dead6e181c436c8eacc5ca268c67e65b51921c3d
[oota-llvm.git] / lib / Transforms / Vectorize / SLPVectorizer.cpp
1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive
10 // stores that can be put together into vector-stores. Next, it attempts to
11 // construct vectorizable tree using the use-def chains. If a profitable tree
12 // was found, the SLP vectorizer performs vectorization on the tree.
13 //
14 // The pass is inspired by the work described in the paper:
15 //  "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks.
16 //
17 //===----------------------------------------------------------------------===//
18 #include "llvm/Transforms/Vectorize.h"
19 #include "llvm/ADT/MapVector.h"
20 #include "llvm/ADT/Optional.h"
21 #include "llvm/ADT/PostOrderIterator.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/Analysis/AliasAnalysis.h"
25 #include "llvm/Analysis/GlobalsModRef.h"
26 #include "llvm/Analysis/AssumptionCache.h"
27 #include "llvm/Analysis/CodeMetrics.h"
28 #include "llvm/Analysis/LoopInfo.h"
29 #include "llvm/Analysis/ScalarEvolution.h"
30 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
31 #include "llvm/Analysis/TargetTransformInfo.h"
32 #include "llvm/Analysis/ValueTracking.h"
33 #include "llvm/IR/DataLayout.h"
34 #include "llvm/IR/Dominators.h"
35 #include "llvm/IR/IRBuilder.h"
36 #include "llvm/IR/Instructions.h"
37 #include "llvm/IR/IntrinsicInst.h"
38 #include "llvm/IR/Module.h"
39 #include "llvm/IR/NoFolder.h"
40 #include "llvm/IR/Type.h"
41 #include "llvm/IR/Value.h"
42 #include "llvm/IR/Verifier.h"
43 #include "llvm/Pass.h"
44 #include "llvm/Support/CommandLine.h"
45 #include "llvm/Support/Debug.h"
46 #include "llvm/Support/raw_ostream.h"
47 #include "llvm/Analysis/VectorUtils.h"
48 #include <algorithm>
49 #include <map>
50 #include <memory>
51
52 using namespace llvm;
53
54 #define SV_NAME "slp-vectorizer"
55 #define DEBUG_TYPE "SLP"
56
57 STATISTIC(NumVectorInstructions, "Number of vector instructions generated");
58
59 static cl::opt<int>
60     SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden,
61                      cl::desc("Only vectorize if you gain more than this "
62                               "number "));
63
64 static cl::opt<bool>
65 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden,
66                    cl::desc("Attempt to vectorize horizontal reductions"));
67
68 static cl::opt<bool> ShouldStartVectorizeHorAtStore(
69     "slp-vectorize-hor-store", cl::init(false), cl::Hidden,
70     cl::desc(
71         "Attempt to vectorize horizontal reductions feeding into a store"));
72
73 static cl::opt<int>
74 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden,
75     cl::desc("Attempt to vectorize for this register size in bits"));
76
77 /// Limits the size of scheduling regions in a block.
78 /// It avoid long compile times for _very_ large blocks where vector
79 /// instructions are spread over a wide range.
80 /// This limit is way higher than needed by real-world functions.
81 static cl::opt<int>
82 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden,
83     cl::desc("Limit the size of the SLP scheduling region per block"));
84
85 namespace {
86
87 // FIXME: Set this via cl::opt to allow overriding.
88 static const unsigned MinVecRegSize = 128;
89
90 static const unsigned RecursionMaxDepth = 12;
91
92 // Limit the number of alias checks. The limit is chosen so that
93 // it has no negative effect on the llvm benchmarks.
94 static const unsigned AliasedCheckLimit = 10;
95
96 // Another limit for the alias checks: The maximum distance between load/store
97 // instructions where alias checks are done.
98 // This limit is useful for very large basic blocks.
99 static const unsigned MaxMemDepDistance = 160;
100
101 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling
102 /// regions to be handled.
103 static const int MinScheduleRegionSize = 16;
104
105 /// \brief Predicate for the element types that the SLP vectorizer supports.
106 ///
107 /// The most important thing to filter here are types which are invalid in LLVM
108 /// vectors. We also filter target specific types which have absolutely no
109 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just
110 /// avoids spending time checking the cost model and realizing that they will
111 /// be inevitably scalarized.
112 static bool isValidElementType(Type *Ty) {
113   return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() &&
114          !Ty->isPPC_FP128Ty();
115 }
116
117 /// \returns the parent basic block if all of the instructions in \p VL
118 /// are in the same block or null otherwise.
119 static BasicBlock *getSameBlock(ArrayRef<Value *> VL) {
120   Instruction *I0 = dyn_cast<Instruction>(VL[0]);
121   if (!I0)
122     return nullptr;
123   BasicBlock *BB = I0->getParent();
124   for (int i = 1, e = VL.size(); i < e; i++) {
125     Instruction *I = dyn_cast<Instruction>(VL[i]);
126     if (!I)
127       return nullptr;
128
129     if (BB != I->getParent())
130       return nullptr;
131   }
132   return BB;
133 }
134
135 /// \returns True if all of the values in \p VL are constants.
136 static bool allConstant(ArrayRef<Value *> VL) {
137   for (unsigned i = 0, e = VL.size(); i < e; ++i)
138     if (!isa<Constant>(VL[i]))
139       return false;
140   return true;
141 }
142
143 /// \returns True if all of the values in \p VL are identical.
144 static bool isSplat(ArrayRef<Value *> VL) {
145   for (unsigned i = 1, e = VL.size(); i < e; ++i)
146     if (VL[i] != VL[0])
147       return false;
148   return true;
149 }
150
151 ///\returns Opcode that can be clubbed with \p Op to create an alternate
152 /// sequence which can later be merged as a ShuffleVector instruction.
153 static unsigned getAltOpcode(unsigned Op) {
154   switch (Op) {
155   case Instruction::FAdd:
156     return Instruction::FSub;
157   case Instruction::FSub:
158     return Instruction::FAdd;
159   case Instruction::Add:
160     return Instruction::Sub;
161   case Instruction::Sub:
162     return Instruction::Add;
163   default:
164     return 0;
165   }
166 }
167
168 ///\returns bool representing if Opcode \p Op can be part
169 /// of an alternate sequence which can later be merged as
170 /// a ShuffleVector instruction.
171 static bool canCombineAsAltInst(unsigned Op) {
172   return Op == Instruction::FAdd || Op == Instruction::FSub ||
173          Op == Instruction::Sub || Op == Instruction::Add;
174 }
175
176 /// \returns ShuffleVector instruction if instructions in \p VL have
177 ///  alternate fadd,fsub / fsub,fadd/add,sub/sub,add sequence.
178 /// (i.e. e.g. opcodes of fadd,fsub,fadd,fsub...)
179 static unsigned isAltInst(ArrayRef<Value *> VL) {
180   Instruction *I0 = dyn_cast<Instruction>(VL[0]);
181   unsigned Opcode = I0->getOpcode();
182   unsigned AltOpcode = getAltOpcode(Opcode);
183   for (int i = 1, e = VL.size(); i < e; i++) {
184     Instruction *I = dyn_cast<Instruction>(VL[i]);
185     if (!I || I->getOpcode() != ((i & 1) ? AltOpcode : Opcode))
186       return 0;
187   }
188   return Instruction::ShuffleVector;
189 }
190
191 /// \returns The opcode if all of the Instructions in \p VL have the same
192 /// opcode, or zero.
193 static unsigned getSameOpcode(ArrayRef<Value *> VL) {
194   Instruction *I0 = dyn_cast<Instruction>(VL[0]);
195   if (!I0)
196     return 0;
197   unsigned Opcode = I0->getOpcode();
198   for (int i = 1, e = VL.size(); i < e; i++) {
199     Instruction *I = dyn_cast<Instruction>(VL[i]);
200     if (!I || Opcode != I->getOpcode()) {
201       if (canCombineAsAltInst(Opcode) && i == 1)
202         return isAltInst(VL);
203       return 0;
204     }
205   }
206   return Opcode;
207 }
208
209 /// Get the intersection (logical and) of all of the potential IR flags
210 /// of each scalar operation (VL) that will be converted into a vector (I).
211 /// Flag set: NSW, NUW, exact, and all of fast-math.
212 static void propagateIRFlags(Value *I, ArrayRef<Value *> VL) {
213   if (auto *VecOp = dyn_cast<BinaryOperator>(I)) {
214     if (auto *Intersection = dyn_cast<BinaryOperator>(VL[0])) {
215       // Intersection is initialized to the 0th scalar,
216       // so start counting from index '1'.
217       for (int i = 1, e = VL.size(); i < e; ++i) {
218         if (auto *Scalar = dyn_cast<BinaryOperator>(VL[i]))
219           Intersection->andIRFlags(Scalar);
220       }
221       VecOp->copyIRFlags(Intersection);
222     }
223   }
224 }
225   
226 /// \returns \p I after propagating metadata from \p VL.
227 static Instruction *propagateMetadata(Instruction *I, ArrayRef<Value *> VL) {
228   Instruction *I0 = cast<Instruction>(VL[0]);
229   SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
230   I0->getAllMetadataOtherThanDebugLoc(Metadata);
231
232   for (unsigned i = 0, n = Metadata.size(); i != n; ++i) {
233     unsigned Kind = Metadata[i].first;
234     MDNode *MD = Metadata[i].second;
235
236     for (int i = 1, e = VL.size(); MD && i != e; i++) {
237       Instruction *I = cast<Instruction>(VL[i]);
238       MDNode *IMD = I->getMetadata(Kind);
239
240       switch (Kind) {
241       default:
242         MD = nullptr; // Remove unknown metadata
243         break;
244       case LLVMContext::MD_tbaa:
245         MD = MDNode::getMostGenericTBAA(MD, IMD);
246         break;
247       case LLVMContext::MD_alias_scope:
248         MD = MDNode::getMostGenericAliasScope(MD, IMD);
249         break;
250       case LLVMContext::MD_noalias:
251         MD = MDNode::intersect(MD, IMD);
252         break;
253       case LLVMContext::MD_fpmath:
254         MD = MDNode::getMostGenericFPMath(MD, IMD);
255         break;
256       case LLVMContext::MD_nontemporal:
257         MD = MDNode::intersect(MD, IMD);
258         break;
259       }
260     }
261     I->setMetadata(Kind, MD);
262   }
263   return I;
264 }
265
266 /// \returns The type that all of the values in \p VL have or null if there
267 /// are different types.
268 static Type* getSameType(ArrayRef<Value *> VL) {
269   Type *Ty = VL[0]->getType();
270   for (int i = 1, e = VL.size(); i < e; i++)
271     if (VL[i]->getType() != Ty)
272       return nullptr;
273
274   return Ty;
275 }
276
277 /// \returns True if the ExtractElement instructions in VL can be vectorized
278 /// to use the original vector.
279 static bool CanReuseExtract(ArrayRef<Value *> VL) {
280   assert(Instruction::ExtractElement == getSameOpcode(VL) && "Invalid opcode");
281   // Check if all of the extracts come from the same vector and from the
282   // correct offset.
283   Value *VL0 = VL[0];
284   ExtractElementInst *E0 = cast<ExtractElementInst>(VL0);
285   Value *Vec = E0->getOperand(0);
286
287   // We have to extract from the same vector type.
288   unsigned NElts = Vec->getType()->getVectorNumElements();
289
290   if (NElts != VL.size())
291     return false;
292
293   // Check that all of the indices extract from the correct offset.
294   ConstantInt *CI = dyn_cast<ConstantInt>(E0->getOperand(1));
295   if (!CI || CI->getZExtValue())
296     return false;
297
298   for (unsigned i = 1, e = VL.size(); i < e; ++i) {
299     ExtractElementInst *E = cast<ExtractElementInst>(VL[i]);
300     ConstantInt *CI = dyn_cast<ConstantInt>(E->getOperand(1));
301
302     if (!CI || CI->getZExtValue() != i || E->getOperand(0) != Vec)
303       return false;
304   }
305
306   return true;
307 }
308
309 /// \returns True if in-tree use also needs extract. This refers to
310 /// possible scalar operand in vectorized instruction.
311 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst,
312                                     TargetLibraryInfo *TLI) {
313
314   unsigned Opcode = UserInst->getOpcode();
315   switch (Opcode) {
316   case Instruction::Load: {
317     LoadInst *LI = cast<LoadInst>(UserInst);
318     return (LI->getPointerOperand() == Scalar);
319   }
320   case Instruction::Store: {
321     StoreInst *SI = cast<StoreInst>(UserInst);
322     return (SI->getPointerOperand() == Scalar);
323   }
324   case Instruction::Call: {
325     CallInst *CI = cast<CallInst>(UserInst);
326     Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
327     if (hasVectorInstrinsicScalarOpd(ID, 1)) {
328       return (CI->getArgOperand(1) == Scalar);
329     }
330   }
331   default:
332     return false;
333   }
334 }
335
336 /// \returns the AA location that is being access by the instruction.
