of these functions operate on arguments that use a target-specific value
+   type "<tt>va_list</tt>".  The LLVM assembly language reference manual does
+   not define what this type is, so all transformations should be prepared to
+   handle these functions regardless of the type used.</p>
 
 <p>This example shows how the <a href="#i_va_arg"><tt>va_arg</tt></a>
-instruction and the variable argument handling intrinsic functions are
-used.</p>
+   instruction and the variable argument handling intrinsic functions are
+   used.</p>
 
 <div class="doc_code">
 <pre>
@@ -4970,25 +5263,27 @@ declare void @llvm.va_end(i8*)
 
 
 <div class="doc_text">
+
 <h5>Syntax:</h5>
-<pre>  declare void %llvm.va_start(i8* &lt;arglist&gt;)<br></pre>
+<pre>
+  declare void %llvm.va_start(i8* &lt;arglist&gt;)
+</pre>
+
 <h5>Overview:</h5>
-<p>The '<tt>llvm.va_start</tt>' intrinsic initializes
-<tt>*&lt;arglist&gt;</tt> for subsequent use by <tt><a
-href="#i_va_arg">va_arg</a></tt>.</p>
+<p>The '<tt>llvm.va_start</tt>' intrinsic initializes <tt>*&lt;arglist&gt;</tt>
+   for subsequent use by <tt><a href="#i_va_arg">va_arg</a></tt>.</p>
 
 <h5>Arguments:</h5>
-
 <p>The argument is a pointer to a <tt>va_list</tt> element to initialize.</p>
 
 <h5>Semantics:</h5>
-
 <p>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt>
-macro available in C.  In a target-dependent way, it initializes the
-<tt>va_list</tt> element to which the argument points, so that the next call to
-<tt>va_arg</tt> will produce the first variable argument passed to the function.
-Unlike the C <tt>va_start</tt> macro, this intrinsic does not need to know the
-last argument of the function as the compiler can figure that out.</p>
+   macro available in C.  In a target-dependent way, it initializes
+   the <tt>va_list</tt> element to which the argument points, so that the next
+   call to <tt>va_arg</tt> will produce the first variable argument passed to
+   the function.  Unlike the C <tt>va_start</tt> macro, this intrinsic does not
+   need to know the last argument of the function as the compiler can figure
+   that out.</p>
 
 </div>
 
@@ -4998,26 +5293,28 @@ last argument of the function as the compiler can figure that out.</p>
 </div>
 
 <div class="doc_text">
+
 <h5>Syntax:</h5>
-<pre>  declare void @llvm.va_end(i8* &lt;arglist&gt;)<br></pre>
-<h5>Overview:</h5>
+<pre>
+  declare void @llvm.va_end(i8* &lt;arglist&gt;)
+</pre>
 
+<h5>Overview:</h5>
 <p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt>*&lt;arglist&gt;</tt>,
-which has been initialized previously with <tt><a href="#int_va_start">llvm.va_start</a></tt>
-or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p>
+   which has been initialized previously
+   with <tt><a href="#int_va_start">llvm.va_start</a></tt>
+   or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p>
 
 <h5>Arguments:</h5>
-
 <p>The argument is a pointer to a <tt>va_list</tt> to destroy.</p>
 
 <h5>Semantics:</h5>
-
 <p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt>
-macro available in C.  In a target-dependent way, it destroys the
-<tt>va_list</tt> element to which the argument points.  Calls to <a
-href="#int_va_start"><tt>llvm.va_start</tt></a> and <a href="#int_va_copy">
-<tt>llvm.va_copy</tt></a> must be matched exactly with calls to
-<tt>llvm.va_end</tt>.</p>
+   macro available in C.  In a target-dependent way, it destroys
+   the <tt>va_list</tt> element to which the argument points.  Calls
+   to <a href="#int_va_start"><tt>llvm.va_start</tt></a>
+   and <a href="#int_va_copy"> <tt>llvm.va_copy</tt></a> must be matched exactly
+   with calls to <tt>llvm.va_end</tt>.</p>
 
 </div>
 
@@ -5029,30 +5326,26 @@ href="#int_va_start"><tt>llvm.va_start</tt></a> and <a href="#int_va_copy">
 <div class="doc_text">
 
 <h5>Syntax:</h5>
-
 <pre>
   declare void @llvm.va_copy(i8* &lt;destarglist&gt;, i8* &lt;srcarglist&gt;)
 </pre>
 
 <h5>Overview:</h5>
-
 <p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position
-from the source argument list to the destination argument list.</p>
+   from the source argument list to the destination argument list.</p>
 
 <h5>Arguments:</h5>
-
 <p>The first argument is a pointer to a <tt>va_list</tt> element to initialize.
-The second argument is a pointer to a <tt>va_list</tt> element to copy from.</p>
-
+   The second argument is a pointer to a <tt>va_list</tt> element to copy
+   from.</p>
 
 <h5>Semantics:</h5>
-
 <p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt>
-macro available in C.  In a target-dependent way, it copies the source
-<tt>va_list</tt> element into the destination <tt>va_list</tt> element.  This
-intrinsic is necessary because the <tt><a href="#int_va_start">
-llvm.va_start</a></tt> intrinsic may be arbitrarily complex and require, for
-example, memory allocation.</p>
+   macro available in C.  In a target-dependent way, it copies the
+   source <tt>va_list</tt> element into the destination <tt>va_list</tt>
+   element.  This intrinsic is necessary because
+   the <tt><a href="#int_va_start"> llvm.va_start</a></tt> intrinsic may be
+   arbitrarily complex and require, for example, memory allocation.</p>
 
 </div>
 
@@ -5063,20 +5356,18 @@ example, memory allocation.</p>
 
 <div class="doc_text">
 
-<p>
-LLVM support for <a href="GarbageCollection.html">Accurate Garbage
+<p>LLVM support for <a href="GarbageCollection.html">Accurate Garbage
 Collection</a> (GC) requires the implementation and generation of these
-intrinsics.
-These intrinsics allow identification of <a href="#int_gcroot">GC roots on the
-stack</a>, as well as garbage collector implementations that require <a
-href="#int_gcread">read</a> and <a href="#int_gcwrite">write</a> barriers.
-Front-ends for type-safe garbage collected languages should generate these
-intrinsics to make use of the LLVM garbage collectors.  For more details, see <a
-href="GarbageCollection.html">Accurate Garbage Collection with LLVM</a>.
-</p>
+intrinsics. These intrinsics allow identification of <a href="#int_gcroot">GC
+roots on the stack</a>, as well as garbage collector implementations that
+require <a href="#int_gcread">read</a> and <a href="#int_gcwrite">write</a>
+barriers.  Front-ends for type-safe garbage collected languages should generate
+these intrinsics to make use of the LLVM garbage collectors.  For more details,
+see <a href="GarbageCollection.html">Accurate Garbage Collection with
+LLVM</a>.</p>
 
-<p>The garbage collection intrinsics only operate on objects in the generic 
-       address space (address space zero).</p>
+<p>The garbage collection intrinsics only operate on objects in the generic
+   address space (address space zero).</p>
 
 </div>
 
@@ -5088,33 +5379,29 @@ href="GarbageCollection.html">Accurate Garbage Collection with LLVM</a>.
 <div class="doc_text">
 
 <h5>Syntax:</h5>
-
 <pre>
   declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
 </pre>
 
 <h5>Overview:</h5>
-
 <p>The '<tt>llvm.gcroot</tt>' intrinsic declares the existence of a GC root to
-the code generator, and allows some metadata to be associated with it.</p>
+   the code generator, and allows some metadata to be associated with it.</p>
 
 <h5>Arguments:</h5>
-
 <p>The first argument specifies the address of a stack object that contains the
-root pointer.  The second pointer (which must be either a constant or a global
-value address) contains the meta-data to be associated with the root.</p>
+   root pointer.  The second pointer (which must be either a constant or a
+   global value address) contains the meta-data to be associated with the
+   root.</p>
 
 <h5>Semantics:</h5>
-
 <p>At runtime, a call to this intrinsic stores a null pointer into the "ptrloc"
-location.  At compile-time, the code generator generates information to allow
-the runtime to find the pointer at GC safe points. The '<tt>llvm.gcroot</tt>'
-intrinsic may only be used in a function which <a href="#gc">specifies a GC
-algorithm</a>.</p>
+   location.  At compile-time, the code generator generates information to allow
+   the runtime to find the pointer at GC safe points. The '<tt>llvm.gcroot</tt>'
+   intrinsic may only be used in a function which <a href="#gc">specifies a GC
+   algorithm</a>.</p>
 
 </div>
 
-
 <!-- _______________________________________________________________________ -->
 <div class="doc_subsubsection">
   <a name="int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a>
@@ -5123,35 +5410,30 @@ algorithm</a>.</p>
 <div class="doc_text">
 
 <h5>Syntax:</h5>
-
 <pre>
   declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
 </pre>
 
 <h5>Overview:</h5>
-
 <p>The '<tt>llvm.gcread</tt>' intrinsic identifies reads of references from heap
-locations, allowing garbage collector implementations that require read
-barriers.</p>
+   locations, allowing garbage collector implementations that require read
+   barriers.</p>
 
 <h5>Arguments:</h5>
-
 <p>The second argument is the address to read from, which should be an address
-allocated from the garbage collector.  The first object is a pointer to the 
-start of the referenced object, if needed by the language runtime (otherwise
-null).</p>
+   allocated from the garbage collector.  The first object is a pointer to the
+   start of the referenced object, if needed by the language runtime (otherwise
+   null).</p>
 
 <h5>Semantics:</h5>
-
 <p>The '<tt>llvm.gcread</tt>' intrinsic has the same semantics as a load
-instruction, but may be replaced with substantially more complex code by the
-garbage collector runtime, as needed. The '<tt>llvm.gcread</tt>' intrinsic
-may only be used in a function which <a href="#gc">specifies a GC
-algorithm</a>.</p>
+   instruction, but may be replaced with substantially more complex code by the
+   garbage collector runtime, as needed. The '<tt>llvm.gcread</tt>' intrinsic
+   may only be used in a function which <a href="#gc">specifies a GC
+   algorithm</a>.</p>
 
 </div>
 
-
 <!-- _______________________________________________________________________ -->
 <div class="doc_subsubsection">
   <a name="int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a>
@@ -5160,46 +5442,39 @@ algorithm</a>.</p>
 <div class="doc_text">
 
 <h5>Syntax:</h5>
-
 <pre>
   declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
 </pre>
 
 <h5>Overview:</h5>
-
 <p>The '<tt>llvm.gcwrite</tt>' intrinsic identifies writes of references to heap
-locations, allowing garbage collector implementations that require write
-barriers (such as generational or reference counting collectors).</p>
+   locations, allowing garbage collector implementations that require write
+   barriers (such as generational or reference counting collectors).</p>
 
 <h5>Arguments:</h5>
-
 <p>The first argument is the reference to store, the second is the start of the
-object to store it to, and the third is the address of the field of Obj to 
-store to.  If the runtime does not require a pointer to the object, Obj may be
-null.</p>
+   object to store it to, and the third is the address of the field of Obj to
+   store to.  If the runtime does not require a pointer to the object, Obj may
+   be null.</p>
 
 <h5>Semantics:</h5>
-
 <p>The '<tt>llvm.gcwrite</tt>' intrinsic has the same semantics as a store
-instruction, but may be replaced with substantially more complex code by the
-garbage collector runtime, as needed. The '<tt>llvm.gcwrite</tt>' intrinsic
-may only be used in a function which <a href="#gc">specifies a GC
-algorithm</a>.</p>
+   instruction, but may be replaced with substantially more complex code by the
+   garbage collector runtime, as needed. The '<tt>llvm.gcwrite</tt>' intrinsic
+   may only be used in a function which <a href="#gc">specifies a GC
+   algorithm</a>.</p>
 
 </div>
 
-
-
 <!-- ======================================================================= -->
 <div class="doc_subsection">
   <a name="int_codegen">Code Generator Intrinsics</a>
 </div>
 
 <div class="doc_text">
-<p>
-These intrinsics are provided by LLVM to expose special features that may only
-be implemented with code generator support.
-</p>
+
+<p>These intrinsics are provided by LLVM to expose special features that may
+   only be implemented with code generator support.</p>
 
 </div>
 
@@ -5216,38 +5491,28 @@ be implemented with code generator support.
 </pre>
 
 <h5>Overview:</h5>
-
-<p>
-The '<tt>llvm.returnaddress</tt>' intrinsic attempts to compute a 
-target-specific value indicating the return address of the current function 
-or one of its callers.
-</p>
+<p>The '<tt>llvm.returnaddress</tt>' intrinsic attempts to compute a
+   target-specific value indicating the return address of the current function
+   or one of its callers.</p>
 
 <h5>Arguments:</h5>
-
-<p>
-The argument to this intrinsic indicates which function to return the address
-for.  Zero indicates the calling function, one indicates its caller, etc.  The
-argument is <b>required</b> to be a constant integer value.
-</p>
+<p>The argument to this intrinsic indicates which function to return the address
+   for.  Zero indicates the calling function, one indicates its caller, etc.
+   The argument is <b>required</b> to be a constant integer value.</p>
 
 <h5>Semantics:</h5>
+<p>The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer
+   indicating the return address of the specified call frame, or zero if it
+   cannot be identified.  The value returned by this intrinsic is likely to be
+   incorrect or 0 for arguments other than zero, so it should only be used for
+   debugging purposes.</p>
 
-<p>
-The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer indicating
-the return address of the specified call frame, or zero if it cannot be
-identified.  The value returned by this intrinsic is likely to be incorrect or 0
-for arguments other than zero, so it should only be used for debugging purposes.
-</p>
+<p>Note that calling this intrinsic does not prevent function inlining or other
+   aggressive transformations, so the value returned may not be that of the
+   obvious source-language caller.</p>
 
-<p>
-Note that calling this intrinsic does not prevent function inlining or other
-aggressive transformations, so the value returned may not be that of the obvious
-source-language caller.
-</p>
 </div>
 
-
 <!-- _______________________________________________________________________ -->
 <div class="doc_subsubsection">
   <a name="int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a>
@@ -5261,34 +5526,25 @@ source-language caller.
 </pre>
 
 <h5>Overview:</h5>
-
-<p>
-The '<tt>llvm.frameaddress</tt>' intrinsic attempts to return the 
-target-specific frame pointer value for the specified stack frame.
-</p>
+<p>The '<tt>llvm.frameaddress</tt>' intrinsic attempts to return the
+   target-specific frame pointer value for the specified stack frame.</p>
 
