Note that these instructions are for x86-32 linux
[oota-llvm.git] / docs / CodeGenerator.html
index 95eb47749497d18e8a93bd4ceaa6c4a0d4d08cfd..d0eb1d51050a5833d509d9415792d5819289cfcd 100644 (file)
@@ -2,6 +2,7 @@
                       "http://www.w3.org/TR/html4/strict.dtd">
 <html>
 <head>
+  <meta http-equiv="content-type" content="text/html; charset=utf-8">
   <title>The LLVM Target-Independent Code Generator</title>
   <link rel="stylesheet" href="llvm.css" type="text/css">
 </head>
@@ -25,7 +26,7 @@
       <li><a href="#targetmachine">The <tt>TargetMachine</tt> class</a></li>
       <li><a href="#targetdata">The <tt>TargetData</tt> class</a></li>
       <li><a href="#targetlowering">The <tt>TargetLowering</tt> class</a></li>
-      <li><a href="#mregisterinfo">The <tt>MRegisterInfo</tt> class</a></li>
+      <li><a href="#targetregisterinfo">The <tt>TargetRegisterInfo</tt> class</a></li>
       <li><a href="#targetinstrinfo">The <tt>TargetInstrInfo</tt> class</a></li>
       <li><a href="#targetframeinfo">The <tt>TargetFrameInfo</tt> class</a></li>
       <li><a href="#targetsubtarget">The <tt>TargetSubtarget</tt> class</a></li>
       <li><a href="#selectiondag_future">Future directions for the
                                          SelectionDAG</a></li>
       </ul></li>
+     <li><a href="#liveintervals">Live Intervals</a>
+       <ul>
+       <li><a href="#livevariable_analysis">Live Variable Analysis</a></li>
+       <li><a href="#liveintervals_analysis">Live Intervals Analysis</a></li>
+       </ul></li>
+    <li><a href="#regalloc">Register Allocation</a>
+      <ul>
+      <li><a href="#regAlloc_represent">How registers are represented in
+                                        LLVM</a></li>
+      <li><a href="#regAlloc_howTo">Mapping virtual registers to physical
+                                    registers</a></li>
+      <li><a href="#regAlloc_twoAddr">Handling two address instructions</a></li>
+      <li><a href="#regAlloc_ssaDecon">The SSA deconstruction phase</a></li>
+      <li><a href="#regAlloc_fold">Instruction folding</a></li>
+      <li><a href="#regAlloc_builtIn">Built in register allocators</a></li>
+      </ul></li>
     <li><a href="#codeemit">Code Emission</a>
         <ul>
         <li><a href="#codeemit_asm">Generating Assembly Code</a></li>
   <li><a href="#targetimpls">Target-specific Implementation Notes</a>
     <ul>
     <li><a href="#x86">The X86 backend</a></li>
-    </ul>
-  </li>
+    <li><a href="#ppc">The PowerPC backend</a>
+      <ul>
+      <li><a href="#ppc_abi">LLVM PowerPC ABI</a></li>
+      <li><a href="#ppc_frame">Frame Layout</a></li>
+      <li><a href="#ppc_prolog">Prolog/Epilog</a></li>
+      <li><a href="#ppc_dynamic">Dynamic Allocation</a></li>
+      </ul></li>
+    </ul></li>
 
 </ol>
 
 <div class="doc_author">
-  <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a> &amp;
-  <a href="mailto:isanbard@gmail.com">Bill Wendling</a></p>
+  <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>,
+                <a href="mailto:isanbard@gmail.com">Bill Wendling</a>,
+                <a href="mailto:pronesto@gmail.com">Fernando Magno Quintao
+                                                    Pereira</a> and
+                <a href="mailto:jlaskey@mac.com">Jim Laskey</a></p>
 </div>
 
 <div class="doc_warning">
@@ -356,20 +382,19 @@ operations.  Among other things, this class indicates:</p>
   <li>the type to use for shift amounts</li>
   <li>various high-level characteristics, like whether it is profitable to turn
       division by a constant into a multiplication sequence</li>
-</ol>
+</ul>
 
 </div>
 
 <!-- ======================================================================= -->
 <div class="doc_subsection">
-  <a name="mregisterinfo">The <tt>MRegisterInfo</tt> class</a>
+  <a name="targetregisterinfo">The <tt>TargetRegisterInfo</tt> class</a>
 </div>
 
 <div class="doc_text">
 
-<p>The <tt>MRegisterInfo</tt> class (which will eventually be renamed to
-<tt>TargetRegisterInfo</tt>) is used to describe the register file of the
-target and any interactions between the registers.</p>
+<p>The <tt>TargetRegisterInfo</tt> class is used to describe the register
+file of the target and any interactions between the registers.</p>
 