337 static MemoryLocation getLocation(Instruction *I, AliasAnalysis *AA) {
338   if (StoreInst *SI = dyn_cast<StoreInst>(I))
339     return MemoryLocation::get(SI);
340   if (LoadInst *LI = dyn_cast<LoadInst>(I))
341     return MemoryLocation::get(LI);
342   return MemoryLocation();
343 }
344
345 /// \returns True if the instruction is not a volatile or atomic load/store.
346 static bool isSimple(Instruction *I) {
347   if (LoadInst *LI = dyn_cast<LoadInst>(I))
348     return LI->isSimple();
349   if (StoreInst *SI = dyn_cast<StoreInst>(I))
350     return SI->isSimple();
351   if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
352     return !MI->isVolatile();
353   return true;
354 }
355
356 /// Bottom Up SLP Vectorizer.
357 class BoUpSLP {
358 public:
359   typedef SmallVector<Value *, 8> ValueList;
360   typedef SmallVector<Instruction *, 16> InstrList;
361   typedef SmallPtrSet<Value *, 16> ValueSet;
362   typedef SmallVector<StoreInst *, 8> StoreList;
363
364   BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti,
365           TargetLibraryInfo *TLi, AliasAnalysis *Aa, LoopInfo *Li,
366           DominatorTree *Dt, AssumptionCache *AC)
367       : NumLoadsWantToKeepOrder(0), NumLoadsWantToChangeOrder(0), F(Func),
368         SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt),
369         Builder(Se->getContext()) {
370     CodeMetrics::collectEphemeralValues(F, AC, EphValues);
371   }
372
373   /// \brief Vectorize the tree that starts with the elements in \p VL.
374   /// Returns the vectorized root.
375   Value *vectorizeTree();
376
377   /// \returns the cost incurred by unwanted spills and fills, caused by
378   /// holding live values over call sites.
379   int getSpillCost();
380
381   /// \returns the vectorization cost of the subtree that starts at \p VL.
382   /// A negative number means that this is profitable.
383   int getTreeCost();
384
385   /// Construct a vectorizable tree that starts at \p Roots, ignoring users for
386   /// the purpose of scheduling and extraction in the \p UserIgnoreLst.
387   void buildTree(ArrayRef<Value *> Roots,
388                  ArrayRef<Value *> UserIgnoreLst = None);
389
390   /// Clear the internal data structures that are created by 'buildTree'.
391   void deleteTree() {
392     VectorizableTree.clear();
393     ScalarToTreeEntry.clear();
394     MustGather.clear();
395     ExternalUses.clear();
396     NumLoadsWantToKeepOrder = 0;
397     NumLoadsWantToChangeOrder = 0;
398     for (auto &Iter : BlocksSchedules) {
399       BlockScheduling *BS = Iter.second.get();
400       BS->clear();
401     }
402   }
403
404   /// \returns true if the memory operations A and B are consecutive.
405   bool isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL);
406
407   /// \brief Perform LICM and CSE on the newly generated gather sequences.
408   void optimizeGatherSequence();
409
410   /// \returns true if it is beneficial to reverse the vector order.
411   bool shouldReorder() const {
412     return NumLoadsWantToChangeOrder > NumLoadsWantToKeepOrder;
413   }
414
415 private:
416   struct TreeEntry;
417
418   /// \returns the cost of the vectorizable entry.
419   int getEntryCost(TreeEntry *E);
420
421   /// This is the recursive part of buildTree.
422   void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth);
423
424   /// Vectorize a single entry in the tree.
425   Value *vectorizeTree(TreeEntry *E);
426
427   /// Vectorize a single entry in the tree, starting in \p VL.
428   Value *vectorizeTree(ArrayRef<Value *> VL);
429
430   /// \returns the pointer to the vectorized value if \p VL is already
431   /// vectorized, or NULL. They may happen in cycles.
432   Value *alreadyVectorized(ArrayRef<Value *> VL) const;
433
434   /// \brief Take the pointer operand from the Load/Store instruction.
435   /// \returns NULL if this is not a valid Load/Store instruction.
436   static Value *getPointerOperand(Value *I);
437
438   /// \brief Take the address space operand from the Load/Store instruction.
439   /// \returns -1 if this is not a valid Load/Store instruction.
440   static unsigned getAddressSpaceOperand(Value *I);
441
442   /// \returns the scalarization cost for this type. Scalarization in this
443   /// context means the creation of vectors from a group of scalars.
444   int getGatherCost(Type *Ty);
445
446   /// \returns the scalarization cost for this list of values. Assuming that
447   /// this subtree gets vectorized, we may need to extract the values from the
448   /// roots. This method calculates the cost of extracting the values.
449   int getGatherCost(ArrayRef<Value *> VL);
450
451   /// \brief Set the Builder insert point to one after the last instruction in
452   /// the bundle
453   void setInsertPointAfterBundle(ArrayRef<Value *> VL);
454
455   /// \returns a vector from a collection of scalars in \p VL.
456   Value *Gather(ArrayRef<Value *> VL, VectorType *Ty);
457
458   /// \returns whether the VectorizableTree is fully vectorizable and will
459   /// be beneficial even the tree height is tiny.
460   bool isFullyVectorizableTinyTree();
461
462   /// \reorder commutative operands in alt shuffle if they result in
463   ///  vectorized code.
464   void reorderAltShuffleOperands(ArrayRef<Value *> VL,
465                                  SmallVectorImpl<Value *> &Left,
466                                  SmallVectorImpl<Value *> &Right);
467   /// \reorder commutative operands to get better probability of
468   /// generating vectorized code.
469   void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
470                                       SmallVectorImpl<Value *> &Left,
471                                       SmallVectorImpl<Value *> &Right);
472   struct TreeEntry {
473     TreeEntry() : Scalars(), VectorizedValue(nullptr),
474     NeedToGather(0) {}
475
476     /// \returns true if the scalars in VL are equal to this entry.
477     bool isSame(ArrayRef<Value *> VL) const {
478       assert(VL.size() == Scalars.size() && "Invalid size");
479       return std::equal(VL.begin(), VL.end(), Scalars.begin());
480     }
481
482     /// A vector of scalars.
483     ValueList Scalars;
484
485     /// The Scalars are vectorized into this value. It is initialized to Null.
486     Value *VectorizedValue;
487
488     /// Do we need to gather this sequence ?
489     bool NeedToGather;
490   };
491
492   /// Create a new VectorizableTree entry.
493   TreeEntry *newTreeEntry(ArrayRef<Value *> VL, bool Vectorized) {
494     VectorizableTree.emplace_back();
495     int idx = VectorizableTree.size() - 1;
496     TreeEntry *Last = &VectorizableTree[idx];
497     Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end());
498     Last->NeedToGather = !Vectorized;
499     if (Vectorized) {
500       for (int i = 0, e = VL.size(); i != e; ++i) {
501         assert(!ScalarToTreeEntry.count(VL[i]) && "Scalar already in tree!");
502         ScalarToTreeEntry[VL[i]] = idx;
503       }
504     } else {
505       MustGather.insert(VL.begin(), VL.end());
506     }
507     return Last;
508   }
509   
510   /// -- Vectorization State --
511   /// Holds all of the tree entries.
512   std::vector<TreeEntry> VectorizableTree;
513
514   /// Maps a specific scalar to its tree entry.
515   SmallDenseMap<Value*, int> ScalarToTreeEntry;
516
517   /// A list of scalars that we found that we need to keep as scalars.
518   ValueSet MustGather;
519
520   /// This POD struct describes one external user in the vectorized tree.
521   struct ExternalUser {
522     ExternalUser (Value *S, llvm::User *U, int L) :
523       Scalar(S), User(U), Lane(L){}
524     // Which scalar in our function.
525     Value *Scalar;
526     // Which user that uses the scalar.
527     llvm::User *User;
528     // Which lane does the scalar belong to.
529     int Lane;
530   };
531   typedef SmallVector<ExternalUser, 16> UserList;
532
533   /// Checks if two instructions may access the same memory.
534   ///
535   /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it
536   /// is invariant in the calling loop.
537   bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1,
538                  Instruction *Inst2) {
539
540     // First check if the result is already in the cache.
541     AliasCacheKey key = std::make_pair(Inst1, Inst2);
542     Optional<bool> &result = AliasCache[key];
543     if (result.hasValue()) {
544       return result.getValue();
545     }
546     MemoryLocation Loc2 = getLocation(Inst2, AA);
547     bool aliased = true;
548     if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) {
549       // Do the alias check.
550       aliased = AA->alias(Loc1, Loc2);
551     }
552     // Store the result in the cache.
553     result = aliased;
554     return aliased;
555   }
556
557   typedef std::pair<Instruction *, Instruction *> AliasCacheKey;
558
559   /// Cache for alias results.
560   /// TODO: consider moving this to the AliasAnalysis itself.
561   DenseMap<AliasCacheKey, Optional<bool>> AliasCache;
562
563   /// Removes an instruction from its block and eventually deletes it.
564   /// It's like Instruction::eraseFromParent() except that the actual deletion
565   /// is delayed until BoUpSLP is destructed.
566   /// This is required to ensure that there are no incorrect collisions in the
567   /// AliasCache, which can happen if a new instruction is allocated at the
568   /// same address as a previously deleted instruction.
569   void eraseInstruction(Instruction *I) {
570     I->removeFromParent();
571     I->dropAllReferences();
572     DeletedInstructions.push_back(std::unique_ptr<Instruction>(I));
573   }
574
575   /// Temporary store for deleted instructions. Instructions will be deleted
576   /// eventually when the BoUpSLP is destructed.
577   SmallVector<std::unique_ptr<Instruction>, 8> DeletedInstructions;
578
579   /// A list of values that need to extracted out of the tree.
580   /// This list holds pairs of (Internal Scalar : External User).
581   UserList ExternalUses;
582
583   /// Values used only by @llvm.assume calls.
584   SmallPtrSet<const Value *, 32> EphValues;
585
586   /// Holds all of the instructions that we gathered.
587   SetVector<Instruction *> GatherSeq;
588   /// A list of blocks that we are going to CSE.
589   SetVector<BasicBlock *> CSEBlocks;
590
591   /// Contains all scheduling relevant data for an instruction.
592   /// A ScheduleData either represents a single instruction or a member of an
593   /// instruction bundle (= a group of instructions which is combined into a
594   /// vector instruction).
595   struct ScheduleData {
596
597     // The initial value for the dependency counters. It means that the
598     // dependencies are not calculated yet.
599     enum { InvalidDeps = -1 };
600
601     ScheduleData()
602         : Inst(nullptr), FirstInBundle(nullptr), NextInBundle(nullptr),
603           NextLoadStore(nullptr), SchedulingRegionID(0), SchedulingPriority(0),
604           Dependencies(InvalidDeps), UnscheduledDeps(InvalidDeps),
605           UnscheduledDepsInBundle(InvalidDeps), IsScheduled(false) {}
606
607     void init(int BlockSchedulingRegionID) {
608       FirstInBundle = this;
609       NextInBundle = nullptr;
610       NextLoadStore = nullptr;
611       IsScheduled = false;
612       SchedulingRegionID = BlockSchedulingRegionID;
613       UnscheduledDepsInBundle = UnscheduledDeps;
614       clearDependencies();
615     }
616
617     /// Returns true if the dependency information has been calculated.
618     bool hasValidDependencies() const { return Dependencies != InvalidDeps; }
619
620     /// Returns true for single instructions and for bundle representatives
621     /// (= the head of a bundle).
622     bool isSchedulingEntity() const { return FirstInBundle == this; }
623
624     /// Returns true if it represents an instruction bundle and not only a
625     /// single instruction.
626     bool isPartOfBundle() const {
627       return NextInBundle != nullptr || FirstInBundle != this;
628     }
629
630     /// Returns true if it is ready for scheduling, i.e. it has no more
631     /// unscheduled depending instructions/bundles.
632     bool isReady() const {
633       assert(isSchedulingEntity() &&
634              "can't consider non-scheduling entity for ready list");
635       return UnscheduledDepsInBundle == 0 && !IsScheduled;
636     }
637
638     /// Modifies the number of unscheduled dependencies, also updating it for
639     /// the whole bundle.
640     int incrementUnscheduledDeps(int Incr) {
641       UnscheduledDeps += Incr;
642       return FirstInBundle->UnscheduledDepsInBundle += Incr;
643     }
644
645     /// Sets the number of unscheduled dependencies to the number of
646     /// dependencies.