 <h5>Arguments:</h5>
-
-<p>
-The argument to this intrinsic indicates which function to return the frame
-pointer for.  Zero indicates the calling function, one indicates its caller,
-etc.  The argument is <b>required</b> to be a constant integer value.
-</p>
+<p>The argument to this intrinsic indicates which function to return the frame
+   pointer for.  Zero indicates the calling function, one indicates its caller,
+   etc.  The argument is <b>required</b> to be a constant integer value.</p>
 
 <h5>Semantics:</h5>
+<p>The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer
+   indicating the frame address of the specified call frame, or zero if it
+   cannot be identified.  The value returned by this intrinsic is likely to be
+   incorrect or 0 for arguments other than zero, so it should only be used for
+   debugging purposes.</p>
 
-<p>
-The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer indicating
-the frame address of the specified call frame, or zero if it cannot be
-identified.  The value returned by this intrinsic is likely to be incorrect or 0
-for arguments other than zero, so it should only be used for debugging purposes.
-</p>
+<p>Note that calling this intrinsic does not prevent function inlining or other
+   aggressive transformations, so the value returned may not be that of the
+   obvious source-language caller.</p>
 
-<p>
-Note that calling this intrinsic does not prevent function inlining or other
-aggressive transformations, so the value returned may not be that of the obvious
-source-language caller.
-</p>
 </div>
 
 <!-- _______________________________________________________________________ -->
@@ -5304,25 +5560,20 @@ source-language caller.
 </pre>
 
 <h5>Overview:</h5>
-
-<p>
-The '<tt>llvm.stacksave</tt>' intrinsic is used to remember the current state of
-the function stack, for use with <a href="#int_stackrestore">
-<tt>llvm.stackrestore</tt></a>.  This is useful for implementing language
-features like scoped automatic variable sized arrays in C99.
-</p>
+<p>The '<tt>llvm.stacksave</tt>' intrinsic is used to remember the current state
+   of the function stack, for use
+   with <a href="#int_stackrestore"> <tt>llvm.stackrestore</tt></a>.  This is
+   useful for implementing language features like scoped automatic variable
+   sized arrays in C99.</p>
 
 <h5>Semantics:</h5>
-
-<p>
-This intrinsic returns a opaque pointer value that can be passed to <a
-href="#int_stackrestore"><tt>llvm.stackrestore</tt></a>.  When an
-<tt>llvm.stackrestore</tt> intrinsic is executed with a value saved from 
-<tt>llvm.stacksave</tt>, it effectively restores the state of the stack to the
-state it was in when the <tt>llvm.stacksave</tt> intrinsic executed.  In
-practice, this pops any <a href="#i_alloca">alloca</a> blocks from the stack
-that were allocated after the <tt>llvm.stacksave</tt> was executed.
-</p>
+<p>This intrinsic returns a opaque pointer value that can be passed
+   to <a href="#int_stackrestore"><tt>llvm.stackrestore</tt></a>.  When
+   an <tt>llvm.stackrestore</tt> intrinsic is executed with a value saved
+   from <tt>llvm.stacksave</tt>, it effectively restores the state of the stack
+   to the state it was in when the <tt>llvm.stacksave</tt> intrinsic executed.
+   In practice, this pops any <a href="#i_alloca">alloca</a> blocks from the
+   stack that were allocated after the <tt>llvm.stacksave</tt> was executed.</p>
 
 </div>
 
@@ -5339,24 +5590,18 @@ that were allocated after the <tt>llvm.stacksave</tt> was executed.
 </pre>
 
 <h5>Overview:</h5>
-
-<p>
-The '<tt>llvm.stackrestore</tt>' intrinsic is used to restore the state of
-the function stack to the state it was in when the corresponding <a
-href="#int_stacksave"><tt>llvm.stacksave</tt></a> intrinsic executed.  This is
-useful for implementing language features like scoped automatic variable sized
-arrays in C99.
-</p>
+<p>The '<tt>llvm.stackrestore</tt>' intrinsic is used to restore the state of
+   the function stack to the state it was in when the
+   corresponding <a href="#int_stacksave"><tt>llvm.stacksave</tt></a> intrinsic
+   executed.  This is useful for implementing language features like scoped
+   automatic variable sized arrays in C99.</p>
 
 <h5>Semantics:</h5>
-
-<p>
-See the description for <a href="#int_stacksave"><tt>llvm.stacksave</tt></a>.
-</p>
+<p>See the description
+   for <a href="#int_stacksave"><tt>llvm.stacksave</tt></a>.</p>
 
 </div>
 
-
 <!-- _______________________________________________________________________ -->
 <div class="doc_subsubsection">
   <a name="int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a>
@@ -5370,34 +5615,23 @@ See the description for <a href="#int_stacksave"><tt>llvm.stacksave</tt></a>.
 </pre>
 
 <h5>Overview:</h5>
-
-
-<p>
-The '<tt>llvm.prefetch</tt>' intrinsic is a hint to the code generator to insert
-a prefetch instruction if supported; otherwise, it is a noop.  Prefetches have
-no
-effect on the behavior of the program but can change its performance
-characteristics.
-</p>
+<p>The '<tt>llvm.prefetch</tt>' intrinsic is a hint to the code generator to
+   insert a prefetch instruction if supported; otherwise, it is a noop.
+   Prefetches have no effect on the behavior of the program but can change its
+   performance characteristics.</p>
 
 <h5>Arguments:</h5>
-
-<p>
-<tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the specifier
-determining if the fetch should be for a read (0) or write (1), and
-<tt>locality</tt> is a temporal locality specifier ranging from (0) - no
-locality, to (3) - extremely local keep in cache.  The <tt>rw</tt> and
-<tt>locality</tt> arguments must be constant integers.
-</p>
+<p><tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the
+   specifier determining if the fetch should be for a read (0) or write (1),
+   and <tt>locality</tt> is a temporal locality specifier ranging from (0) - no
+   locality, to (3) - extremely local keep in cache.  The <tt>rw</tt>
+   and <tt>locality</tt> arguments must be constant integers.</p>
 
 <h5>Semantics:</h5>
-
-<p>
-This intrinsic does not modify the behavior of the program.  In particular,
-prefetches cannot trap and do not produce a value.  On targets that support this
-intrinsic, the prefetch can provide hints to the processor cache for better
-performance.
-</p>
+<p>This intrinsic does not modify the behavior of the program.  In particular,
+   prefetches cannot trap and do not produce a value.  On targets that support
+   this intrinsic, the prefetch can provide hints to the processor cache for
+   better performance.</p>
 
 </div>
 
@@ -5414,32 +5648,21 @@ performance.
 </pre>
 
 <h5>Overview:</h5>
-
-
-<p>
-The '<tt>llvm.pcmarker</tt>' intrinsic is a method to export a Program Counter
-(PC) in a region of
-code to simulators and other tools.  The method is target specific, but it is
-expected that the marker will use exported symbols to transmit the PC of the
-marker.
-The marker makes no guarantees that it will remain with any specific instruction
-after optimizations.  It is possible that the presence of a marker will inhibit
-optimizations.  The intended use is to be inserted after optimizations to allow
-correlations of simulation runs.
-</p>
+<p>The '<tt>llvm.pcmarker</tt>' intrinsic is a method to export a Program
+   Counter (PC) in a region of code to simulators and other tools.  The method
+   is target specific, but it is expected that the marker will use exported
+   symbols to transmit the PC of the marker.  The marker makes no guarantees
+   that it will remain with any specific instruction after optimizations.  It is
+   possible that the presence of a marker will inhibit optimizations.  The
+   intended use is to be inserted after optimizations to allow correlations of
+   simulation runs.</p>
 
 <h5>Arguments:</h5>
-
-<p>
-<tt>id</tt> is a numerical id identifying the marker.
-</p>
+<p><tt>id</tt> is a numerical id identifying the marker.</p>
 
 <h5>Semantics:</h5>
-
-<p>
-This intrinsic does not modify the behavior of the program.  Backends that do not 
-support this intrinisic may ignore it.
-</p>
+<p>This intrinsic does not modify the behavior of the program.  Backends that do
+   not support this intrinisic may ignore it.</p>
 
 </div>
 
@@ -5456,23 +5679,17 @@ support this intrinisic may ignore it.
 </pre>
 
 <h5>Overview:</h5>
-
-
-<p>
-The '<tt>llvm.readcyclecounter</tt>' intrinsic provides access to the cycle 
-counter register (or similar low latency, high accuracy clocks) on those targets
-that support it.  On X86, it should map to RDTSC.  On Alpha, it should map to RPCC.
-As the backing counters overflow quickly (on the order of 9 seconds on alpha), this
-should only be used for small timings.  
-</p>
+<p>The '<tt>llvm.readcyclecounter</tt>' intrinsic provides access to the cycle
+   counter register (or similar low latency, high accuracy clocks) on those
+   targets that support it.  On X86, it should map to RDTSC.  On Alpha, it
+   should map to RPCC.  As the backing counters overflow quickly (on the order
+   of 9 seconds on alpha), this should only be used for small timings.</p>
 
 <h5>Semantics:</h5>
-
-<p>
-When directly supported, reading the cycle counter should not modify any memory.  
-Implementations are allowed to either return a application specific value or a
-system wide value.  On backends without support, this is lowered to a constant 0.
-</p>
+<p>When directly supported, reading the cycle counter should not modify any
+   memory.  Implementations are allowed to either return a application specific
+   value or a system wide value.  On backends without support, this is lowered
+   to a constant 0.</p>
 
 </div>
 
@@ -5482,12 +5699,11 @@ system wide value.  On backends without support, this is lowered to a constant 0
 </div>
 
 <div class="doc_text">
-<p>
-LLVM provides intrinsics for a few important standard C library functions.
-These intrinsics allow source-language front-ends to pass information about the
-alignment of the pointer arguments to the code generator, providing opportunity
-for more efficient code generation.
-</p>
+
+<p>LLVM provides intrinsics for a few important standard C library functions.
+   These intrinsics allow source-language front-ends to pass information about
+   the alignment of the pointer arguments to the code generator, providing
+   opportunity for more efficient code generation.</p>
 
 </div>
 
@@ -5499,11 +5715,12 @@ for more efficient code generation.
 <div class="doc_text">
 
 <h5>Syntax:</h5>
-<p>This is an overloaded intrinsic. You can use llvm.memcpy on any integer bit
-width. Not all targets support all bit widths however.</p>
+<p>This is an overloaded intrinsic. You can use <tt>llvm.memcpy</tt> on any
+   integer bit width. Not all targets support all bit widths however.</p>
+
 <pre>
   declare void @llvm.memcpy.i8(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
-                                i8 &lt;len&gt;, i32 &lt;align&gt;)
+                               i8 &lt;len&gt;, i32 &lt;align&gt;)
   declare void @llvm.memcpy.i16(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
                                 i16 &lt;len&gt;, i32 &lt;align&gt;)
   declare void @llvm.memcpy.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
@@ -5513,44 +5730,31 @@ width. Not all targets support all bit widths however.</p>
 </pre>
 
 <h5>Overview:</h5>
+<p>The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the
+   source location to the destination location.</p>
 
-<p>
-The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
-location to the destination location.
-</p>
-
-<p>
-Note that, unlike the standard libc function, the <tt>llvm.memcpy.*</tt> 
-intrinsics do not return a value, and takes an extra alignment argument.
-</p>
+<p>Note that, unlike the standard libc function, the <tt>llvm.memcpy.*</tt>
+   intrinsics do not return a value, and takes an extra alignment argument.</p>
 
 <h5>Arguments:</h5>
+<p>The first argument is a pointer to the destination, the second is a pointer
+   to the source.  The third argument is an integer argument specifying the
+   number of bytes to copy, and the fourth argument is the alignment of the
+   source and destination locations.</p>
 
-<p>
-The first argument is a pointer to the destination, the second is a pointer to
-the source.  The third argument is an integer argument
-specifying the number of bytes to copy, and the fourth argument is the alignment
-of the source and destination locations.
-</p>
-
-<p>
-If the call to this intrinisic has an alignment value that is not 0 or 1, then
-the caller guarantees that both the source and destination pointers are aligned
-to that boundary.
-</p>
+<p>If the call to this intrinisic has an alignment value that is not 0 or 1,
+   then the caller guarantees that both the source and destination pointers are
+   aligned to that boundary.</p>
 
 <h5>Semantics:</h5>
+<p>The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the
+   source location to the destination location, which are not allowed to
+   overlap.  It copies "len" bytes of memory over.  If the argument is known to
+   be aligned to some boundary, this can be specified as the fourth argument,
+   otherwise it should be set to 0 or 1.</p>
 
-<p>
-The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
-location to the destination location, which are not allowed to overlap.  It
-copies "len" bytes of memory over.  If the argument is known to be aligned to
-some boundary, this can be specified as the fourth argument, otherwise it should
-be set to 0 or 1.
-</p>
 </div>
 
-
 <!-- _______________________________________________________________________ -->
 <div class="doc_subsubsection">
   <a name="int_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a>
@@ -5560,10 +5764,11 @@ be set to 0 or 1.
 
 <h5>Syntax:</h5>
 <p>This is an overloaded intrinsic. You can use llvm.memmove on any integer bit
-width. Not all targets support all bit widths however.</p>
+   width. Not all targets support all bit widths however.</p>
+
 <pre>
   declare void @llvm.memmove.i8(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
-                                 i8 &lt;len&gt;, i32 &lt;align&gt;)
+                                i8 &lt;len&gt;, i32 &lt;align&gt;)
   declare void @llvm.memmove.i16(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
                                  i16 &lt;len&gt;, i32 &lt;align&gt;)
   declare void @llvm.memmove.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
@@ -5573,45 +5778,33 @@ width. Not all targets support all bit widths however.</p>
 </pre>
 
 <h5>Overview:</h5>
+<p>The '<tt>llvm.memmove.*</tt>' intrinsics move a block of memory from the
+   source location to the destination location. It is similar to the
+   '<tt>llvm.memcpy</tt>' intrinsic but allows the two memory locations to
+   overlap.</p>
 
-<p>
-The '<tt>llvm.memmove.*</tt>' intrinsics move a block of memory from the source
-location to the destination location. It is similar to the
-'<tt>llvm.memcpy</tt>' intrinsic but allows the two memory locations to overlap.
-</p>
-
-<p>
-Note that, unlike the standard libc function, the <tt>llvm.memmove.*</tt> 
-intrinsics do not return a value, and takes an extra alignment argument.
-</p>
+<p>Note that, unlike the standard libc function, the <tt>llvm.memmove.*</tt>
+   intrinsics do not return a value, and takes an extra alignment argument.</p>
 
 <h5>Arguments:</h5>
+<p>The first argument is a pointer to the destination, the second is a pointer
+   to the source.  The third argument is an integer argument specifying the
+   number of bytes to copy, and the fourth argument is the alignment of the
+   source and destination locations.</p>
 
-<p>
-The first argument is a pointer to the destination, the second is a pointer to
-the source.  The third argument is an integer argument
-specifying the number of bytes to copy, and the fourth argument is the alignment
-of the source and destination locations.
-</p>
-
-<p>
-If the call to this intrinisic has an alignment value that is not 0 or 1, then
-the caller guarantees that the source and destination pointers are aligned to
-that boundary.
-</p>
+<p>If the call to this intrinisic has an alignment value that is not 0 or 1,
+   then the caller guarantees that the source and destination pointers are
+   aligned to that boundary.</p>
 
 <h5>Semantics:</h5>
+<p>The '<tt>llvm.memmove.*</tt>' intrinsics copy a block of memory from the
+   source location to the destination location, which may overlap.  It copies
+   "len" bytes of memory over.  If the argument is known to be aligned to some
+   boundary, this can be specified as the fourth argument, otherwise it should
+   be set to 0 or 1.</p>
 
-<p>
-The '<tt>llvm.memmove.*</tt>' intrinsics copy a block of memory from the source
-location to the destination location, which may overlap.  It
-copies "len" bytes of memory over.  If the argument is known to be aligned to
-some boundary, this can be specified as the fourth argument, otherwise it should
-be set to 0 or 1.
-</p>
 </div>
 
-
 <!-- _______________________________________________________________________ -->
 <div class="doc_subsubsection">
   <a name="int_memset">'<tt>llvm.memset.*</tt>' Intrinsics</a>
@@ -5621,10 +5814,11 @@ be set to 0 or 1.
 
