Try to clarify which compilers can be used for the
[oota-llvm.git] / docs / LangRef.html
index 2cf74c2824f1572f0bc9e3dc5a7de41d7be5ce05..6267cf806cc5b9ca4f6b41a836b1bba5aeae8918 100644 (file)
       <li><a href="#functionstructure">Functions</a></li>
       <li><a href="#aliasstructure">Aliases</a>
       <li><a href="#paramattrs">Parameter Attributes</a></li>
+      <li><a href="#gc">Garbage Collector Names</a></li>
       <li><a href="#moduleasm">Module-Level Inline Assembly</a></li>
       <li><a href="#datalayout">Data Layout</a></li>
     </ol>
   </li>
   <li><a href="#typesystem">Type System</a>
     <ol>
+      <li><a href="#t_classifications">Type Classifications</a></li>
       <li><a href="#t_primitive">Primitive Types</a>    
         <ol>
-          <li><a href="#t_classifications">Type Classifications</a></li>
+          <li><a href="#t_floating">Floating Point Types</a></li>
+          <li><a href="#t_void">Void Type</a></li>
+          <li><a href="#t_label">Label Type</a></li>
         </ol>
       </li>
       <li><a href="#t_derived">Derived Types</a>
         <ol>
+          <li><a href="#t_integer">Integer Type</a></li>
           <li><a href="#t_array">Array Type</a></li>
           <li><a href="#t_function">Function Type</a></li>
           <li><a href="#t_pointer">Pointer Type</a></li>
           <li><a href="#int_memset">'<tt>llvm.memset.*</tt>' Intrinsic</a></li>
           <li><a href="#int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a></li>
           <li><a href="#int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a></li>
+          <li><a href="#int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a></li>
+          <li><a href="#int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a></li>
+          <li><a href="#int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a></li>
         </ol>
       </li>
       <li><a href="#int_manip">Bit Manipulation Intrinsics</a>
       </li>
       <li><a href="#int_debugger">Debugger intrinsics</a></li>
       <li><a href="#int_eh">Exception Handling intrinsics</a></li>
-      <li><a href="#int_atomics">Atomic Operations and Synchronization Intrinsics</a>
-        <ol>
-          <li><a href="#int_lcs">'<tt>llvm.atomic.lcs.*</tt>' Intrinsic</a></li>
-          <li><a href="#int_ls">'<tt>llvm.atomic.ls.*</tt>' Intrinsic</a></li>
-          <li><a href="#int_las">'<tt>llvm.atomic.las.*</tt>' Intrinsic</a></li>
-          <li><a href="#int_lss">'<tt>llvm.atomic.lss.*</tt>' Intrinsic</a></li>
-          <li><a href="#int_memory_barrier">'<tt>llvm.memory.barrier</tt>' Intrinsic</a></li>
-        </ol>
-      </li>
-      <li><a href="#int_trampoline">Trampoline Intrinsics</a>
+      <li><a href="#int_trampoline">Trampoline Intrinsic</a>
         <ol>
           <li><a href="#int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a></li>
-          <li><a href="#int_at">'<tt>llvm.adjust.trampoline</tt>' Intrinsic</a></li>
         </ol>
       </li>
+          <li><a href="#int_atomics">Atomic intrinsics</a>
+            <ol>
+              <li><a href="#int_memory_barrier"><tt>llvm.memory_barrier</tt></li>
+            </ol>
+          </li>
       <li><a href="#int_general">General intrinsics</a>
         <ol>
           <li><a href="#int_var_annotation">
             <tt>llvm.var.annotation</tt>' Intrinsic</a></li>
+          <li><a href="#int_annotation">
+            <tt>llvm.annotation.*</tt>' Intrinsic</a></li>
+          <li><a href="#int_trap">
+            <tt>llvm.trap</tt>' Intrinsic</a></li>
         </ol>
       </li>
     </ol>
@@ -296,25 +303,27 @@ the parser.</p>
 
 <div class="doc_text">
 
-<p>LLVM uses three different forms of identifiers, for different
-purposes:</p>
+  <p>LLVM identifiers come in two basic types: global and local. Global
+  identifiers (functions, global variables) begin with the @ character. Local
+  identifiers (register names, types) begin with the % character. Additionally,
+  there are three different formats for identifiers, for different purposes:
 
 <ol>
-  <li>Named values are represented as a string of characters with a '%' prefix.
-  For example, %foo, %DivisionByZero, %a.really.long.identifier.  The actual
-  regular expression used is '<tt>%[a-zA-Z$._][a-zA-Z$._0-9]*</tt>'.
+  <li>Named values are represented as a string of characters with their prefix.
+  For example, %foo, @DivisionByZero, %a.really.long.identifier.  The actual
+  regular expression used is '<tt>[%@][a-zA-Z$._][a-zA-Z$._0-9]*</tt>'.
   Identifiers which require other characters in their names can be surrounded
-  with quotes.  In this way, anything except a <tt>&quot;</tt> character can be used
-  in a name.</li>
+  with quotes.  In this way, anything except a <tt>&quot;</tt> character can 
+  be used in a named value.</li>
 
-  <li>Unnamed values are represented as an unsigned numeric value with a '%'
-  prefix.  For example, %12, %2, %44.</li>
+  <li>Unnamed values are represented as an unsigned numeric value with their
+  prefix.  For example, %12, @2, %44.</li>
 
   <li>Constants, which are described in a <a href="#constants">section about
   constants</a>, below.</li>
 </ol>
 
-<p>LLVM requires that values start with a '%' sign for two reasons: Compilers
+<p>LLVM requires that values start with a prefix for two reasons: Compilers
 don't need to worry about name clashes with reserved words, and the set of
 reserved words may be expanded in the future without penalty.  Additionally,
 unnamed identifiers allow a compiler to quickly come up with a temporary
@@ -327,7 +336,7 @@ languages. There are keywords for different opcodes
  '<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names ('<tt><a
 href="#t_void">void</a></tt>', '<tt><a href="#t_primitive">i32</a></tt>', etc...),
 and others.  These reserved words cannot conflict with variable names, because
-none of them start with a '%' character.</p>
+none of them start with a prefix character ('%' or '@').</p>
 
 <p>Here is an example of LLVM code to multiply the integer variable
 '<tt>%X</tt>' by 8:</p>
@@ -668,6 +677,12 @@ variables always define a pointer to their "content" type because they
 describe a region of memory, and all memory objects in LLVM are
 accessed through pointers.</p>
 
+<p>A global variable may be declared to reside in a target-specifc numbered 
+address space. For targets that support them, address spaces may affect how
+optimizations are performed and/or what target instructions are used to access 
+the variable. The default address space is zero. The address space qualifier 
+must precede any other attributes.</p>
+
 <p>LLVM allows an explicit section to be specified for globals.  If the target
 supports it, it will emit globals to the section specified.</p>
 
@@ -677,12 +692,12 @@ to whatever it feels convenient.  If an explicit alignment is specified, the
 global is forced to have at least that much alignment.  All alignments must be
 a power of 2.</p>
 
-<p>For example, the following defines a global with an initializer, section,
-   and alignment:</p>
+<p>For example, the following defines a global in a numbered address space with 
+an initializer, section, and alignment:</p>
 
 <div class="doc_code">
 <pre>
-@G = constant float 1.0, section "foo", align 4
+@G = constant float 1.0 addrspace(5), section "foo", align 4
 </pre>
 </div>
 
@@ -703,15 +718,16 @@ an optional <a href="#linkage">linkage type</a>, an optional
 <a href="#paramattrs">parameter attribute</a> for the return type, a function 
 name, a (possibly empty) argument list (each with optional 
 <a href="#paramattrs">parameter attributes</a>), an optional section, an
-optional alignment, an opening curly brace, a list of basic blocks, and a
-closing curly brace.  
+optional alignment, an optional <a href="#gc">garbage collector name</a>, an
+opening curly brace, a list of basic blocks, and a closing curly brace.
 
 LLVM function declarations consist of the "<tt>declare</tt>" keyword, an
 optional <a href="#linkage">linkage type</a>, an optional
 <a href="#visibility">visibility style</a>, an optional 
 <a href="#callingconv">calling convention</a>, a return type, an optional
 <a href="#paramattrs">parameter attribute</a> for the return type, a function 
-name, a possibly empty list of arguments, and an optional alignment.</p>
+name, a possibly empty list of arguments, an optional alignment, and an optional
+<a href="#gc">garbage collector name</a>.</p>
 
 <p>A function definition contains a list of basic blocks, forming the CFG for
 the function.  Each basic block may optionally start with a label (giving the
@@ -765,9 +781,9 @@ a power of 2.</p>
   <p>The return type and each parameter of a function type may have a set of
   <i>parameter attributes</i> associated with them. Parameter attributes are
   used to communicate additional information about the result or parameters of
-  a function. Parameter attributes are considered to be part of the function
-  type so two functions types that differ only by the parameter attributes 
-  are different function types.</p>
+  a function. Parameter attributes are considered to be part of the function,
+  not of the function type, so functions with different parameter attributes
+  can have the same function type.</p>
 
   <p>Parameter attributes are simple keywords that follow the type specified. If
   multiple parameter attributes are needed, they are space separated. For 
@@ -775,46 +791,88 @@ a power of 2.</p>
 
 <div class="doc_code">
 <pre>
-%someFunc = i16 (i8 signext %someParam) zeroext
-%someFunc = i16 (i8 zeroext %someParam) zeroext
+declare i32 @printf(i8* noalias , ...) nounwind
+declare i32 @atoi(i8*) nounwind readonly
 </pre>
 </div>
 
-  <p>Note that the two function types above are unique because the parameter has
-  a different attribute (<tt>signext</tt> in the first one, <tt>zeroext</tt> in
-  the second).  Also note that the attribute for the function result 
-  (<tt>zeroext</tt>) comes immediately after the argument list.</p>
+  <p>Note that any attributes for the function result (<tt>nounwind</tt>,
+  <tt>readonly</tt>) come immediately after the argument list.</p>
 
   <p>Currently, only the following parameter attributes are defined:</p>
   <dl>
     <dt><tt>zeroext</tt></dt>
     <dd>This indicates that the parameter should be zero extended just before
     a call to this function.</dd>
+
     <dt><tt>signext</tt></dt>
     <dd>This indicates that the parameter should be sign extended just before
     a call to this function.</dd>
+
     <dt><tt>inreg</tt></dt>
     <dd>This indicates that the parameter should be placed in register (if
     possible) during assembling function call. Support for this attribute is
     target-specific</dd>
+
+    <dt><tt>byval</tt></dt>
+    <dd>This indicates that the pointer parameter should really be passed by
+    value to the function.  The attribute implies that a hidden copy of the
+    pointee is made between the caller and the callee, so the callee is unable
+    to modify the value in the callee.  This attribute is only valid on llvm
+    pointer arguments.  It is generally used to pass structs and arrays by
+    value, but is also valid on scalars (even though this is silly).</dd>
+
     <dt><tt>sret</tt></dt>
     <dd>This indicates that the parameter specifies the address of a structure
     that is the return value of the function in the source program.</dd>
+
     <dt><tt>noalias</tt></dt>
     <dd>This indicates that the parameter not alias any other object or any 
     other "noalias" objects during the function call.
+
     <dt><tt>noreturn</tt></dt>
     <dd>This function attribute indicates that the function never returns. This
     indicates to LLVM that every call to this function should be treated as if
     an <tt>unreachable</tt> instruction immediately followed the call.</dd> 
+
     <dt><tt>nounwind</tt></dt>
     <dd>This function attribute indicates that the function type does not use
     the unwind instruction and does not allow stack unwinding to propagate
     through it.</dd>
+    
+    <dt><tt>nest</tt></dt>
+    <dd>This indicates that the parameter can be excised using the
+    <a href="#int_trampoline">trampoline intrinsics</a>.</dd>
+    <dt><tt>readonly</tt></dt>
+    <dd>This function attribute indicates that the function has no side-effects
+    except for producing a return value or throwing an exception.  The value
+    returned must only depend on the function arguments and/or global variables.
+    It may use values obtained by dereferencing pointers.</dd>
+    <dt><tt>readnone</tt></dt>
+    <dd>A <tt>readnone</tt> function has the same restrictions as a <tt>readonly</tt>
+    function, but in addition it is not allowed to dereference any pointer arguments
+    or global variables.
   </dl>
 