647     void resetUnscheduledDeps() {
648       incrementUnscheduledDeps(Dependencies - UnscheduledDeps);
649     }
650
651     /// Clears all dependency information.
652     void clearDependencies() {
653       Dependencies = InvalidDeps;
654       resetUnscheduledDeps();
655       MemoryDependencies.clear();
656     }
657
658     void dump(raw_ostream &os) const {
659       if (!isSchedulingEntity()) {
660         os << "/ " << *Inst;
661       } else if (NextInBundle) {
662         os << '[' << *Inst;
663         ScheduleData *SD = NextInBundle;
664         while (SD) {
665           os << ';' << *SD->Inst;
666           SD = SD->NextInBundle;
667         }
668         os << ']';
669       } else {
670         os << *Inst;
671       }
672     }
673
674     Instruction *Inst;
675
676     /// Points to the head in an instruction bundle (and always to this for
677     /// single instructions).
678     ScheduleData *FirstInBundle;
679
680     /// Single linked list of all instructions in a bundle. Null if it is a
681     /// single instruction.
682     ScheduleData *NextInBundle;
683
684     /// Single linked list of all memory instructions (e.g. load, store, call)
685     /// in the block - until the end of the scheduling region.
686     ScheduleData *NextLoadStore;
687
688     /// The dependent memory instructions.
689     /// This list is derived on demand in calculateDependencies().
690     SmallVector<ScheduleData *, 4> MemoryDependencies;
691
692     /// This ScheduleData is in the current scheduling region if this matches
693     /// the current SchedulingRegionID of BlockScheduling.
694     int SchedulingRegionID;
695
696     /// Used for getting a "good" final ordering of instructions.
697     int SchedulingPriority;
698
699     /// The number of dependencies. Constitutes of the number of users of the
700     /// instruction plus the number of dependent memory instructions (if any).
701     /// This value is calculated on demand.
702     /// If InvalidDeps, the number of dependencies is not calculated yet.
703     ///
704     int Dependencies;
705
706     /// The number of dependencies minus the number of dependencies of scheduled
707     /// instructions. As soon as this is zero, the instruction/bundle gets ready
708     /// for scheduling.
709     /// Note that this is negative as long as Dependencies is not calculated.
710     int UnscheduledDeps;
711
712     /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for
713     /// single instructions.
714     int UnscheduledDepsInBundle;
715
716     /// True if this instruction is scheduled (or considered as scheduled in the
717     /// dry-run).
718     bool IsScheduled;
719   };
720
721 #ifndef NDEBUG
722   friend raw_ostream &operator<<(raw_ostream &os,
723                                  const BoUpSLP::ScheduleData &SD);
724 #endif
725
726   /// Contains all scheduling data for a basic block.
727   ///
728   struct BlockScheduling {
729
730     BlockScheduling(BasicBlock *BB)
731         : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize),
732           ScheduleStart(nullptr), ScheduleEnd(nullptr),
733           FirstLoadStoreInRegion(nullptr), LastLoadStoreInRegion(nullptr),
734           ScheduleRegionSize(0),
735           ScheduleRegionSizeLimit(ScheduleRegionSizeBudget),
736           // Make sure that the initial SchedulingRegionID is greater than the
737           // initial SchedulingRegionID in ScheduleData (which is 0).
738           SchedulingRegionID(1) {}
739
740     void clear() {
741       ReadyInsts.clear();
742       ScheduleStart = nullptr;
743       ScheduleEnd = nullptr;
744       FirstLoadStoreInRegion = nullptr;
745       LastLoadStoreInRegion = nullptr;
746
747       // Reduce the maximum schedule region size by the size of the
748       // previous scheduling run.
749       ScheduleRegionSizeLimit -= ScheduleRegionSize;
750       if (ScheduleRegionSizeLimit < MinScheduleRegionSize)
751         ScheduleRegionSizeLimit = MinScheduleRegionSize;
752       ScheduleRegionSize = 0;
753
754       // Make a new scheduling region, i.e. all existing ScheduleData is not
755       // in the new region yet.
756       ++SchedulingRegionID;
757     }
758
759     ScheduleData *getScheduleData(Value *V) {
760       ScheduleData *SD = ScheduleDataMap[V];
761       if (SD && SD->SchedulingRegionID == SchedulingRegionID)
762         return SD;
763       return nullptr;
764     }
765
766     bool isInSchedulingRegion(ScheduleData *SD) {
767       return SD->SchedulingRegionID == SchedulingRegionID;
768     }
769
770     /// Marks an instruction as scheduled and puts all dependent ready
771     /// instructions into the ready-list.
772     template <typename ReadyListType>
773     void schedule(ScheduleData *SD, ReadyListType &ReadyList) {
774       SD->IsScheduled = true;
775       DEBUG(dbgs() << "SLP:   schedule " << *SD << "\n");
776
777       ScheduleData *BundleMember = SD;
778       while (BundleMember) {
779         // Handle the def-use chain dependencies.
780         for (Use &U : BundleMember->Inst->operands()) {
781           ScheduleData *OpDef = getScheduleData(U.get());
782           if (OpDef && OpDef->hasValidDependencies() &&
783               OpDef->incrementUnscheduledDeps(-1) == 0) {
784             // There are no more unscheduled dependencies after decrementing,
785             // so we can put the dependent instruction into the ready list.
786             ScheduleData *DepBundle = OpDef->FirstInBundle;
787             assert(!DepBundle->IsScheduled &&
788                    "already scheduled bundle gets ready");
789             ReadyList.insert(DepBundle);
790             DEBUG(dbgs() << "SLP:    gets ready (def): " << *DepBundle << "\n");
791           }
792         }
793         // Handle the memory dependencies.
794         for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) {
795           if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) {
796             // There are no more unscheduled dependencies after decrementing,
797             // so we can put the dependent instruction into the ready list.
798             ScheduleData *DepBundle = MemoryDepSD->FirstInBundle;
799             assert(!DepBundle->IsScheduled &&
800                    "already scheduled bundle gets ready");
801             ReadyList.insert(DepBundle);
802             DEBUG(dbgs() << "SLP:    gets ready (mem): " << *DepBundle << "\n");
803           }
804         }
805         BundleMember = BundleMember->NextInBundle;
806       }
807     }
808
809     /// Put all instructions into the ReadyList which are ready for scheduling.
810     template <typename ReadyListType>
811     void initialFillReadyList(ReadyListType &ReadyList) {
812       for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
813         ScheduleData *SD = getScheduleData(I);
814         if (SD->isSchedulingEntity() && SD->isReady()) {
815           ReadyList.insert(SD);
816           DEBUG(dbgs() << "SLP:    initially in ready list: " << *I << "\n");
817         }
818       }
819     }
820
821     /// Checks if a bundle of instructions can be scheduled, i.e. has no
822     /// cyclic dependencies. This is only a dry-run, no instructions are
823     /// actually moved at this stage.
824     bool tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP);
825
826     /// Un-bundles a group of instructions.
827     void cancelScheduling(ArrayRef<Value *> VL);
828
829     /// Extends the scheduling region so that V is inside the region.
830     /// \returns true if the region size is within the limit.
831     bool extendSchedulingRegion(Value *V);
832
833     /// Initialize the ScheduleData structures for new instructions in the
834     /// scheduling region.
835     void initScheduleData(Instruction *FromI, Instruction *ToI,
836                           ScheduleData *PrevLoadStore,
837                           ScheduleData *NextLoadStore);
838
839     /// Updates the dependency information of a bundle and of all instructions/
840     /// bundles which depend on the original bundle.
841     void calculateDependencies(ScheduleData *SD, bool InsertInReadyList,
842                                BoUpSLP *SLP);
843
844     /// Sets all instruction in the scheduling region to un-scheduled.
845     void resetSchedule();
846
847     BasicBlock *BB;
848
849     /// Simple memory allocation for ScheduleData.
850     std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks;
851
852     /// The size of a ScheduleData array in ScheduleDataChunks.
853     int ChunkSize;
854
855     /// The allocator position in the current chunk, which is the last entry
856     /// of ScheduleDataChunks.
857     int ChunkPos;
858
859     /// Attaches ScheduleData to Instruction.
860     /// Note that the mapping survives during all vectorization iterations, i.e.
861     /// ScheduleData structures are recycled.
862     DenseMap<Value *, ScheduleData *> ScheduleDataMap;
863
864     struct ReadyList : SmallVector<ScheduleData *, 8> {
865       void insert(ScheduleData *SD) { push_back(SD); }
866     };
867
868     /// The ready-list for scheduling (only used for the dry-run).
869     ReadyList ReadyInsts;
870
871     /// The first instruction of the scheduling region.
872     Instruction *ScheduleStart;
873
874     /// The first instruction _after_ the scheduling region.
875     Instruction *ScheduleEnd;
876
877     /// The first memory accessing instruction in the scheduling region
878     /// (can be null).
879     ScheduleData *FirstLoadStoreInRegion;
880
881     /// The last memory accessing instruction in the scheduling region
882     /// (can be null).
883     ScheduleData *LastLoadStoreInRegion;
884
885     /// The current size of the scheduling region.
886     int ScheduleRegionSize;
887     
888     /// The maximum size allowed for the scheduling region.
889     int ScheduleRegionSizeLimit;
890
891     /// The ID of the scheduling region. For a new vectorization iteration this
892     /// is incremented which "removes" all ScheduleData from the region.
893     int SchedulingRegionID;
894   };
895
896   /// Attaches the BlockScheduling structures to basic blocks.
897   MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules;
898
899   /// Performs the "real" scheduling. Done before vectorization is actually
900   /// performed in a basic block.
901   void scheduleBlock(BlockScheduling *BS);
902
903   /// List of users to ignore during scheduling and that don't need extracting.
904   ArrayRef<Value *> UserIgnoreList;
905
906   // Number of load-bundles, which contain consecutive loads.
907   int NumLoadsWantToKeepOrder;
908
909   // Number of load-bundles of size 2, which are consecutive loads if reversed.
910   int NumLoadsWantToChangeOrder;
911
912   // Analysis and block reference.
913   Function *F;
914   ScalarEvolution *SE;
915   TargetTransformInfo *TTI;
916   TargetLibraryInfo *TLI;
917   AliasAnalysis *AA;
918   LoopInfo *LI;
919   DominatorTree *DT;
920   /// Instruction builder to construct the vectorized tree.
921   IRBuilder<> Builder;
922 };
923
924 #ifndef NDEBUG
925 raw_ostream &operator<<(raw_ostream &os, const BoUpSLP::ScheduleData &SD) {
926   SD.dump(os);
927   return os;
928 }
929 #endif
930
931 void BoUpSLP::buildTree(ArrayRef<Value *> Roots,
932                         ArrayRef<Value *> UserIgnoreLst) {
933   deleteTree();
934   UserIgnoreList = UserIgnoreLst;
935   if (!getSameType(Roots))
936     return;
937   buildTree_rec(Roots, 0);
938
939   // Collect the values that we need to extract from the tree.
940   for (int EIdx = 0, EE = VectorizableTree.size(); EIdx < EE; ++EIdx) {
941     TreeEntry *Entry = &VectorizableTree[EIdx];
942
943     // For each lane:
944     for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
945       Value *Scalar = Entry->Scalars[Lane];
946
947       // No need to handle users of gathered values.
948       if (Entry->NeedToGather)
949         continue;
950
951       for (User *U : Scalar->users()) {
952         DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n");
953
954         Instruction *UserInst = dyn_cast<Instruction>(U);
955         if (!UserInst)
956           continue;
957
958         // Skip in-tree scalars that become vectors
959         if (ScalarToTreeEntry.count(U)) {
960           int Idx = ScalarToTreeEntry[U];
961           TreeEntry *UseEntry = &VectorizableTree[Idx];
962           Value *UseScalar = UseEntry->Scalars[0];
963           // Some in-tree scalars will remain as scalar in vectorized
964           // instructions. If that is the case, the one in Lane 0 will
965           // be used.
966           if (UseScalar != U ||
967               !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) {
968             DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U
969                          << ".\n");
970             assert(!VectorizableTree[Idx].NeedToGather && "Bad state");
971             continue;
972           }
973         }
974
975         // Ignore users in the user ignore list.
976         if (std::find(UserIgnoreList.begin(), UserIgnoreList.end(), UserInst) !=
977             UserIgnoreList.end())
978           continue;
979
980         DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " <<
981               Lane << " from " << *Scalar << ".\n");
982         ExternalUses.push_back(ExternalUser(Scalar, U, Lane));
983       }
984     }
985   }
986 }
987
988
989 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) {
990   bool SameTy = getSameType(VL); (void)SameTy;
991   bool isAltShuffle = false;
992   assert(SameTy && "Invalid types!");
993
994   if (Depth == RecursionMaxDepth) {
995     DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n");
996     newTreeEntry(VL, false);
997     return;
998   }
999
1000   // Don't handle vectors.