 <h5>Syntax:</h5>
 <p>This is an overloaded intrinsic. You can use llvm.memset on any integer bit
-width. Not all targets support all bit widths however.</p>
+   width. Not all targets support all bit widths however.</p>
+
 <pre>
   declare void @llvm.memset.i8(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
-                                i8 &lt;len&gt;, i32 &lt;align&gt;)
+                               i8 &lt;len&gt;, i32 &lt;align&gt;)
   declare void @llvm.memset.i16(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
                                 i16 &lt;len&gt;, i32 &lt;align&gt;)
   declare void @llvm.memset.i32(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
@@ -5634,43 +5828,30 @@ width. Not all targets support all bit widths however.</p>
 </pre>
 
 <h5>Overview:</h5>
+<p>The '<tt>llvm.memset.*</tt>' intrinsics fill a block of memory with a
+   particular byte value.</p>
 
-<p>
-The '<tt>llvm.memset.*</tt>' intrinsics fill a block of memory with a particular
-byte value.
-</p>
-
-<p>
-Note that, unlike the standard libc function, the <tt>llvm.memset</tt> intrinsic
-does not return a value, and takes an extra alignment argument.
-</p>
+<p>Note that, unlike the standard libc function, the <tt>llvm.memset</tt>
+   intrinsic does not return a value, and takes an extra alignment argument.</p>
 
 <h5>Arguments:</h5>
+<p>The first argument is a pointer to the destination to fill, the second is the
+   byte value to fill it with, the third argument is an integer argument
+   specifying the number of bytes to fill, and the fourth argument is the known
+   alignment of destination location.</p>
 
-<p>
-The first argument is a pointer to the destination to fill, the second is the
-byte value to fill it with, the third argument is an integer
-argument specifying the number of bytes to fill, and the fourth argument is the
-known alignment of destination location.
-</p>
-
-<p>
-If the call to this intrinisic has an alignment value that is not 0 or 1, then
-the caller guarantees that the destination pointer is aligned to that boundary.
-</p>
+<p>If the call to this intrinisic has an alignment value that is not 0 or 1,
+   then the caller guarantees that the destination pointer is aligned to that
+   boundary.</p>
 
 <h5>Semantics:</h5>
+<p>The '<tt>llvm.memset.*</tt>' intrinsics fill "len" bytes of memory starting
+   at the destination location.  If the argument is known to be aligned to some
+   boundary, this can be specified as the fourth argument, otherwise it should
+   be set to 0 or 1.</p>
 
-<p>
-The '<tt>llvm.memset.*</tt>' intrinsics fill "len" bytes of memory starting at
-the
-destination location.  If the argument is known to be aligned to some boundary,
-this can be specified as the fourth argument, otherwise it should be set to 0 or
-1.
-</p>
 </div>
 
-
 <!-- _______________________________________________________________________ -->
 <div class="doc_subsubsection">
   <a name="int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a>
@@ -5679,9 +5860,10 @@ this can be specified as the fourth argument, otherwise it should be set to 0 or
 <div class="doc_text">
 
 <h5>Syntax:</h5>
-<p>This is an overloaded intrinsic. You can use <tt>llvm.sqrt</tt> on any 
-floating point or vector of floating point type. Not all targets support all
-types however.</p>
+<p>This is an overloaded intrinsic. You can use <tt>llvm.sqrt</tt> on any
+   floating point or vector of floating point type. Not all targets support all
+   types however.</p>
+
 <pre>
   declare float     @llvm.sqrt.f32(float %Val)
   declare double    @llvm.sqrt.f64(double %Val)
@@ -5691,28 +5873,21 @@ types however.</p>
 </pre>
 
 <h5>Overview:</h5>
-
-<p>
-The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand,
-returning the same value as the libm '<tt>sqrt</tt>' functions would.  Unlike
-<tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined behavior for
-negative numbers other than -0.0 (which allows for better optimization, because
-there is no need to worry about errno being set).  <tt>llvm.sqrt(-0.0)</tt> is
-defined to return -0.0 like IEEE sqrt.
-</p>
+<p>The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand,
+   returning the same value as the libm '<tt>sqrt</tt>' functions would.
+   Unlike <tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined
+   behavior for negative numbers other than -0.0 (which allows for better
+   optimization, because there is no need to worry about errno being
+   set).  <tt>llvm.sqrt(-0.0)</tt> is defined to return -0.0 like IEEE sqrt.</p>
 
 <h5>Arguments:</h5>
-
-<p>
-The argument and return value are floating point numbers of the same type.
-</p>
+<p>The argument and return value are floating point numbers of the same
+   type.</p>
 
 <h5>Semantics:</h5>
+<p>This function returns the sqrt of the specified operand if it is a
+   nonnegative floating point number.</p>
 
-<p>
-This function returns the sqrt of the specified operand if it is a nonnegative
-floating point number.
-</p>
 </div>
 
 <!-- _______________________________________________________________________ -->
@@ -5723,9 +5898,10 @@ floating point number.
 <div class="doc_text">
 
 <h5>Syntax:</h5>
-<p>This is an overloaded intrinsic. You can use <tt>llvm.powi</tt> on any 
-floating point or vector of floating point type. Not all targets support all
-types however.</p>
+<p>This is an overloaded intrinsic. You can use <tt>llvm.powi</tt> on any
+   floating point or vector of floating point type. Not all targets support all
+   types however.</p>
+
 <pre>
   declare float     @llvm.powi.f32(float  %Val, i32 %power)
   declare double    @llvm.powi.f64(double %Val, i32 %power)
@@ -5735,26 +5911,19 @@ types however.</p>
 </pre>
 
 <h5>Overview:</h5>
-
-<p>
-The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the
-specified (positive or negative) power.  The order of evaluation of
-multiplications is not defined.  When a vector of floating point type is
-used, the second argument remains a scalar integer value.
-</p>
+<p>The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the
+   specified (positive or negative) power.  The order of evaluation of
+   multiplications is not defined.  When a vector of floating point type is
+   used, the second argument remains a scalar integer value.</p>
 
 <h5>Arguments:</h5>
-
-<p>
-The second argument is an integer power, and the first is a value to raise to
-that power.
-</p>
+<p>The second argument is an integer power, and the first is a value to raise to
+   that power.</p>
 
 <h5>Semantics:</h5>
+<p>This function returns the first value raised to the second power with an
+   unspecified sequence of rounding operations.</p>
 
-<p>
-This function returns the first value raised to the second power with an
-unspecified sequence of rounding operations.</p>
 </div>
 
 <!-- _______________________________________________________________________ -->
@@ -5765,9 +5934,10 @@ unspecified sequence of rounding operations.</p>
 <div class="doc_text">
 
 <h5>Syntax:</h5>
-<p>This is an overloaded intrinsic. You can use <tt>llvm.sin</tt> on any 
-floating point or vector of floating point type. Not all targets support all
-types however.</p>
+<p>This is an overloaded intrinsic. You can use <tt>llvm.sin</tt> on any
+   floating point or vector of floating point type. Not all targets support all
+   types however.</p>
+
 <pre>
   declare float     @llvm.sin.f32(float  %Val)
   declare double    @llvm.sin.f64(double %Val)
@@ -5777,23 +5947,17 @@ types however.</p>
 </pre>
 
 <h5>Overview:</h5>
-
-<p>
-The '<tt>llvm.sin.*</tt>' intrinsics return the sine of the operand.
-</p>
+<p>The '<tt>llvm.sin.*</tt>' intrinsics return the sine of the operand.</p>
 
 <h5>Arguments:</h5>
-
-<p>
-The argument and return value are floating point numbers of the same type.
-</p>
+<p>The argument and return value are floating point numbers of the same
+   type.</p>
 
 <h5>Semantics:</h5>
+<p>This function returns the sine of the specified operand, returning the same
+   values as the libm <tt>sin</tt> functions would, and handles error conditions
+   in the same way.</p>
 
-<p>
-This function returns the sine of the specified operand, returning the
-same values as the libm <tt>sin</tt> functions would, and handles error
-conditions in the same way.</p>
 </div>
 
 <!-- _______________________________________________________________________ -->
@@ -5804,9 +5968,10 @@ conditions in the same way.</p>
 <div class="doc_text">
 
 <h5>Syntax:</h5>
-<p>This is an overloaded intrinsic. You can use <tt>llvm.cos</tt> on any 
-floating point or vector of floating point type. Not all targets support all
-types however.</p>
+<p>This is an overloaded intrinsic. You can use <tt>llvm.cos</tt> on any
+   floating point or vector of floating point type. Not all targets support all
+   types however.</p>
+
 <pre>
   declare float     @llvm.cos.f32(float  %Val)
   declare double    @llvm.cos.f64(double %Val)
@@ -5816,23 +5981,17 @@ types however.</p>
 </pre>
 
 <h5>Overview:</h5>
-
-<p>
-The '<tt>llvm.cos.*</tt>' intrinsics return the cosine of the operand.
-</p>
+<p>The '<tt>llvm.cos.*</tt>' intrinsics return the cosine of the operand.</p>
 
 <h5>Arguments:</h5>
-
-<p>
-The argument and return value are floating point numbers of the same type.
-</p>
+<p>The argument and return value are floating point numbers of the same
+   type.</p>
 
 <h5>Semantics:</h5>
+<p>This function returns the cosine of the specified operand, returning the same
+   values as the libm <tt>cos</tt> functions would, and handles error conditions
+   in the same way.</p>
 
-<p>
-This function returns the cosine of the specified operand, returning the
-same values as the libm <tt>cos</tt> functions would, and handles error
-conditions in the same way.</p>
 </div>
 
 <!-- _______________________________________________________________________ -->
@@ -5843,9 +6002,10 @@ conditions in the same way.</p>
 <div class="doc_text">
 
 <h5>Syntax:</h5>
-<p>This is an overloaded intrinsic. You can use <tt>llvm.pow</tt> on any 
-floating point or vector of floating point type. Not all targets support all
-types however.</p>
+<p>This is an overloaded intrinsic. You can use <tt>llvm.pow</tt> on any
+   floating point or vector of floating point type. Not all targets support all
+   types however.</p>
+
 <pre>
   declare float     @llvm.pow.f32(float  %Val, float %Power)
   declare double    @llvm.pow.f64(double %Val, double %Power)
@@ -5855,39 +6015,29 @@ types however.</p>
 </pre>
 
 <h5>Overview:</h5>
-
-<p>
-The '<tt>llvm.pow.*</tt>' intrinsics return the first operand raised to the
-specified (positive or negative) power.
-</p>
+<p>The '<tt>llvm.pow.*</tt>' intrinsics return the first operand raised to the
+   specified (positive or negative) power.</p>
 
 <h5>Arguments:</h5>
-
-<p>
-The second argument is a floating point power, and the first is a value to
-raise to that power.
-</p>
+<p>The second argument is a floating point power, and the first is a value to
+   raise to that power.</p>
 
 <h5>Semantics:</h5>
+<p>This function returns the first value raised to the second power, returning
+   the same values as the libm <tt>pow</tt> functions would, and handles error
+   conditions in the same way.</p>
 
-<p>
-This function returns the first value raised to the second power,
-returning the
-same values as the libm <tt>pow</tt> functions would, and handles error
-conditions in the same way.</p>
 </div>
 
-
 <!-- ======================================================================= -->
 <div class="doc_subsection">
   <a name="int_manip">Bit Manipulation Intrinsics</a>
 </div>
 
 <div class="doc_text">
-<p>
-LLVM provides intrinsics for a few important bit manipulation operations.
-These allow efficient code generation for some algorithms.
-</p>
+
+<p>LLVM provides intrinsics for a few important bit manipulation operations.
+   These allow efficient code generation for some algorithms.</p>
 
 </div>
 
@@ -5900,7 +6050,8 @@ These allow efficient code generation for some algorithms.
 
 <h5>Syntax:</h5>
 <p>This is an overloaded intrinsic function. You can use bswap on any integer
-type that is an even number of bytes (i.e. BitWidth % 16 == 0).</p>
+   type that is an even number of bytes (i.e. BitWidth % 16 == 0).</p>
+
 <pre>
   declare i16 @llvm.bswap.i16(i16 &lt;id&gt;)
   declare i32 @llvm.bswap.i32(i32 &lt;id&gt;)
@@ -5908,25 +6059,20 @@ type that is an even number of bytes (i.e. BitWidth % 16 == 0).</p>
 </pre>
 
 <h5>Overview:</h5>
-
-<p>
-The '<tt>llvm.bswap</tt>' family of intrinsics is used to byte swap integer 
-values with an even number of bytes (positive multiple of 16 bits).  These are 
-useful for performing operations on data that is not in the target's native 
-byte order.
-</p>
+<p>The '<tt>llvm.bswap</tt>' family of intrinsics is used to byte swap integer
+   values with an even number of bytes (positive multiple of 16 bits).  These
+   are useful for performing operations on data that is not in the target's
+   native byte order.</p>
 
 <h5>Semantics:</h5>
-
-<p>
-The <tt>llvm.bswap.i16</tt> intrinsic returns an i16 value that has the high 
-and low byte of the input i16 swapped.  Similarly, the <tt>llvm.bswap.i32</tt> 
-intrinsic returns an i32 value that has the four bytes of the input i32 
-swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the returned 
-i32 will have its bytes in 3, 2, 1, 0 order.  The <tt>llvm.bswap.i48</tt>, 
-<tt>llvm.bswap.i64</tt> and other intrinsics extend this concept to
-additional even-byte lengths (6 bytes, 8 bytes and more, respectively).
-</p>
+<p>The <tt>llvm.bswap.i16</tt> intrinsic returns an i16 value that has the high
+   and low byte of the input i16 swapped.  Similarly,
+   the <tt>llvm.bswap.i32</tt> intrinsic returns an i32 value that has the four
+   bytes of the input i32 swapped, so that if the input bytes are numbered 0, 1,
+   2, 3 then the returned i32 will have its bytes in 3, 2, 1, 0 order.
+   The <tt>llvm.bswap.i48</tt>, <tt>llvm.bswap.i64</tt> and other intrinsics
+   extend this concept to additional even-byte lengths (6 bytes, 8 bytes and
+   more, respectively).</p>
 
 </div>
 
@@ -5939,7 +6085,8 @@ additional even-byte lengths (6 bytes, 8 bytes and more, respectively).
 