 <p>Registers in the code generator are represented in the code generator by
 unsigned integers.  Physical registers (those that actually exist in the target
@@ -382,8 +407,8 @@ register (used for assembly output and debugging dumps) and a set of aliases
 (used to indicate whether one register overlaps with another).
 </p>
 
-<p>In addition to the per-register description, the <tt>MRegisterInfo</tt> class
-exposes a set of processor specific register classes (instances of the
+<p>In addition to the per-register description, the <tt>TargetRegisterInfo</tt>
+class exposes a set of processor specific register classes (instances of the
 <tt>TargetRegisterClass</tt> class).  Each register class contains sets of
 registers that have the same properties (for example, they are all 32-bit
 integer registers).  Each SSA virtual register created by the instruction
@@ -693,8 +718,7 @@ comes from.</p>
 corresponds one-to-one with the LLVM function input to the instruction selector.
 In addition to a list of basic blocks, the <tt>MachineFunction</tt> contains a
 a <tt>MachineConstantPool</tt>, a <tt>MachineFrameInfo</tt>, a
-<tt>MachineFunctionInfo</tt>, a <tt>SSARegMap</tt>, and a set of live in and
-live out registers for the function.  See
+<tt>MachineFunctionInfo</tt>, and a <tt>MachineRegisterInfo</tt>.  See
 <tt>include/llvm/CodeGen/MachineFunction.h</tt> for more information.</p>
 
 </div>
@@ -722,16 +746,14 @@ explains how they work and some of the rationale behind their design.</p>
 <p>
 Instruction Selection is the process of translating LLVM code presented to the
 code generator into target-specific machine instructions.  There are several
-well-known ways to do this in the literature.  In LLVM there are two main forms:
-the SelectionDAG based instruction selector framework and an old-style 'simple'
-instruction selector, which effectively peephole selects each LLVM instruction
-into a series of machine instructions.  We recommend that all targets use the
-SelectionDAG infrastructure.
+well-known ways to do this in the literature.  LLVM uses a SelectionDAG based
+instruction selector.
 </p>
 
 <p>Portions of the DAG instruction selector are generated from the target 
 description (<tt>*.td</tt>) files.  Our goal is for the entire instruction
-selector to be generated from these <tt>.td</tt> files.</p>
+selector to be generated from these <tt>.td</tt> files, though currently
+there are still things that require custom C++ code.</p>
 </div>
 
 <!-- _______________________________________________________________________ -->
@@ -839,7 +861,11 @@ of the code compiled (if you only get errors printed to the console while using
 this, you probably <a href="ProgrammersManual.html#ViewGraph">need to configure
 your system</a> to add support for it).  The <tt>-view-sched-dags</tt> option
 views the SelectionDAG output from the Select phase and input to the Scheduler
-phase.</p>
+phase.  The <tt>-view-sunit-dags</tt> option views the ScheduleDAG, which is
+based on the final SelectionDAG, with nodes that must be scheduled as a unit
+bundled together into a single node, and with immediate operands and other
+nodes that aren't relevent for scheduling omitted.
+</p>
 
 </div>
 
@@ -850,8 +876,8 @@ phase.</p>
 
 <div class="doc_text">
 
-<p>The initial SelectionDAG is naively peephole expanded from the LLVM input by
-the <tt>SelectionDAGLowering</tt> class in the
+<p>The initial SelectionDAG is na&iuml;vely peephole expanded from the LLVM
+input by the <tt>SelectionDAGLowering</tt> class in the
 <tt>lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp</tt> file.  The intent of this
 pass is to expose as much low-level, target-specific details to the SelectionDAG
 as possible.  This pass is mostly hard-coded (e.g. an LLVM <tt>add</tt> turns
@@ -1085,11 +1111,12 @@ primarily because it is a work in progress and is not yet finished:</p>
 <li>There is no great way to support matching complex addressing modes yet.  In
     the future, we will extend pattern fragments to allow them to define
     multiple values (e.g. the four operands of the <a href="#x86_memory">X86
-    addressing mode</a>).  In addition, we'll extend fragments so that a
+    addressing mode</a>, which are currently matched with custom C++ code).
+    In addition, we'll extend fragments so that a
     fragment can match multiple different patterns.</li>
 <li>We don't automatically infer flags like isStore/isLoad yet.</li>
 <li>We don't automatically generate the set of supported registers and
-    operations for the <a href="#"selectiondag_legalize>Legalizer</a> yet.</li>
+    operations for the <a href="#selectiondag_legalize">Legalizer</a> yet.</li>
 <li>We don't have a way of tying in custom legalized nodes yet.</li>
 </ul>
 