1001   if (VL[0]->getType()->isVectorTy()) {
1002     DEBUG(dbgs() << "SLP: Gathering due to vector type.\n");
1003     newTreeEntry(VL, false);
1004     return;
1005   }
1006
1007   if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
1008     if (SI->getValueOperand()->getType()->isVectorTy()) {
1009       DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n");
1010       newTreeEntry(VL, false);
1011       return;
1012     }
1013   unsigned Opcode = getSameOpcode(VL);
1014
1015   // Check that this shuffle vector refers to the alternate
1016   // sequence of opcodes.
1017   if (Opcode == Instruction::ShuffleVector) {
1018     Instruction *I0 = dyn_cast<Instruction>(VL[0]);
1019     unsigned Op = I0->getOpcode();
1020     if (Op != Instruction::ShuffleVector)
1021       isAltShuffle = true;
1022   }
1023
1024   // If all of the operands are identical or constant we have a simple solution.
1025   if (allConstant(VL) || isSplat(VL) || !getSameBlock(VL) || !Opcode) {
1026     DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n");
1027     newTreeEntry(VL, false);
1028     return;
1029   }
1030
1031   // We now know that this is a vector of instructions of the same type from
1032   // the same block.
1033
1034   // Don't vectorize ephemeral values.
1035   for (unsigned i = 0, e = VL.size(); i != e; ++i) {
1036     if (EphValues.count(VL[i])) {
1037       DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] <<
1038             ") is ephemeral.\n");
1039       newTreeEntry(VL, false);
1040       return;
1041     }
1042   }
1043
1044   // Check if this is a duplicate of another entry.
1045   if (ScalarToTreeEntry.count(VL[0])) {
1046     int Idx = ScalarToTreeEntry[VL[0]];
1047     TreeEntry *E = &VectorizableTree[Idx];
1048     for (unsigned i = 0, e = VL.size(); i != e; ++i) {
1049       DEBUG(dbgs() << "SLP: \tChecking bundle: " << *VL[i] << ".\n");
1050       if (E->Scalars[i] != VL[i]) {
1051         DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n");
1052         newTreeEntry(VL, false);
1053         return;
1054       }
1055     }
1056     DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *VL[0] << ".\n");
1057     return;
1058   }
1059
1060   // Check that none of the instructions in the bundle are already in the tree.
1061   for (unsigned i = 0, e = VL.size(); i != e; ++i) {
1062     if (ScalarToTreeEntry.count(VL[i])) {
1063       DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] <<
1064             ") is already in tree.\n");
1065       newTreeEntry(VL, false);
1066       return;
1067     }
1068   }
1069
1070   // If any of the scalars is marked as a value that needs to stay scalar then
1071   // we need to gather the scalars.
1072   for (unsigned i = 0, e = VL.size(); i != e; ++i) {
1073     if (MustGather.count(VL[i])) {
1074       DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n");
1075       newTreeEntry(VL, false);
1076       return;
1077     }
1078   }
1079
1080   // Check that all of the users of the scalars that we want to vectorize are
1081   // schedulable.
1082   Instruction *VL0 = cast<Instruction>(VL[0]);
1083   BasicBlock *BB = cast<Instruction>(VL0)->getParent();
1084
1085   if (!DT->isReachableFromEntry(BB)) {
1086     // Don't go into unreachable blocks. They may contain instructions with
1087     // dependency cycles which confuse the final scheduling.
1088     DEBUG(dbgs() << "SLP: bundle in unreachable block.\n");
1089     newTreeEntry(VL, false);
1090     return;
1091   }
1092   
1093   // Check that every instructions appears once in this bundle.
1094   for (unsigned i = 0, e = VL.size(); i < e; ++i)
1095     for (unsigned j = i+1; j < e; ++j)
1096       if (VL[i] == VL[j]) {
1097         DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n");
1098         newTreeEntry(VL, false);
1099         return;
1100       }
1101
1102   auto &BSRef = BlocksSchedules[BB];
1103   if (!BSRef) {
1104     BSRef = llvm::make_unique<BlockScheduling>(BB);
1105   }
1106   BlockScheduling &BS = *BSRef.get();
1107
1108   if (!BS.tryScheduleBundle(VL, this)) {
1109     DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n");
1110     assert((!BS.getScheduleData(VL[0]) ||
1111             !BS.getScheduleData(VL[0])->isPartOfBundle()) &&
1112            "tryScheduleBundle should cancelScheduling on failure");
1113     newTreeEntry(VL, false);
1114     return;
1115   }
1116   DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n");
1117
1118   switch (Opcode) {
1119     case Instruction::PHI: {
1120       PHINode *PH = dyn_cast<PHINode>(VL0);
1121
1122       // Check for terminator values (e.g. invoke).
1123       for (unsigned j = 0; j < VL.size(); ++j)
1124         for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
1125           TerminatorInst *Term = dyn_cast<TerminatorInst>(
1126               cast<PHINode>(VL[j])->getIncomingValueForBlock(PH->getIncomingBlock(i)));
1127           if (Term) {
1128             DEBUG(dbgs() << "SLP: Need to swizzle PHINodes (TerminatorInst use).\n");
1129             BS.cancelScheduling(VL);
1130             newTreeEntry(VL, false);
1131             return;
1132           }
1133         }
1134
1135       newTreeEntry(VL, true);
1136       DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n");
1137
1138       for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
1139         ValueList Operands;
1140         // Prepare the operand vector.
1141         for (unsigned j = 0; j < VL.size(); ++j)
1142           Operands.push_back(cast<PHINode>(VL[j])->getIncomingValueForBlock(
1143               PH->getIncomingBlock(i)));
1144
1145         buildTree_rec(Operands, Depth + 1);
1146       }
1147       return;
1148     }
1149     case Instruction::ExtractElement: {
1150       bool Reuse = CanReuseExtract(VL);
1151       if (Reuse) {
1152         DEBUG(dbgs() << "SLP: Reusing extract sequence.\n");
1153       } else {
1154         BS.cancelScheduling(VL);
1155       }
1156       newTreeEntry(VL, Reuse);
1157       return;
1158     }
1159     case Instruction::Load: {
1160       // Check that a vectorized load would load the same memory as a scalar
1161       // load.
1162       // For example we don't want vectorize loads that are smaller than 8 bit.
1163       // Even though we have a packed struct {<i2, i2, i2, i2>} LLVM treats
1164       // loading/storing it as an i8 struct. If we vectorize loads/stores from
1165       // such a struct we read/write packed bits disagreeing with the
1166       // unvectorized version.
1167       const DataLayout &DL = F->getParent()->getDataLayout();
1168       Type *ScalarTy = VL[0]->getType();
1169
1170       if (DL.getTypeSizeInBits(ScalarTy) !=
1171           DL.getTypeAllocSizeInBits(ScalarTy)) {
1172         BS.cancelScheduling(VL);
1173         newTreeEntry(VL, false);
1174         DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n");
1175         return;
1176       }
1177       // Check if the loads are consecutive or of we need to swizzle them.
1178       for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) {
1179         LoadInst *L = cast<LoadInst>(VL[i]);
1180         if (!L->isSimple()) {
1181           BS.cancelScheduling(VL);
1182           newTreeEntry(VL, false);
1183           DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n");
1184           return;
1185         }
1186
1187         if (!isConsecutiveAccess(VL[i], VL[i + 1], DL)) {
1188           if (VL.size() == 2 && isConsecutiveAccess(VL[1], VL[0], DL)) {
1189             ++NumLoadsWantToChangeOrder;
1190           }
1191           BS.cancelScheduling(VL);
1192           newTreeEntry(VL, false);
1193           DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n");
1194           return;
1195         }
1196       }
1197       ++NumLoadsWantToKeepOrder;
1198       newTreeEntry(VL, true);
1199       DEBUG(dbgs() << "SLP: added a vector of loads.\n");
1200       return;
1201     }
1202     case Instruction::ZExt:
1203     case Instruction::SExt:
1204     case Instruction::FPToUI:
1205     case Instruction::FPToSI:
1206     case Instruction::FPExt:
1207     case Instruction::PtrToInt:
1208     case Instruction::IntToPtr:
1209     case Instruction::SIToFP:
1210     case Instruction::UIToFP:
1211     case Instruction::Trunc:
1212     case Instruction::FPTrunc:
1213     case Instruction::BitCast: {
1214       Type *SrcTy = VL0->getOperand(0)->getType();
1215       for (unsigned i = 0; i < VL.size(); ++i) {
1216         Type *Ty = cast<Instruction>(VL[i])->getOperand(0)->getType();
1217         if (Ty != SrcTy || !isValidElementType(Ty)) {
1218           BS.cancelScheduling(VL);
1219           newTreeEntry(VL, false);
1220           DEBUG(dbgs() << "SLP: Gathering casts with different src types.\n");
1221           return;
1222         }
1223       }
1224       newTreeEntry(VL, true);
1225       DEBUG(dbgs() << "SLP: added a vector of casts.\n");
1226
1227       for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
1228         ValueList Operands;
1229         // Prepare the operand vector.
1230         for (unsigned j = 0; j < VL.size(); ++j)
1231           Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));
1232
1233         buildTree_rec(Operands, Depth+1);
1234       }
1235       return;
1236     }
1237     case Instruction::ICmp:
1238     case Instruction::FCmp: {
1239       // Check that all of the compares have the same predicate.
1240       CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
1241       Type *ComparedTy = cast<Instruction>(VL[0])->getOperand(0)->getType();
1242       for (unsigned i = 1, e = VL.size(); i < e; ++i) {
1243         CmpInst *Cmp = cast<CmpInst>(VL[i]);
1244         if (Cmp->getPredicate() != P0 ||
1245             Cmp->getOperand(0)->getType() != ComparedTy) {
1246           BS.cancelScheduling(VL);
1247           newTreeEntry(VL, false);
1248           DEBUG(dbgs() << "SLP: Gathering cmp with different predicate.\n");
1249           return;
1250         }
1251       }
1252
1253       newTreeEntry(VL, true);
1254       DEBUG(dbgs() << "SLP: added a vector of compares.\n");
1255
1256       for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
1257         ValueList Operands;
1258         // Prepare the operand vector.
1259         for (unsigned j = 0; j < VL.size(); ++j)
1260           Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));
1261
1262         buildTree_rec(Operands, Depth+1);
1263       }
1264       return;
1265     }
1266     case Instruction::Select:
1267     case Instruction::Add:
1268     case Instruction::FAdd:
1269     case Instruction::Sub:
1270     case Instruction::FSub:
1271     case Instruction::Mul:
1272     case Instruction::FMul:
1273     case Instruction::UDiv:
1274     case Instruction::SDiv:
1275     case Instruction::FDiv:
1276     case Instruction::URem:
1277     case Instruction::SRem:
1278     case Instruction::FRem:
1279     case Instruction::Shl:
1280     case Instruction::LShr:
1281     case Instruction::AShr:
1282     case Instruction::And:
1283     case Instruction::Or:
1284     case Instruction::Xor: {
1285       newTreeEntry(VL, true);
1286       DEBUG(dbgs() << "SLP: added a vector of bin op.\n");
1287
1288       // Sort operands of the instructions so that each side is more likely to
1289       // have the same opcode.
1290       if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) {
1291         ValueList Left, Right;
1292         reorderInputsAccordingToOpcode(VL, Left, Right);
1293         buildTree_rec(Left, Depth + 1);
1294         buildTree_rec(Right, Depth + 1);
1295         return;
1296       }
1297
1298       for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
1299         ValueList Operands;
1300         // Prepare the operand vector.
1301         for (unsigned j = 0; j < VL.size(); ++j)
1302           Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));
1303
1304         buildTree_rec(Operands, Depth+1);
1305       }
1306       return;
1307     }
1308     case Instruction::GetElementPtr: {
1309       // We don't combine GEPs with complicated (nested) indexing.
1310       for (unsigned j = 0; j < VL.size(); ++j) {
1311         if (cast<Instruction>(VL[j])->getNumOperands() != 2) {
1312           DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n");
1313           BS.cancelScheduling(VL);
1314           newTreeEntry(VL, false);
1315           return;
1316         }
1317       }
1318
1319       // We can't combine several GEPs into one vector if they operate on
1320       // different types.