 <h5>Syntax:</h5>
 <p>This is an overloaded intrinsic. You can use llvm.ctpop on any integer bit
-width. Not all targets support all bit widths however.</p>
+   width. Not all targets support all bit widths however.</p>
+
 <pre>
   declare i8 @llvm.ctpop.i8(i8  &lt;src&gt;)
   declare i16 @llvm.ctpop.i16(i16 &lt;src&gt;)
@@ -5949,24 +6096,16 @@ width. Not all targets support all bit widths however.</p>
 </pre>
 
 <h5>Overview:</h5>
-
-<p>
-The '<tt>llvm.ctpop</tt>' family of intrinsics counts the number of bits set in a 
-value.
-</p>
+<p>The '<tt>llvm.ctpop</tt>' family of intrinsics counts the number of bits set
+   in a value.</p>
 
 <h5>Arguments:</h5>
-
-<p>
-The only argument is the value to be counted.  The argument may be of any
-integer type.  The return type must match the argument type.
-</p>
+<p>The only argument is the value to be counted.  The argument may be of any
+   integer type.  The return type must match the argument type.</p>
 
 <h5>Semantics:</h5>
+<p>The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable.</p>
 
-<p>
-The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable.
-</p>
 </div>
 
 <!-- _______________________________________________________________________ -->
@@ -5977,8 +6116,9 @@ The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable.
 <div class="doc_text">
 
 <h5>Syntax:</h5>
-<p>This is an overloaded intrinsic. You can use <tt>llvm.ctlz</tt> on any 
-integer bit width. Not all targets support all bit widths however.</p>
+<p>This is an overloaded intrinsic. You can use <tt>llvm.ctlz</tt> on any
+   integer bit width. Not all targets support all bit widths however.</p>
+
 <pre>
   declare i8 @llvm.ctlz.i8 (i8  &lt;src&gt;)
   declare i16 @llvm.ctlz.i16(i16 &lt;src&gt;)
@@ -5988,30 +6128,20 @@ integer bit width. Not all targets support all bit widths however.</p>
 </pre>
 
 <h5>Overview:</h5>
-
-<p>
-The '<tt>llvm.ctlz</tt>' family of intrinsic functions counts the number of 
-leading zeros in a variable.
-</p>
+<p>The '<tt>llvm.ctlz</tt>' family of intrinsic functions counts the number of
+   leading zeros in a variable.</p>
 
 <h5>Arguments:</h5>
-
-<p>
-The only argument is the value to be counted.  The argument may be of any
-integer type. The return type must match the argument type.
-</p>
+<p>The only argument is the value to be counted.  The argument may be of any
+   integer type. The return type must match the argument type.</p>
 
 <h5>Semantics:</h5>
+<p>The '<tt>llvm.ctlz</tt>' intrinsic counts the leading (most significant)
+   zeros in a variable.  If the src == 0 then the result is the size in bits of
+   the type of src. For example, <tt>llvm.ctlz(i32 2) = 30</tt>.</p>
 
-<p>
-The '<tt>llvm.ctlz</tt>' intrinsic counts the leading (most significant) zeros
-in a variable.  If the src == 0 then the result is the size in bits of the type
-of src. For example, <tt>llvm.ctlz(i32 2) = 30</tt>.
-</p>
 </div>
 
-
-
 <!-- _______________________________________________________________________ -->
 <div class="doc_subsubsection">
   <a name="int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic</a>
@@ -6020,8 +6150,9 @@ of src. For example, <tt>llvm.ctlz(i32 2) = 30</tt>.
 <div class="doc_text">
 
 <h5>Syntax:</h5>
-<p>This is an overloaded intrinsic. You can use <tt>llvm.cttz</tt> on any 
-integer bit width. Not all targets support all bit widths however.</p>
+<p>This is an overloaded intrinsic. You can use <tt>llvm.cttz</tt> on any
+   integer bit width. Not all targets support all bit widths however.</p>
+
 <pre>
   declare i8 @llvm.cttz.i8 (i8  &lt;src&gt;)
   declare i16 @llvm.cttz.i16(i16 &lt;src&gt;)
@@ -6031,130 +6162,17 @@ integer bit width. Not all targets support all bit widths however.</p>
 </pre>
 
 <h5>Overview:</h5>
-
-<p>
-The '<tt>llvm.cttz</tt>' family of intrinsic functions counts the number of 
-trailing zeros.
-</p>
-
-<h5>Arguments:</h5>
-
-<p>
-The only argument is the value to be counted.  The argument may be of any
-integer type.  The return type must match the argument type.
-</p>
-
-<h5>Semantics:</h5>
-
-<p>
-The '<tt>llvm.cttz</tt>' intrinsic counts the trailing (least significant) zeros
-in a variable.  If the src == 0 then the result is the size in bits of the type
-of src.  For example, <tt>llvm.cttz(2) = 1</tt>.
-</p>
-</div>
-
-<!-- _______________________________________________________________________ -->
-<div class="doc_subsubsection">
-  <a name="int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic</a>
-</div>
-
-<div class="doc_text">
-
-<h5>Syntax:</h5>
-<p>This is an overloaded intrinsic. You can use <tt>llvm.part.select</tt> 
-on any integer bit width.</p>
-<pre>
-  declare i17 @llvm.part.select.i17 (i17 %val, i32 %loBit, i32 %hiBit)
-  declare i29 @llvm.part.select.i29 (i29 %val, i32 %loBit, i32 %hiBit)
-</pre>
-
-<h5>Overview:</h5>
-<p>The '<tt>llvm.part.select</tt>' family of intrinsic functions selects a
-range of bits from an integer value and returns them in the same bit width as
-the original value.</p>
-
-<h5>Arguments:</h5>
-<p>The first argument, <tt>%val</tt> and the result may be integer types of 
-any bit width but they must have the same bit width. The second and third 
-arguments must be <tt>i32</tt> type since they specify only a bit index.</p>
-
-<h5>Semantics:</h5>
-<p>The operation of the '<tt>llvm.part.select</tt>' intrinsic has two modes
-of operation: forwards and reverse. If <tt>%loBit</tt> is greater than
-<tt>%hiBits</tt> then the intrinsic operates in reverse mode. Otherwise it
-operates in forward mode.</p>
-<p>In forward mode, this intrinsic is the equivalent of shifting <tt>%val</tt>
-right by <tt>%loBit</tt> bits and then ANDing it with a mask with
-only the <tt>%hiBit - %loBit</tt> bits set, as follows:</p>
-<ol>
-  <li>The <tt>%val</tt> is shifted right (LSHR) by the number of bits specified
-  by <tt>%loBits</tt>. This normalizes the value to the low order bits.</li>
-  <li>The <tt>%loBits</tt> value is subtracted from the <tt>%hiBits</tt> value
-  to determine the number of bits to retain.</li>
-  <li>A mask of the retained bits is created by shifting a -1 value.</li>
-  <li>The mask is ANDed with <tt>%val</tt> to produce the result.</li>
-</ol>
-<p>In reverse mode, a similar computation is made except that the bits are
-returned in the reverse order. So, for example, if <tt>X</tt> has the value
-<tt>i16 0x0ACF (101011001111)</tt> and we apply 
-<tt>part.select(i16 X, 8, 3)</tt> to it, we get back the value 
-<tt>i16 0x0026 (000000100110)</tt>.</p>
-</div>
-
-<div class="doc_subsubsection">
-  <a name="int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic</a>
-</div>
-
-<div class="doc_text">
-
-<h5>Syntax:</h5>
-<p>This is an overloaded intrinsic. You can use <tt>llvm.part.set</tt> 
-on any integer bit width.</p>
-<pre>
-  declare i17 @llvm.part.set.i17.i9 (i17 %val, i9 %repl, i32 %lo, i32 %hi)
-  declare i29 @llvm.part.set.i29.i9 (i29 %val, i9 %repl, i32 %lo, i32 %hi)
-</pre>
-
-<h5>Overview:</h5>
-<p>The '<tt>llvm.part.set</tt>' family of intrinsic functions replaces a range
-of bits in an integer value with another integer value. It returns the integer
-with the replaced bits.</p>
+<p>The '<tt>llvm.cttz</tt>' family of intrinsic functions counts the number of
+   trailing zeros.</p>
 
 <h5>Arguments:</h5>
-<p>The first argument, <tt>%val</tt>, and the result may be integer types of 
-any bit width, but they must have the same bit width. <tt>%val</tt> is the value
-whose bits will be replaced.  The second argument, <tt>%repl</tt> may be an
-integer of any bit width. The third and fourth arguments must be <tt>i32</tt> 
-type since they specify only a bit index.</p>
+<p>The only argument is the value to be counted.  The argument may be of any
+   integer type.  The return type must match the argument type.</p>
 
 <h5>Semantics:</h5>
-<p>The operation of the '<tt>llvm.part.set</tt>' intrinsic has two modes
-of operation: forwards and reverse. If <tt>%lo</tt> is greater than
-<tt>%hi</tt> then the intrinsic operates in reverse mode. Otherwise it
-operates in forward mode.</p>
-
-<p>For both modes, the <tt>%repl</tt> value is prepared for use by either
-truncating it down to the size of the replacement area or zero extending it 
-up to that size.</p>
-
-<p>In forward mode, the bits between <tt>%lo</tt> and <tt>%hi</tt> (inclusive)
-are replaced with corresponding bits from <tt>%repl</tt>. That is the 0th bit
-in <tt>%repl</tt> replaces the <tt>%lo</tt>th bit in <tt>%val</tt> and etc. up
-to the <tt>%hi</tt>th bit.</p>
-
-<p>In reverse mode, a similar computation is made except that the bits are
-reversed.  That is, the <tt>0</tt>th bit in <tt>%repl</tt> replaces the 
-<tt>%hi</tt> bit in <tt>%val</tt> and etc. down to the <tt>%lo</tt>th bit.</p>
-
-<h5>Examples:</h5>
-
-<pre>
-  llvm.part.set(0xFFFF, 0, 4, 7) -&gt; 0xFF0F
-  llvm.part.set(0xFFFF, 0, 7, 4) -&gt; 0xFF0F
-  llvm.part.set(0xFFFF, 1, 7, 4) -&gt; 0xFF8F
-  llvm.part.set(0xFFFF, F, 8, 3) -&gt; 0xFFE7
-  llvm.part.set(0xFFFF, 0, 3, 8) -&gt; 0xFE07
-</pre>
+<p>The '<tt>llvm.cttz</tt>' intrinsic counts the trailing (least significant)
+   zeros in a variable.  If the src == 0 then the result is the size in bits of
+   the type of src.  For example, <tt>llvm.cttz(2) = 1</tt>.</p>
 
 </div>
 
@@ -6164,9 +6182,8 @@ reversed.  That is, the <tt>0</tt>th bit in <tt>%repl</tt> replaces the
 </div>
 
 <div class="doc_text">
-<p>
-LLVM provides intrinsics for some arithmetic with overflow operations.
-</p>
+
+<p>LLVM provides intrinsics for some arithmetic with overflow operations.</p>
 
 </div>
 
@@ -6178,9 +6195,8 @@ LLVM provides intrinsics for some arithmetic with overflow operations.
 <div class="doc_text">
 
 <h5>Syntax:</h5>
-
 <p>This is an overloaded intrinsic. You can use <tt>llvm.sadd.with.overflow</tt>
-on any integer bit width.</p>
+   on any integer bit width.</p>
 
 <pre>
   declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
@@ -6189,24 +6205,23 @@ on any integer bit width.</p>
 </pre>
 
 <h5>Overview:</h5>
-
 <p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform
-a signed addition of the two arguments, and indicate whether an overflow
-occurred during the signed summation.</p>
+   a signed addition of the two arguments, and indicate whether an overflow
+   occurred during the signed summation.</p>
 
 <h5>Arguments:</h5>
-
 <p>The arguments (%a and %b) and the first element of the result structure may
-be of integer types of any bit width, but they must have the same bit width. The
-second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt>
-and <tt>%b</tt> are the two values that will undergo signed addition.</p>
+   be of integer types of any bit width, but they must have the same bit
+   width. The second element of the result structure must be of
+   type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
+   undergo signed addition.</p>
 
 <h5>Semantics:</h5>
-
 <p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform
-a signed addition of the two variables. They return a structure &mdash; the
-first element of which is the signed summation, and the second element of which
-is a bit specifying if the signed summation resulted in an overflow.</p>
+   a signed addition of the two variables. They return a structure &mdash; the
+   first element of which is the signed summation, and the second element of
+   which is a bit specifying if the signed summation resulted in an
+   overflow.</p>
 
 <h5>Examples:</h5>
 <pre>
@@ -6226,9 +6241,8 @@ is a bit specifying if the signed summation resulted in an overflow.</p>
 <div class="doc_text">
 
 <h5>Syntax:</h5>
-
 <p>This is an overloaded intrinsic. You can use <tt>llvm.uadd.with.overflow</tt>
-on any integer bit width.</p>
+   on any integer bit width.</p>
 
 <pre>
   declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
@@ -6237,24 +6251,22 @@ on any integer bit width.</p>
 </pre>
 
 <h5>Overview:</h5>
-
 <p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform
-an unsigned addition of the two arguments, and indicate whether a carry occurred
-during the unsigned summation.</p>
+   an unsigned addition of the two arguments, and indicate whether a carry
+   occurred during the unsigned summation.</p>
 
 <h5>Arguments:</h5>
-
 <p>The arguments (%a and %b) and the first element of the result structure may
-be of integer types of any bit width, but they must have the same bit width. The
-second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt>
-and <tt>%b</tt> are the two values that will undergo unsigned addition.</p>
+   be of integer types of any bit width, but they must have the same bit
+   width. The second element of the result structure must be of
+   type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
+   undergo unsigned addition.</p>
 