 </div>
 
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+  <a name="gc">Garbage Collector Names</a>
+</div>
+
+<div class="doc_text">
+<p>Each function may specify a garbage collector name, which is simply a
+string.</p>
+
+<div class="doc_code"><pre
+>define void @f() gc "name" { ...</pre></div>
+
+<p>The compiler declares the supported values of <i>name</i>. Specifying a
+collector which will cause the compiler to alter its output in order to support
+the named garbage collection algorithm.</p>
+</div>
+
 <!-- ======================================================================= -->
 <div class="doc_subsection">
   <a name="moduleasm">Module-Level Inline Assembly</a>
@@ -939,59 +997,49 @@ three address code representations.</p>
 </div>
 
 <!-- ======================================================================= -->
-<div class="doc_subsection"> <a name="t_primitive">Primitive Types</a> </div>
-<div class="doc_text">
-<p>The primitive types are the fundamental building blocks of the LLVM
-system. The current set of primitive types is as follows:</p>
-
-<table class="layout">
-  <tr class="layout">
-    <td class="left">
-      <table>
-        <tbody>
-        <tr><th>Type</th><th>Description</th></tr>
-        <tr><td><tt><a name="t_void">void</a></tt></td><td>No value</td></tr>
-        <tr><td><tt>label</tt></td><td>Branch destination</td></tr>
-        </tbody>
-      </table>
-    </td>
-    <td class="right">
-      <table>
-        <tbody>
-          <tr><th>Type</th><th>Description</th></tr>
-          <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr>
-         <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr>
-        </tbody>
-      </table>
-    </td>
-  </tr>
-</table>
-</div>
-
-<!-- _______________________________________________________________________ -->
-<div class="doc_subsubsection"> <a name="t_classifications">Type
+<div class="doc_subsection"> <a name="t_classifications">Type
 Classifications</a> </div>
 <div class="doc_text">
-<p>These different primitive types fall into a few useful
+<p>The types fall into a few useful
 classifications:</p>
 
 <table border="1" cellspacing="0" cellpadding="4">
   <tbody>
     <tr><th>Classification</th><th>Types</th></tr>
     <tr>
-      <td><a name="t_integer">integer</a></td>
+      <td><a href="#t_integer">integer</a></td>
       <td><tt>i1, i2, i3, ... i8, ... i16, ... i32, ... i64, ... </tt></td>
     </tr>
     <tr>
-      <td><a name="t_floating">floating point</a></td>
-      <td><tt>float, double</tt></td>
+      <td><a href="#t_floating">floating point</a></td>
+      <td><tt>float, double, x86_fp80, fp128, ppc_fp128</tt></td>
     </tr>
     <tr>
       <td><a name="t_firstclass">first class</a></td>
-      <td><tt>i1, ..., float, double, <br/>
-          <a href="#t_pointer">pointer</a>,<a href="#t_vector">vector</a></tt>
+      <td><a href="#t_integer">integer</a>,
+          <a href="#t_floating">floating point</a>,
+          <a href="#t_pointer">pointer</a>,
+          <a href="#t_vector">vector</a>
       </td>
     </tr>
+    <tr>
+      <td><a href="#t_primitive">primitive</a></td>
+      <td><a href="#t_label">label</a>,
+          <a href="#t_void">void</a>,
+          <a href="#t_integer">integer</a>,
+          <a href="#t_floating">floating point</a>.</td>
+    </tr>
+    <tr>
+      <td><a href="#t_derived">derived</a></td>
+      <td><a href="#t_integer">integer</a>,
+          <a href="#t_array">array</a>,
+          <a href="#t_function">function</a>,
+          <a href="#t_pointer">pointer</a>,
+          <a href="#t_struct">structure</a>,
+          <a href="#t_pstruct">packed structure</a>,
+          <a href="#t_vector">vector</a>,
+          <a href="#t_opaque">opaque</a>.
+    </tr>
   </tbody>
 </table>
 
@@ -1002,6 +1050,60 @@ instructions.  This means that all structures and arrays must be
 manipulated either by pointer or by component.</p>
 </div>
 
+<!-- ======================================================================= -->
+<div class="doc_subsection"> <a name="t_primitive">Primitive Types</a> </div>
+
+<div class="doc_text">
+<p>The primitive types are the fundamental building blocks of the LLVM
+system.</p>
+
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection"> <a name="t_floating">Floating Point Types</a> </div>
+
+<div class="doc_text">
+      <table>
+        <tbody>
+          <tr><th>Type</th><th>Description</th></tr>
+          <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr>
+          <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr>
+          <tr><td><tt>fp128</tt></td><td>128-bit floating point value (112-bit mantissa)</td></tr>
+          <tr><td><tt>x86_fp80</tt></td><td>80-bit floating point value (X87)</td></tr>
+          <tr><td><tt>ppc_fp128</tt></td><td>128-bit floating point value (two 64-bits)</td></tr>
+        </tbody>
+      </table>
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection"> <a name="t_void">Void Type</a> </div>
+
+<div class="doc_text">
+<h5>Overview:</h5>
+<p>The void type does not represent any value and has no size.</p>
+
+<h5>Syntax:</h5>
+
+<pre>
+  void
+</pre>
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection"> <a name="t_label">Label Type</a> </div>
+
+<div class="doc_text">
+<h5>Overview:</h5>
+<p>The label type represents code labels.</p>
+
+<h5>Syntax:</h5>
+
+<pre>
+  label
+</pre>
+</div>
+
+
 <!-- ======================================================================= -->
 <div class="doc_subsection"> <a name="t_derived">Derived Types</a> </div>
 
@@ -1035,28 +1137,18 @@ value.</p>
 
 <h5>Examples:</h5>
 <table class="layout">
-  <tr class="layout">
-    <td class="left">
-      <tt>i1</tt><br/>
-      <tt>i4</tt><br/>
-      <tt>i8</tt><br/>
-      <tt>i16</tt><br/>
-      <tt>i32</tt><br/>
-      <tt>i42</tt><br/>
-      <tt>i64</tt><br/>
-      <tt>i1942652</tt><br/>
-    </td>
-    <td class="left">
-      A boolean integer of 1 bit<br/>
-      A nibble sized integer of 4 bits.<br/>
-      A byte sized integer of 8 bits.<br/>
-      A half word sized integer of 16 bits.<br/>
-      A word sized integer of 32 bits.<br/>
-      An integer whose bit width is the answer. <br/>
-      A double word sized integer of 64 bits.<br/>
-      A really big integer of over 1 million bits.<br/>
-    </td>
+  <tbody>
+  <tr>
+    <td><tt>i1</tt></td>
+    <td>a single-bit integer.</td>
+  </tr><tr>
+    <td><tt>i32</tt></td>
+    <td>a 32-bit integer.</td>
+  </tr><tr>
+    <td><tt>i1942652</tt></td>
+    <td>a really big integer of over 1 million bits.</td>
   </tr>
+  </tbody>
 </table>
 </div>
 
@@ -1083,31 +1175,31 @@ be any type with a size.</p>
 <h5>Examples:</h5>
 <table class="layout">
   <tr class="layout">
-    <td class="left">
-      <tt>[40 x i32 ]</tt><br/>
-      <tt>[41 x i32 ]</tt><br/>
-      <tt>[40 x i8]</tt><br/>
-    </td>
-    <td class="left">
-      Array of 40 32-bit integer values.<br/>
-      Array of 41 32-bit integer values.<br/>
-      Array of 40 8-bit integer values.<br/>
-    </td>
+    <td class="left"><tt>[40 x i32]</tt></td>
+    <td class="left">Array of 40 32-bit integer values.</td>
+  </tr>
+  <tr class="layout">
+    <td class="left"><tt>[41 x i32]</tt></td>
+    <td class="left">Array of 41 32-bit integer values.</td>
+  </tr>
+  <tr class="layout">
+    <td class="left"><tt>[4 x i8]</tt></td>
+    <td class="left">Array of 4 8-bit integer values.</td>
   </tr>
 </table>
 <p>Here are some examples of multidimensional arrays:</p>
 <table class="layout">
   <tr class="layout">
-    <td class="left">
-      <tt>[3 x [4 x i32]]</tt><br/>
-      <tt>[12 x [10 x float]]</tt><br/>
-      <tt>[2 x [3 x [4 x i16]]]</tt><br/>
-    </td>
-    <td class="left">
-      3x4 array of 32-bit integer values.<br/>
-      12x10 array of single precision floating point values.<br/>
-      2x3x4 array of 16-bit integer  values.<br/>
-    </td>
+    <td class="left"><tt>[3 x [4 x i32]]</tt></td>
+    <td class="left">3x4 array of 32-bit integer values.</td>
+  </tr>
+  <tr class="layout">
+    <td class="left"><tt>[12 x [10 x float]]</tt></td>
+    <td class="left">12x10 array of single precision floating point values.</td>
+  </tr>
+  <tr class="layout">
+    <td class="left"><tt>[2 x [3 x [4 x i16]]]</tt></td>
+    <td class="left">2x3x4 array of 16-bit integer  values.</td>
   </tr>
 </table>
 
@@ -1214,7 +1306,7 @@ instruction.</p>
     <td class="left"><tt>&lt; { i32, i32, i32 } &gt;</tt></td>
     <td class="left">A triple of three <tt>i32</tt> values</td>
   </tr><tr class="layout">
-  <td class="left"><tt>&lt;&nbsp;{&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}&nbsp;&gt;</tt></td>
+  <td class="left"><tt>&lt; { float, i32 (i32)* } &gt;</tt></td>
     <td class="left">A pair, where the first element is a <tt>float</tt> and the
       second element is a <a href="#t_pointer">pointer</a> to a
       <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
@@ -1228,23 +1320,29 @@ instruction.</p>
 <div class="doc_text">
 <h5>Overview:</h5>
 <p>As in many languages, the pointer type represents a pointer or
-reference to another object, which must live in memory.</p>
+reference to another object, which must live in memory. Pointer types may have 
+an optional address space attribute defining the target-specific numbered 
+address space where the pointed-to object resides. The default address space is 
+zero.</p>
 <h5>Syntax:</h5>
 <pre>  &lt;type&gt; *<br></pre>
 <h5>Examples:</h5>
 <table class="layout">
   <tr class="layout">
-    <td class="left">
-      <tt>[4x i32]*</tt><br/>
-      <tt>i32 (i32 *) *</tt><br/>
-    </td>
-    <td class="left">
-      A <a href="#t_pointer">pointer</a> to <a href="#t_array">array</a> of
-      four <tt>i32</tt> values<br/>
-      A <a href="#t_pointer">pointer</a> to a <a
+    <td class="left"><tt>[4x i32]*</tt></td>
+    <td class="left">A <a href="#t_pointer">pointer</a> to <a
+                    href="#t_array">array</a> of four <tt>i32</tt> values.</td>
+  </tr>
+  <tr class="layout">
+    <td class="left"><tt>i32 (i32 *) *</tt></td>
+    <td class="left"> A <a href="#t_pointer">pointer</a> to a <a
       href="#t_function">function</a> that takes an <tt>i32*</tt>, returning an
-      <tt>i32</tt>.<br/>
-    </td>
+      <tt>i32</tt>.</td>
+  </tr>
+  <tr class="layout">
+    <td class="left"><tt>i32 addrspace(5)*</tt></td>
+    <td class="left">A <a href="#t_pointer">pointer</a> to an <tt>i32</tt> value
+     that resides in address space #5.</td>
   </tr>
 </table>
 </div>
@@ -1276,16 +1374,16 @@ be any integer or floating point type.</p>
 
 <table class="layout">
   <tr class="layout">
-    <td class="left">
-      <tt>&lt;4 x i32&gt;</tt><br/>
-      <tt>&lt;8 x float&gt;</tt><br/>
-      <tt>&lt;2 x i64&gt;</tt><br/>
-    </td>
-    <td class="left">
-      Vector of 4 32-bit integer values.<br/>
-      Vector of 8 floating-point values.<br/>
-      Vector of 2 64-bit integer values.<br/>
-    </td>
+    <td class="left"><tt>&lt;4 x i32&gt;</tt></td>
+    <td class="left">Vector of 4 32-bit integer values.</td>
+  </tr>
+  <tr class="layout">
+    <td class="left"><tt>&lt;8 x float&gt;</tt></td>
+    <td class="left">Vector of 8 32-bit floating-point values.</td>
+  </tr>
+  <tr class="layout">
+    <td class="left"><tt>&lt;2 x i64&gt;</tt></td>
+    <td class="left">Vector of 2 64-bit integer values.</td>
   </tr>
 </table>
 </div>
@@ -1297,7 +1395,7 @@ be any integer or floating point type.</p>
 <h5>Overview:</h5>
 