1321       Type *Ty0 = cast<Instruction>(VL0)->getOperand(0)->getType();
1322       for (unsigned j = 0; j < VL.size(); ++j) {
1323         Type *CurTy = cast<Instruction>(VL[j])->getOperand(0)->getType();
1324         if (Ty0 != CurTy) {
1325           DEBUG(dbgs() << "SLP: not-vectorizable GEP (different types).\n");
1326           BS.cancelScheduling(VL);
1327           newTreeEntry(VL, false);
1328           return;
1329         }
1330       }
1331
1332       // We don't combine GEPs with non-constant indexes.
1333       for (unsigned j = 0; j < VL.size(); ++j) {
1334         auto Op = cast<Instruction>(VL[j])->getOperand(1);
1335         if (!isa<ConstantInt>(Op)) {
1336           DEBUG(
1337               dbgs() << "SLP: not-vectorizable GEP (non-constant indexes).\n");
1338           BS.cancelScheduling(VL);
1339           newTreeEntry(VL, false);
1340           return;
1341         }
1342       }
1343
1344       newTreeEntry(VL, true);
1345       DEBUG(dbgs() << "SLP: added a vector of GEPs.\n");
1346       for (unsigned i = 0, e = 2; i < e; ++i) {
1347         ValueList Operands;
1348         // Prepare the operand vector.
1349         for (unsigned j = 0; j < VL.size(); ++j)
1350           Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));
1351
1352         buildTree_rec(Operands, Depth + 1);
1353       }
1354       return;
1355     }
1356     case Instruction::Store: {
1357       const DataLayout &DL = F->getParent()->getDataLayout();
1358       // Check if the stores are consecutive or of we need to swizzle them.
1359       for (unsigned i = 0, e = VL.size() - 1; i < e; ++i)
1360         if (!isConsecutiveAccess(VL[i], VL[i + 1], DL)) {
1361           BS.cancelScheduling(VL);
1362           newTreeEntry(VL, false);
1363           DEBUG(dbgs() << "SLP: Non-consecutive store.\n");
1364           return;
1365         }
1366
1367       newTreeEntry(VL, true);
1368       DEBUG(dbgs() << "SLP: added a vector of stores.\n");
1369
1370       ValueList Operands;
1371       for (unsigned j = 0; j < VL.size(); ++j)
1372         Operands.push_back(cast<Instruction>(VL[j])->getOperand(0));
1373
1374       buildTree_rec(Operands, Depth + 1);
1375       return;
1376     }
1377     case Instruction::Call: {
1378       // Check if the calls are all to the same vectorizable intrinsic.
1379       CallInst *CI = cast<CallInst>(VL[0]);
1380       // Check if this is an Intrinsic call or something that can be
1381       // represented by an intrinsic call
1382       Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
1383       if (!isTriviallyVectorizable(ID)) {
1384         BS.cancelScheduling(VL);
1385         newTreeEntry(VL, false);
1386         DEBUG(dbgs() << "SLP: Non-vectorizable call.\n");
1387         return;
1388       }
1389       Function *Int = CI->getCalledFunction();
1390       Value *A1I = nullptr;
1391       if (hasVectorInstrinsicScalarOpd(ID, 1))
1392         A1I = CI->getArgOperand(1);
1393       for (unsigned i = 1, e = VL.size(); i != e; ++i) {
1394         CallInst *CI2 = dyn_cast<CallInst>(VL[i]);
1395         if (!CI2 || CI2->getCalledFunction() != Int ||
1396             getIntrinsicIDForCall(CI2, TLI) != ID) {
1397           BS.cancelScheduling(VL);
1398           newTreeEntry(VL, false);
1399           DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *VL[i]
1400                        << "\n");
1401           return;
1402         }
1403         // ctlz,cttz and powi are special intrinsics whose second argument
1404         // should be same in order for them to be vectorized.
1405         if (hasVectorInstrinsicScalarOpd(ID, 1)) {
1406           Value *A1J = CI2->getArgOperand(1);
1407           if (A1I != A1J) {
1408             BS.cancelScheduling(VL);
1409             newTreeEntry(VL, false);
1410             DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI
1411                          << " argument "<< A1I<<"!=" << A1J
1412                          << "\n");
1413             return;
1414           }
1415         }
1416       }
1417
1418       newTreeEntry(VL, true);
1419       for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) {
1420         ValueList Operands;
1421         // Prepare the operand vector.
1422         for (unsigned j = 0; j < VL.size(); ++j) {
1423           CallInst *CI2 = dyn_cast<CallInst>(VL[j]);
1424           Operands.push_back(CI2->getArgOperand(i));
1425         }
1426         buildTree_rec(Operands, Depth + 1);
1427       }
1428       return;
1429     }
1430     case Instruction::ShuffleVector: {
1431       // If this is not an alternate sequence of opcode like add-sub
1432       // then do not vectorize this instruction.
1433       if (!isAltShuffle) {
1434         BS.cancelScheduling(VL);
1435         newTreeEntry(VL, false);
1436         DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n");
1437         return;
1438       }
1439       newTreeEntry(VL, true);
1440       DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n");
1441
1442       // Reorder operands if reordering would enable vectorization.
1443       if (isa<BinaryOperator>(VL0)) {
1444         ValueList Left, Right;
1445         reorderAltShuffleOperands(VL, Left, Right);
1446         buildTree_rec(Left, Depth + 1);
1447         buildTree_rec(Right, Depth + 1);
1448         return;
1449       }
1450
1451       for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
1452         ValueList Operands;
1453         // Prepare the operand vector.
1454         for (unsigned j = 0; j < VL.size(); ++j)
1455           Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));
1456
1457         buildTree_rec(Operands, Depth + 1);
1458       }
1459       return;
1460     }
1461     default:
1462       BS.cancelScheduling(VL);
1463       newTreeEntry(VL, false);
1464       DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n");
1465       return;
1466   }
1467 }
1468
1469 int BoUpSLP::getEntryCost(TreeEntry *E) {
1470   ArrayRef<Value*> VL = E->Scalars;
1471
1472   Type *ScalarTy = VL[0]->getType();
1473   if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
1474     ScalarTy = SI->getValueOperand()->getType();
1475   VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
1476
1477   if (E->NeedToGather) {
1478     if (allConstant(VL))
1479       return 0;
1480     if (isSplat(VL)) {
1481       return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0);
1482     }
1483     return getGatherCost(E->Scalars);
1484   }
1485   unsigned Opcode = getSameOpcode(VL);
1486   assert(Opcode && getSameType(VL) && getSameBlock(VL) && "Invalid VL");
1487   Instruction *VL0 = cast<Instruction>(VL[0]);
1488   switch (Opcode) {
1489     case Instruction::PHI: {
1490       return 0;
1491     }
1492     case Instruction::ExtractElement: {
1493       if (CanReuseExtract(VL)) {
1494         int DeadCost = 0;
1495         for (unsigned i = 0, e = VL.size(); i < e; ++i) {
1496           ExtractElementInst *E = cast<ExtractElementInst>(VL[i]);
1497           if (E->hasOneUse())
1498             // Take credit for instruction that will become dead.
1499             DeadCost +=
1500                 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i);
1501         }
1502         return -DeadCost;
1503       }
1504       return getGatherCost(VecTy);
1505     }
1506     case Instruction::ZExt:
1507     case Instruction::SExt:
1508     case Instruction::FPToUI:
1509     case Instruction::FPToSI:
1510     case Instruction::FPExt:
1511     case Instruction::PtrToInt:
1512     case Instruction::IntToPtr:
1513     case Instruction::SIToFP:
1514     case Instruction::UIToFP:
1515     case Instruction::Trunc:
1516     case Instruction::FPTrunc:
1517     case Instruction::BitCast: {
1518       Type *SrcTy = VL0->getOperand(0)->getType();
1519
1520       // Calculate the cost of this instruction.
1521       int ScalarCost = VL.size() * TTI->getCastInstrCost(VL0->getOpcode(),
1522                                                          VL0->getType(), SrcTy);
1523
1524       VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size());
1525       int VecCost = TTI->getCastInstrCost(VL0->getOpcode(), VecTy, SrcVecTy);
1526       return VecCost - ScalarCost;
1527     }
1528     case Instruction::FCmp:
1529     case Instruction::ICmp:
1530     case Instruction::Select:
1531     case Instruction::Add:
1532     case Instruction::FAdd:
1533     case Instruction::Sub:
1534     case Instruction::FSub:
1535     case Instruction::Mul:
1536     case Instruction::FMul:
1537     case Instruction::UDiv:
1538     case Instruction::SDiv:
1539     case Instruction::FDiv:
1540     case Instruction::URem:
1541     case Instruction::SRem:
1542     case Instruction::FRem:
1543     case Instruction::Shl:
1544     case Instruction::LShr:
1545     case Instruction::AShr:
1546     case Instruction::And:
1547     case Instruction::Or:
1548     case Instruction::Xor: {
1549       // Calculate the cost of this instruction.
1550       int ScalarCost = 0;
1551       int VecCost = 0;
1552       if (Opcode == Instruction::FCmp || Opcode == Instruction::ICmp ||
1553           Opcode == Instruction::Select) {
1554         VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size());
1555         ScalarCost = VecTy->getNumElements() *
1556         TTI->getCmpSelInstrCost(Opcode, ScalarTy, Builder.getInt1Ty());
1557         VecCost = TTI->getCmpSelInstrCost(Opcode, VecTy, MaskTy);
1558       } else {
1559         // Certain instructions can be cheaper to vectorize if they have a
1560         // constant second vector operand.
1561         TargetTransformInfo::OperandValueKind Op1VK =
1562             TargetTransformInfo::OK_AnyValue;
1563         TargetTransformInfo::OperandValueKind Op2VK =
1564             TargetTransformInfo::OK_UniformConstantValue;
1565         TargetTransformInfo::OperandValueProperties Op1VP =
1566             TargetTransformInfo::OP_None;
1567         TargetTransformInfo::OperandValueProperties Op2VP =
1568             TargetTransformInfo::OP_None;
1569
1570         // If all operands are exactly the same ConstantInt then set the
1571         // operand kind to OK_UniformConstantValue.
1572         // If instead not all operands are constants, then set the operand kind
1573         // to OK_AnyValue. If all operands are constants but not the same,
1574         // then set the operand kind to OK_NonUniformConstantValue.
1575         ConstantInt *CInt = nullptr;
1576         for (unsigned i = 0; i < VL.size(); ++i) {
1577           const Instruction *I = cast<Instruction>(VL[i]);
1578           if (!isa<ConstantInt>(I->getOperand(1))) {
1579             Op2VK = TargetTransformInfo::OK_AnyValue;
1580             break;
1581           }
1582           if (i == 0) {
1583             CInt = cast<ConstantInt>(I->getOperand(1));
1584             continue;
1585           }
1586           if (Op2VK == TargetTransformInfo::OK_UniformConstantValue &&
1587               CInt != cast<ConstantInt>(I->getOperand(1)))
1588             Op2VK = TargetTransformInfo::OK_NonUniformConstantValue;
1589         }
1590         // FIXME: Currently cost of model modification for division by
1591         // power of 2 is handled only for X86. Add support for other targets.
1592         if (Op2VK == TargetTransformInfo::OK_UniformConstantValue && CInt &&
1593             CInt->getValue().isPowerOf2())
1594           Op2VP = TargetTransformInfo::OP_PowerOf2;
1595
1596         ScalarCost = VecTy->getNumElements() *
1597                      TTI->getArithmeticInstrCost(Opcode, ScalarTy, Op1VK, Op2VK,
1598                                                  Op1VP, Op2VP);
1599         VecCost = TTI->getArithmeticInstrCost(Opcode, VecTy, Op1VK, Op2VK,
1600                                               Op1VP, Op2VP);
1601       }
1602       return VecCost - ScalarCost;
1603     }
1604     case Instruction::GetElementPtr: {
1605       TargetTransformInfo::OperandValueKind Op1VK =
1606           TargetTransformInfo::OK_AnyValue;
1607       TargetTransformInfo::OperandValueKind Op2VK =
1608           TargetTransformInfo::OK_UniformConstantValue;
1609
1610       int ScalarCost =
1611           VecTy->getNumElements() *
1612           TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, Op1VK, Op2VK);
1613       int VecCost =
1614           TTI->getArithmeticInstrCost(Instruction::Add, VecTy, Op1VK, Op2VK);
1615
1616       return VecCost - ScalarCost;
1617     }
1618     case Instruction::Load: {
1619       // Cost of wide load - cost of scalar loads.
1620       int ScalarLdCost = VecTy->getNumElements() *
1621       TTI->getMemoryOpCost(Instruction::Load, ScalarTy, 1, 0);
1622       int VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, 1, 0);
1623       return VecLdCost - ScalarLdCost;
1624     }
1625     case Instruction::Store: {
1626       // We know that we can merge the stores. Calculate the cost.