 <h5>Semantics:</h5>
-
 <p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform
-an unsigned addition of the two arguments. They return a structure &mdash; the
-first element of which is the sum, and the second element of which is a bit
-specifying if the unsigned summation resulted in a carry.</p>
+   an unsigned addition of the two arguments. They return a structure &mdash;
+   the first element of which is the sum, and the second element of which is a
+   bit specifying if the unsigned summation resulted in a carry.</p>
 
 <h5>Examples:</h5>
 <pre>
@@ -6274,9 +6286,8 @@ specifying if the unsigned summation resulted in a carry.</p>
 <div class="doc_text">
 
 <h5>Syntax:</h5>
-
 <p>This is an overloaded intrinsic. You can use <tt>llvm.ssub.with.overflow</tt>
-on any integer bit width.</p>
+   on any integer bit width.</p>
 
 <pre>
   declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
@@ -6285,24 +6296,23 @@ on any integer bit width.</p>
 </pre>
 
 <h5>Overview:</h5>
-
 <p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform
-a signed subtraction of the two arguments, and indicate whether an overflow
-occurred during the signed subtraction.</p>
+   a signed subtraction of the two arguments, and indicate whether an overflow
+   occurred during the signed subtraction.</p>
 
 <h5>Arguments:</h5>
-
 <p>The arguments (%a and %b) and the first element of the result structure may
-be of integer types of any bit width, but they must have the same bit width. The
-second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt>
-and <tt>%b</tt> are the two values that will undergo signed subtraction.</p>
+   be of integer types of any bit width, but they must have the same bit
+   width. The second element of the result structure must be of
+   type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
+   undergo signed subtraction.</p>
 
 <h5>Semantics:</h5>
-
 <p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform
-a signed subtraction of the two arguments. They return a structure &mdash; the
-first element of which is the subtraction, and the second element of which is a bit
-specifying if the signed subtraction resulted in an overflow.</p>
+   a signed subtraction of the two arguments. They return a structure &mdash;
+   the first element of which is the subtraction, and the second element of
+   which is a bit specifying if the signed subtraction resulted in an
+   overflow.</p>
 
 <h5>Examples:</h5>
 <pre>
@@ -6322,9 +6332,8 @@ specifying if the signed subtraction resulted in an overflow.</p>
 <div class="doc_text">
 
 <h5>Syntax:</h5>
-
 <p>This is an overloaded intrinsic. You can use <tt>llvm.usub.with.overflow</tt>
-on any integer bit width.</p>
+   on any integer bit width.</p>
 
 <pre>
   declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
@@ -6333,24 +6342,23 @@ on any integer bit width.</p>
 </pre>
 
 <h5>Overview:</h5>
-
 <p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform
-an unsigned subtraction of the two arguments, and indicate whether an overflow
-occurred during the unsigned subtraction.</p>
+   an unsigned subtraction of the two arguments, and indicate whether an
+   overflow occurred during the unsigned subtraction.</p>
 
 <h5>Arguments:</h5>
-
 <p>The arguments (%a and %b) and the first element of the result structure may
-be of integer types of any bit width, but they must have the same bit width. The
-second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt>
-and <tt>%b</tt> are the two values that will undergo unsigned subtraction.</p>
+   be of integer types of any bit width, but they must have the same bit
+   width. The second element of the result structure must be of
+   type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
+   undergo unsigned subtraction.</p>
 
 <h5>Semantics:</h5>
-
 <p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform
-an unsigned subtraction of the two arguments. They return a structure &mdash; the
-first element of which is the subtraction, and the second element of which is a bit
-specifying if the unsigned subtraction resulted in an overflow.</p>
+   an unsigned subtraction of the two arguments. They return a structure &mdash;
+   the first element of which is the subtraction, and the second element of
+   which is a bit specifying if the unsigned subtraction resulted in an
+   overflow.</p>
 
 <h5>Examples:</h5>
 <pre>
@@ -6370,9 +6378,8 @@ specifying if the unsigned subtraction resulted in an overflow.</p>
 <div class="doc_text">
 
 <h5>Syntax:</h5>
-
 <p>This is an overloaded intrinsic. You can use <tt>llvm.smul.with.overflow</tt>
-on any integer bit width.</p>
+   on any integer bit width.</p>
 
 <pre>
   declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
@@ -6383,23 +6390,22 @@ on any integer bit width.</p>
 <h5>Overview:</h5>
 
 <p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform
-a signed multiplication of the two arguments, and indicate whether an overflow
-occurred during the signed multiplication.</p>
+   a signed multiplication of the two arguments, and indicate whether an
+   overflow occurred during the signed multiplication.</p>
 
 <h5>Arguments:</h5>
-
 <p>The arguments (%a and %b) and the first element of the result structure may
-be of integer types of any bit width, but they must have the same bit width. The
-second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt>
-and <tt>%b</tt> are the two values that will undergo signed multiplication.</p>
+   be of integer types of any bit width, but they must have the same bit
+   width. The second element of the result structure must be of
+   type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
+   undergo signed multiplication.</p>
 
 <h5>Semantics:</h5>
-
 <p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform
-a signed multiplication of the two arguments. They return a structure &mdash;
-the first element of which is the multiplication, and the second element of
-which is a bit specifying if the signed multiplication resulted in an
-overflow.</p>
+   a signed multiplication of the two arguments. They return a structure &mdash;
+   the first element of which is the multiplication, and the second element of
+   which is a bit specifying if the signed multiplication resulted in an
+   overflow.</p>
 
 <h5>Examples:</h5>
 <pre>
@@ -6419,9 +6425,8 @@ overflow.</p>
 <div class="doc_text">
 
 <h5>Syntax:</h5>
-
 <p>This is an overloaded intrinsic. You can use <tt>llvm.umul.with.overflow</tt>
-on any integer bit width.</p>
+   on any integer bit width.</p>
 
 <pre>
   declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
@@ -6430,26 +6435,23 @@ on any integer bit width.</p>
 </pre>
 
 <h5>Overview:</h5>
-
 <p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform
-a unsigned multiplication of the two arguments, and indicate whether an overflow
-occurred during the unsigned multiplication.</p>
+   a unsigned multiplication of the two arguments, and indicate whether an
+   overflow occurred during the unsigned multiplication.</p>
 
 <h5>Arguments:</h5>
-
 <p>The arguments (%a and %b) and the first element of the result structure may
-be of integer types of any bit width, but they must have the same bit width. The
-second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt>
-and <tt>%b</tt> are the two values that will undergo unsigned
-multiplication.</p>
+   be of integer types of any bit width, but they must have the same bit
+   width. The second element of the result structure must be of
+   type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
+   undergo unsigned multiplication.</p>
 
 <h5>Semantics:</h5>
-
 <p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform
-an unsigned multiplication of the two arguments. They return a structure &mdash;
-the first element of which is the multiplication, and the second element of
-which is a bit specifying if the unsigned multiplication resulted in an
-overflow.</p>
+   an unsigned multiplication of the two arguments. They return a structure
+   &mdash; the first element of which is the multiplication, and the second
+   element of which is a bit specifying if the unsigned multiplication resulted
+   in an overflow.</p>
 
 <h5>Examples:</h5>
 <pre>
@@ -6467,14 +6469,13 @@ overflow.</p>
 </div>
 
 <div class="doc_text">
-<p>
-The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt> prefix),
-are described in the <a
-href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source Level
-Debugging</a> document.
-</p>
-</div>
 
+<p>The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt>
+   prefix), are described in
+   the <a href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source
+   Level Debugging</a> document.</p>
+
+</div>
 
 <!-- ======================================================================= -->
 <div class="doc_subsection">
@@ -6482,10 +6483,12 @@ Debugging</a> document.
 </div>
 
 <div class="doc_text">
-<p> The LLVM exception handling intrinsics (which all start with
-<tt>llvm.eh.</tt> prefix), are described in the <a
-href="ExceptionHandling.html#format_common_intrinsics">LLVM Exception
-Handling</a> document. </p>
+
+<p>The LLVM exception handling intrinsics (which all start with
+   <tt>llvm.eh.</tt> prefix), are described in
+   the <a href="ExceptionHandling.html#format_common_intrinsics">LLVM Exception
+   Handling</a> document.</p>
+
 </div>
 
 <!-- ======================================================================= -->
@@ -6494,70 +6497,74 @@ Handling</a> document. </p>
 </div>
 
 <div class="doc_text">
-<p>
-  This intrinsic makes it possible to excise one parameter, marked with
-  the <tt>nest</tt> attribute, from a function.  The result is a callable
-  function pointer lacking the nest parameter - the caller does not need
-  to provide a value for it.  Instead, the value to use is stored in
-  advance in a "trampoline", a block of memory usually allocated
-  on the stack, which also contains code to splice the nest value into the
-  argument list.  This is used to implement the GCC nested function address
-  extension.
-</p>
-<p>
-  For example, if the function is
-  <tt>i32 f(i8* nest  %c, i32 %x, i32 %y)</tt> then the resulting function
-  pointer has signature <tt>i32 (i32, i32)*</tt>.  It can be created as follows:</p>
+
+<p>This intrinsic makes it possible to excise one parameter, marked with
+   the <tt>nest</tt> attribute, from a function.  The result is a callable
+   function pointer lacking the nest parameter - the caller does not need to
+   provide a value for it.  Instead, the value to use is stored in advance in a
+   "trampoline", a block of memory usually allocated on the stack, which also
+   contains code to splice the nest value into the argument list.  This is used
+   to implement the GCC nested function address extension.</p>
+
+<p>For example, if the function is
+   <tt>i32 f(i8* nest %c, i32 %x, i32 %y)</tt> then the resulting function
+   pointer has signature <tt>i32 (i32, i32)*</tt>.  It can be created as
+   follows:</p>
+
+<div class="doc_code">
 <pre>
   %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
   %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
   %p = call i8* @llvm.init.trampoline( i8* %tramp1, i8* bitcast (i32 (i8* nest , i32, i32)* @f to i8*), i8* %nval )
   %fp = bitcast i8* %p to i32 (i32, i32)*
 </pre>
-  <p>The call <tt>%val = call i32 %fp( i32 %x, i32 %y )</tt> is then equivalent
-  to <tt>%val = call i32 %f( i8* %nval, i32 %x, i32 %y )</tt>.</p>
+</div>
+
+<p>The call <tt>%val = call i32 %fp( i32 %x, i32 %y )</tt> is then equivalent
+   to <tt>%val = call i32 %f( i8* %nval, i32 %x, i32 %y )</tt>.</p>
+
 </div>
 
 <!-- _______________________________________________________________________ -->
 <div class="doc_subsubsection">
   <a name="int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a>
 </div>
+
 <div class="doc_text">
+
 <h5>Syntax:</h5>
 <pre>
-declare i8* @llvm.init.trampoline(i8* &lt;tramp&gt;, i8* &lt;func&gt;, i8* &lt;nval&gt;)
+  declare i8* @llvm.init.trampoline(i8* &lt;tramp&gt;, i8* &lt;func&gt;, i8* &lt;nval&gt;)
 </pre>
+
 <h5>Overview:</h5>
-<p>
-  This fills the memory pointed to by <tt>tramp</tt> with code
-  and returns a function pointer suitable for executing it.
-</p>
+<p>This fills the memory pointed to by <tt>tramp</tt> with code and returns a
+   function pointer suitable for executing it.</p>
+
 <h5>Arguments:</h5>
-<p>
-  The <tt>llvm.init.trampoline</tt> intrinsic takes three arguments, all
-  pointers.  The <tt>tramp</tt> argument must point to a sufficiently large
-  and sufficiently aligned block of memory; this memory is written to by the
-  intrinsic.  Note that the size and the alignment are target-specific - LLVM
-  currently provides no portable way of determining them, so a front-end that
-  generates this intrinsic needs to have some target-specific knowledge.
-  The <tt>func</tt> argument must hold a function bitcast to an <tt>i8*</tt>.
-</p>
+<p>The <tt>llvm.init.trampoline</tt> intrinsic takes three arguments, all
+   pointers.  The <tt>tramp</tt> argument must point to a sufficiently large and
+   sufficiently aligned block of memory; this memory is written to by the
+   intrinsic.  Note that the size and the alignment are target-specific - LLVM
+   currently provides no portable way of determining them, so a front-end that
+   generates this intrinsic needs to have some target-specific knowledge.
+   The <tt>func</tt> argument must hold a function bitcast to
+   an <tt>i8*</tt>.</p>
+
 <h5>Semantics:</h5>
-<p>
-  The block of memory pointed to by <tt>tramp</tt> is filled with target
-  dependent code, turning it into a function.  A pointer to this function is
-  returned, but needs to be bitcast to an
-  <a href="#int_trampoline">appropriate function pointer type</a>
-  before being called.  The new function's signature is the same as that of
-  <tt>func</tt> with any arguments marked with the <tt>nest</tt> attribute
-  removed.  At most one such <tt>nest</tt> argument is allowed, and it must be
-  of pointer type.  Calling the new function is equivalent to calling
-  <tt>func</tt> with the same argument list, but with <tt>nval</tt> used for the
-  missing <tt>nest</tt> argument.  If, after calling
-  <tt>llvm.init.trampoline</tt>, the memory pointed to by <tt>tramp</tt> is
-  modified, then the effect of any later call to the returned function pointer is
-  undefined.
-</p>
+<p>The block of memory pointed to by <tt>tramp</tt> is filled with target
+   dependent code, turning it into a function.  A pointer to this function is
+   returned, but needs to be bitcast to an <a href="#int_trampoline">appropriate
+   function pointer type</a> before being called.  The new function's signature
+   is the same as that of <tt>func</tt> with any arguments marked with
+   the <tt>nest</tt> attribute removed.  At most one such <tt>nest</tt> argument
+   is allowed, and it must be of pointer type.  Calling the new function is
+   equivalent to calling <tt>func</tt> with the same argument list, but
+   with <tt>nval</tt> used for the missing <tt>nest</tt> argument.  If, after
+   calling <tt>llvm.init.trampoline</tt>, the memory pointed to
+   by <tt>tramp</tt> is modified, then the effect of any later call to the
+   returned function pointer is undefined.</p>
+
 </div>
 
 <!-- ======================================================================= -->
@@ -6566,27 +6573,25 @@ declare i8* @llvm.init.trampoline(i8* &lt;tramp&gt;, i8* &lt;func&gt;, i8* &lt;n
 </div>
 
 <div class="doc_text">
-<p>
-  These intrinsic functions expand the "universal IR" of LLVM to represent 
-  hardware constructs for atomic operations and memory synchronization.  This 
-  provides an interface to the hardware, not an interface to the programmer. It 
-  is aimed at a low enough level to allow any programming models or APIs
-  (Application Programming Interfaces) which 
-  need atomic behaviors to map cleanly onto it. It is also modeled primarily on 
-  hardware behavior. Just as hardware provides a "universal IR" for source 
-  languages, it also provides a starting point for developing a "universal" 
-  atomic operation and synchronization IR.
-</p>
-<p>
-  These do <em>not</em> form an API such as high-level threading libraries, 
-  software transaction memory systems, atomic primitives, and intrinsic 
-  functions as found in BSD, GNU libc, atomic_ops, APR, and other system and 
-  application libraries.  The hardware interface provided by LLVM should allow 
-  a clean implementation of all of these APIs and parallel programming models. 
-  No one model or paradigm should be selected above others unless the hardware 
-  itself ubiquitously does so.
 