 <p>Opaque types are used to represent unknown types in the system.  This
-corresponds (for example) to the C notion of a foward declared structure type.
+corresponds (for example) to the C notion of a forward declared structure type.
 In LLVM, opaque types can eventually be resolved to any type (not just a
 structure type).</p>
 
@@ -1311,12 +1409,8 @@ structure type).</p>
 
 <table class="layout">
   <tr class="layout">
-    <td class="left">
-      <tt>opaque</tt>
-    </td>
-    <td class="left">
-      An opaque type.<br/>
-    </td>
+    <td class="left"><tt>opaque</tt></td>
+    <td class="left">An opaque type.</td>
   </tr>
 </table>
 </div>
@@ -1391,8 +1485,8 @@ and smaller aggregate constants.</p>
 
   <dd>Structure constants are represented with notation similar to structure
   type definitions (a comma separated list of elements, surrounded by braces
-  (<tt>{}</tt>)).  For example: "<tt>{ i32 4, float 17.0, i32* %G }</tt>",
-  where "<tt>%G</tt>" is declared as "<tt>@G = external global i32</tt>".  Structure constants
+  (<tt>{}</tt>)).  For example: "<tt>{ i32 4, float 17.0, i32* @G }</tt>",
+  where "<tt>@G</tt>" is declared as "<tt>@G = external global i32</tt>".  Structure constants
   must have <a href="#t_struct">structure type</a>, and the number and
   types of elements must match those specified by the type.
   </dd>
@@ -1498,25 +1592,33 @@ following is the syntax for constant expressions:</p>
   <dd>Floating point extend a constant to another type. The size of CST must be 
   smaller or equal to the size of TYPE. Both types must be floating point.</dd>
 
-  <dt><b><tt>fp2uint ( CST to TYPE )</tt></b></dt>
+  <dt><b><tt>fptoui ( CST to TYPE )</tt></b></dt>
   <dd>Convert a floating point constant to the corresponding unsigned integer
-  constant. TYPE must be an integer type. CST must be floating point. If the 
-  value won't fit in the integer type, the results are undefined.</dd>
+  constant. TYPE must be a scalar or vector integer type. CST must be of scalar
+  or vector floating point type. Both CST and TYPE must be scalars, or vectors
+  of the same number of elements. If the  value won't fit in the integer type,
+  the results are undefined.</dd>
 
   <dt><b><tt>fptosi ( CST to TYPE )</tt></b></dt>
   <dd>Convert a floating point constant to the corresponding signed integer
-  constant. TYPE must be an integer type. CST must be floating point. If the 
-  value won't fit in the integer type, the results are undefined.</dd>
+  constant.  TYPE must be a scalar or vector integer type. CST must be of scalar
+  or vector floating point type. Both CST and TYPE must be scalars, or vectors
+  of the same number of elements. If the  value won't fit in the integer type,
+  the results are undefined.</dd>
 
   <dt><b><tt>uitofp ( CST to TYPE )</tt></b></dt>
   <dd>Convert an unsigned integer constant to the corresponding floating point
-  constant. TYPE must be floating point. CST must be of integer type. If the
-  value won't fit in the floating point type, the results are undefined.</dd>
+  constant. TYPE must be a scalar or vector floating point type. CST must be of
+  scalar or vector integer type. Both CST and TYPE must be scalars, or vectors
+  of the same number of elements. If the value won't fit in the floating point 
+  type, the results are undefined.</dd>
 
   <dt><b><tt>sitofp ( CST to TYPE )</tt></b></dt>
   <dd>Convert a signed integer constant to the corresponding floating point
-  constant. TYPE must be floating point. CST must be of integer type. If the
-  value won't fit in the floating point type, the results are undefined.</dd>
+  constant. TYPE must be a scalar or vector floating point type. CST must be of
+  scalar or vector integer type. Both CST and TYPE must be scalars, or vectors
+  of the same number of elements. If the value won't fit in the floating point 
+  type, the results are undefined.</dd>
 
   <dt><b><tt>ptrtoint ( CST to TYPE )</tt></b></dt>
   <dd>Convert a pointer typed constant to the corresponding integer constant
@@ -1954,6 +2056,11 @@ Both arguments must have identical types.</p>
 <h5>Semantics:</h5>
 <p>The value produced is the integer or floating point sum of the two
 operands.</p>
+<p>If an integer sum has unsigned overflow, the result returned is the
+mathematical result modulo 2<sup>n</sup>, where n is the bit width of
+the result.</p>
+<p>Because LLVM integers use a two's complement representation, this
+instruction is appropriate for both signed and unsigned integers.</p>
 <h5>Example:</h5>
 <pre>  &lt;result&gt; = add i32 4, %var          <i>; yields {i32}:result = 4 + %var</i>
 </pre>
@@ -1979,6 +2086,11 @@ Both arguments must have identical types.</p>
 <h5>Semantics:</h5>
 <p>The value produced is the integer or floating point difference of
 the two operands.</p>
+<p>If an integer difference has unsigned overflow, the result returned is the
+mathematical result modulo 2<sup>n</sup>, where n is the bit width of
+the result.</p>
+<p>Because LLVM integers use a two's complement representation, this
+instruction is appropriate for both signed and unsigned integers.</p>
 <h5>Example:</h5>
 <pre>
   &lt;result&gt; = sub i32 4, %var          <i>; yields {i32}:result = 4 - %var</i>
@@ -2004,9 +2116,15 @@ Both arguments must have identical types.</p>
 <h5>Semantics:</h5>
 <p>The value produced is the integer or floating point product of the
 two operands.</p>
-<p>Because the operands are the same width, the result of an integer
-multiplication is the same whether the operands should be deemed unsigned or
-signed.</p>
+<p>If the result of an integer multiplication has unsigned overflow,
+the result returned is the mathematical result modulo 
+2<sup>n</sup>, where n is the bit width of the result.</p>
+<p>Because LLVM integers use a two's complement representation, and the
+result is the same width as the operands, this instruction returns the
+correct result for both signed and unsigned integers.  If a full product
+(e.g. <tt>i32</tt>x<tt>i32</tt>-><tt>i64</tt>) is needed, the operands
+should be sign-extended or zero-extended as appropriate to the
+width of the full product.</p>
 <h5>Example:</h5>
 <pre>  &lt;result&gt; = mul i32 4, %var          <i>; yields {i32}:result = 4 * %var</i>
 </pre>
@@ -2027,9 +2145,10 @@ operands.</p>
 types. This instruction can also take <a href="#t_vector">vector</a> versions 
 of the values in which case the elements must be integers.</p>
 <h5>Semantics:</h5>
-<p>The value produced is the unsigned integer quotient of the two operands. This
-instruction always performs an unsigned division operation, regardless of 
-whether the arguments are unsigned or not.</p>
+<p>The value produced is the unsigned integer quotient of the two operands.</p>
+<p>Note that unsigned integer division and signed integer division are distinct
+operations; for signed integer division, use '<tt>sdiv</tt>'.</p>
+<p>Division by zero leads to undefined behavior.</p>
 <h5>Example:</h5>
 <pre>  &lt;result&gt; = udiv i32 4, %var          <i>; yields {i32}:result = 4 / %var</i>
 </pre>
@@ -2050,9 +2169,12 @@ operands.</p>
 types. This instruction can also take <a href="#t_vector">vector</a> versions 
 of the values in which case the elements must be integers.</p>
 <h5>Semantics:</h5>
-<p>The value produced is the signed integer quotient of the two operands. This
-instruction always performs a signed division operation, regardless of whether
-the arguments are signed or not.</p>
+<p>The value produced is the signed integer quotient of the two operands.</p>
+<p>Note that signed integer division and unsigned integer division are distinct
+operations; for unsigned integer division, use '<tt>udiv</tt>'.</p>
+<p>Division by zero leads to undefined behavior. Overflow also leads to
+undefined behavior; this is a rare case, but can occur, for example,
+by doing a 32-bit division of -2147483648 by -1.</p>
 <h5>Example:</h5>
 <pre>  &lt;result&gt; = sdiv i32 4, %var          <i>; yields {i32}:result = 4 / %var</i>
 </pre>
@@ -2091,11 +2213,15 @@ unsigned division of its two arguments.</p>
 <h5>Arguments:</h5>
 <p>The two arguments to the '<tt>urem</tt>' instruction must be
 <a href="#t_integer">integer</a> values. Both arguments must have identical
-types.</p>
+types. This instruction can also take <a href="#t_vector">vector</a> versions 
+of the values in which case the elements must be integers.</p>
 <h5>Semantics:</h5>
 <p>This instruction returns the unsigned integer <i>remainder</i> of a division.
 This instruction always performs an unsigned division to get the remainder,
 regardless of whether the arguments are unsigned or not.</p>
+<p>Note that unsigned integer remainder and signed integer remainder are
+distinct operations; for signed integer remainder, use '<tt>srem</tt>'.</p>
+<p>Taking the remainder of a division by zero leads to undefined behavior.</p>
 <h5>Example:</h5>
 <pre>  &lt;result&gt; = urem i32 4, %var          <i>; yields {i32}:result = 4 % %var</i>
 </pre>
@@ -2110,7 +2236,10 @@ Instruction</a> </div>
 </pre>
 <h5>Overview:</h5>
 <p>The '<tt>srem</tt>' instruction returns the remainder from the
-signed division of its two operands.</p>
+signed division of its two operands. This instruction can also take
+<a href="#t_vector">vector</a> versions of the values in which case
+the elements must be integers.</p>
+
 <h5>Arguments:</h5>
 <p>The two arguments to the '<tt>srem</tt>' instruction must be 
 <a href="#t_integer">integer</a> values.  Both arguments must have identical 
@@ -2124,6 +2253,14 @@ a value.  For more information about the difference, see <a
 Math Forum</a>. For a table of how this is implemented in various languages,
 please see <a href="http://en.wikipedia.org/wiki/Modulo_operation">
 Wikipedia: modulo operation</a>.</p>
+<p>Note that signed integer remainder and unsigned integer remainder are
+distinct operations; for unsigned integer remainder, use '<tt>urem</tt>'.</p>
+<p>Taking the remainder of a division by zero leads to undefined behavior.
+Overflow also leads to undefined behavior; this is a rare case, but can occur,
+for example, by taking the remainder of a 32-bit division of -2147483648 by -1.
+(The remainder doesn't actually overflow, but this rule lets srem be 
+implemented using instructions that return both the result of the division
+and the remainder.)</p>
 <h5>Example:</h5>
 <pre>  &lt;result&gt; = srem i32 4, %var          <i>; yields {i32}:result = 4 % %var</i>
 </pre>
@@ -2142,7 +2279,8 @@ division of its two operands.</p>
 <h5>Arguments:</h5>
 <p>The two arguments to the '<tt>frem</tt>' instruction must be
 <a href="#t_floating">floating point</a> values.  Both arguments must have 
-identical types.</p>
+identical types.  This instruction can also take <a href="#t_vector">vector</a>
+versions of floating point values.</p>
 <h5>Semantics:</h5>
 <p>This instruction returns the <i>remainder</i> of a division.</p>
 <h5>Example:</h5>
@@ -2169,18 +2307,28 @@ Instruction</a> </div>
 <h5>Syntax:</h5>
 <pre>  &lt;result&gt; = shl &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt;   <i>; yields {ty}:result</i>
 </pre>
+
 <h5>Overview:</h5>
+
 <p>The '<tt>shl</tt>' instruction returns the first operand shifted to
 the left a specified number of bits.</p>
+
 <h5>Arguments:</h5>
+
 <p>Both arguments to the '<tt>shl</tt>' instruction must be the same <a
  href="#t_integer">integer</a> type.</p>
 <h5>Semantics:</h5>
-<p>The value produced is <tt>var1</tt> * 2<sup><tt>var2</tt></sup>.</p>
+
+<p>The value produced is <tt>var1</tt> * 2<sup><tt>var2</tt></sup>.  If
+<tt>var2</tt> is (statically or dynamically) equal to or larger than the number
+of bits in <tt>var1</tt>, the result is undefined.</p>
+
 <h5>Example:</h5><pre>
   &lt;result&gt; = shl i32 4, %var   <i>; yields {i32}: 4 &lt;&lt; %var</i>
   &lt;result&gt; = shl i32 4, 2      <i>; yields {i32}: 16</i>
   &lt;result&gt; = shl i32 1, 10     <i>; yields {i32}: 1024</i>
+  &lt;result&gt; = shl i32 1, 32     <i>; undefined</i>
 </pre>
 </div>
 <!-- _______________________________________________________________________ -->
@@ -2200,9 +2348,11 @@ operand shifted to the right a specified number of bits with zero fill.</p>
 <a href="#t_integer">integer</a> type.</p>
 