@@ -1130,7 +1157,6 @@ SelectionDAGs.</p>
 <ol>
 <li>Optional function-at-a-time selection.</li>
 <li>Auto-generate entire selector from <tt>.td</tt> file.</li>
-</li>
 </ol>
 
 </div>
@@ -1140,11 +1166,417 @@ SelectionDAGs.</p>
   <a name="ssamco">SSA-based Machine Code Optimizations</a>
 </div>
 <div class="doc_text"><p>To Be Written</p></div>
+
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+  <a name="liveintervals">Live Intervals</a>
+</div>
+
+<div class="doc_text">
+
+<p>Live Intervals are the ranges (intervals) where a variable is <i>live</i>.
+They are used by some <a href="#regalloc">register allocator</a> passes to
+determine if two or more virtual registers which require the same physical
+register are live at the same point in the program (i.e., they conflict).  When
+this situation occurs, one virtual register must be <i>spilled</i>.</p>
+
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+  <a name="livevariable_analysis">Live Variable Analysis</a>
+</div>
+
+<div class="doc_text">
+
+<p>The first step in determining the live intervals of variables is to
+calculate the set of registers that are immediately dead after the
+instruction (i.e., the instruction calculates the value, but it is
+never used) and the set of registers that are used by the instruction,
+but are never used after the instruction (i.e., they are killed). Live
+variable information is computed for each <i>virtual</i> register and
+<i>register allocatable</i> physical register in the function.  This
+is done in a very efficient manner because it uses SSA to sparsely
+compute lifetime information for virtual registers (which are in SSA
+form) and only has to track physical registers within a block.  Before
+register allocation, LLVM can assume that physical registers are only
+live within a single basic block.  This allows it to do a single,
+local analysis to resolve physical register lifetimes within each
+basic block. If a physical register is not register allocatable (e.g.,
+a stack pointer or condition codes), it is not tracked.</p>
+
+<p>Physical registers may be live in to or out of a function. Live in values
+are typically arguments in registers. Live out values are typically return
+values in registers. Live in values are marked as such, and are given a dummy
+"defining" instruction during live intervals analysis. If the last basic block
+of a function is a <tt>return</tt>, then it's marked as using all live out
+values in the function.</p>
+
+<p><tt>PHI</tt> nodes need to be handled specially, because the calculation
+of the live variable information from a depth first traversal of the CFG of
+the function won't guarantee that a virtual register used by the <tt>PHI</tt>
+node is defined before it's used. When a <tt>PHI</tt> node is encounted, only
+the definition is handled, because the uses will be handled in other basic
+blocks.</p>
+
+<p>For each <tt>PHI</tt> node of the current basic block, we simulate an
+assignment at the end of the current basic block and traverse the successor
+basic blocks. If a successor basic block has a <tt>PHI</tt> node and one of
+the <tt>PHI</tt> node's operands is coming from the current basic block,
+then the variable is marked as <i>alive</i> within the current basic block
+and all of its predecessor basic blocks, until the basic block with the
+defining instruction is encountered.</p>
+
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+  <a name="liveintervals_analysis">Live Intervals Analysis</a>
+</div>
+
+<div class="doc_text">
+
+<p>We now have the information available to perform the live intervals analysis
+and build the live intervals themselves.  We start off by numbering the basic
+blocks and machine instructions.  We then handle the "live-in" values.  These
+are in physical registers, so the physical register is assumed to be killed by
+the end of the basic block.  Live intervals for virtual registers are computed
+for some ordering of the machine instructions <tt>[1, N]</tt>.  A live interval
+is an interval <tt>[i, j)</tt>, where <tt>1 <= i <= j < N</tt>, for which a
+variable is live.</p>
+
+<p><i><b>More to come...</b></i></p>
+
+</div>
+
 <!-- ======================================================================= -->
 <div class="doc_subsection">
   <a name="regalloc">Register Allocation</a>
 </div>
-<div class="doc_text"><p>To Be Written</p></div>
+
+<div class="doc_text">
+
+<p>The <i>Register Allocation problem</i> consists in mapping a program
+<i>P<sub>v</sub></i>, that can use an unbounded number of virtual
+registers, to a program <i>P<sub>p</sub></i> that contains a finite
+(possibly small) number of physical registers. Each target architecture has
+a different number of physical registers. If the number of physical
+registers is not enough to accommodate all the virtual registers, some of