-</p>
+<p>These intrinsic functions expand the "universal IR" of LLVM to represent
+   hardware constructs for atomic operations and memory synchronization.  This
+   provides an interface to the hardware, not an interface to the programmer. It
+   is aimed at a low enough level to allow any programming models or APIs
+   (Application Programming Interfaces) which need atomic behaviors to map
+   cleanly onto it. It is also modeled primarily on hardware behavior. Just as
+   hardware provides a "universal IR" for source languages, it also provides a
+   starting point for developing a "universal" atomic operation and
+   synchronization IR.</p>
+
+<p>These do <em>not</em> form an API such as high-level threading libraries,
+   software transaction memory systems, atomic primitives, and intrinsic
+   functions as found in BSD, GNU libc, atomic_ops, APR, and other system and
+   application libraries.  The hardware interface provided by LLVM should allow
+   a clean implementation of all of these APIs and parallel programming models.
+   No one model or paradigm should be selected above others unless the hardware
+   itself ubiquitously does so.</p>
+
 </div>
 
 <!-- _______________________________________________________________________ -->
@@ -6596,62 +6601,60 @@ declare i8* @llvm.init.trampoline(i8* &lt;tramp&gt;, i8* &lt;func&gt;, i8* &lt;n
 <div class="doc_text">
 <h5>Syntax:</h5>
 <pre>
-declare void @llvm.memory.barrier( i1 &lt;ll&gt;, i1 &lt;ls&gt;, i1 &lt;sl&gt;, i1 &lt;ss&gt;, 
-i1 &lt;device&gt; )
-
+  declare void @llvm.memory.barrier( i1 &lt;ll&gt;, i1 &lt;ls&gt;, i1 &lt;sl&gt;, i1 &lt;ss&gt;, i1 &lt;device&gt; )
 </pre>
+
 <h5>Overview:</h5>
-<p>
-  The <tt>llvm.memory.barrier</tt> intrinsic guarantees ordering between 
-  specific pairs of memory access types.
-</p>
+<p>The <tt>llvm.memory.barrier</tt> intrinsic guarantees ordering between
+   specific pairs of memory access types.</p>
+
 <h5>Arguments:</h5>
-<p>
-  The <tt>llvm.memory.barrier</tt> intrinsic requires five boolean arguments. 
-  The first four arguments enables a specific barrier as listed below.  The fith
-  argument specifies that the barrier applies to io or device or uncached memory.
+<p>The <tt>llvm.memory.barrier</tt> intrinsic requires five boolean arguments.
+   The first four arguments enables a specific barrier as listed below.  The
+   fith argument specifies that the barrier applies to io or device or uncached
+   memory.</p>
+
+<ul>
+  <li><tt>ll</tt>: load-load barrier</li>
+  <li><tt>ls</tt>: load-store barrier</li>
+  <li><tt>sl</tt>: store-load barrier</li>
+  <li><tt>ss</tt>: store-store barrier</li>
+  <li><tt>device</tt>: barrier applies to device and uncached memory also.</li>
+</ul>
 
-</p>
-  <ul>
-    <li><tt>ll</tt>: load-load barrier</li>
-    <li><tt>ls</tt>: load-store barrier</li>
-    <li><tt>sl</tt>: store-load barrier</li>
-    <li><tt>ss</tt>: store-store barrier</li>
-    <li><tt>device</tt>: barrier applies to device and uncached memory also.</li>
-  </ul>
 <h5>Semantics:</h5>
-<p>
-  This intrinsic causes the system to enforce some ordering constraints upon 
-  the loads and stores of the program. This barrier does not indicate 
-  <em>when</em> any events will occur, it only enforces an <em>order</em> in 
-  which they occur. For any of the specified pairs of load and store operations 
-  (f.ex.  load-load, or store-load), all of the first operations preceding the 
-  barrier will complete before any of the second operations succeeding the 
-  barrier begin. Specifically the semantics for each pairing is as follows:
-</p>
-  <ul>
-    <li><tt>ll</tt>: All loads before the barrier must complete before any load 
-    after the barrier begins.</li>
-
-    <li><tt>ls</tt>: All loads before the barrier must complete before any 
-    store after the barrier begins.</li>
-    <li><tt>ss</tt>: All stores before the barrier must complete before any 
-    store after the barrier begins.</li>
-    <li><tt>sl</tt>: All stores before the barrier must complete before any 
-    load after the barrier begins.</li>
-  </ul>
-<p>
-  These semantics are applied with a logical "and" behavior when more than  one 
-  is enabled in a single memory barrier intrinsic.  
-</p>
-<p>
-  Backends may implement stronger barriers than those requested when they do not
-  support as fine grained a barrier as requested.  Some architectures do not
-  need all types of barriers and on such architectures, these become noops.
-</p>
+<p>This intrinsic causes the system to enforce some ordering constraints upon
+   the loads and stores of the program. This barrier does not
+   indicate <em>when</em> any events will occur, it only enforces
+   an <em>order</em> in which they occur. For any of the specified pairs of load
+   and store operations (f.ex.  load-load, or store-load), all of the first
+   operations preceding the barrier will complete before any of the second
+   operations succeeding the barrier begin. Specifically the semantics for each
+   pairing is as follows:</p>
+
+<ul>
+  <li><tt>ll</tt>: All loads before the barrier must complete before any load
+      after the barrier begins.</li>
+  <li><tt>ls</tt>: All loads before the barrier must complete before any
+      store after the barrier begins.</li>
+  <li><tt>ss</tt>: All stores before the barrier must complete before any
+      store after the barrier begins.</li>
+  <li><tt>sl</tt>: All stores before the barrier must complete before any
+      load after the barrier begins.</li>
+</ul>
+
+<p>These semantics are applied with a logical "and" behavior when more than one
+   is enabled in a single memory barrier intrinsic.</p>
+
+<p>Backends may implement stronger barriers than those requested when they do
+   not support as fine grained a barrier as requested.  Some architectures do
+   not need all types of barriers and on such architectures, these become
+   noops.</p>
+
 <h5>Example:</h5>
 <pre>
-%ptr      = malloc i32
+%mallocP  = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
+%ptr      = bitcast i8* %mallocP to i32*
             store i32 4, %ptr
 
 %result1  = load i32* %ptr      <i>; yields {i32}:result1 = 4</i>
@@ -6659,52 +6662,51 @@ i1 &lt;device&gt; )
                                 <i>; guarantee the above finishes</i>
             store i32 8, %ptr   <i>; before this begins</i>
 </pre>
+
 </div>
 
 <!-- _______________________________________________________________________ -->
 <div class="doc_subsubsection">
   <a name="int_atomic_cmp_swap">'<tt>llvm.atomic.cmp.swap.*</tt>' Intrinsic</a>
 </div>
+
 <div class="doc_text">
+
 <h5>Syntax:</h5>
-<p>
-  This is an overloaded intrinsic. You can use <tt>llvm.atomic.cmp.swap</tt> on
-  any integer bit width and for different address spaces. Not all targets
-  support all bit widths however.</p>
+<p>This is an overloaded intrinsic. You can use <tt>llvm.atomic.cmp.swap</tt> on
+   any integer bit width and for different address spaces. Not all targets
+   support all bit widths however.</p>
 
 <pre>
-declare i8 @llvm.atomic.cmp.swap.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;cmp&gt;, i8 &lt;val&gt; )
-declare i16 @llvm.atomic.cmp.swap.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;cmp&gt;, i16 &lt;val&gt; )
-declare i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;cmp&gt;, i32 &lt;val&gt; )
-declare i64 @llvm.atomic.cmp.swap.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;cmp&gt;, i64 &lt;val&gt; )
-
+  declare i8 @llvm.atomic.cmp.swap.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;cmp&gt;, i8 &lt;val&gt; )
+  declare i16 @llvm.atomic.cmp.swap.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;cmp&gt;, i16 &lt;val&gt; )
+  declare i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;cmp&gt;, i32 &lt;val&gt; )
+  declare i64 @llvm.atomic.cmp.swap.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;cmp&gt;, i64 &lt;val&gt; )
 </pre>
+
 <h5>Overview:</h5>
-<p>
-  This loads a value in memory and compares it to a given value. If they are 
-  equal, it stores a new value into the memory.
-</p>
+<p>This loads a value in memory and compares it to a given value. If they are
+   equal, it stores a new value into the memory.</p>
+
 <h5>Arguments:</h5>
-<p>
-  The <tt>llvm.atomic.cmp.swap</tt> intrinsic takes three arguments. The result as 
-  well as both <tt>cmp</tt> and <tt>val</tt> must be integer values with the 
-  same bit width. The <tt>ptr</tt> argument must be a pointer to a value of 
-  this integer type. While any bit width integer may be used, targets may only 
-  lower representations they support in hardware.
+<p>The <tt>llvm.atomic.cmp.swap</tt> intrinsic takes three arguments. The result
+   as well as both <tt>cmp</tt> and <tt>val</tt> must be integer values with the
+   same bit width. The <tt>ptr</tt> argument must be a pointer to a value of
+   this integer type. While any bit width integer may be used, targets may only
+   lower representations they support in hardware.</p>
 
-</p>
 <h5>Semantics:</h5>
-<p>
-  This entire intrinsic must be executed atomically. It first loads the value 
-  in memory pointed to by <tt>ptr</tt> and compares it with the value 
-  <tt>cmp</tt>. If they are equal, <tt>val</tt> is stored into the memory. The 
-  loaded value is yielded in all cases. This provides the equivalent of an 
-  atomic compare-and-swap operation within the SSA framework.
-</p>
-<h5>Examples:</h5>
+<p>This entire intrinsic must be executed atomically. It first loads the value
+   in memory pointed to by <tt>ptr</tt> and compares it with the
+   value <tt>cmp</tt>. If they are equal, <tt>val</tt> is stored into the
+   memory. The loaded value is yielded in all cases. This provides the
+   equivalent of an atomic compare-and-swap operation within the SSA
+   framework.</p>
 
+<h5>Examples:</h5>
 <pre>
-%ptr      = malloc i32
+%mallocP  = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
+%ptr      = bitcast i8* %mallocP to i32*
             store i32 4, %ptr
 
 %val1     = add i32 4, 4
@@ -6720,6 +6722,7 @@ declare i64 @llvm.atomic.cmp.swap.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;cmp&gt;,
 
 %memval2  = load i32* %ptr                <i>; yields {i32}:memval2 = 8</i>
 </pre>
+
 </div>
 
 <!-- _______________________________________________________________________ -->
@@ -6729,41 +6732,37 @@ declare i64 @llvm.atomic.cmp.swap.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;cmp&gt;,
 <div class="doc_text">
 <h5>Syntax:</h5>
 
-<p>
-  This is an overloaded intrinsic. You can use <tt>llvm.atomic.swap</tt> on any 
-  integer bit width. Not all targets support all bit widths however.</p>
-<pre>
-declare i8 @llvm.atomic.swap.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;val&gt; )
-declare i16 @llvm.atomic.swap.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;val&gt; )
-declare i32 @llvm.atomic.swap.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;val&gt; )
-declare i64 @llvm.atomic.swap.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;val&gt; )
+<p>This is an overloaded intrinsic. You can use <tt>llvm.atomic.swap</tt> on any
+   integer bit width. Not all targets support all bit widths however.</p>
 
+<pre>
+  declare i8 @llvm.atomic.swap.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;val&gt; )
+  declare i16 @llvm.atomic.swap.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;val&gt; )
+  declare i32 @llvm.atomic.swap.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;val&gt; )
+  declare i64 @llvm.atomic.swap.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;val&gt; )
 </pre>
+
 <h5>Overview:</h5>
-<p>
-  This intrinsic loads the value stored in memory at <tt>ptr</tt> and yields 
-  the value from memory. It then stores the value in <tt>val</tt> in the memory 
-  at <tt>ptr</tt>.
-</p>
+<p>This intrinsic loads the value stored in memory at <tt>ptr</tt> and yields
+   the value from memory. It then stores the value in <tt>val</tt> in the memory
+   at <tt>ptr</tt>.</p>
+
 <h5>Arguments:</h5>
+<p>The <tt>llvm.atomic.swap</tt> intrinsic takes two arguments. Both
+  the <tt>val</tt> argument and the result must be integers of the same bit
+  width.  The first argument, <tt>ptr</tt>, must be a pointer to a value of this
+  integer type. The targets may only lower integer representations they
+  support.</p>
 
-<p>
-  The <tt>llvm.atomic.swap</tt> intrinsic takes two arguments. Both the 
-  <tt>val</tt> argument and the result must be integers of the same bit width. 
-  The first argument, <tt>ptr</tt>, must be a pointer to a value of this 
-  integer type. The targets may only lower integer representations they 
-  support.
-</p>
 <h5>Semantics:</h5>
-<p>
-  This intrinsic loads the value pointed to by <tt>ptr</tt>, yields it, and 
-  stores <tt>val</tt> back into <tt>ptr</tt> atomically. This provides the 
-  equivalent of an atomic swap operation within the SSA framework.
+<p>This intrinsic loads the value pointed to by <tt>ptr</tt>, yields it, and
+   stores <tt>val</tt> back into <tt>ptr</tt> atomically. This provides the
+   equivalent of an atomic swap operation within the SSA framework.</p>
 
-</p>
 <h5>Examples:</h5>
 <pre>
-%ptr      = malloc i32
+%mallocP  = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
+%ptr      = bitcast i8* %mallocP to i32*
             store i32 4, %ptr
 
 %val1     = add i32 4, 4
@@ -6779,6 +6778,7 @@ declare i64 @llvm.atomic.swap.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;val&gt; )
 %stored2  = icmp eq i32 %result2, 8     <i>; yields {i1}:stored2 = true</i>
 %memval2  = load i32* %ptr              <i>; yields {i32}:memval2 = 2</i>
 </pre>
+
 </div>
 
 <!-- _______________________________________________________________________ -->
@@ -6786,42 +6786,40 @@ declare i64 @llvm.atomic.swap.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;val&gt; )
   <a name="int_atomic_load_add">'<tt>llvm.atomic.load.add.*</tt>' Intrinsic</a>
 