1627       int ScalarStCost = VecTy->getNumElements() *
1628       TTI->getMemoryOpCost(Instruction::Store, ScalarTy, 1, 0);
1629       int VecStCost = TTI->getMemoryOpCost(Instruction::Store, VecTy, 1, 0);
1630       return VecStCost - ScalarStCost;
1631     }
1632     case Instruction::Call: {
1633       CallInst *CI = cast<CallInst>(VL0);
1634       Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
1635
1636       // Calculate the cost of the scalar and vector calls.
1637       SmallVector<Type*, 4> ScalarTys, VecTys;
1638       for (unsigned op = 0, opc = CI->getNumArgOperands(); op!= opc; ++op) {
1639         ScalarTys.push_back(CI->getArgOperand(op)->getType());
1640         VecTys.push_back(VectorType::get(CI->getArgOperand(op)->getType(),
1641                                          VecTy->getNumElements()));
1642       }
1643
1644       int ScalarCallCost = VecTy->getNumElements() *
1645           TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys);
1646
1647       int VecCallCost = TTI->getIntrinsicInstrCost(ID, VecTy, VecTys);
1648
1649       DEBUG(dbgs() << "SLP: Call cost "<< VecCallCost - ScalarCallCost
1650             << " (" << VecCallCost  << "-" <<  ScalarCallCost << ")"
1651             << " for " << *CI << "\n");
1652
1653       return VecCallCost - ScalarCallCost;
1654     }
1655     case Instruction::ShuffleVector: {
1656       TargetTransformInfo::OperandValueKind Op1VK =
1657           TargetTransformInfo::OK_AnyValue;
1658       TargetTransformInfo::OperandValueKind Op2VK =
1659           TargetTransformInfo::OK_AnyValue;
1660       int ScalarCost = 0;
1661       int VecCost = 0;
1662       for (unsigned i = 0; i < VL.size(); ++i) {
1663         Instruction *I = cast<Instruction>(VL[i]);
1664         if (!I)
1665           break;
1666         ScalarCost +=
1667             TTI->getArithmeticInstrCost(I->getOpcode(), ScalarTy, Op1VK, Op2VK);
1668       }
1669       // VecCost is equal to sum of the cost of creating 2 vectors
1670       // and the cost of creating shuffle.
1671       Instruction *I0 = cast<Instruction>(VL[0]);
1672       VecCost =
1673           TTI->getArithmeticInstrCost(I0->getOpcode(), VecTy, Op1VK, Op2VK);
1674       Instruction *I1 = cast<Instruction>(VL[1]);
1675       VecCost +=
1676           TTI->getArithmeticInstrCost(I1->getOpcode(), VecTy, Op1VK, Op2VK);
1677       VecCost +=
1678           TTI->getShuffleCost(TargetTransformInfo::SK_Alternate, VecTy, 0);
1679       return VecCost - ScalarCost;
1680     }
1681     default:
1682       llvm_unreachable("Unknown instruction");
1683   }
1684 }
1685
1686 bool BoUpSLP::isFullyVectorizableTinyTree() {
1687   DEBUG(dbgs() << "SLP: Check whether the tree with height " <<
1688         VectorizableTree.size() << " is fully vectorizable .\n");
1689
1690   // We only handle trees of height 2.
1691   if (VectorizableTree.size() != 2)
1692     return false;
1693
1694   // Handle splat and all-constants stores.
1695   if (!VectorizableTree[0].NeedToGather &&
1696       (allConstant(VectorizableTree[1].Scalars) ||
1697        isSplat(VectorizableTree[1].Scalars)))
1698     return true;
1699
1700   // Gathering cost would be too much for tiny trees.
1701   if (VectorizableTree[0].NeedToGather || VectorizableTree[1].NeedToGather)
1702     return false;
1703
1704   return true;
1705 }
1706
1707 int BoUpSLP::getSpillCost() {
1708   // Walk from the bottom of the tree to the top, tracking which values are
1709   // live. When we see a call instruction that is not part of our tree,
1710   // query TTI to see if there is a cost to keeping values live over it
1711   // (for example, if spills and fills are required).
1712   unsigned BundleWidth = VectorizableTree.front().Scalars.size();
1713   int Cost = 0;
1714
1715   SmallPtrSet<Instruction*, 4> LiveValues;
1716   Instruction *PrevInst = nullptr; 
1717
1718   for (unsigned N = 0; N < VectorizableTree.size(); ++N) {
1719     Instruction *Inst = dyn_cast<Instruction>(VectorizableTree[N].Scalars[0]);
1720     if (!Inst)
1721       continue;
1722
1723     if (!PrevInst) {
1724       PrevInst = Inst;
1725       continue;
1726     }
1727
1728     DEBUG(
1729       dbgs() << "SLP: #LV: " << LiveValues.size();
1730       for (auto *X : LiveValues)
1731         dbgs() << " " << X->getName();
1732       dbgs() << ", Looking at ";
1733       Inst->dump();
1734       );
1735
1736     // Update LiveValues.
1737     LiveValues.erase(PrevInst);
1738     for (auto &J : PrevInst->operands()) {
1739       if (isa<Instruction>(&*J) && ScalarToTreeEntry.count(&*J))
1740         LiveValues.insert(cast<Instruction>(&*J));
1741     }    
1742
1743     // Now find the sequence of instructions between PrevInst and Inst.
1744     BasicBlock::reverse_iterator InstIt(Inst->getIterator()),
1745         PrevInstIt(PrevInst->getIterator());
1746     --PrevInstIt;
1747     while (InstIt != PrevInstIt) {
1748       if (PrevInstIt == PrevInst->getParent()->rend()) {
1749         PrevInstIt = Inst->getParent()->rbegin();
1750         continue;
1751       }
1752
1753       if (isa<CallInst>(&*PrevInstIt) && &*PrevInstIt != PrevInst) {
1754         SmallVector<Type*, 4> V;
1755         for (auto *II : LiveValues)
1756           V.push_back(VectorType::get(II->getType(), BundleWidth));
1757         Cost += TTI->getCostOfKeepingLiveOverCall(V);
1758       }
1759
1760       ++PrevInstIt;
1761     }
1762
1763     PrevInst = Inst;
1764   }
1765
1766   DEBUG(dbgs() << "SLP: SpillCost=" << Cost << "\n");
1767   return Cost;
1768 }
1769
1770 int BoUpSLP::getTreeCost() {
1771   int Cost = 0;
1772   DEBUG(dbgs() << "SLP: Calculating cost for tree of size " <<
1773         VectorizableTree.size() << ".\n");
1774
1775   // We only vectorize tiny trees if it is fully vectorizable.
1776   if (VectorizableTree.size() < 3 && !isFullyVectorizableTinyTree()) {
1777     if (VectorizableTree.empty()) {
1778       assert(!ExternalUses.size() && "We should not have any external users");
1779     }
1780     return INT_MAX;
1781   }
1782
1783   unsigned BundleWidth = VectorizableTree[0].Scalars.size();
1784
1785   for (unsigned i = 0, e = VectorizableTree.size(); i != e; ++i) {
1786     int C = getEntryCost(&VectorizableTree[i]);
1787     DEBUG(dbgs() << "SLP: Adding cost " << C << " for bundle that starts with "
1788           << *VectorizableTree[i].Scalars[0] << " .\n");
1789     Cost += C;
1790   }
1791
1792   SmallSet<Value *, 16> ExtractCostCalculated;
1793   int ExtractCost = 0;
1794   for (UserList::iterator I = ExternalUses.begin(), E = ExternalUses.end();
1795        I != E; ++I) {
1796     // We only add extract cost once for the same scalar.
1797     if (!ExtractCostCalculated.insert(I->Scalar).second)
1798       continue;
1799
1800     // Uses by ephemeral values are free (because the ephemeral value will be
1801     // removed prior to code generation, and so the extraction will be
1802     // removed as well).
1803     if (EphValues.count(I->User))
1804       continue;
1805
1806     VectorType *VecTy = VectorType::get(I->Scalar->getType(), BundleWidth);
1807     ExtractCost += TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy,
1808                                            I->Lane);
1809   }
1810
1811   Cost += getSpillCost();
1812
1813   DEBUG(dbgs() << "SLP: Total Cost " << Cost + ExtractCost<< ".\n");
1814   return  Cost + ExtractCost;
1815 }
1816
1817 int BoUpSLP::getGatherCost(Type *Ty) {
1818   int Cost = 0;
1819   for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i)
1820     Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i);
1821   return Cost;
1822 }
1823
1824 int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) {
1825   // Find the type of the operands in VL.
1826   Type *ScalarTy = VL[0]->getType();
1827   if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
1828     ScalarTy = SI->getValueOperand()->getType();
1829   VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
1830   // Find the cost of inserting/extracting values from the vector.
1831   return getGatherCost(VecTy);
1832 }
1833
1834 Value *BoUpSLP::getPointerOperand(Value *I) {
1835   if (LoadInst *LI = dyn_cast<LoadInst>(I))
1836     return LI->getPointerOperand();
1837   if (StoreInst *SI = dyn_cast<StoreInst>(I))
1838     return SI->getPointerOperand();
1839   return nullptr;
1840 }
1841
1842 unsigned BoUpSLP::getAddressSpaceOperand(Value *I) {
1843   if (LoadInst *L = dyn_cast<LoadInst>(I))
1844     return L->getPointerAddressSpace();
1845   if (StoreInst *S = dyn_cast<StoreInst>(I))
1846     return S->getPointerAddressSpace();
1847   return -1;
1848 }
1849
1850 bool BoUpSLP::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL) {
1851   Value *PtrA = getPointerOperand(A);
1852   Value *PtrB = getPointerOperand(B);
1853   unsigned ASA = getAddressSpaceOperand(A);
1854   unsigned ASB = getAddressSpaceOperand(B);
1855
1856   // Check that the address spaces match and that the pointers are valid.
1857   if (!PtrA || !PtrB || (ASA != ASB))
1858     return false;
1859
1860   // Make sure that A and B are different pointers of the same type.
1861   if (PtrA == PtrB || PtrA->getType() != PtrB->getType())
1862     return false;
1863
1864   unsigned PtrBitWidth = DL.getPointerSizeInBits(ASA);
1865   Type *Ty = cast<PointerType>(PtrA->getType())->getElementType();
1866   APInt Size(PtrBitWidth, DL.getTypeStoreSize(Ty));
1867
1868   APInt OffsetA(PtrBitWidth, 0), OffsetB(PtrBitWidth, 0);
1869   PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA);
1870   PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB);
1871
1872   APInt OffsetDelta = OffsetB - OffsetA;
1873
1874   // Check if they are based on the same pointer. That makes the offsets
1875   // sufficient.
1876   if (PtrA == PtrB)
1877     return OffsetDelta == Size;
1878
1879   // Compute the necessary base pointer delta to have the necessary final delta
1880   // equal to the size.
1881   APInt BaseDelta = Size - OffsetDelta;
1882
1883   // Otherwise compute the distance with SCEV between the base pointers.
1884   const SCEV *PtrSCEVA = SE->getSCEV(PtrA);
1885   const SCEV *PtrSCEVB = SE->getSCEV(PtrB);
1886   const SCEV *C = SE->getConstant(BaseDelta);
1887   const SCEV *X = SE->getAddExpr(PtrSCEVA, C);
1888   return X == PtrSCEVB;
1889 }
1890
1891 // Reorder commutative operations in alternate shuffle if the resulting vectors
1892 // are consecutive loads. This would allow us to vectorize the tree.
1893 // If we have something like-
1894 // load a[0] - load b[0]
1895 // load b[1] + load a[1]
1896 // load a[2] - load b[2]
1897 // load a[3] + load b[3]
1898 // Reordering the second load b[1]  load a[1] would allow us to vectorize this
1899 // code.
1900 void BoUpSLP::reorderAltShuffleOperands(ArrayRef<Value *> VL,
1901                                         SmallVectorImpl<Value *> &Left,
1902                                         SmallVectorImpl<Value *> &Right) {
1903   const DataLayout &DL = F->getParent()->getDataLayout();
1904
1905   // Push left and right operands of binary operation into Left and Right
1906   for (unsigned i = 0, e = VL.size(); i < e; ++i) {
1907     Left.push_back(cast<Instruction>(VL[i])->getOperand(0));
1908     Right.push_back(cast<Instruction>(VL[i])->getOperand(1));
1909   }
1910
1911   // Reorder if we have a commutative operation and consecutive access
1912   // are on either side of the alternate instructions.