+them will have to be mapped into memory. These virtuals are called
+<i>spilled virtuals</i>.</p>
+
+</div>
+
+<!-- _______________________________________________________________________ -->
+
+<div class="doc_subsubsection">
+  <a name="regAlloc_represent">How registers are represented in LLVM</a>
+</div>
+
+<div class="doc_text">
+
+<p>In LLVM, physical registers are denoted by integer numbers that
+normally range from 1 to 1023. To see how this numbering is defined
+for a particular architecture, you can read the
+<tt>GenRegisterNames.inc</tt> file for that architecture. For
+instance, by inspecting
+<tt>lib/Target/X86/X86GenRegisterNames.inc</tt> we see that the 32-bit
+register <tt>EAX</tt> is denoted by 15, and the MMX register
+<tt>MM0</tt> is mapped to 48.</p>
+
+<p>Some architectures contain registers that share the same physical
+location. A notable example is the X86 platform. For instance, in the
+X86 architecture, the registers <tt>EAX</tt>, <tt>AX</tt> and
+<tt>AL</tt> share the first eight bits. These physical registers are
+marked as <i>aliased</i> in LLVM. Given a particular architecture, you
+can check which registers are aliased by inspecting its
+<tt>RegisterInfo.td</tt> file. Moreover, the method
+<tt>TargetRegisterInfo::getAliasSet(p_reg)</tt> returns an array containing
+all the physical registers aliased to the register <tt>p_reg</tt>.</p>
+
+<p>Physical registers, in LLVM, are grouped in <i>Register Classes</i>.
+Elements in the same register class are functionally equivalent, and can
+be interchangeably used. Each virtual register can only be mapped to
+physical registers of a particular class. For instance, in the X86
+architecture, some virtuals can only be allocated to 8 bit registers.
+A register class is described by <tt>TargetRegisterClass</tt> objects.
+To discover if a virtual register is compatible with a given physical,
+this code can be used:
+</p>
+
+<div class="doc_code">
+<pre>
+bool RegMapping_Fer::compatible_class(MachineFunction &amp;mf,
+                                      unsigned v_reg,
+                                      unsigned p_reg) {
+  assert(TargetRegisterInfo::isPhysicalRegister(p_reg) &amp;&amp;
+         "Target register must be physical");
+  const TargetRegisterClass *trc = mf.getRegInfo().getRegClass(v_reg);
+  return trc-&gt;contains(p_reg);
+}
+</pre>
+</div>
+
+<p>Sometimes, mostly for debugging purposes, it is useful to change
+the number of physical registers available in the target
+architecture. This must be done statically, inside the
+<tt>TargetRegsterInfo.td</tt> file. Just <tt>grep</tt> for
+<tt>RegisterClass</tt>, the last parameter of which is a list of
+registers. Just commenting some out is one simple way to avoid them
+being used. A more polite way is to explicitly exclude some registers
+from the <i>allocation order</i>. See the definition of the
+<tt>GR</tt> register class in
+<tt>lib/Target/IA64/IA64RegisterInfo.td</tt> for an example of this
+(e.g., <tt>numReservedRegs</tt> registers are hidden.)</p>
+
+<p>Virtual registers are also denoted by integer numbers. Contrary to
+physical registers, different virtual registers never share the same
+number. The smallest virtual register is normally assigned the number
+1024. This may change, so, in order to know which is the first virtual
+register, you should access
+<tt>TargetRegisterInfo::FirstVirtualRegister</tt>. Any register whose
+number is greater than or equal to
+<tt>TargetRegisterInfo::FirstVirtualRegister</tt> is considered a virtual
+register. Whereas physical registers are statically defined in a
+<tt>TargetRegisterInfo.td</tt> file and cannot be created by the
+application developer, that is not the case with virtual registers.
+In order to create new virtual registers, use the method
+<tt>MachineRegisterInfo::createVirtualRegister()</tt>. This method will return a
+virtual register with the highest code.
+</p>
+
+<p>Before register allocation, the operands of an instruction are
+mostly virtual registers, although physical registers may also be
+used. In order to check if a given machine operand is a register, use
+the boolean function <tt>MachineOperand::isRegister()</tt>. To obtain
+the integer code of a register, use
+<tt>MachineOperand::getReg()</tt>. An instruction may define or use a
+register. For instance, <tt>ADD reg:1026 := reg:1025 reg:1024</tt>
+defines the registers 1024, and uses registers 1025 and 1026. Given a
+register operand, the method <tt>MachineOperand::isUse()</tt> informs
+if that register is being used by the instruction. The method
+<tt>MachineOperand::isDef()</tt> informs if that registers is being
+defined.</p>
+
+<p>We will call physical registers present in the LLVM bitcode before
+register allocation <i>pre-colored registers</i>. Pre-colored