 </div>
+
 <div class="doc_text">
+
 <h5>Syntax:</h5>
-<p>
-  This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.add</tt> on any 
-  integer bit width. Not all targets support all bit widths however.</p>
-<pre>
-declare i8 @llvm.atomic.load.add.i8..p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
-declare i16 @llvm.atomic.load.add.i16..p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
-declare i32 @llvm.atomic.load.add.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
-declare i64 @llvm.atomic.load.add.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
+<p>This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.add</tt> on
+   any integer bit width. Not all targets support all bit widths however.</p>
 
+<pre>
+  declare i8 @llvm.atomic.load.add.i8..p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
+  declare i16 @llvm.atomic.load.add.i16..p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
+  declare i32 @llvm.atomic.load.add.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
+  declare i64 @llvm.atomic.load.add.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
 </pre>
+
 <h5>Overview:</h5>
-<p>
-  This intrinsic adds <tt>delta</tt> to the value stored in memory at 
-  <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.
-</p>
+<p>This intrinsic adds <tt>delta</tt> to the value stored in memory
+   at <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.</p>
+
 <h5>Arguments:</h5>
-<p>
+<p>The intrinsic takes two arguments, the first a pointer to an integer value
+   and the second an integer value. The result is also an integer value. These
+   integer types can have any bit width, but they must all have the same bit
+   width. The targets may only lower integer representations they support.</p>
 
-  The intrinsic takes two arguments, the first a pointer to an integer value 
-  and the second an integer value. The result is also an integer value. These 
-  integer types can have any bit width, but they must all have the same bit 
-  width. The targets may only lower integer representations they support.
-</p>
 <h5>Semantics:</h5>
-<p>
-  This intrinsic does a series of operations atomically. It first loads the 
-  value stored at <tt>ptr</tt>. It then adds <tt>delta</tt>, stores the result 
-  to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.
-</p>
+<p>This intrinsic does a series of operations atomically. It first loads the
+   value stored at <tt>ptr</tt>. It then adds <tt>delta</tt>, stores the result
+   to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.</p>
 
 <h5>Examples:</h5>
 <pre>
-%ptr      = malloc i32
-        store i32 4, %ptr
+%mallocP  = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
+%ptr      = bitcast i8* %mallocP to i32*
+            store i32 4, %ptr
 %result1  = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 4 )
                                 <i>; yields {i32}:result1 = 4</i>
 %result2  = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 2 )
@@ -6830,6 +6828,7 @@ declare i64 @llvm.atomic.load.add.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt
                                 <i>; yields {i32}:result3 = 10</i>
 %memval1  = load i32* %ptr      <i>; yields {i32}:memval1 = 15</i>
 </pre>
+
 </div>
 
 <!-- _______________________________________________________________________ -->
@@ -6837,43 +6836,42 @@ declare i64 @llvm.atomic.load.add.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt
   <a name="int_atomic_load_sub">'<tt>llvm.atomic.load.sub.*</tt>' Intrinsic</a>
 
 </div>
+
 <div class="doc_text">
+
 <h5>Syntax:</h5>
-<p>
-  This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.sub</tt> on
-  any integer bit width and for different address spaces. Not all targets
-  support all bit widths however.</p>
-<pre>
-declare i8 @llvm.atomic.load.sub.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
-declare i16 @llvm.atomic.load.sub.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
-declare i32 @llvm.atomic.load.sub.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
-declare i64 @llvm.atomic.load.sub.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
+<p>This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.sub</tt> on
+   any integer bit width and for different address spaces. Not all targets
+   support all bit widths however.</p>
 
+<pre>
+  declare i8 @llvm.atomic.load.sub.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
+  declare i16 @llvm.atomic.load.sub.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
+  declare i32 @llvm.atomic.load.sub.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
+  declare i64 @llvm.atomic.load.sub.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
 </pre>
+
 <h5>Overview:</h5>
-<p>
-  This intrinsic subtracts <tt>delta</tt> to the value stored in memory at 
-  <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.
-</p>
+<p>This intrinsic subtracts <tt>delta</tt> to the value stored in memory at
+   <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.</p>
+
 <h5>Arguments:</h5>
-<p>
+<p>The intrinsic takes two arguments, the first a pointer to an integer value
+   and the second an integer value. The result is also an integer value. These
+   integer types can have any bit width, but they must all have the same bit
+   width. The targets may only lower integer representations they support.</p>
 
-  The intrinsic takes two arguments, the first a pointer to an integer value 
-  and the second an integer value. The result is also an integer value. These 
-  integer types can have any bit width, but they must all have the same bit 
-  width. The targets may only lower integer representations they support.
-</p>
 <h5>Semantics:</h5>
-<p>
-  This intrinsic does a series of operations atomically. It first loads the 
-  value stored at <tt>ptr</tt>. It then subtracts <tt>delta</tt>, stores the
-  result to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.
-</p>
+<p>This intrinsic does a series of operations atomically. It first loads the
+   value stored at <tt>ptr</tt>. It then subtracts <tt>delta</tt>, stores the
+   result to <tt>ptr</tt>. It yields the original value stored
+   at <tt>ptr</tt>.</p>
 
 <h5>Examples:</h5>
 <pre>
-%ptr      = malloc i32
-        store i32 8, %ptr
+%mallocP  = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
+%ptr      = bitcast i8* %mallocP to i32*
+            store i32 8, %ptr
 %result1  = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 4 )
                                 <i>; yields {i32}:result1 = 8</i>
 %result2  = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 2 )
@@ -6882,6 +6880,7 @@ declare i64 @llvm.atomic.load.sub.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt;
                                 <i>; yields {i32}:result3 = 2</i>
 %memval1  = load i32* %ptr      <i>; yields {i32}:memval1 = -3</i>
 </pre>
+
 </div>
 
 <!-- _______________________________________________________________________ -->
@@ -6890,72 +6889,67 @@ declare i64 @llvm.atomic.load.sub.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt;
   <a name="int_atomic_load_nand">'<tt>llvm.atomic.load.nand.*</tt>' Intrinsic</a><br>
   <a name="int_atomic_load_or">'<tt>llvm.atomic.load.or.*</tt>' Intrinsic</a><br>
   <a name="int_atomic_load_xor">'<tt>llvm.atomic.load.xor.*</tt>' Intrinsic</a><br>
-
 </div>
+
 <div class="doc_text">
+
 <h5>Syntax:</h5>
-<p>
-  These are overloaded intrinsics. You can use <tt>llvm.atomic.load_and</tt>,
-  <tt>llvm.atomic.load_nand</tt>, <tt>llvm.atomic.load_or</tt>, and
-  <tt>llvm.atomic.load_xor</tt> on any integer bit width and for different
-  address spaces. Not all targets support all bit widths however.</p>
-<pre>
-declare i8 @llvm.atomic.load.and.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
-declare i16 @llvm.atomic.load.and.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
-declare i32 @llvm.atomic.load.and.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
-declare i64 @llvm.atomic.load.and.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
+<p>These are overloaded intrinsics. You can
+  use <tt>llvm.atomic.load_and</tt>, <tt>llvm.atomic.load_nand</tt>,
+  <tt>llvm.atomic.load_or</tt>, and <tt>llvm.atomic.load_xor</tt> on any integer
+  bit width and for different address spaces. Not all targets support all bit
+  widths however.</p>
 
+<pre>
+  declare i8 @llvm.atomic.load.and.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
+  declare i16 @llvm.atomic.load.and.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
+  declare i32 @llvm.atomic.load.and.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
+  declare i64 @llvm.atomic.load.and.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
 </pre>
 
 <pre>
-declare i8 @llvm.atomic.load.or.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
-declare i16 @llvm.atomic.load.or.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
-declare i32 @llvm.atomic.load.or.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
-declare i64 @llvm.atomic.load.or.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
-
+  declare i8 @llvm.atomic.load.or.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
+  declare i16 @llvm.atomic.load.or.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
+  declare i32 @llvm.atomic.load.or.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
+  declare i64 @llvm.atomic.load.or.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
 </pre>
 
 <pre>
-declare i8 @llvm.atomic.load.nand.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
-declare i16 @llvm.atomic.load.nand.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
-declare i32 @llvm.atomic.load.nand.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
-declare i64 @llvm.atomic.load.nand.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
-
+  declare i8 @llvm.atomic.load.nand.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
+  declare i16 @llvm.atomic.load.nand.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
+  declare i32 @llvm.atomic.load.nand.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
+  declare i64 @llvm.atomic.load.nand.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
 </pre>
 
 <pre>
-declare i8 @llvm.atomic.load.xor.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
-declare i16 @llvm.atomic.load.xor.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
-declare i32 @llvm.atomic.load.xor.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
-declare i64 @llvm.atomic.load.xor.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
-
+  declare i8 @llvm.atomic.load.xor.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
+  declare i16 @llvm.atomic.load.xor.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
+  declare i32 @llvm.atomic.load.xor.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
+  declare i64 @llvm.atomic.load.xor.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
 </pre>
+
 <h5>Overview:</h5>
-<p>
-  These intrinsics bitwise the operation (and, nand, or, xor) <tt>delta</tt> to
-  the value stored in memory at <tt>ptr</tt>. It yields the original value
-  at <tt>ptr</tt>.
-</p>
+<p>These intrinsics bitwise the operation (and, nand, or, xor) <tt>delta</tt> to
+   the value stored in memory at <tt>ptr</tt>. It yields the original value
+   at <tt>ptr</tt>.</p>
+
 <h5>Arguments:</h5>
-<p>
+<p>These intrinsics take two arguments, the first a pointer to an integer value
+   and the second an integer value. The result is also an integer value. These
+   integer types can have any bit width, but they must all have the same bit
+   width. The targets may only lower integer representations they support.</p>
 
-  These intrinsics take two arguments, the first a pointer to an integer value 
-  and the second an integer value. The result is also an integer value. These 
-  integer types can have any bit width, but they must all have the same bit 
-  width. The targets may only lower integer representations they support.
-</p>
 <h5>Semantics:</h5>
-<p>
-  These intrinsics does a series of operations atomically. They first load the 
-  value stored at <tt>ptr</tt>. They then do the bitwise operation
-  <tt>delta</tt>, store the result to <tt>ptr</tt>. They yield the original
-  value stored at <tt>ptr</tt>.
-</p>
+<p>These intrinsics does a series of operations atomically. They first load the
+   value stored at <tt>ptr</tt>. They then do the bitwise
+   operation <tt>delta</tt>, store the result to <tt>ptr</tt>. They yield the
+   original value stored at <tt>ptr</tt>.</p>
 
 <h5>Examples:</h5>
 <pre>
-%ptr      = malloc i32
-        store i32 0x0F0F, %ptr
+%mallocP  = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
+%ptr      = bitcast i8* %mallocP to i32*
+            store i32 0x0F0F, %ptr
 %result0  = call i32 @llvm.atomic.load.nand.i32.p0i32( i32* %ptr, i32 0xFF )
                                 <i>; yields {i32}:result0 = 0x0F0F</i>
 %result1  = call i32 @llvm.atomic.load.and.i32.p0i32( i32* %ptr, i32 0xFF )
@@ -6966,8 +6960,8 @@ declare i64 @llvm.atomic.load.xor.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt;
                                 <i>; yields {i32}:result3 = FF</i>
 %memval1  = load i32* %ptr      <i>; yields {i32}:memval1 = F0</i>
 </pre>
-</div>
 
+</div>
 
 <!-- _______________________________________________________________________ -->
 <div class="doc_subsubsection">
@@ -6975,73 +6969,66 @@ declare i64 @llvm.atomic.load.xor.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt;
   <a name="int_atomic_load_min">'<tt>llvm.atomic.load.min.*</tt>' Intrinsic</a><br>
   <a name="int_atomic_load_umax">'<tt>llvm.atomic.load.umax.*</tt>' Intrinsic</a><br>
   <a name="int_atomic_load_umin">'<tt>llvm.atomic.load.umin.*</tt>' Intrinsic</a><br>
-
 </div>
+
 <div class="doc_text">
+
 <h5>Syntax:</h5>
-<p>
-  These are overloaded intrinsics. You can use <tt>llvm.atomic.load_max</tt>,
-  <tt>llvm.atomic.load_min</tt>, <tt>llvm.atomic.load_umax</tt>, and
-  <tt>llvm.atomic.load_umin</tt> on any integer bit width and for different
-  address spaces. Not all targets
-  support all bit widths however.</p>
-<pre>
-declare i8 @llvm.atomic.load.max.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
-declare i16 @llvm.atomic.load.max.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
-declare i32 @llvm.atomic.load.max.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
-declare i64 @llvm.atomic.load.max.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
+<p>These are overloaded intrinsics. You can use <tt>llvm.atomic.load_max</tt>,
+   <tt>llvm.atomic.load_min</tt>, <tt>llvm.atomic.load_umax</tt>, and
+   <tt>llvm.atomic.load_umin</tt> on any integer bit width and for different
+   address spaces. Not all targets support all bit widths however.</p>
 
+<pre>
+  declare i8 @llvm.atomic.load.max.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
+  declare i16 @llvm.atomic.load.max.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
+  declare i32 @llvm.atomic.load.max.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
+  declare i64 @llvm.atomic.load.max.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
 </pre>
 
 <pre>
-declare i8 @llvm.atomic.load.min.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
-declare i16 @llvm.atomic.load.min.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
-declare i32 @llvm.atomic.load.min.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
-declare i64 @llvm.atomic.load.min.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
-
+  declare i8 @llvm.atomic.load.min.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
+  declare i16 @llvm.atomic.load.min.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
+  declare i32 @llvm.atomic.load.min.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
+  declare i64 @llvm.atomic.load.min.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
 </pre>
 
 <pre>
-declare i8 @llvm.atomic.load.umax.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
-declare i16 @llvm.atomic.load.umax.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
-declare i32 @llvm.atomic.load.umax.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
-declare i64 @llvm.atomic.load.umax.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
-
+  declare i8 @llvm.atomic.load.umax.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
+  declare i16 @llvm.atomic.load.umax.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
+  declare i32 @llvm.atomic.load.umax.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
+  declare i64 @llvm.atomic.load.umax.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
 </pre>
 
 <pre>
-declare i8 @llvm.atomic.load.umin.i8..p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
-declare i16 @llvm.atomic.load.umin.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
-declare i32 @llvm.atomic.load.umin.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
-declare i64 @llvm.atomic.load.umin.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
-
+  declare i8 @llvm.atomic.load.umin.i8..p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
+  declare i16 @llvm.atomic.load.umin.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
+  declare i32 @llvm.atomic.load.umin.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
+  declare i64 @llvm.atomic.load.umin.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
 </pre>
+
 <h5>Overview:</h5>
-<p>
-  These intrinsics takes the signed or unsigned minimum or maximum of 
-  <tt>delta</tt> and the value stored in memory at <tt>ptr</tt>. It yields the
-  original value at <tt>ptr</tt>.
-</p>
+<p>These intrinsics takes the signed or unsigned minimum or maximum of
+   <tt>delta</tt> and the value stored in memory at <tt>ptr</tt>. It yields the
+   original value at <tt>ptr</tt>.</p>
+
 <h5>Arguments:</h5>
-<p>
+<p>These intrinsics take two arguments, the first a pointer to an integer value
+   and the second an integer value. The result is also an integer value. These
+   integer types can have any bit width, but they must all have the same bit
+   width. The targets may only lower integer representations they support.</p>
 