 <h5>Semantics:</h5>
+
 <p>This instruction always performs a logical shift right operation. The most
 significant bits of the result will be filled with zero bits after the 
-shift.</p>
+shift.  If <tt>var2</tt> is (statically or dynamically) equal to or larger than
+the number of bits in <tt>var1</tt>, the result is undefined.</p>
 
 <h5>Example:</h5>
 <pre>
@@ -2210,6 +2360,7 @@ shift.</p>
   &lt;result&gt; = lshr i32 4, 2   <i>; yields {i32}:result = 1</i>
   &lt;result&gt; = lshr i8  4, 3   <i>; yields {i8}:result = 0</i>
   &lt;result&gt; = lshr i8 -2, 1   <i>; yields {i8}:result = 0x7FFFFFFF </i>
+  &lt;result&gt; = lshr i32 1, 32  <i>; undefined</i>
 </pre>
 </div>
 
@@ -2233,7 +2384,9 @@ operand shifted to the right a specified number of bits with sign extension.</p>
 <h5>Semantics:</h5>
 <p>This instruction always performs an arithmetic shift right operation, 
 The most significant bits of the result will be filled with the sign bit 
-of <tt>var1</tt>.</p>
+of <tt>var1</tt>.  If <tt>var2</tt> is (statically or dynamically) equal to or
+larger than the number of bits in <tt>var1</tt>, the result is undefined.
+</p>
 
 <h5>Example:</h5>
 <pre>
@@ -2241,6 +2394,7 @@ of <tt>var1</tt>.</p>
   &lt;result&gt; = ashr i32 4, 2   <i>; yields {i32}:result = 1</i>
   &lt;result&gt; = ashr i8  4, 3   <i>; yields {i8}:result = 0</i>
   &lt;result&gt; = ashr i8 -2, 1   <i>; yields {i8}:result = -1</i>
+  &lt;result&gt; = ashr i32 1, 32  <i>; undefined</i>
 </pre>
 </div>
 
@@ -2602,7 +2756,8 @@ allocate, and free memory in LLVM.</p>
 <h5>Overview:</h5>
 
 <p>The '<tt>malloc</tt>' instruction allocates memory from the system
-heap and returns a pointer to it.</p>
+heap and returns a pointer to it. The object is always allocated in the generic 
+address space (address space zero).</p>
 
 <h5>Arguments:</h5>
 
@@ -2610,10 +2765,10 @@ heap and returns a pointer to it.</p>
 <tt>sizeof(&lt;type&gt;)*NumElements</tt>
 bytes of memory from the operating system and returns a pointer of the
 appropriate type to the program.  If "NumElements" is specified, it is the
-number of elements allocated.  If an alignment is specified, the value result
-of the allocation is guaranteed to be aligned to at least that boundary.  If
-not specified, or if zero, the target can choose to align the allocation on any
-convenient boundary.</p>
+number of elements allocated, otherwise "NumElements" is defaulted to be one.
+If an alignment is specified, the value result of the allocation is guaranteed to
+be aligned to at least that boundary.  If not specified, or if zero, the target can
+choose to align the allocation on any convenient boundary.</p>
 
 <p>'<tt>type</tt>' must be a sized type.</p>
 
@@ -2689,17 +2844,18 @@ after this instruction executes.</p>
 
 <p>The '<tt>alloca</tt>' instruction allocates memory on the stack frame of the
 currently executing function, to be automatically released when this function
-returns to its caller.</p>
+returns to its caller. The object is always allocated in the generic address 
+space (address space zero).</p>
 
 <h5>Arguments:</h5>
 
 <p>The '<tt>alloca</tt>' instruction allocates <tt>sizeof(&lt;type&gt;)*NumElements</tt>
 bytes of memory on the runtime stack, returning a pointer of the
-appropriate type to the program.    If "NumElements" is specified, it is the
-number of elements allocated.  If an alignment is specified, the value result
-of the allocation is guaranteed to be aligned to at least that boundary.  If
-not specified, or if zero, the target can choose to align the allocation on any
-convenient boundary.</p>
+appropriate type to the program.  If "NumElements" is specified, it is the
+number of elements allocated, otherwise "NumElements" is defaulted to be one.
+If an alignment is specified, the value result of the allocation is guaranteed
+to be aligned to at least that boundary.  If not specified, or if zero, the target
+can choose to align the allocation on any convenient boundary.</p>
 
 <p>'<tt>type</tt>' may be any sized type.</p>
 
@@ -2738,6 +2894,16 @@ marked as <tt>volatile</tt>, then the optimizer is not allowed to modify
 the number or order of execution of this <tt>load</tt> with other
 volatile <tt>load</tt> and <tt><a href="#i_store">store</a></tt>
 instructions. </p>
+<p>
+The optional "align" argument specifies the alignment of the operation
+(that is, the alignment of the memory address). A value of 0 or an
+omitted "align" argument means that the operation has the preferential
+alignment for the target. It is the responsibility of the code emitter
+to ensure that the alignment information is correct. Overestimating
+the alignment results in an undefined behavior. Underestimating the
+alignment may produce less efficient code. An alignment of 1 is always
+safe.
+</p>
 <h5>Semantics:</h5>
 <p>The location of memory pointed to is loaded.</p>
 <h5>Examples:</h5>
@@ -2765,14 +2931,23 @@ operand. If the <tt>store</tt> is marked as <tt>volatile</tt>, then the
 optimizer is not allowed to modify the number or order of execution of
 this <tt>store</tt> with other volatile <tt>load</tt> and <tt><a
  href="#i_store">store</a></tt> instructions.</p>
+<p>
+The optional "align" argument specifies the alignment of the operation
+(that is, the alignment of the memory address). A value of 0 or an
+omitted "align" argument means that the operation has the preferential
+alignment for the target. It is the responsibility of the code emitter
+to ensure that the alignment information is correct. Overestimating
+the alignment results in an undefined behavior. Underestimating the
+alignment may produce less efficient code. An alignment of 1 is always
+safe.
+</p>
 <h5>Semantics:</h5>
 <p>The contents of memory are updated to contain '<tt>&lt;value&gt;</tt>'
 at the location specified by the '<tt>&lt;pointer&gt;</tt>' operand.</p>
 <h5>Example:</h5>
 <pre>  %ptr = <a href="#i_alloca">alloca</a> i32                               <i>; yields {i32*}:ptr</i>
-  <a
- href="#i_store">store</a> i32 3, i32* %ptr                          <i>; yields {void}</i>
-  %val = load i32* %ptr                           <i>; yields {i32}:val = i32 3</i>
+  store i32 3, i32* %ptr                          <i>; yields {void}</i>
+  %val = <a href="#i_load">load</a> i32* %ptr                           <i>; yields {i32}:val = i32 3</i>
 </pre>
 </div>
 
@@ -3095,34 +3270,32 @@ used to make a <i>no-op cast</i> because it always changes bits. Use
 
 <h5>Syntax:</h5>
 <pre>
-  &lt;result&gt; = fp2uint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
+  &lt;result&gt; = fptoui &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
 </pre>
 
 <h5>Overview:</h5>
-<p>The '<tt>fp2uint</tt>' converts a floating point <tt>value</tt> to its
+<p>The '<tt>fptoui</tt>' converts a floating point <tt>value</tt> to its
 unsigned integer equivalent of type <tt>ty2</tt>.
 </p>
 
 <h5>Arguments:</h5>
-<p>The '<tt>fp2uint</tt>' instruction takes a value to cast, which must be a 
-<a href="#t_floating">floating point</a> value, and a type to cast it to, which
-must be an <a href="#t_integer">integer</a> type.</p>
+<p>The '<tt>fptoui</tt>' instruction takes a value to cast, which must be a 
+scalar or vector <a href="#t_floating">floating point</a> value, and a type 
+to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> 
+type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
+vector integer type with the same number of elements as <tt>ty</tt></p>
 
 <h5>Semantics:</h5>
-<p> The '<tt>fp2uint</tt>' instruction converts its 
+<p> The '<tt>fptoui</tt>' instruction converts its 
 <a href="#t_floating">floating point</a> operand into the nearest (rounding
 towards zero) unsigned integer value. If the value cannot fit in <tt>ty2</tt>,
 the results are undefined.</p>
 
-<p>When converting to i1, the conversion is done as a comparison against 
-zero. If the <tt>value</tt> was zero, the i1 result will be <tt>false</tt>. 
-If the <tt>value</tt> was non-zero, the i1 result will be <tt>true</tt>.</p>
-
 <h5>Example:</h5>
 <pre>
-  %X = fp2uint double 123.0 to i32      <i>; yields i32:123</i>
-  %Y = fp2uint float 1.0E+300 to i1     <i>; yields i1:true</i>
-  %X = fp2uint float 1.04E+17 to i8     <i>; yields undefined:1</i>
+  %X = fptoui double 123.0 to i32      <i>; yields i32:123</i>
+  %Y = fptoui float 1.0E+300 to i1     <i>; yields undefined:1</i>
+  %X = fptoui float 1.04E+17 to i8     <i>; yields undefined:1</i>
 </pre>
 </div>
 
@@ -3142,11 +3315,12 @@ If the <tt>value</tt> was non-zero, the i1 result will be <tt>true</tt>.</p>
 <a href="#t_floating">floating point</a> <tt>value</tt> to type <tt>ty2</tt>.
 </p>
 
-
 <h5>Arguments:</h5>
 <p> The '<tt>fptosi</tt>' instruction takes a value to cast, which must be a 
-<a href="#t_floating">floating point</a> value, and a type to cast it to, which 
-must also be an <a href="#t_integer">integer</a> type.</p>
+scalar or vector <a href="#t_floating">floating point</a> value, and a type 
+to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> 
+type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
+vector integer type with the same number of elements as <tt>ty</tt></p>
 
 <h5>Semantics:</h5>
 <p>The '<tt>fptosi</tt>' instruction converts its 
@@ -3154,14 +3328,10 @@ must also be an <a href="#t_integer">integer</a> type.</p>
 towards zero) signed integer value. If the value cannot fit in <tt>ty2</tt>,
 the results are undefined.</p>
 
-<p>When converting to i1, the conversion is done as a comparison against 
-zero. If the <tt>value</tt> was zero, the i1 result will be <tt>false</tt>. 
-If the <tt>value</tt> was non-zero, the i1 result will be <tt>true</tt>.</p>
-
 <h5>Example:</h5>
 <pre>
   %X = fptosi double -123.0 to i32      <i>; yields i32:-123</i>
-  %Y = fptosi float 1.0E-247 to i1      <i>; yields i1:true</i>
+  %Y = fptosi float 1.0E-247 to i1      <i>; yields undefined:1</i>
   %X = fptosi float 1.04E+17 to i8      <i>; yields undefined:1</i>
 </pre>
 </div>
@@ -3181,18 +3351,18 @@ If the <tt>value</tt> was non-zero, the i1 result will be <tt>true</tt>.</p>
 <p>The '<tt>uitofp</tt>' instruction regards <tt>value</tt> as an unsigned
 integer and converts that value to the <tt>ty2</tt> type.</p>
 
-
 <h5>Arguments:</h5>
-<p>The '<tt>uitofp</tt>' instruction takes a value to cast, which must be an
-<a href="#t_integer">integer</a> value, and a type to cast it to, which must 
-be a <a href="#t_floating">floating point</a> type.</p>
+<p>The '<tt>uitofp</tt>' instruction takes a value to cast, which must be a
+scalar or vector <a href="#t_integer">integer</a> value, and a type to cast it
+to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a> 
+type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
+floating point type with the same number of elements as <tt>ty</tt></p>
 
 <h5>Semantics:</h5>
 <p>The '<tt>uitofp</tt>' instruction interprets its operand as an unsigned
 integer quantity and converts it to the corresponding floating point value. If
 the value cannot fit in the floating point value, the results are undefined.</p>
 
-
 <h5>Example:</h5>
 <pre>
   %X = uitofp i32 257 to float         <i>; yields float:257.0</i>
@@ -3216,9 +3386,11 @@ the value cannot fit in the floating point value, the results are undefined.</p>
 integer and converts that value to the <tt>ty2</tt> type.</p>
 
 <h5>Arguments:</h5>
-<p>The '<tt>sitofp</tt>' instruction takes a value to cast, which must be an
-<a href="#t_integer">integer</a> value, and a type to cast it to, which must be
-a <a href="#t_floating">floating point</a> type.</p>
+<p>The '<tt>sitofp</tt>' instruction takes a value to cast, which must be a
+scalar or vector <a href="#t_integer">integer</a> value, and a type to cast it
+to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a> 
+type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
+floating point type with the same number of elements as <tt>ty</tt></p>
 
 <h5>Semantics:</h5>
 <p>The '<tt>sitofp</tt>' instruction interprets its operand as a signed
@@ -3576,7 +3748,7 @@ value argument; otherwise, it returns the second value argument.
 