+registers are used in many different situations, for instance, to pass
+parameters of functions calls, and to store results of particular
+instructions. There are two types of pre-colored registers: the ones
+<i>implicitly</i> defined, and those <i>explicitly</i>
+defined. Explicitly defined registers are normal operands, and can be
+accessed with <tt>MachineInstr::getOperand(int)::getReg()</tt>.  In
+order to check which registers are implicitly defined by an
+instruction, use the
+<tt>TargetInstrInfo::get(opcode)::ImplicitDefs</tt>, where
+<tt>opcode</tt> is the opcode of the target instruction. One important
+difference between explicit and implicit physical registers is that
+the latter are defined statically for each instruction, whereas the
+former may vary depending on the program being compiled. For example,
+an instruction that represents a function call will always implicitly
+define or use the same set of physical registers. To read the
+registers implicitly used by an instruction, use
+<tt>TargetInstrInfo::get(opcode)::ImplicitUses</tt>. Pre-colored
+registers impose constraints on any register allocation algorithm. The
+register allocator must make sure that none of them is been
+overwritten by the values of virtual registers while still alive.</p>
+
+</div>
+
+<!-- _______________________________________________________________________ -->
+
+<div class="doc_subsubsection">
+  <a name="regAlloc_howTo">Mapping virtual registers to physical registers</a>
+</div>
+
+<div class="doc_text">
+
+<p>There are two ways to map virtual registers to physical registers (or to
+memory slots). The first way, that we will call <i>direct mapping</i>,
+is based on the use of methods of the classes <tt>TargetRegisterInfo</tt>,
+and <tt>MachineOperand</tt>. The second way, that we will call
+<i>indirect mapping</i>, relies on the <tt>VirtRegMap</tt> class in
+order to insert loads and stores sending and getting values to and from
+memory.</p>
+
+<p>The direct mapping provides more flexibility to the developer of
+the register allocator; however, it is more error prone, and demands
+more implementation work.  Basically, the programmer will have to
+specify where load and store instructions should be inserted in the
+target function being compiled in order to get and store values in
+memory. To assign a physical register to a virtual register present in
+a given operand, use <tt>MachineOperand::setReg(p_reg)</tt>. To insert
+a store instruction, use
+<tt>TargetRegisterInfo::storeRegToStackSlot(...)</tt>, and to insert a load
+instruction, use <tt>TargetRegisterInfo::loadRegFromStackSlot</tt>.</p>
+
+<p>The indirect mapping shields the application developer from the
+complexities of inserting load and store instructions. In order to map
+a virtual register to a physical one, use
+<tt>VirtRegMap::assignVirt2Phys(vreg, preg)</tt>.  In order to map a
+certain virtual register to memory, use
+<tt>VirtRegMap::assignVirt2StackSlot(vreg)</tt>. This method will
+return the stack slot where <tt>vreg</tt>'s value will be located.  If
+it is necessary to map another virtual register to the same stack
+slot, use <tt>VirtRegMap::assignVirt2StackSlot(vreg,
+stack_location)</tt>. One important point to consider when using the
+indirect mapping, is that even if a virtual register is mapped to
+memory, it still needs to be mapped to a physical register. This
+physical register is the location where the virtual register is
+supposed to be found before being stored or after being reloaded.</p>
+
+<p>If the indirect strategy is used, after all the virtual registers
+have been mapped to physical registers or stack slots, it is necessary
+to use a spiller object to place load and store instructions in the
+code. Every virtual that has been mapped to a stack slot will be
+stored to memory after been defined and will be loaded before being
+used. The implementation of the spiller tries to recycle load/store
+instructions, avoiding unnecessary instructions. For an example of how
+to invoke the spiller, see
+<tt>RegAllocLinearScan::runOnMachineFunction</tt> in
+<tt>lib/CodeGen/RegAllocLinearScan.cpp</tt>.</p>
+
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+  <a name="regAlloc_twoAddr">Handling two address instructions</a>
+</div>
+
+<div class="doc_text">
+
+<p>With very rare exceptions (e.g., function calls), the LLVM machine
+code instructions are three address instructions. That is, each
+instruction is expected to define at most one register, and to use at
+most two registers.  However, some architectures use two address
+instructions. In this case, the defined register is also one of the
+used register. For instance, an instruction such as <tt>ADD %EAX,
+%EBX</tt>, in X86 is actually equivalent to <tt>%EAX = %EAX +
+%EBX</tt>.</p>