1913   for (unsigned j = 0; j < VL.size() - 1; ++j) {
1914     if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) {
1915       if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) {
1916         Instruction *VL1 = cast<Instruction>(VL[j]);
1917         Instruction *VL2 = cast<Instruction>(VL[j + 1]);
1918         if (isConsecutiveAccess(L, L1, DL) && VL1->isCommutative()) {
1919           std::swap(Left[j], Right[j]);
1920           continue;
1921         } else if (isConsecutiveAccess(L, L1, DL) && VL2->isCommutative()) {
1922           std::swap(Left[j + 1], Right[j + 1]);
1923           continue;
1924         }
1925         // else unchanged
1926       }
1927     }
1928     if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) {
1929       if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) {
1930         Instruction *VL1 = cast<Instruction>(VL[j]);
1931         Instruction *VL2 = cast<Instruction>(VL[j + 1]);
1932         if (isConsecutiveAccess(L, L1, DL) && VL1->isCommutative()) {
1933           std::swap(Left[j], Right[j]);
1934           continue;
1935         } else if (isConsecutiveAccess(L, L1, DL) && VL2->isCommutative()) {
1936           std::swap(Left[j + 1], Right[j + 1]);
1937           continue;
1938         }
1939         // else unchanged
1940       }
1941     }
1942   }
1943 }
1944
1945 // Return true if I should be commuted before adding it's left and right
1946 // operands to the arrays Left and Right.
1947 //
1948 // The vectorizer is trying to either have all elements one side being
1949 // instruction with the same opcode to enable further vectorization, or having
1950 // a splat to lower the vectorizing cost.
1951 static bool shouldReorderOperands(int i, Instruction &I,
1952                                   SmallVectorImpl<Value *> &Left,
1953                                   SmallVectorImpl<Value *> &Right,
1954                                   bool AllSameOpcodeLeft,
1955                                   bool AllSameOpcodeRight, bool SplatLeft,
1956                                   bool SplatRight) {
1957   Value *VLeft = I.getOperand(0);
1958   Value *VRight = I.getOperand(1);
1959   // If we have "SplatRight", try to see if commuting is needed to preserve it.
1960   if (SplatRight) {
1961     if (VRight == Right[i - 1])
1962       // Preserve SplatRight
1963       return false;
1964     if (VLeft == Right[i - 1]) {
1965       // Commuting would preserve SplatRight, but we don't want to break
1966       // SplatLeft either, i.e. preserve the original order if possible.
1967       // (FIXME: why do we care?)
1968       if (SplatLeft && VLeft == Left[i - 1])
1969         return false;
1970       return true;
1971     }
1972   }
1973   // Symmetrically handle Right side.
1974   if (SplatLeft) {
1975     if (VLeft == Left[i - 1])
1976       // Preserve SplatLeft
1977       return false;
1978     if (VRight == Left[i - 1])
1979       return true;
1980   }
1981
1982   Instruction *ILeft = dyn_cast<Instruction>(VLeft);
1983   Instruction *IRight = dyn_cast<Instruction>(VRight);
1984
1985   // If we have "AllSameOpcodeRight", try to see if the left operands preserves
1986   // it and not the right, in this case we want to commute.
1987   if (AllSameOpcodeRight) {
1988     unsigned RightPrevOpcode = cast<Instruction>(Right[i - 1])->getOpcode();
1989     if (IRight && RightPrevOpcode == IRight->getOpcode())
1990       // Do not commute, a match on the right preserves AllSameOpcodeRight
1991       return false;
1992     if (ILeft && RightPrevOpcode == ILeft->getOpcode()) {
1993       // We have a match and may want to commute, but first check if there is
1994       // not also a match on the existing operands on the Left to preserve
1995       // AllSameOpcodeLeft, i.e. preserve the original order if possible.
1996       // (FIXME: why do we care?)
1997       if (AllSameOpcodeLeft && ILeft &&
1998           cast<Instruction>(Left[i - 1])->getOpcode() == ILeft->getOpcode())
1999         return false;
2000       return true;
2001     }
2002   }
2003   // Symmetrically handle Left side.
2004   if (AllSameOpcodeLeft) {
2005     unsigned LeftPrevOpcode = cast<Instruction>(Left[i - 1])->getOpcode();
2006     if (ILeft && LeftPrevOpcode == ILeft->getOpcode())
2007       return false;
2008     if (IRight && LeftPrevOpcode == IRight->getOpcode())
2009       return true;
2010   }
2011   return false;
2012 }
2013
2014 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
2015                                              SmallVectorImpl<Value *> &Left,
2016                                              SmallVectorImpl<Value *> &Right) {
2017
2018   if (VL.size()) {
2019     // Peel the first iteration out of the loop since there's nothing
2020     // interesting to do anyway and it simplifies the checks in the loop.
2021     auto VLeft = cast<Instruction>(VL[0])->getOperand(0);
2022     auto VRight = cast<Instruction>(VL[0])->getOperand(1);
2023     if (!isa<Instruction>(VRight) && isa<Instruction>(VLeft))
2024       // Favor having instruction to the right. FIXME: why?
2025       std::swap(VLeft, VRight);
2026     Left.push_back(VLeft);
2027     Right.push_back(VRight);
2028   }
2029
2030   // Keep track if we have instructions with all the same opcode on one side.
2031   bool AllSameOpcodeLeft = isa<Instruction>(Left[0]);
2032   bool AllSameOpcodeRight = isa<Instruction>(Right[0]);
2033   // Keep track if we have one side with all the same value (broadcast).
2034   bool SplatLeft = true;
2035   bool SplatRight = true;
2036
2037   for (unsigned i = 1, e = VL.size(); i != e; ++i) {
2038     Instruction *I = cast<Instruction>(VL[i]);
2039     assert(I->isCommutative() && "Can only process commutative instruction");
2040     // Commute to favor either a splat or maximizing having the same opcodes on
2041     // one side.
2042     if (shouldReorderOperands(i, *I, Left, Right, AllSameOpcodeLeft,
2043                               AllSameOpcodeRight, SplatLeft, SplatRight)) {
2044       Left.push_back(I->getOperand(1));
2045       Right.push_back(I->getOperand(0));
2046     } else {
2047       Left.push_back(I->getOperand(0));
2048       Right.push_back(I->getOperand(1));
2049     }
2050     // Update Splat* and AllSameOpcode* after the insertion.
2051     SplatRight = SplatRight && (Right[i - 1] == Right[i]);
2052     SplatLeft = SplatLeft && (Left[i - 1] == Left[i]);
2053     AllSameOpcodeLeft = AllSameOpcodeLeft && isa<Instruction>(Left[i]) &&
2054                         (cast<Instruction>(Left[i - 1])->getOpcode() ==
2055                          cast<Instruction>(Left[i])->getOpcode());
2056     AllSameOpcodeRight = AllSameOpcodeRight && isa<Instruction>(Right[i]) &&
2057                          (cast<Instruction>(Right[i - 1])->getOpcode() ==
2058                           cast<Instruction>(Right[i])->getOpcode());
2059   }
2060
2061   // If one operand end up being broadcast, return this operand order.
2062   if (SplatRight || SplatLeft)
2063     return;
2064
2065   const DataLayout &DL = F->getParent()->getDataLayout();
2066
2067   // Finally check if we can get longer vectorizable chain by reordering
2068   // without breaking the good operand order detected above.
2069   // E.g. If we have something like-
2070   // load a[0]  load b[0]
2071   // load b[1]  load a[1]
2072   // load a[2]  load b[2]
2073   // load a[3]  load b[3]
2074   // Reordering the second load b[1]  load a[1] would allow us to vectorize
2075   // this code and we still retain AllSameOpcode property.
2076   // FIXME: This load reordering might break AllSameOpcode in some rare cases
2077   // such as-
2078   // add a[0],c[0]  load b[0]
2079   // add a[1],c[2]  load b[1]
2080   // b[2]           load b[2]
2081   // add a[3],c[3]  load b[3]
2082   for (unsigned j = 0; j < VL.size() - 1; ++j) {
2083     if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) {
2084       if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) {
2085         if (isConsecutiveAccess(L, L1, DL)) {
2086           std::swap(Left[j + 1], Right[j + 1]);
2087           continue;
2088         }
2089       }
2090     }
2091     if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) {
2092       if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) {
2093         if (isConsecutiveAccess(L, L1, DL)) {
2094           std::swap(Left[j + 1], Right[j + 1]);
2095           continue;
2096         }
2097       }
2098     }
2099     // else unchanged
2100   }
2101 }
2102
2103 void BoUpSLP::setInsertPointAfterBundle(ArrayRef<Value *> VL) {
2104   Instruction *VL0 = cast<Instruction>(VL[0]);
2105   BasicBlock::iterator NextInst(VL0);
2106   ++NextInst;
2107   Builder.SetInsertPoint(VL0->getParent(), NextInst);
2108   Builder.SetCurrentDebugLocation(VL0->getDebugLoc());
2109 }
2110
2111 Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) {
2112   Value *Vec = UndefValue::get(Ty);
2113   // Generate the 'InsertElement' instruction.
2114   for (unsigned i = 0; i < Ty->getNumElements(); ++i) {
2115     Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i));
2116     if (Instruction *Insrt = dyn_cast<Instruction>(Vec)) {
2117       GatherSeq.insert(Insrt);
2118       CSEBlocks.insert(Insrt->getParent());
2119
2120       // Add to our 'need-to-extract' list.
2121       if (ScalarToTreeEntry.count(VL[i])) {
2122         int Idx = ScalarToTreeEntry[VL[i]];
2123         TreeEntry *E = &VectorizableTree[Idx];
2124         // Find which lane we need to extract.
2125         int FoundLane = -1;
2126         for (unsigned Lane = 0, LE = VL.size(); Lane != LE; ++Lane) {
2127           // Is this the lane of the scalar that we are looking for ?
2128           if (E->Scalars[Lane] == VL[i]) {
2129             FoundLane = Lane;
2130             break;
2131           }
2132         }
2133         assert(FoundLane >= 0 && "Could not find the correct lane");
2134         ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane));
2135       }
2136     }
2137   }
2138
2139   return Vec;
2140 }
2141
2142 Value *BoUpSLP::alreadyVectorized(ArrayRef<Value *> VL) const {
2143   SmallDenseMap<Value*, int>::const_iterator Entry
2144     = ScalarToTreeEntry.find(VL[0]);
2145   if (Entry != ScalarToTreeEntry.end()) {
2146     int Idx = Entry->second;
2147     const TreeEntry *En = &VectorizableTree[Idx];
2148     if (En->isSame(VL) && En->VectorizedValue)
2149       return En->VectorizedValue;
2150   }
2151   return nullptr;
2152 }
2153
2154 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) {
2155   if (ScalarToTreeEntry.count(VL[0])) {
2156     int Idx = ScalarToTreeEntry[VL[0]];
2157     TreeEntry *E = &VectorizableTree[Idx];
2158     if (E->isSame(VL))
2159       return vectorizeTree(E);
2160   }
2161
2162   Type *ScalarTy = VL[0]->getType();
2163   if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
2164     ScalarTy = SI->getValueOperand()->getType();
2165   VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
2166
2167   return Gather(VL, VecTy);
2168 }
2169
2170 Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
2171   IRBuilder<>::InsertPointGuard Guard(Builder);
2172
2173   if (E->VectorizedValue) {
2174     DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n");
2175     return E->VectorizedValue;
2176   }
2177
2178   Instruction *VL0 = cast<Instruction>(E->Scalars[0]);
2179   Type *ScalarTy = VL0->getType();
2180   if (StoreInst *SI = dyn_cast<StoreInst>(VL0))
2181     ScalarTy = SI->getValueOperand()->getType();
2182   VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size());
2183
2184   if (E->NeedToGather) {
2185     setInsertPointAfterBundle(E->Scalars);
2186     return Gather(E->Scalars, VecTy);
2187   }
2188
2189   const DataLayout &DL = F->getParent()->getDataLayout();
2190   unsigned Opcode = getSameOpcode(E->Scalars);
2191
2192   switch (Opcode) {
2193     case Instruction::PHI: {
2194       PHINode *PH = dyn_cast<PHINode>(VL0);
2195       Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI());
2196       Builder.SetCurrentDebugLocation(PH->getDebugLoc());
2197       PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues());
2198       E->VectorizedValue = NewPhi;
2199
2200       // PHINodes may have multiple entries from the same block. We want to
2201       // visit every block once.
2202       SmallSet<BasicBlock*, 4> VisitedBBs;
2203
2204       for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
2205         ValueList Operands;
2206         BasicBlock *IBB = PH->getIncomingBlock(i);
2207
2208         if (!VisitedBBs.insert(IBB).second) {
2209           NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB);
2210           continue;
2211         }
2212
2213         // Prepare the operand vector.