 <h5>Syntax:</h5>
 <pre>
-  &lt;result&gt; = [tail] call [<a href="#callingconv">cconv</a>] &lt;ty&gt;* &lt;fnptrval&gt;(&lt;param list&gt;)
+  &lt;result&gt; = [tail] call [<a href="#callingconv">cconv</a>] &lt;ty&gt; [&lt;fnty&gt;*] &lt;fnptrval&gt;(&lt;param list&gt;)
 </pre>
 
 <h5>Overview:</h5>
@@ -3601,10 +3773,15 @@ value argument; otherwise, it returns the second value argument.
     to using C calling conventions.
   </li>
   <li>
-    <p>'<tt>ty</tt>': shall be the signature of the pointer to function value
-    being invoked.  The argument types must match the types implied by this
-    signature.  This type can be omitted if the function is not varargs and
-    if the function type does not return a pointer to a function.</p>
+    <p>'<tt>ty</tt>': the type of the call instruction itself which is also
+    the type of the return value.  Functions that return no value are marked
+    <tt><a href="#t_void">void</a></tt>.</p>
+  </li>
+  <li>
+    <p>'<tt>fnty</tt>': shall be the signature of the pointer to function
+    value being invoked.  The argument types must match the types implied by
+    this signature.  This type can be omitted if the function is not varargs
+    and if the function type does not return a pointer to a function.</p>
   </li>
   <li>
     <p>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to
@@ -3634,10 +3811,11 @@ the <a href="#i_invoke">invoke</a> instruction.</p>
 <h5>Example:</h5>
 
 <pre>
-  %retval = call i32 %test(i32 %argc)
-  call i32(i8 *, ...) *%printf(i8 * %msg, i32 12, i8 42);
-  %X = tail call i32 %foo()
-  %Y = tail call <a href="#callingconv">fastcc</a> i32 %foo()
+  %retval = call i32 @test(i32 %argc)
+  call i32 (i8 *, ...)* @printf(i8 * %msg, i32 12, i8 42);
+  %X = tail call i32 @foo()
+  %Y = tail call <a href="#callingconv">fastcc</a> i32 @foo()
+  %Z = call void %foo(i8 97 signext)
 </pre>
 
 </div>
@@ -3711,17 +3889,27 @@ of an intrinsic function.  Additionally, because intrinsic functions are part
 of the LLVM language, it is required if any are added that they be documented
 here.</p>
 
-<p>Some intrinsic functions can be overloaded, i.e., the intrinsic represents
-a family of functions that perform the same operation but on different data
-types. This is most frequent with the integer types. Since LLVM can represent
-over 8 million different integer types, there is a way to declare an intrinsic 
-that can be overloaded based on its arguments. Such an intrinsic will have the
-names of its argument types encoded into its function name, each
-preceded by a period. For example, the <tt>llvm.ctpop</tt> function can take an
-integer of any width. This leads to a family of functions such as 
-<tt>i32 @llvm.ctpop.i8(i8 %val)</tt> and <tt>i32 @llvm.ctpop.i29(i29 %val)</tt>.
-</p>
-
+<p>Some intrinsic functions can be overloaded, i.e., the intrinsic represents 
+a family of functions that perform the same operation but on different data 
+types. Because LLVM can represent over 8 million different integer types, 
+overloading is used commonly to allow an intrinsic function to operate on any 
+integer type. One or more of the argument types or the result type can be 
+overloaded to accept any integer type. Argument types may also be defined as 
+exactly matching a previous argument's type or the result type. This allows an 
+intrinsic function which accepts multiple arguments, but needs all of them to 
+be of the same type, to only be overloaded with respect to a single argument or 
+the result.</p>
+
+<p>Overloaded intrinsics will have the names of its overloaded argument types 
+encoded into its function name, each preceded by a period. Only those types 
+which are overloaded result in a name suffix. Arguments whose type is matched 
+against another type do not. For example, the <tt>llvm.ctpop</tt> function can 
+take an integer of any width and returns an integer of exactly the same integer 
+width. This leads to a family of functions such as
+<tt>i8 @llvm.ctpop.i8(i8 %val)</tt> and <tt>i29 @llvm.ctpop.i29(i29 %val)</tt>.
+Only one type, the return type, is overloaded, and only one type suffix is 
+required. Because the argument's type is matched against the return type, it 
+does not require its own name suffix.</p>
 
 <p>To learn how to add an intrinsic function, please see the 
 <a href="ExtendingLLVM.html">Extending LLVM Guide</a>.
@@ -3891,6 +4079,10 @@ Front-ends for type-safe garbage collected languages should generate these
 intrinsics to make use of the LLVM garbage collectors.  For more details, see <a
 href="GarbageCollection.html">Accurate Garbage Collection with LLVM</a>.
 </p>
+
+<p>The garbage collection intrinsics only operate on objects in the generic 
+       address space (address space zero).</p>
+
 </div>
 
 <!-- _______________________________________________________________________ -->
@@ -3903,7 +4095,7 @@ href="GarbageCollection.html">Accurate Garbage Collection with LLVM</a>.
 <h5>Syntax:</h5>
 
 <pre>
-  declare void @llvm.gcroot(&lt;ty&gt;** %ptrloc, &lt;ty2&gt;* %metadata)
+  declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
 </pre>
 
 <h5>Overview:</h5>
@@ -3921,8 +4113,9 @@ value address) contains the meta-data to be associated with the root.</p>
 
 <p>At runtime, a call to this intrinsics stores a null pointer into the "ptrloc"
 location.  At compile-time, the code generator generates information to allow
-the runtime to find the pointer at GC safe points.
-</p>
+the runtime to find the pointer at GC safe points. The '<tt>llvm.gcroot</tt>'
+intrinsic may only be used in a function which <a href="#gc">specifies a GC
+algorithm</a>.</p>
 
 </div>
 
@@ -3937,7 +4130,7 @@ the runtime to find the pointer at GC safe points.
 <h5>Syntax:</h5>
 
 <pre>
-  declare i8 * @llvm.gcread(i8 * %ObjPtr, i8 ** %Ptr)
+  declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
 </pre>
 
 <h5>Overview:</h5>
@@ -3957,7 +4150,9 @@ null).</p>
 
 <p>The '<tt>llvm.gcread</tt>' intrinsic has the same semantics as a load
 instruction, but may be replaced with substantially more complex code by the
-garbage collector runtime, as needed.</p>
+garbage collector runtime, as needed. The '<tt>llvm.gcread</tt>' intrinsic
+may only be used in a function which <a href="#gc">specifies a GC
+algorithm</a>.</p>
 
 </div>
 
@@ -3972,7 +4167,7 @@ garbage collector runtime, as needed.</p>
 <h5>Syntax:</h5>
 
 <pre>
-  declare void @llvm.gcwrite(i8 * %P1, i8 * %Obj, i8 ** %P2)
+  declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
 </pre>
 
 <h5>Overview:</h5>
@@ -3992,7 +4187,9 @@ null.</p>
 
 <p>The '<tt>llvm.gcwrite</tt>' intrinsic has the same semantics as a store
 instruction, but may be replaced with substantially more complex code by the
-garbage collector runtime, as needed.</p>
+garbage collector runtime, as needed. The '<tt>llvm.gcwrite</tt>' intrinsic
+may only be used in a function which <a href="#gc">specifies a GC
+algorithm</a>.</p>
 
 </div>
 
@@ -4065,7 +4262,7 @@ source-language caller.
 
 <h5>Syntax:</h5>
 <pre>
-  declare i8  *@llvm.frameaddress(i32 &lt;level&gt;)
+  declare i8 *@llvm.frameaddress(i32 &lt;level&gt;)
 </pre>
 
 <h5>Overview:</h5>
@@ -4108,7 +4305,7 @@ source-language caller.
 
 <h5>Syntax:</h5>
 <pre>
-  declare i8  *@llvm.stacksave()
+  declare i8 *@llvm.stacksave()
 </pre>
 
 <h5>Overview:</h5>
@@ -4174,8 +4371,7 @@ See the description for <a href="#int_stacksave"><tt>llvm.stacksave</tt></a>.
 
 <h5>Syntax:</h5>
 <pre>
-  declare void @llvm.prefetch(i8  * &lt;address&gt;,
-                                i32 &lt;rw&gt;, i32 &lt;locality&gt;)
+  declare void @llvm.prefetch(i8* &lt;address&gt;, i32 &lt;rw&gt;, i32 &lt;locality&gt;)
 </pre>
 
 <h5>Overview:</h5>
@@ -4219,7 +4415,7 @@ performance.
 
 <h5>Syntax:</h5>
 <pre>
-  declare void @llvm.pcmarker( i32 &lt;id&gt; )
+  declare void @llvm.pcmarker(i32 &lt;id&gt;)
 </pre>
 
 <h5>Overview:</h5>
@@ -4373,7 +4569,7 @@ be set to 0 or 1.
 <p>
 The '<tt>llvm.memmove.*</tt>' intrinsics move a block of memory from the source
 location to the destination location. It is similar to the
-'<tt>llvm.memcmp</tt>' intrinsic but allows the two memory locations to overlap.
+'<tt>llvm.memcpy</tt>' intrinsic but allows the two memory locations to overlap.
 </p>
 
 <p>
@@ -4469,18 +4665,26 @@ this can be specified as the fourth argument, otherwise it should be set to 0 or
 <div class="doc_text">
 
 <h5>Syntax:</h5>
+<p>This is an overloaded intrinsic. You can use <tt>llvm.sqrt</tt> on any 
+floating point or vector of floating point type. Not all targets support all
+types however.
 <pre>
-  declare float @llvm.sqrt.f32(float %Val)
-  declare double @llvm.sqrt.f64(double %Val)
+  declare float     @llvm.sqrt.f32(float %Val)
+  declare double    @llvm.sqrt.f64(double %Val)
+  declare x86_fp80  @llvm.sqrt.f80(x86_fp80 %Val)
+  declare fp128     @llvm.sqrt.f128(fp128 %Val)
+  declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
 </pre>
 
 <h5>Overview:</h5>
 
 <p>
 The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand,
-returning the same value as the libm '<tt>sqrt</tt>' function would.  Unlike
+returning the same value as the libm '<tt>sqrt</tt>' functions would.  Unlike
 <tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined behavior for
-negative numbers (which allows for better optimization).
+negative numbers other than -0.0 (which allows for better optimization, because
+there is no need to worry about errno being set).  <tt>llvm.sqrt(-0.0)</tt> is
+defined to return -0.0 like IEEE sqrt.
 </p>
 
 <h5>Arguments:</h5>
@@ -4505,9 +4709,15 @@ floating point number.
 <div class="doc_text">
 
 <h5>Syntax:</h5>
+<p>This is an overloaded intrinsic. You can use <tt>llvm.powi</tt> on any 
+floating point or vector of floating point type. Not all targets support all
+types however.
 <pre>
-  declare float  @llvm.powi.f32(float  %Val, i32 %power)
-  declare double @llvm.powi.f64(double %Val, i32 %power)
+  declare float     @llvm.powi.f32(float  %Val, i32 %power)
+  declare double    @llvm.powi.f64(double %Val, i32 %power)
+  declare x86_fp80  @llvm.powi.f80(x86_fp80  %Val, i32 %power)
+  declare fp128     @llvm.powi.f128(fp128 %Val, i32 %power)
+  declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128  %Val, i32 %power)
 </pre>
 
 <h5>Overview:</h5>
@@ -4515,7 +4725,8 @@ floating point number.
 <p>
 The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the
 specified (positive or negative) power.  The order of evaluation of
-multiplications is not defined.
+multiplications is not defined.  When a vector of floating point type is
+used, the second argument remains a scalar integer value.
 </p>
 