+
+<p>In order to produce correct code, LLVM must convert three address
+instructions that represent two address instructions into true two
+address instructions. LLVM provides the pass
+<tt>TwoAddressInstructionPass</tt> for this specific purpose. It must
+be run before register allocation takes place. After its execution,
+the resulting code may no longer be in SSA form. This happens, for
+instance, in situations where an instruction such as <tt>%a = ADD %b
+%c</tt> is converted to two instructions such as:</p>
+
+<div class="doc_code">
+<pre>
+%a = MOVE %b
+%a = ADD %a %b
+</pre>
+</div>
+
+<p>Notice that, internally, the second instruction is represented as
+<tt>ADD %a[def/use] %b</tt>. I.e., the register operand <tt>%a</tt> is
+both used and defined by the instruction.</p>
+
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+  <a name="regAlloc_ssaDecon">The SSA deconstruction phase</a>
+</div>
+
+<div class="doc_text">
+
+<p>An important transformation that happens during register allocation is called
+the <i>SSA Deconstruction Phase</i>. The SSA form simplifies many
+analyses that are performed on the control flow graph of
+programs. However, traditional instruction sets do not implement
+PHI instructions. Thus, in order to generate executable code, compilers
+must replace PHI instructions with other instructions that preserve their
+semantics.</p>
+
+<p>There are many ways in which PHI instructions can safely be removed
+from the target code. The most traditional PHI deconstruction
+algorithm replaces PHI instructions with copy instructions. That is
+the strategy adopted by LLVM. The SSA deconstruction algorithm is
+implemented in n<tt>lib/CodeGen/>PHIElimination.cpp</tt>. In order to
+invoke this pass, the identifier <tt>PHIEliminationID</tt> must be
+marked as required in the code of the register allocator.</p>
+
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+  <a name="regAlloc_fold">Instruction folding</a>
+</div>
+
+<div class="doc_text">
+
+<p><i>Instruction folding</i> is an optimization performed during
+register allocation that removes unnecessary copy instructions. For
+instance, a sequence of instructions such as:</p>
+
+<div class="doc_code">
+<pre>
+%EBX = LOAD %mem_address
+%EAX = COPY %EBX
+</pre>
+</div>
+
+<p>can be safely substituted by the single instruction:
+
+<div class="doc_code">
+<pre>
+%EAX = LOAD %mem_address
+</pre>
+</div>
+
+<p>Instructions can be folded with the
+<tt>TargetRegisterInfo::foldMemoryOperand(...)</tt> method. Care must be
+taken when folding instructions; a folded instruction can be quite
+different from the original instruction. See
+<tt>LiveIntervals::addIntervalsForSpills</tt> in
+<tt>lib/CodeGen/LiveIntervalAnalysis.cpp</tt> for an example of its use.</p>
+
+</div>
+
+<!-- _______________________________________________________________________ -->
+
+<div class="doc_subsubsection">
+  <a name="regAlloc_builtIn">Built in register allocators</a>
+</div>
+
+<div class="doc_text">
+
+<p>The LLVM infrastructure provides the application developer with
+three different register allocators:</p>
+
+<ul>
+  <li><i>Simple</i> - This is a very simple implementation that does
+      not keep values in registers across instructions. This register
+      allocator immediately spills every value right after it is
+      computed, and reloads all used operands from memory to temporary
+      registers before each instruction.</li>
+  <li><i>Local</i> - This register allocator is an improvement on the
+      <i>Simple</i> implementation. It allocates registers on a basic
+      block level, attempting to keep values in registers and reusing
+      registers as appropriate.</li>
+  <li><i>Linear Scan</i> - <i>The default allocator</i>. This is the
+      well-know linear scan register allocator. Whereas the
+      <i>Simple</i> and <i>Local</i> algorithms use a direct mapping
+      implementation technique, the <i>Linear Scan</i> implementation
+      uses a spiller in order to place load and stores.</li>
+</ul>
+
+<p>The type of register allocator used in <tt>llc</tt> can be chosen with the
+command line option <tt>-regalloc=...</tt>:</p>
+
+<div class="doc_code">
+<pre>
+$ llc -f -regalloc=simple file.bc -o sp.s;
+$ llc -f -regalloc=local file.bc -o lc.s;
+$ llc -f -regalloc=linearscan file.bc -o ln.s;
+</pre>
+</div>
+
+</div>
+
 <!-- ======================================================================= -->
 <div class="doc_subsection">
   <a name="proepicode">Prolog/Epilog Code Insertion</a>
@@ -1179,7 +1611,6 @@ SelectionDAGs.</p>
 <div class="doc_section">
   <a name="targetimpls">Target-specific Implementation Notes</a>
 </div>
-<div class="doc_text"><p>To Be Written</p></div>
 <!-- *********************************************************************** -->
 