-  These intrinsics take two arguments, the first a pointer to an integer value 
-  and the second an integer value. The result is also an integer value. These 
-  integer types can have any bit width, but they must all have the same bit 
-  width. The targets may only lower integer representations they support.
-</p>
 <h5>Semantics:</h5>
-<p>
-  These intrinsics does a series of operations atomically. They first load the 
-  value stored at <tt>ptr</tt>. They then do the signed or unsigned min or max
-  <tt>delta</tt> and the value, store the result to <tt>ptr</tt>. They yield
-  the original value stored at <tt>ptr</tt>.
-</p>
+<p>These intrinsics does a series of operations atomically. They first load the
+   value stored at <tt>ptr</tt>. They then do the signed or unsigned min or
+   max <tt>delta</tt> and the value, store the result to <tt>ptr</tt>. They
+   yield the original value stored at <tt>ptr</tt>.</p>
 
 <h5>Examples:</h5>
 <pre>
-%ptr      = malloc i32
-        store i32 7, %ptr
+%mallocP  = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
+%ptr      = bitcast i8* %mallocP to i32*
+            store i32 7, %ptr
 %result0  = call i32 @llvm.atomic.load.min.i32.p0i32( i32* %ptr, i32 -2 )
                                 <i>; yields {i32}:result0 = 7</i>
 %result1  = call i32 @llvm.atomic.load.max.i32.p0i32( i32* %ptr, i32 8 )
@@ -7052,6 +7039,134 @@ declare i64 @llvm.atomic.load.umin.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&g
                                 <i>; yields {i32}:result3 = 8</i>
 %memval1  = load i32* %ptr      <i>; yields {i32}:memval1 = 30</i>
 </pre>
+
+</div>
+
+
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+  <a name="int_memorymarkers">Memory Use Markers</a>
+</div>
+
+<div class="doc_text">
+
+<p>This class of intrinsics exists to information about the lifetime of memory
+   objects and ranges where variables are immutable.</p>
+
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+  <a name="int_lifetime_start">'<tt>llvm.lifetime.start</tt>' Intrinsic</a>
+</div>
+
+<div class="doc_text">
+
+<h5>Syntax:</h5>
+<pre>
+  declare void @llvm.lifetime.start(i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
+</pre>
+
+<h5>Overview:</h5>
+<p>The '<tt>llvm.lifetime.start</tt>' intrinsic specifies the start of a memory
+   object's lifetime.</p>
+
+<h5>Arguments:</h5>
+<p>The first argument is a constant integer representing the size of the
+   object, or -1 if it is variable sized.  The second argument is a pointer to
+   the object.</p>
+
+<h5>Semantics:</h5>
+<p>This intrinsic indicates that before this point in the code, the value of the
+   memory pointed to by <tt>ptr</tt> is dead.  This means that it is known to
+   never be used and has an undefined value.  A load from the pointer that
+   precedes this intrinsic can be replaced with
+   <tt>'<a href="#undefvalues">undef</a>'</tt>.</p>
+
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+  <a name="int_lifetime_end">'<tt>llvm.lifetime.end</tt>' Intrinsic</a>
+</div>
+
+<div class="doc_text">
+
+<h5>Syntax:</h5>
+<pre>
+  declare void @llvm.lifetime.end(i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
+</pre>
+
+<h5>Overview:</h5>
+<p>The '<tt>llvm.lifetime.end</tt>' intrinsic specifies the end of a memory
+   object's lifetime.</p>
+
+<h5>Arguments:</h5>
+<p>The first argument is a constant integer representing the size of the
+   object, or -1 if it is variable sized.  The second argument is a pointer to
+   the object.</p>
+
+<h5>Semantics:</h5>
+<p>This intrinsic indicates that after this point in the code, the value of the
+   memory pointed to by <tt>ptr</tt> is dead.  This means that it is known to
+   never be used and has an undefined value.  Any stores into the memory object
+   following this intrinsic may be removed as dead.
+
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+  <a name="int_invariant_start">'<tt>llvm.invariant.start</tt>' Intrinsic</a>
+</div>
+
+<div class="doc_text">
+
+<h5>Syntax:</h5>
+<pre>
+  declare {}* @llvm.invariant.start(i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;) readonly
+</pre>
+
+<h5>Overview:</h5>
+<p>The '<tt>llvm.invariant.start</tt>' intrinsic specifies that the contents of
+   a memory object will not change.</p>
+
+<h5>Arguments:</h5>
+<p>The first argument is a constant integer representing the size of the
+   object, or -1 if it is variable sized.  The second argument is a pointer to
+   the object.</p>
+
+<h5>Semantics:</h5>
+<p>This intrinsic indicates that until an <tt>llvm.invariant.end</tt> that uses
+   the return value, the referenced memory location is constant and
+   unchanging.</p>
+
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+  <a name="int_invariant_end">'<tt>llvm.invariant.end</tt>' Intrinsic</a>
+</div>
+
+<div class="doc_text">
+
+<h5>Syntax:</h5>
+<pre>
+  declare void @llvm.invariant.end({}* &lt;start&gt;, i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
+</pre>
+
+<h5>Overview:</h5>
+<p>The '<tt>llvm.invariant.end</tt>' intrinsic specifies that the contents of
+   a memory object are mutable.</p>
+
+<h5>Arguments:</h5>
+<p>The first argument is the matching <tt>llvm.invariant.start</tt> intrinsic.
+   The second argument is a constant integer representing the size of the
+   object, or -1 if it is variable sized and the third argument is a pointer
+   to the object.</p>
+
+<h5>Semantics:</h5>
+<p>This intrinsic indicates that the memory is mutable again.</p>
+
 </div>
 
 <!-- ======================================================================= -->
@@ -7060,8 +7175,10 @@ declare i64 @llvm.atomic.load.umin.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&g
 </div>
 
 <div class="doc_text">
-<p> This class of intrinsics is designed to be generic and has
-no specific purpose. </p>
+
+<p>This class of intrinsics is designed to be generic and has no specific
+   purpose.</p>
+
 </div>
 
 <!-- _______________________________________________________________________ -->
@@ -7077,27 +7194,19 @@ no specific purpose. </p>
 </pre>
 
 <h5>Overview:</h5>
-
-<p>
-The '<tt>llvm.var.annotation</tt>' intrinsic
-</p>
+<p>The '<tt>llvm.var.annotation</tt>' intrinsic.</p>
 
 <h5>Arguments:</h5>
-
-<p>
-The first argument is a pointer to a value, the second is a pointer to a 
-global string, the third is a pointer to a global string which is the source 
-file name, and the last argument is the line number.
-</p>
+<p>The first argument is a pointer to a value, the second is a pointer to a
+   global string, the third is a pointer to a global string which is the source
+   file name, and the last argument is the line number.</p>
 
 <h5>Semantics:</h5>
+<p>This intrinsic allows annotation of local variables with arbitrary strings.
+   This can be useful for special purpose optimizations that want to look for
+   these annotations.  These have no other defined use, they are ignored by code
+   generation and optimization.</p>
 
-<p>
-This intrinsic allows annotation of local variables with arbitrary strings.
-This can be useful for special purpose optimizations that want to look for these
-annotations.  These have no other defined use, they are ignored by code
-generation and optimization.
-</p>
 </div>
 
 <!-- _______________________________________________________________________ -->
@@ -7108,9 +7217,9 @@ generation and optimization.
 <div class="doc_text">
 
 <h5>Syntax:</h5>
-<p>This is an overloaded intrinsic. You can use '<tt>llvm.annotation</tt>' on 
-any integer bit width. 
-</p>
+<p>This is an overloaded intrinsic. You can use '<tt>llvm.annotation</tt>' on
+   any integer bit width.</p>
+
 <pre>
   declare i8 @llvm.annotation.i8(i8 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32  &lt;int&gt; )
   declare i16 @llvm.annotation.i16(i16 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32  &lt;int&gt; )
@@ -7120,28 +7229,20 @@ any integer bit width.
 </pre>
 
 <h5>Overview:</h5>
-
-<p>
-The '<tt>llvm.annotation</tt>' intrinsic.
-</p>
+<p>The '<tt>llvm.annotation</tt>' intrinsic.</p>
 
 <h5>Arguments:</h5>
-
-<p>
-The first argument is an integer value (result of some expression), 
-the second is a pointer to a global string, the third is a pointer to a global 
-string which is the source file name, and the last argument is the line number.
-It returns the value of the first argument.
-</p>
+<p>The first argument is an integer value (result of some expression), the
+   second is a pointer to a global string, the third is a pointer to a global
+   string which is the source file name, and the last argument is the line
+   number.  It returns the value of the first argument.</p>
 
 <h5>Semantics:</h5>
+<p>This intrinsic allows annotations to be put on arbitrary expressions with
+   arbitrary strings.  This can be useful for special purpose optimizations that
+   want to look for these annotations.  These have no other defined use, they
+   are ignored by code generation and optimization.</p>
 
-<p>
-This intrinsic allows annotations to be put on arbitrary expressions
-with arbitrary strings.  This can be useful for special purpose optimizations 
-that want to look for these annotations.  These have no other defined use, they 
-are ignored by code generation and optimization.
-</p>
 </div>
 
 <!-- _______________________________________________________________________ -->
@@ -7157,58 +7258,86 @@ are ignored by code generation and optimization.
 </pre>
 
 <h5>Overview:</h5>
-
-<p>
-The '<tt>llvm.trap</tt>' intrinsic
-</p>
+<p>The '<tt>llvm.trap</tt>' intrinsic.</p>
 
 <h5>Arguments:</h5>
-
-<p>
-None
-</p>
+<p>None.</p>
 
 <h5>Semantics:</h5>
+<p>This intrinsics is lowered to the target dependent trap instruction. If the
+   target does not have a trap instruction, this intrinsic will be lowered to
+   the call of the <tt>abort()</tt> function.</p>
 
-<p>
-This intrinsics is lowered to the target dependent trap instruction. If the
-target does not have a trap instruction, this intrinsic will be lowered to the
-call of the abort() function.
-</p>
 </div>
 
 <!-- _______________________________________________________________________ -->
 <div class="doc_subsubsection">
   <a name="int_stackprotector">'<tt>llvm.stackprotector</tt>' Intrinsic</a>
 </div>
+
 <div class="doc_text">
+
 <h5>Syntax:</h5>
 <pre>
-declare void @llvm.stackprotector( i8* &lt;guard&gt;, i8** &lt;slot&gt; )
+  declare void @llvm.stackprotector( i8* &lt;guard&gt;, i8** &lt;slot&gt; )
+</pre>
+
+<h5>Overview:</h5>
+<p>The <tt>llvm.stackprotector</tt> intrinsic takes the <tt>guard</tt> and
+   stores it onto the stack at <tt>slot</tt>. The stack slot is adjusted to
+   ensure that it is placed on the stack before local variables.</p>
+
+<h5>Arguments:</h5>
+<p>The <tt>llvm.stackprotector</tt> intrinsic requires two pointer
+   arguments. The first argument is the value loaded from the stack
+   guard <tt>@__stack_chk_guard</tt>. The second variable is an <tt>alloca</tt>
+   that has enough space to hold the value of the guard.</p>
+
+<h5>Semantics:</h5>
+<p>This intrinsic causes the prologue/epilogue inserter to force the position of
+   the <tt>AllocaInst</tt> stack slot to be before local variables on the
+   stack. This is to ensure that if a local variable on the stack is
+   overwritten, it will destroy the value of the guard. When the function exits,
+   the guard on the stack is checked against the original guard. If they're
+   different, then the program aborts by calling the <tt>__stack_chk_fail()</tt>
+   function.</p>
 
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+  <a name="int_objectsize">'<tt>llvm.objectsize</tt>' Intrinsic</a>
+</div>
+
+<div class="doc_text">
+
+<h5>Syntax:</h5>
+<pre>
+  declare i32 @llvm.objectsize.i32( i8* &lt;object&gt;, i1 &lt;type&gt; )
+  declare i64 @llvm.objectsize.i64( i8* &lt;object&gt;, i1 &lt;type&gt; )
 </pre>
+
 <h5>Overview:</h5>
-<p>
-  The <tt>llvm.stackprotector</tt> intrinsic takes the <tt>guard</tt> and stores
-  it onto the stack at <tt>slot</tt>. The stack slot is adjusted to ensure that
-  it is placed on the stack before local variables.
-</p>
+<p>The <tt>llvm.objectsize</tt> intrinsic is designed to provide information
+   to the optimizers to discover at compile time either a) when an
+   operation like memcpy will either overflow a buffer that corresponds to
+   an object, or b) to determine that a runtime check for overflow isn't
+   necessary. An object in this context means an allocation of a
+   specific class, structure, array, or other object.</p>
+
 <h5>Arguments:</h5>
-<p>
-  The <tt>llvm.stackprotector</tt> intrinsic requires two pointer arguments. The
-  first argument is the value loaded from the stack guard
-  <tt>@__stack_chk_guard</tt>. The second variable is an <tt>alloca</tt> that
-  has enough space to hold the value of the guard.
-</p>
+<p>The <tt>llvm.objectsize</tt> intrinsic takes two arguments.  The first
+   argument is a pointer to or into the <tt>object</tt>. The second argument
+   is a boolean 0 or 1.  This argument determines whether you want the 
+   maximum (0) or minimum (1) bytes remaining.  This needs to be a literal 0 or
+   1, variables are not allowed.</p>
+   
 <h5>Semantics:</h5>
-<p>
-  This intrinsic causes the prologue/epilogue inserter to force the position of
-  the <tt>AllocaInst</tt> stack slot to be before local variables on the
-  stack. This is to ensure that if a local variable on the stack is overwritten,
-  it will destroy the value of the guard. When the function exits, the guard on
-  the stack is checked against the original guard. If they're different, then
-  the program aborts by calling the <tt>__stack_chk_fail()</tt> function.
-</p>
+<p>The <tt>llvm.objectsize</tt> intrinsic is lowered to either a constant
+   representing the size of the object concerned or <tt>i32/i64 -1 or 0</tt>
+   (depending on the <tt>type</tt> argument if the size cannot be determined
+   at compile time.</p>
+
 </div>
 
 <!-- *********************************************************************** -->