 <h5>Arguments:</h5>
@@ -4532,6 +4743,126 @@ This function returns the first value raised to the second power with an
 unspecified sequence of rounding operations.</p>
 </div>
 
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+  <a name="int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a>
+</div>
+
+<div class="doc_text">
+
+<h5>Syntax:</h5>
+<p>This is an overloaded intrinsic. You can use <tt>llvm.sin</tt> on any 
+floating point or vector of floating point type. Not all targets support all
+types however.
+<pre>
+  declare float     @llvm.sin.f32(float  %Val)
+  declare double    @llvm.sin.f64(double %Val)
+  declare x86_fp80  @llvm.sin.f80(x86_fp80  %Val)
+  declare fp128     @llvm.sin.f128(fp128 %Val)
+  declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128  %Val)
+</pre>
+
+<h5>Overview:</h5>
+
+<p>
+The '<tt>llvm.sin.*</tt>' intrinsics return the sine of the operand.
+</p>
+
+<h5>Arguments:</h5>
+
+<p>
+The argument and return value are floating point numbers of the same type.
+</p>
+
+<h5>Semantics:</h5>
+
+<p>
+This function returns the sine of the specified operand, returning the
+same values as the libm <tt>sin</tt> functions would, and handles error
+conditions in the same way.</p>
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+  <a name="int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a>
+</div>
+
+<div class="doc_text">
+
+<h5>Syntax:</h5>
+<p>This is an overloaded intrinsic. You can use <tt>llvm.cos</tt> on any 
+floating point or vector of floating point type. Not all targets support all
+types however.
+<pre>
+  declare float     @llvm.cos.f32(float  %Val)
+  declare double    @llvm.cos.f64(double %Val)
+  declare x86_fp80  @llvm.cos.f80(x86_fp80  %Val)
+  declare fp128     @llvm.cos.f128(fp128 %Val)
+  declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128  %Val)
+</pre>
+
+<h5>Overview:</h5>
+
+<p>
+The '<tt>llvm.cos.*</tt>' intrinsics return the cosine of the operand.
+</p>
+
+<h5>Arguments:</h5>
+
+<p>
+The argument and return value are floating point numbers of the same type.
+</p>
+
+<h5>Semantics:</h5>
+
+<p>
+This function returns the cosine of the specified operand, returning the
+same values as the libm <tt>cos</tt> functions would, and handles error
+conditions in the same way.</p>
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+  <a name="int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a>
+</div>
+
+<div class="doc_text">
+
+<h5>Syntax:</h5>
+<p>This is an overloaded intrinsic. You can use <tt>llvm.pow</tt> on any 
+floating point or vector of floating point type. Not all targets support all
+types however.
+<pre>
+  declare float     @llvm.pow.f32(float  %Val, float %Power)
+  declare double    @llvm.pow.f64(double %Val, double %Power)
+  declare x86_fp80  @llvm.pow.f80(x86_fp80  %Val, x86_fp80 %Power)
+  declare fp128     @llvm.pow.f128(fp128 %Val, fp128 %Power)
+  declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128  %Val, ppc_fp128 Power)
+</pre>
+
+<h5>Overview:</h5>
+
+<p>
+The '<tt>llvm.pow.*</tt>' intrinsics return the first operand raised to the
+specified (positive or negative) power.
+</p>
+
+<h5>Arguments:</h5>
+
+<p>
+The second argument is a floating point power, and the first is a value to
+raise to that power.
+</p>
+
+<h5>Semantics:</h5>
+
+<p>
+This function returns the first value raised to the second power,
+returning the
+same values as the libm <tt>pow</tt> functions would, and handles error
+conditions in the same way.</p>
+</div>
+
 
 <!-- ======================================================================= -->
 <div class="doc_subsection">
@@ -4555,12 +4886,11 @@ These allow efficient code generation for some algorithms.
 
 <h5>Syntax:</h5>
 <p>This is an overloaded intrinsic function. You can use bswap on any integer
-type that is an even number of bytes (i.e. BitWidth % 16 == 0). Note the suffix
-that includes the type for the result and the operand.
+type that is an even number of bytes (i.e. BitWidth % 16 == 0).
 <pre>
-  declare i16 @llvm.bswap.i16.i16(i16 &lt;id&gt;)
-  declare i32 @llvm.bswap.i32.i32(i32 &lt;id&gt;)
-  declare i64 @llvm.bswap.i64.i64(i64 &lt;id&gt;)
+  declare i16 @llvm.bswap.i16(i16 &lt;id&gt;)
+  declare i32 @llvm.bswap.i32(i32 &lt;id&gt;)
+  declare i64 @llvm.bswap.i64(i64 &lt;id&gt;)
 </pre>
 
 <h5>Overview:</h5>
@@ -4575,12 +4905,12 @@ byte order.
 <h5>Semantics:</h5>
 
 <p>
-The <tt>llvm.bswap.16.i16</tt> intrinsic returns an i16 value that has the high 
+The <tt>llvm.bswap.i16</tt> intrinsic returns an i16 value that has the high 
 and low byte of the input i16 swapped.  Similarly, the <tt>llvm.bswap.i32</tt> 
 intrinsic returns an i32 value that has the four bytes of the input i32 
 swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the returned 
-i32 will have its bytes in 3, 2, 1, 0 order.  The <tt>llvm.bswap.i48.i48</tt>, 
-<tt>llvm.bswap.i64.i64</tt> and other intrinsics extend this concept to
+i32 will have its bytes in 3, 2, 1, 0 order.  The <tt>llvm.bswap.i48</tt>, 
+<tt>llvm.bswap.i64</tt> and other intrinsics extend this concept to
 additional even-byte lengths (6 bytes, 8 bytes and more, respectively).
 </p>
 
@@ -4597,11 +4927,11 @@ additional even-byte lengths (6 bytes, 8 bytes and more, respectively).
 <p>This is an overloaded intrinsic. You can use llvm.ctpop on any integer bit
 width. Not all targets support all bit widths however.
 <pre>
-  declare i32 @llvm.ctpop.i8 (i8  &lt;src&gt;)
-  declare i32 @llvm.ctpop.i16(i16 &lt;src&gt;)
+  declare i8 @llvm.ctpop.i8 (i8  &lt;src&gt;)
+  declare i16 @llvm.ctpop.i16(i16 &lt;src&gt;)
   declare i32 @llvm.ctpop.i32(i32 &lt;src&gt;)
-  declare i32 @llvm.ctpop.i64(i64 &lt;src&gt;)
-  declare i32 @llvm.ctpop.i256(i256 &lt;src&gt;)
+  declare i64 @llvm.ctpop.i64(i64 &lt;src&gt;)
+  declare i256 @llvm.ctpop.i256(i256 &lt;src&gt;)
 </pre>
 
 <h5>Overview:</h5>
@@ -4636,11 +4966,11 @@ The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable.
 <p>This is an overloaded intrinsic. You can use <tt>llvm.ctlz</tt> on any 
 integer bit width. Not all targets support all bit widths however.
 <pre>
-  declare i32 @llvm.ctlz.i8 (i8  &lt;src&gt;)
-  declare i32 @llvm.ctlz.i16(i16 &lt;src&gt;)
+  declare i8 @llvm.ctlz.i8 (i8  &lt;src&gt;)
+  declare i16 @llvm.ctlz.i16(i16 &lt;src&gt;)
   declare i32 @llvm.ctlz.i32(i32 &lt;src&gt;)
-  declare i32 @llvm.ctlz.i64(i64 &lt;src&gt;)
-  declare i32 @llvm.ctlz.i256(i256 &lt;src&gt;)
+  declare i64 @llvm.ctlz.i64(i64 &lt;src&gt;)
+  declare i256 @llvm.ctlz.i256(i256 &lt;src&gt;)
 </pre>
 
 <h5>Overview:</h5>
@@ -4679,11 +5009,11 @@ of src. For example, <tt>llvm.ctlz(i32 2) = 30</tt>.
 <p>This is an overloaded intrinsic. You can use <tt>llvm.cttz</tt> on any 
 integer bit width. Not all targets support all bit widths however.
 <pre>
-  declare i32 @llvm.cttz.i8 (i8  &lt;src&gt;)
-  declare i32 @llvm.cttz.i16(i16 &lt;src&gt;)
+  declare i8 @llvm.cttz.i8 (i8  &lt;src&gt;)
+  declare i16 @llvm.cttz.i16(i16 &lt;src&gt;)
   declare i32 @llvm.cttz.i32(i32 &lt;src&gt;)
-  declare i32 @llvm.cttz.i64(i64 &lt;src&gt;)
-  declare i32 @llvm.cttz.i256(i256 &lt;src&gt;)
+  declare i64 @llvm.cttz.i64(i64 &lt;src&gt;)
+  declare i256 @llvm.cttz.i256(i256 &lt;src&gt;)
 </pre>
 
 <h5>Overview:</h5>
@@ -4720,8 +5050,8 @@ of src.  For example, <tt>llvm.cttz(2) = 1</tt>.
 <p>This is an overloaded intrinsic. You can use <tt>llvm.part.select</tt> 
 on any integer bit width.
 <pre>
-  declare i17 @llvm.part.select.i17.i17 (i17 %val, i32 %loBit, i32 %hiBit)
-  declare i29 @llvm.part.select.i29.i29 (i29 %val, i32 %loBit, i32 %hiBit)
+  declare i17 @llvm.part.select.i17 (i17 %val, i32 %loBit, i32 %hiBit)
+  declare i29 @llvm.part.select.i29 (i29 %val, i32 %loBit, i32 %hiBit)
 </pre>
 
 <h5>Overview:</h5>
@@ -4767,8 +5097,8 @@ returned in the reverse order. So, for example, if <tt>X</tt> has the value
 <p>This is an overloaded intrinsic. You can use <tt>llvm.part.set</tt> 
 on any integer bit width.
 <pre>
-  declare i17 @llvm.part.set.i17.i17.i9 (i17 %val, i9 %repl, i32 %lo, i32 %hi)
-  declare i29 @llvm.part.set.i29.i29.i9 (i29 %val, i9 %repl, i32 %lo, i32 %hi)
+  declare i17 @llvm.part.set.i17.i9 (i17 %val, i9 %repl, i32 %lo, i32 %hi)
+  declare i29 @llvm.part.set.i29.i9 (i29 %val, i9 %repl, i32 %lo, i32 %hi)
 </pre>
 
 <h5>Overview:</h5>
@@ -4837,233 +5167,102 @@ Handling</a> document. </p>
 
 <!-- ======================================================================= -->
 <div class="doc_subsection">
-  <a name="int_atomics">Atomic Operations and Synchronization Intrinsics</a>
-</div>
-
-<div class="doc_text">
-<p>
-  These intrinsic functions expand the "universal IR" of LLVM to represent 
-  hardware constructs for atomic operations and memory synchronization.  This 
-  provides an interface to the hardware, not an interface to the programmer. It 
-  is aimed at a low enough level to allow any programming models or APIs which 
-  need atomic behaviors to map cleanly onto it. It is also modeled primarily on 
-  hardware behavior. Just as hardware provides a "universal IR" for source 
-  languages, it also provides a starting point for developing a "universal" 
-  atomic operation and synchronization IR.
-</p>
-<p>
-  These do <em>not</em> form an API such as high-level threading libraries, 
-  software transaction memory systems, atomic primitives, and intrinsic 
-  functions as found in BSD, GNU libc, atomic_ops, APR, and other system and 
-  application libraries.  The hardware interface provided by LLVM should allow 
-  a clean implementation of all of these APIs and parallel programming models. 
-  No one model or paradigm should be selected above others unless the hardware 
-  itself ubiquitously does so.
-</p>
+  <a name="int_trampoline">Trampoline Intrinsic</a>
 </div>
 