 <div class="doc_text">
@@ -1198,11 +1629,9 @@ are specific to the code generator for a particular target.</p>
 <div class="doc_text">
 
 <p>The X86 code generator lives in the <tt>lib/Target/X86</tt> directory.  This
-code generator currently targets a generic P6-like processor.  As such, it
-produces a few P6-and-above instructions (like conditional moves), but it does
-not make use of newer features like MMX or SSE.  In the future, the X86 backend
-will have sub-target support added for specific processor families and 
-implementations.</p>
+code generator is capable of targeting a variety of x86-32 and x86-64
+processors, and includes support for ISA extensions such as MMX and SSE.
+</p>
 
 </div>
 
@@ -1222,11 +1651,31 @@ that people test.</p>
 <li><b>i386-unknown-freebsd5.3</b> - FreeBSD 5.3</li>
 <li><b>i686-pc-cygwin</b> - Cygwin on Win32</li>
 <li><b>i686-pc-mingw32</b> - MingW on Win32</li>
+<li><b>i386-pc-mingw32msvc</b> - MingW crosscompiler on Linux</li>
 <li><b>i686-apple-darwin*</b> - Apple Darwin on X86</li>
 </ul>
 
 </div>
 
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+  <a name="x86_cc">X86 Calling Conventions supported</a>
+</div>
+
+
+<div class="doc_text">
+
+<p>The folowing target-specific calling conventions are known to backend:</p>
+
+<ul>
+<li><b>x86_StdCall</b> - stdcall calling convention seen on Microsoft Windows
+platform (CC ID = 64).</li>
+<li><b>x86_FastCall</b> - fastcall calling convention seen on Microsoft Windows
+platform (CC ID = 65).</li>
+</ul>
+
+</div>
+
 <!-- _______________________________________________________________________ -->
 <div class="doc_subsubsection">
   <a name="x86_memory">Representing X86 addressing modes in MachineInstrs</a>
@@ -1278,6 +1727,223 @@ a character per operand with an optional special size. For example:</p>
 