-<!-- _______________________________________________________________________ -->
-<div class="doc_subsubsection">
-  <a name="int_lcs">'<tt>llvm.atomic.lcs.*</tt>' Intrinsic</a>
-</div>
 <div class="doc_text">
-<h5>Syntax:</h5>
-<p>
-  This is an overloaded intrinsic. You can use <tt>llvm.atomic.lcs</tt> on any 
-  integer bit width. Not all targets support all bit widths however.</p>
-<pre>
-declare i8 @llvm.atomic.lcs.i8.i8p.i8.i8( i8* &lt;ptr&gt;, i8 &lt;cmp&gt;, i8 &lt;val&gt; )
-declare i16 @llvm.atomic.lcs.i16.i16p.i16.i16( i16* &lt;ptr&gt;, i16 &lt;cmp&gt;, i16 &lt;val&gt; )
-declare i32 @llvm.atomic.lcs.i32.i32p.i32.i32( i32* &lt;ptr&gt;, i32 &lt;cmp&gt;, i32 &lt;val&gt; )
-declare i64 @llvm.atomic.lcs.i64.i64p.i64.i64( i64* &lt;ptr&gt;, i64 &lt;cmp&gt;, i64 &lt;val&gt; )
-</pre>
-<h5>Overview:</h5>
 <p>
-  This loads a value in memory and compares it to a given value. If they are 
-  equal, it stores a new value into the memory.
-</p>
-<h5>Arguments:</h5>
-<p>
-  The <tt>llvm.atomic.lcs</tt> intrinsic takes three arguments. The result as 
-  well as both <tt>cmp</tt> and <tt>val</tt> must be integer values with the 
-  same bit width. The <tt>ptr</tt> argument must be a pointer to a value of 
-  this integer type. While any bit width integer may be used, targets may only 
-  lower representations they support in hardware.
+  This intrinsic makes it possible to excise one parameter, marked with
+  the <tt>nest</tt> attribute, from a function.  The result is a callable
+  function pointer lacking the nest parameter - the caller does not need
+  to provide a value for it.  Instead, the value to use is stored in
+  advance in a "trampoline", a block of memory usually allocated
+  on the stack, which also contains code to splice the nest value into the
+  argument list.  This is used to implement the GCC nested function address
+  extension.
 </p>
-<h5>Semantics:</h5>
 <p>
-  This entire intrinsic must be executed atomically. It first loads the value 
-  in memory pointed to by <tt>ptr</tt> and compares it with the value 
-  <tt>cmp</tt>. If they are equal, <tt>val</tt> is stored into the memory. The 
-  loaded value is yielded in all cases. This provides the equivalent of an 
-  atomic compare-and-swap operation within the SSA framework.
-</p>
-<h5>Examples:</h5>
+  For example, if the function is
+  <tt>i32 f(i8* nest  %c, i32 %x, i32 %y)</tt> then the resulting function
+  pointer has signature <tt>i32 (i32, i32)*</tt>.  It can be created as follows:</p>
 <pre>
-%ptr      = malloc i32
-            store i32 4, %ptr
-
-%val1     = add i32 4, 4
-%result1  = call i32 @llvm.atomic.lcs( i32* %ptr, i32 4, %val1 )
-                                          <i>; yields {i32}:result1 = 4</i>
-%stored1  = icmp eq i32 %result1, 4       <i>; yields {i1}:stored1 = true</i>
-%memval1  = load i32* %ptr                <i>; yields {i32}:memval1 = 8</i>
-
-%val2     = add i32 1, 1
-%result2  = call i32 @llvm.atomic.lcs( i32* %ptr, i32 5, %val2 )
-                                          <i>; yields {i32}:result2 = 8</i>
-%stored2  = icmp eq i32 %result2, 5       <i>; yields {i1}:stored2 = false</i>
-%memval2  = load i32* %ptr                <i>; yields {i32}:memval2 = 8</i>
+  %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
+  %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
+  %p = call i8* @llvm.init.trampoline( i8* %tramp1, i8* bitcast (i32 (i8* nest , i32, i32)* @f to i8*), i8* %nval )
+  %fp = bitcast i8* %p to i32 (i32, i32)*
 </pre>
+  <p>The call <tt>%val = call i32 %fp( i32 %x, i32 %y )</tt> is then equivalent
+  to <tt>%val = call i32 %f( i8* %nval, i32 %x, i32 %y )</tt>.</p>
 </div>
 
 <!-- _______________________________________________________________________ -->
 <div class="doc_subsubsection">
-  <a name="int_ls">'<tt>llvm.atomic.ls.*</tt>' Intrinsic</a>
-</div>
-<div class="doc_text">
-<h5>Syntax:</h5>
-<p>
-  This is an overloaded intrinsic. You can use <tt>llvm.atomic.ls</tt> on any 
-  integer bit width. Not all targets support all bit widths however.</p>
-<pre>
-declare i8 @llvm.atomic.ls.i8.i8p.i8( i8* &lt;ptr&gt;, i8 &lt;val&gt; )
-declare i16 @llvm.atomic.ls.i16.i16p.i16( i16* &lt;ptr&gt;, i16 &lt;val&gt; )
-declare i32 @llvm.atomic.ls.i32.i32p.i32( i32* &lt;ptr&gt;, i32 &lt;val&gt; )
-declare i64 @llvm.atomic.ls.i64.i64p.i64( i64* &lt;ptr&gt;, i64 &lt;val&gt; )
-</pre>
-<h5>Overview:</h5>
-<p>
-  This intrinsic loads the value stored in memory at <tt>ptr</tt> and yields 
-  the value from memory. It then stores the value in <tt>val</tt> in the memory 
-  at <tt>ptr</tt>.
-</p>
-<h5>Arguments:</h5>
-<p>
-  The <tt>llvm.atomic.ls</tt> intrinsic takes two arguments. Both the 
-  <tt>val</tt> argument and the result must be integers of the same bit width. 
-  The first argument, <tt>ptr</tt>, must be a pointer to a value of this 
-  integer type. The targets may only lower integer representations they 
-  support.
-</p>
-<h5>Semantics:</h5>
-<p>
-  This intrinsic loads the value pointed to by <tt>ptr</tt>, yields it, and 
-  stores <tt>val</tt> back into <tt>ptr</tt> atomically. This provides the 
-  equivalent of an atomic swap operation within the SSA framework.
-</p>
-<h5>Examples:</h5>
-<pre>
-%ptr      = malloc i32
-            store i32 4, %ptr
-
-%val1     = add i32 4, 4
-%result1  = call i32 @llvm.atomic.ls( i32* %ptr, i32 %val1 )
-                                        <i>; yields {i32}:result1 = 4</i>
-%stored1  = icmp eq i32 %result1, 4     <i>; yields {i1}:stored1 = true</i>
-%memval1  = load i32* %ptr              <i>; yields {i32}:memval1 = 8</i>
-
-%val2     = add i32 1, 1
-%result2  = call i32 @llvm.atomic.ls( i32* %ptr, i32 %val2 )
-                                        <i>; yields {i32}:result2 = 8</i>
-%stored2  = icmp eq i32 %result2, 8     <i>; yields {i1}:stored2 = true</i>
-%memval2  = load i32* %ptr              <i>; yields {i32}:memval2 = 2</i>
-</pre>
- </div>
-
-<!-- _______________________________________________________________________ -->
-<div class="doc_subsubsection">
-  <a name="int_las">'<tt>llvm.atomic.las.*</tt>' Intrinsic</a>
+  <a name="int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a>
 </div>
 <div class="doc_text">
 <h5>Syntax:</h5>
-<p>
-  This is an overloaded intrinsic. You can use <tt>llvm.atomic.las</tt> on any 
-  integer bit width. Not all targets support all bit widths however.</p>
 <pre>
-declare i8 @llvm.atomic.las.i8.i8p.i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
-declare i16 @llvm.atomic.las.i16.i16p.i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
-declare i32 @llvm.atomic.las.i32.i32p.i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
-declare i64 @llvm.atomic.las.i64.i64p.i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
+declare i8* @llvm.init.trampoline(i8* &lt;tramp&gt;, i8* &lt;func&gt;, i8* &lt;nval&gt;)
 </pre>
 <h5>Overview:</h5>
 <p>
-  This intrinsic adds <tt>delta</tt> to the value stored in memory at 
-  <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.
+  This fills the memory pointed to by <tt>tramp</tt> with code
+  and returns a function pointer suitable for executing it.
 </p>
 <h5>Arguments:</h5>
 <p>
-  The intrinsic takes two arguments, the first a pointer to an integer value 
-  and the second an integer value. The result is also an integer value. These 
-  integer types can have any bit width, but they must all have the same bit 
-  width. The targets may only lower integer representations they support.
+  The <tt>llvm.init.trampoline</tt> intrinsic takes three arguments, all
+  pointers.  The <tt>tramp</tt> argument must point to a sufficiently large
+  and sufficiently aligned block of memory; this memory is written to by the
+  intrinsic.  Note that the size and the alignment are target-specific - LLVM
+  currently provides no portable way of determining them, so a front-end that
+  generates this intrinsic needs to have some target-specific knowledge.
+  The <tt>func</tt> argument must hold a function bitcast to an <tt>i8*</tt>.
 </p>
 <h5>Semantics:</h5>
 <p>
-  This intrinsic does a series of operations atomically. It first loads the 
-  value stored at <tt>ptr</tt>. It then adds <tt>delta</tt>, stores the result 
-  to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.
+  The block of memory pointed to by <tt>tramp</tt> is filled with target
+  dependent code, turning it into a function.  A pointer to this function is
+  returned, but needs to be bitcast to an
+  <a href="#int_trampoline">appropriate function pointer type</a>
+  before being called.  The new function's signature is the same as that of
+  <tt>func</tt> with any arguments marked with the <tt>nest</tt> attribute
+  removed.  At most one such <tt>nest</tt> argument is allowed, and it must be
+  of pointer type.  Calling the new function is equivalent to calling
+  <tt>func</tt> with the same argument list, but with <tt>nval</tt> used for the
+  missing <tt>nest</tt> argument.  If, after calling
+  <tt>llvm.init.trampoline</tt>, the memory pointed to by <tt>tramp</tt> is
+  modified, then the effect of any later call to the returned function pointer is
+  undefined.
 </p>
-<h5>Examples:</h5>
-<pre>
-%ptr      = malloc i32
-        store i32 4, %ptr
-%result1  = call i32 @llvm.atomic.las( i32* %ptr, i32 4 )
-                                <i>; yields {i32}:result1 = 4</i>
-%result2  = call i32 @llvm.atomic.las( i32* %ptr, i32 2 )
-                                <i>; yields {i32}:result2 = 8</i>
-%result3  = call i32 @llvm.atomic.las( i32* %ptr, i32 5 )
-                                <i>; yields {i32}:result3 = 10</i>
-%memval   = load i32* %ptr      <i>; yields {i32}:memval1 = 15</i>
-</pre>
 </div>
 
-<!-- _______________________________________________________________________ -->
-<div class="doc_subsubsection">
-  <a name="int_lss">'<tt>llvm.atomic.lss.*</tt>' Intrinsic</a>
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+  <a name="int_atomics">Atomic Operations and Synchronization Intrinsics</a>
 </div>
+
 <div class="doc_text">
-<h5>Syntax:</h5>
-<p>
-  This is an overloaded intrinsic. You can use <tt>llvm.atomic.lss</tt> on any 
-  integer bit width. Not all targets support all bit widths however.</p>
-<pre>
-declare i8 @llvm.atomic.lss.i8.i8.i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
-declare i16 @llvm.atomic.lss.i16.i16.i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
-declare i32 @llvm.atomic.lss.i32.i32.i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
-declare i64 @llvm.atomic.lss.i64.i64.i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
-</pre>
-<h5>Overview:</h5>
 <p>
-  This intrinsic subtracts <tt>delta</tt> from the value stored in memory at 
-  <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.
-</p>
-<h5>Arguments:</h5>
-<p>
-  The intrinsic takes two arguments, the first a pointer to an integer value 
-  and the second an integer value. The result is also an integer value. These 
-  integer types can have any bit width, but they must all have the same bit 
-  width. The targets may only lower integer representations they support.
+  These intrinsic functions expand the "universal IR" of LLVM to represent 
+  hardware constructs for atomic operations and memory synchronization.  This 
+  provides an interface to the hardware, not an interface to the programmer. It 
+  is aimed at a low enough level to allow any programming models or APIs which 
+  need atomic behaviors to map cleanly onto it. It is also modeled primarily on 
+  hardware behavior. Just as hardware provides a "universal IR" for source 
+  languages, it also provides a starting point for developing a "universal" 
+  atomic operation and synchronization IR.
 </p>
-<h5>Semantics:</h5>
 <p>
-  This intrinsic does a series of operations atomically. It first loads the 
-  value stored at <tt>ptr</tt>. It then subtracts <tt>delta</tt>, 
-  stores the result to <tt>ptr</tt>. It yields the original value stored 
-  at <tt>ptr</tt>.
+  These do <em>not</em> form an API such as high-level threading libraries, 
+  software transaction memory systems, atomic primitives, and intrinsic 
+  functions as found in BSD, GNU libc, atomic_ops, APR, and other system and 
+  application libraries.  The hardware interface provided by LLVM should allow 
+  a clean implementation of all of these APIs and parallel programming models. 
+  No one model or paradigm should be selected above others unless the hardware 
+  itself ubiquitously does so.
+
 </p>
-<h5>Examples:</h5>
-<pre>
-%ptr      = malloc i32
-        store i32 32, %ptr
-%result1  = call i32 @llvm.atomic.lss( i32* %ptr, i32 4 )
-                                    <i>; yields {i32}:result1 = 32</i>
-%result2  = call i32 @llvm.atomic.lss( i32* %ptr, i32 2 )
-                                    <i>; yields {i32}:result2 = 28</i>
-%result3  = call i32 @llvm.atomic.lss( i32* %ptr, i32 5 )
-                                    <i>; yields {i32}:result3 = 26</i>
-%memval   = load i32* %ptr          <i>; yields {i32}:memval1 = 21</i>
-</pre>
 </div>
 
 <!-- _______________________________________________________________________ -->
@@ -5073,7 +5272,9 @@ declare i64 @llvm.atomic.lss.i64.i64.i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
 <div class="doc_text">
 <h5>Syntax:</h5>
 <pre>
-declare void @llvm.memory.barrier( i1 &lt;ll&gt;, i1 &lt;ls&gt;, i1 &lt;sl&gt;, i1 &lt;ss&gt; )
+declare void @llvm.memory.barrier( i1 &lt;ll&gt;, i1 &lt;ls&gt;, i1 &lt;sl&gt;, i1 &lt;ss&gt;, 
+i1 &lt;device&gt; )
+
 </pre>
 <h5>Overview:</h5>
 <p>
@@ -5082,14 +5283,17 @@ declare void @llvm.memory.barrier( i1 &lt;ll&gt;, i1 &lt;ls&gt;, i1 &lt;sl&gt;,
 </p>
 <h5>Arguments:</h5>
 <p>
-  The <tt>llvm.memory.barrier</tt> intrinsic requires four boolean arguments. 
-  Each argument enables a specific barrier as listed below.
+  The <tt>llvm.memory.barrier</tt> intrinsic requires five boolean arguments. 
+  The first four arguments enables a specific barrier as listed below.  The fith
+  argument specifies that the barrier applies to io or device or uncached memory.
+
 </p>
   <ul>
     <li><tt>ll</tt>: load-load barrier</li>
     <li><tt>ls</tt>: load-store barrier</li>
     <li><tt>sl</tt>: store-load barrier</li>
     <li><tt>ss</tt>: store-store barrier</li>
+    <li><tt>device</tt>: barrier applies to device and uncached memory also.
   </ul>
 <h5>Semantics:</h5>
 <p>
@@ -5104,6 +5308,7 @@ declare void @llvm.memory.barrier( i1 &lt;ll&gt;, i1 &lt;ls&gt;, i1 &lt;sl&gt;,
   <ul>
     <li><tt>ll</tt>: All loads before the barrier must complete before any load 
     after the barrier begins.</li>
+
     <li><tt>ls</tt>: All loads before the barrier must complete before any 
     store after the barrier begins.</li>
     <li><tt>ss</tt>: All stores before the barrier must complete before any 
@@ -5113,7 +5318,12 @@ declare void @llvm.memory.barrier( i1 &lt;ll&gt;, i1 &lt;ls&gt;, i1 &lt;sl&gt;,
   </ul>
 <p>
   These semantics are applied with a logical "and" behavior when more than  one 
-  is enabled in a single memory barrier intrinsic.
+  is enabled in a single memory barrier intrinsic.  
+</p>
+<p>
+  Backends may implement stronger barriers than those requested when they do not
+  support as fine grained a barrier as requested.  Some architectures do not
+  need all types of barriers and on such architectures, these become noops.
 </p>
 <h5>Example:</h5>
 <pre>
@@ -5127,162 +5337,141 @@ declare void @llvm.memory.barrier( i1 &lt;ll&gt;, i1 &lt;ls&gt;, i1 &lt;sl&gt;,
 </pre>
 </div>
 
+
 <!-- ======================================================================= -->
 <div class="doc_subsection">
-  <a name="int_trampoline">Trampoline Intrinsics</a>
+  <a name="int_general">General Intrinsics</a>
 </div>
 
 <div class="doc_text">
-<p>
-  These intrinsics make it possible to excise one parameter, marked with
-  the <tt>nest</tt> attribute, from a function.  The result is a callable
-  function pointer lacking the nest parameter - the caller does not need
-  to provide a value for it.  Instead, the value to use is stored in
-  advance in a "trampoline", a block of memory usually allocated
-  on the stack, which also contains code to splice the nest value into the
-  argument list.  This is used to implement the GCC nested function address
-  extension.
-</p>
-<p>
-  For example, if the function is
-  <tt>i32 f(i8* nest  %c, i32 %x, i32 %y)</tt> then the resulting function
-  pointer has signature <tt>i32 (i32, i32)*</tt>.  It can be created as follows:
-<pre>
-  %tramp1 = alloca [10 x i8], align 4 ; size and alignment only correct for X86
-  %tramp = getelementptr [10 x i8]* %tramp1, i32 0, i32 0
-  call void @llvm.init.trampoline( i8* %tramp, i8* bitcast (i32 (i8* nest , i32, i32)* @f to i8*), i8* %nval )
-  %adj = call i8* @llvm.adjust.trampoline( i8* %tramp )
-  %fp = bitcast i8* %adj to i32 (i32, i32)*
-</pre>
-  The call <tt>%val = call i32 %fp( i32 %x, i32 %y )</tt> is then equivalent to
-  <tt>%val = call i32 %f( i8* %nval, i32 %x, i32 %y )</tt>.
-</p>
-<p>
-  Trampolines are currently only supported on the X86 architecture.
-</p>
+<p> This class of intrinsics is designed to be generic and has
+no specific purpose. </p>
 </div>
 
 <!-- _______________________________________________________________________ -->
 <div class="doc_subsubsection">
-  <a name="int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a>
+  <a name="int_var_annotation">'<tt>llvm.var.annotation</tt>' Intrinsic</a>
 </div>
+
 <div class="doc_text">
+
 <h5>Syntax:</h5>
 <pre>
-declare void @llvm.init.trampoline(i8* &lt;tramp&gt;, i8* &lt;func&gt;, i8* &lt;nval&gt;)
+  declare void @llvm.var.annotation(i8* &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32  &lt;int&gt; )
 </pre>
+
 <h5>Overview:</h5>
+
 <p>
-  This initializes the memory pointed to by <tt>tramp</tt> as a trampoline.
+The '<tt>llvm.var.annotation</tt>' intrinsic
 </p>
+
 <h5>Arguments:</h5>
+
 <p>
-  The <tt>llvm.init.trampoline</tt> intrinsic takes three arguments, all
-  pointers.  The <tt>tramp</tt> argument must point to a sufficiently large
-  and sufficiently aligned block of memory; this memory is written to by the
-  intrinsic.  Currently LLVM provides no help in determining just how big and
-  aligned the memory needs to be.  The <tt>func</tt> argument must hold a
-  function bitcast to an <tt>i8*</tt>.
+The first argument is a pointer to a value, the second is a pointer to a 
+global string, the third is a pointer to a global string which is the source 
+file name, and the last argument is the line number.
 </p>
+
 <h5>Semantics:</h5>
+
 <p>
-  The block of memory pointed to by <tt>tramp</tt> is filled with target
-  dependent code, turning it into a function.
-  The new function's signature is the same as that of <tt>func</tt> with
-  any arguments marked with the <tt>nest</tt> attribute removed.  At most
-  one such <tt>nest</tt> argument is allowed, and it must be of pointer
-  type.  Calling the new function is equivalent to calling <tt>func</tt>
-  with the same argument list, but with <tt>nval</tt> used for the missing
-  <tt>nest</tt> argument.
+This intrinsic allows annotation of local variables with arbitrary strings.
+This can be useful for special purpose optimizations that want to look for these
+annotations.  These have no other defined use, they are ignored by code
+generation and optimization.
 </p>
 </div>
 
 <!-- _______________________________________________________________________ -->
 <div class="doc_subsubsection">
-  <a name="int_at">'<tt>llvm.adjust.trampoline</tt>' Intrinsic</a>
+  <a name="int_annotation">'<tt>llvm.annotation.*</tt>' Intrinsic</a>
 </div>
+
 <div class="doc_text">
+
 <h5>Syntax:</h5>
+<p>This is an overloaded intrinsic. You can use '<tt>llvm.annotation</tt>' on 
+any integer bit width. 
+</p>
 <pre>
-declare i8* @llvm.adjust.trampoline(i8* &lt;tramp&gt;)
+  declare i8 @llvm.annotation.i8(i8 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32  &lt;int&gt; )
+  declare i16 @llvm.annotation.i16(i16 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32  &lt;int&gt; )
+  declare i32 @llvm.annotation.i32(i32 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32  &lt;int&gt; )
+  declare i64 @llvm.annotation.i64(i64 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32  &lt;int&gt; )
+  declare i256 @llvm.annotation.i256(i256 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32  &lt;int&gt; )
 </pre>
+
 <h5>Overview:</h5>
+
 <p>
-  This intrinsic returns a function pointer suitable for executing
-  the trampoline code pointed to by <tt>tramp</tt>.
+The '<tt>llvm.annotation</tt>' intrinsic.
 </p>
+
 <h5>Arguments:</h5>
+
 <p>
-  The <tt>llvm.adjust.trampoline</tt> takes one argument, a pointer to a
-  trampoline initialized by the
-  <a href="#int_it">'<tt>llvm.init.trampoline</tt>' intrinsic</a>.
-</p>
-<h5>Semantics:</h5>
-<p>
-  A function pointer that can be used to execute the trampoline code in
-  <tt>tramp</tt> is returned.  The returned value should be bitcast to an
-  <a href="#int_trampoline">appropriate function pointer type</a>
-  before being called.
+The first argument is an integer value (result of some expression), 
+the second is a pointer to a global string, the third is a pointer to a global 
+string which is the source file name, and the last argument is the line number.
+It returns the value of the first argument.
 </p>
-</div>
 
-<!-- ======================================================================= -->
-<div class="doc_subsection">
-  <a name="int_general">General Intrinsics</a>
-</div>
+<h5>Semantics:</h5>
 
-<div class="doc_text">
-<p> This class of intrinsics is designed to be generic and has
-no specific purpose. </p>
+<p>
+This intrinsic allows annotations to be put on arbitrary expressions
+with arbitrary strings.  This can be useful for special purpose optimizations 
+that want to look for these annotations.  These have no other defined use, they 
+are ignored by code generation and optimization.
 </div>
 
 <!-- _______________________________________________________________________ -->
 <div class="doc_subsubsection">
-  <a name="int_var_annotation">'<tt>llvm.var.annotation</tt>' Intrinsic</a>
+  <a name="int_trap">'<tt>llvm.trap</tt>' Intrinsic</a>
 </div>
 
 <div class="doc_text">
 
 <h5>Syntax:</h5>
 <pre>
-  declare void @llvm.var.annotation(i8* &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32  &lt;int&gt; )
+  declare void @llvm.trap()
 </pre>
 
 <h5>Overview:</h5>
 
 <p>
-The '<tt>llvm.var.annotation</tt>' intrinsic
+The '<tt>llvm.trap</tt>' intrinsic
 </p>
 
 <h5>Arguments:</h5>
 
 <p>
-The first argument is a pointer to a value, the second is a pointer to a 
-global string, the third is a pointer to a global string which is the source 
-file name, and the last argument is the line number.
+None
 </p>
 
 <h5>Semantics:</h5>
 
 <p>
-This intrinsic allows annotation of local variables with arbitrary strings.  
-This can be useful for special purpose optimizations that want to look for these
- annotations.  These have no other defined use, they are ignored by code 
- generation and optimization.
+This intrinsics is lowered to the target dependent trap instruction. If the
+target does not have a trap instruction, this intrinsic will be lowered to the
+call of the abort() function.
+</p>
 </div>
 
-
 <!-- *********************************************************************** -->
 <hr>
 <address>
   <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
   src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
   <a href="http://validator.w3.org/check/referer"><img
-  src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!" /></a>
+  src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a>
 
   <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
   <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
   Last modified: $Date$
 </address>
+
 </body>
 </html>