 </div>
 
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+  <a name="ppc">The PowerPC backend</a>
+</div>
+
+<div class="doc_text">
+<p>The PowerPC code generator lives in the lib/Target/PowerPC directory.  The
+code generation is retargetable to several variations or <i>subtargets</i> of
+the PowerPC ISA; including ppc32, ppc64 and altivec.
+</p>
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+  <a name="ppc_abi">LLVM PowerPC ABI</a>
+</div>
+
+<div class="doc_text">
+<p>LLVM follows the AIX PowerPC ABI, with two deviations. LLVM uses a PC
+relative (PIC) or static addressing for accessing global values, so no TOC (r2)
+is used. Second, r31 is used as a frame pointer to allow dynamic growth of a
+stack frame.  LLVM takes advantage of having no TOC to provide space to save
+the frame pointer in the PowerPC linkage area of the caller frame.  Other
+details of PowerPC ABI can be found at <a href=
+"http://developer.apple.com/documentation/DeveloperTools/Conceptual/LowLevelABI/Articles/32bitPowerPC.html"
+>PowerPC ABI.</a> Note: This link describes the 32 bit ABI.  The
+64 bit ABI is similar except space for GPRs are 8 bytes wide (not 4) and r13 is
+reserved for system use.</p>
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+  <a name="ppc_frame">Frame Layout</a>
+</div>
+
+<div class="doc_text">
+<p>The size of a PowerPC frame is usually fixed for the duration of a
+function&rsquo;s invocation.  Since the frame is fixed size, all references into
+the frame can be accessed via fixed offsets from the stack pointer.  The
+exception to this is when dynamic alloca or variable sized arrays are present,
+then a base pointer (r31) is used as a proxy for the stack pointer and stack
+pointer is free to grow or shrink.  A base pointer is also used if llvm-gcc is
+not passed the -fomit-frame-pointer flag. The stack pointer is always aligned to
+16 bytes, so that space allocated for altivec vectors will be properly
+aligned.</p>
+<p>An invocation frame is layed out as follows (low memory at top);</p>
+</div>
+
+<div class="doc_text">
+<table class="layout">
+       <tr>
+               <td>Linkage<br><br></td>
+       </tr>
+       <tr>
+               <td>Parameter area<br><br></td>
+       </tr>
+       <tr>
+               <td>Dynamic area<br><br></td>
+       </tr>
+       <tr>
+               <td>Locals area<br><br></td>
+       </tr>
+       <tr>
+               <td>Saved registers area<br><br></td>
+       </tr>
+       <tr style="border-style: none hidden none hidden;">
+               <td><br></td>
+       </tr>
+       <tr>
+               <td>Previous Frame<br><br></td>
+       </tr>
+</table>
+</div>
+
+<div class="doc_text">
+<p>The <i>linkage</i> area is used by a callee to save special registers prior
+to allocating its own frame.  Only three entries are relevant to LLVM. The
+first entry is the previous stack pointer (sp), aka link.  This allows probing
+tools like gdb or exception handlers to quickly scan the frames in the stack.  A
+function epilog can also use the link to pop the frame from the stack.  The
+third entry in the linkage area is used to save the return address from the lr
+register. Finally, as mentioned above, the last entry is used to save the
+previous frame pointer (r31.)  The entries in the linkage area are the size of a
+GPR, thus the linkage area is 24 bytes long in 32 bit mode and 48 bytes in 64
+bit mode.</p>
+</div>
+
+<div class="doc_text">
+<p>32 bit linkage area</p>
+<table class="layout">
+       <tr>
+               <td>0</td>
+               <td>Saved SP (r1)</td>
+       </tr>
+       <tr>
+               <td>4</td>
+               <td>Saved CR</td>
+       </tr>
+       <tr>
+               <td>8</td>
+               <td>Saved LR</td>
+       </tr>
+       <tr>
+               <td>12</td>
+               <td>Reserved</td>
+       </tr>
+       <tr>
+               <td>16</td>
+               <td>Reserved</td>
+       </tr>
+       <tr>
+               <td>20</td>
+               <td>Saved FP (r31)</td>
+       </tr>
+</table>
+</div>
+
+<div class="doc_text">
+<p>64 bit linkage area</p>
+<table class="layout">
+       <tr>
+               <td>0</td>
+               <td>Saved SP (r1)</td>
+       </tr>
+       <tr>
+               <td>8</td>
+               <td>Saved CR</td>
+       </tr>
+       <tr>
+               <td>16</td>
+               <td>Saved LR</td>
+       </tr>
+       <tr>
+               <td>24</td>
+               <td>Reserved</td>
+       </tr>
+       <tr>
+               <td>32</td>
+               <td>Reserved</td>
+       </tr>
+       <tr>
+               <td>40</td>
+               <td>Saved FP (r31)</td>
+       </tr>
+</table>
+</div>
+
+<div class="doc_text">
+<p>The <i>parameter area</i> is used to store arguments being passed to a callee
+function.  Following the PowerPC ABI, the first few arguments are actually
+passed in registers, with the space in the parameter area unused.  However, if
+there are not enough registers or the callee is a thunk or vararg function,
+these register arguments can be spilled into the parameter area.  Thus, the
+parameter area must be large enough to store all the parameters for the largest
+call sequence made by the caller.  The size must also be mimimally large enough
+to spill registers r3-r10.  This allows callees blind to the call signature,
+such as thunks and vararg functions, enough space to cache the argument
+registers.  Therefore, the parameter area is minimally 32 bytes (64 bytes in 64
+bit mode.)  Also note that since the parameter area is a fixed offset from the
+top of the frame, that a callee can access its spilt arguments using fixed
+offsets from the stack pointer (or base pointer.)</p>
+</div>
+
+<div class="doc_text">
+<p>Combining the information about the linkage, parameter areas and alignment. A
+stack frame is minimally 64 bytes in 32 bit mode and 128 bytes in 64 bit
+mode.</p>
+</div>
+
+<div class="doc_text">
+<p>The <i>dynamic area</i> starts out as size zero.  If a function uses dynamic
+alloca then space is added to the stack, the linkage and parameter areas are
+shifted to top of stack, and the new space is available immediately below the
+linkage and parameter areas.  The cost of shifting the linkage and parameter
+areas is minor since only the link value needs to be copied.  The link value can
+be easily fetched by adding the original frame size to the base pointer.  Note
+that allocations in the dynamic space need to observe 16 byte aligment.</p>
+</div>
+
+<div class="doc_text">
+<p>The <i>locals area</i> is where the llvm compiler reserves space for local
+variables.</p>
+</div>
+
+<div class="doc_text">
+<p>The <i>saved registers area</i> is where the llvm compiler spills callee saved
+registers on entry to the callee.</p>
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+  <a name="ppc_prolog">Prolog/Epilog</a>
+</div>
+
+<div class="doc_text">
+<p>The llvm prolog and epilog are the same as described in the PowerPC ABI, with
+the following exceptions.  Callee saved registers are spilled after the frame is
+created.  This allows the llvm epilog/prolog support to be common with other
+targets.  The base pointer callee saved register r31 is saved in the TOC slot of
+linkage area.  This simplifies allocation of space for the base pointer and
+makes it convenient to locate programatically and during debugging.</p>
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+  <a name="ppc_dynamic">Dynamic Allocation</a>
+</div>
+
+<div class="doc_text">
+<p></p>
+</div>
+
+<div class="doc_text">
+<p><i>TODO - More to come.</i></p>
+</div>
+
+
 <!-- *********************************************************************** -->
 <hr>
 <address>