2214         for (Value *V : E->Scalars)
2215           Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock(IBB));
2216
2217         Builder.SetInsertPoint(IBB->getTerminator());
2218         Builder.SetCurrentDebugLocation(PH->getDebugLoc());
2219         Value *Vec = vectorizeTree(Operands);
2220         NewPhi->addIncoming(Vec, IBB);
2221       }
2222
2223       assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() &&
2224              "Invalid number of incoming values");
2225       return NewPhi;
2226     }
2227
2228     case Instruction::ExtractElement: {
2229       if (CanReuseExtract(E->Scalars)) {
2230         Value *V = VL0->getOperand(0);
2231         E->VectorizedValue = V;
2232         return V;
2233       }
2234       return Gather(E->Scalars, VecTy);
2235     }
2236     case Instruction::ZExt:
2237     case Instruction::SExt:
2238     case Instruction::FPToUI:
2239     case Instruction::FPToSI:
2240     case Instruction::FPExt:
2241     case Instruction::PtrToInt:
2242     case Instruction::IntToPtr:
2243     case Instruction::SIToFP:
2244     case Instruction::UIToFP:
2245     case Instruction::Trunc:
2246     case Instruction::FPTrunc:
2247     case Instruction::BitCast: {
2248       ValueList INVL;
2249       for (Value *V : E->Scalars)
2250         INVL.push_back(cast<Instruction>(V)->getOperand(0));
2251
2252       setInsertPointAfterBundle(E->Scalars);
2253
2254       Value *InVec = vectorizeTree(INVL);
2255
2256       if (Value *V = alreadyVectorized(E->Scalars))
2257         return V;
2258
2259       CastInst *CI = dyn_cast<CastInst>(VL0);
2260       Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy);
2261       E->VectorizedValue = V;
2262       ++NumVectorInstructions;
2263       return V;
2264     }
2265     case Instruction::FCmp:
2266     case Instruction::ICmp: {
2267       ValueList LHSV, RHSV;
2268       for (Value *V : E->Scalars) {
2269         LHSV.push_back(cast<Instruction>(V)->getOperand(0));
2270         RHSV.push_back(cast<Instruction>(V)->getOperand(1));
2271       }
2272
2273       setInsertPointAfterBundle(E->Scalars);
2274
2275       Value *L = vectorizeTree(LHSV);
2276       Value *R = vectorizeTree(RHSV);
2277
2278       if (Value *V = alreadyVectorized(E->Scalars))
2279         return V;
2280
2281       CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
2282       Value *V;
2283       if (Opcode == Instruction::FCmp)
2284         V = Builder.CreateFCmp(P0, L, R);
2285       else
2286         V = Builder.CreateICmp(P0, L, R);
2287
2288       E->VectorizedValue = V;
2289       ++NumVectorInstructions;
2290       return V;
2291     }
2292     case Instruction::Select: {
2293       ValueList TrueVec, FalseVec, CondVec;
2294       for (Value *V : E->Scalars) {
2295         CondVec.push_back(cast<Instruction>(V)->getOperand(0));
2296         TrueVec.push_back(cast<Instruction>(V)->getOperand(1));
2297         FalseVec.push_back(cast<Instruction>(V)->getOperand(2));
2298       }
2299
2300       setInsertPointAfterBundle(E->Scalars);
2301
2302       Value *Cond = vectorizeTree(CondVec);
2303       Value *True = vectorizeTree(TrueVec);
2304       Value *False = vectorizeTree(FalseVec);
2305
2306       if (Value *V = alreadyVectorized(E->Scalars))
2307         return V;
2308
2309       Value *V = Builder.CreateSelect(Cond, True, False);
2310       E->VectorizedValue = V;
2311       ++NumVectorInstructions;
2312       return V;
2313     }
2314     case Instruction::Add:
2315     case Instruction::FAdd:
2316     case Instruction::Sub:
2317     case Instruction::FSub:
2318     case Instruction::Mul:
2319     case Instruction::FMul:
2320     case Instruction::UDiv:
2321     case Instruction::SDiv:
2322     case Instruction::FDiv:
2323     case Instruction::URem:
2324     case Instruction::SRem:
2325     case Instruction::FRem:
2326     case Instruction::Shl:
2327     case Instruction::LShr:
2328     case Instruction::AShr:
2329     case Instruction::And:
2330     case Instruction::Or:
2331     case Instruction::Xor: {
2332       ValueList LHSVL, RHSVL;
2333       if (isa<BinaryOperator>(VL0) && VL0->isCommutative())
2334         reorderInputsAccordingToOpcode(E->Scalars, LHSVL, RHSVL);
2335       else
2336         for (Value *V : E->Scalars) {
2337           LHSVL.push_back(cast<Instruction>(V)->getOperand(0));
2338           RHSVL.push_back(cast<Instruction>(V)->getOperand(1));
2339         }
2340
2341       setInsertPointAfterBundle(E->Scalars);
2342
2343       Value *LHS = vectorizeTree(LHSVL);
2344       Value *RHS = vectorizeTree(RHSVL);
2345
2346       if (LHS == RHS && isa<Instruction>(LHS)) {
2347         assert((VL0->getOperand(0) == VL0->getOperand(1)) && "Invalid order");
2348       }
2349
2350       if (Value *V = alreadyVectorized(E->Scalars))
2351         return V;
2352
2353       BinaryOperator *BinOp = cast<BinaryOperator>(VL0);
2354       Value *V = Builder.CreateBinOp(BinOp->getOpcode(), LHS, RHS);
2355       E->VectorizedValue = V;
2356       propagateIRFlags(E->VectorizedValue, E->Scalars);
2357       ++NumVectorInstructions;
2358
2359       if (Instruction *I = dyn_cast<Instruction>(V))
2360         return propagateMetadata(I, E->Scalars);
2361
2362       return V;
2363     }
2364     case Instruction::Load: {
2365       // Loads are inserted at the head of the tree because we don't want to
2366       // sink them all the way down past store instructions.
2367       setInsertPointAfterBundle(E->Scalars);
2368
2369       LoadInst *LI = cast<LoadInst>(VL0);
2370       Type *ScalarLoadTy = LI->getType();
2371       unsigned AS = LI->getPointerAddressSpace();
2372
2373       Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(),
2374                                             VecTy->getPointerTo(AS));
2375
2376       // The pointer operand uses an in-tree scalar so we add the new BitCast to
2377       // ExternalUses list to make sure that an extract will be generated in the
2378       // future.
2379       if (ScalarToTreeEntry.count(LI->getPointerOperand()))
2380         ExternalUses.push_back(
2381             ExternalUser(LI->getPointerOperand(), cast<User>(VecPtr), 0));
2382
2383       unsigned Alignment = LI->getAlignment();
2384       LI = Builder.CreateLoad(VecPtr);
2385       if (!Alignment) {
2386         Alignment = DL.getABITypeAlignment(ScalarLoadTy);
2387       }
2388       LI->setAlignment(Alignment);
2389       E->VectorizedValue = LI;
2390       ++NumVectorInstructions;
2391       return propagateMetadata(LI, E->Scalars);
2392     }
2393     case Instruction::Store: {
2394       StoreInst *SI = cast<StoreInst>(VL0);
2395       unsigned Alignment = SI->getAlignment();
2396       unsigned AS = SI->getPointerAddressSpace();
2397
2398       ValueList ValueOp;
2399       for (Value *V : E->Scalars)
2400         ValueOp.push_back(cast<StoreInst>(V)->getValueOperand());
2401
2402       setInsertPointAfterBundle(E->Scalars);
2403
2404       Value *VecValue = vectorizeTree(ValueOp);
2405       Value *VecPtr = Builder.CreateBitCast(SI->getPointerOperand(),
2406                                             VecTy->getPointerTo(AS));
2407       StoreInst *S = Builder.CreateStore(VecValue, VecPtr);
2408
2409       // The pointer operand uses an in-tree scalar so we add the new BitCast to
2410       // ExternalUses list to make sure that an extract will be generated in the
2411       // future.
2412       if (ScalarToTreeEntry.count(SI->getPointerOperand()))
2413         ExternalUses.push_back(
2414             ExternalUser(SI->getPointerOperand(), cast<User>(VecPtr), 0));
2415
2416       if (!Alignment) {
2417         Alignment = DL.getABITypeAlignment(SI->getValueOperand()->getType());
2418       }
2419       S->setAlignment(Alignment);
2420       E->VectorizedValue = S;
2421       ++NumVectorInstructions;
2422       return propagateMetadata(S, E->Scalars);
2423     }
2424     case Instruction::GetElementPtr: {
2425       setInsertPointAfterBundle(E->Scalars);
2426
2427       ValueList Op0VL;
2428       for (Value *V : E->Scalars)
2429         Op0VL.push_back(cast<GetElementPtrInst>(V)->getOperand(0));
2430
2431       Value *Op0 = vectorizeTree(Op0VL);
2432
2433       std::vector<Value *> OpVecs;
2434       for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e;
2435            ++j) {
2436         ValueList OpVL;
2437         for (Value *V : E->Scalars)
2438           OpVL.push_back(cast<GetElementPtrInst>(V)->getOperand(j));
2439
2440         Value *OpVec = vectorizeTree(OpVL);
2441         OpVecs.push_back(OpVec);
2442       }
2443
2444       Value *V = Builder.CreateGEP(
2445           cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs);
2446       E->VectorizedValue = V;
2447       ++NumVectorInstructions;
2448
2449       if (Instruction *I = dyn_cast<Instruction>(V))
2450         return propagateMetadata(I, E->Scalars);
2451
2452       return V;
2453     }
2454     case Instruction::Call: {
2455       CallInst *CI = cast<CallInst>(VL0);
2456       setInsertPointAfterBundle(E->Scalars);
2457       Function *FI;
2458       Intrinsic::ID IID  = Intrinsic::not_intrinsic;
2459       Value *ScalarArg = nullptr;
2460       if (CI && (FI = CI->getCalledFunction())) {
2461         IID = FI->getIntrinsicID();
2462       }
2463       std::vector<Value *> OpVecs;
2464       for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) {
2465         ValueList OpVL;
2466         // ctlz,cttz and powi are special intrinsics whose second argument is
2467         // a scalar. This argument should not be vectorized.
2468         if (hasVectorInstrinsicScalarOpd(IID, 1) && j == 1) {
2469           CallInst *CEI = cast<CallInst>(E->Scalars[0]);
2470           ScalarArg = CEI->getArgOperand(j);
2471           OpVecs.push_back(CEI->getArgOperand(j));
2472           continue;
2473         }
2474         for (Value *V : E->Scalars) {
2475           CallInst *CEI = cast<CallInst>(V);
2476           OpVL.push_back(CEI->getArgOperand(j));
2477         }
2478
2479         Value *OpVec = vectorizeTree(OpVL);
2480         DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n");
2481         OpVecs.push_back(OpVec);
2482       }
2483
2484       Module *M = F->getParent();
2485       Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
2486       Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) };
2487       Function *CF = Intrinsic::getDeclaration(M, ID, Tys);
2488       Value *V = Builder.CreateCall(CF, OpVecs);
2489
2490       // The scalar argument uses an in-tree scalar so we add the new vectorized
2491       // call to ExternalUses list to make sure that an extract will be
2492       // generated in the future.
2493       if (ScalarArg && ScalarToTreeEntry.count(ScalarArg))
2494         ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0));
2495
2496       E->VectorizedValue = V;
2497       ++NumVectorInstructions;
2498       return V;
2499     }
2500     case Instruction::ShuffleVector: {
2501       ValueList LHSVL, RHSVL;
2502       assert(isa<BinaryOperator>(VL0) && "Invalid Shuffle Vector Operand");
2503       reorderAltShuffleOperands(E->Scalars, LHSVL, RHSVL);
2504       setInsertPointAfterBundle(E->Scalars);
2505
2506       Value *LHS = vectorizeTree(LHSVL);
2507       Value *RHS = vectorizeTree(RHSVL);
2508
2509       if (Value *V = alreadyVectorized(E->Scalars))
2510         return V;
2511
2512       // Create a vector of LHS op1 RHS
2513       BinaryOperator *BinOp0 = cast<BinaryOperator>(VL0);
2514       Value *V0 = Builder.CreateBinOp(BinOp0->getOpcode(), LHS, RHS);
2515
2516       // Create a vector of LHS op2 RHS
2517       Instruction *VL1 = cast<Instruction>(E->Scalars[1]);
2518       BinaryOperator *BinOp1 = cast<BinaryOperator>(VL1);
2519       Value *V1 = Builder.CreateBinOp(BinOp1->getOpcode(), LHS, RHS);
2520
2521       // Create shuffle to take alternate operations from the vector.
2522       // Also, gather up odd and even scalar ops to propagate IR flags to
2523       // each vector operation.
2524       ValueList OddScalars, EvenScalars;
2525       unsigned e = E->Scalars.size();
2526       SmallVector<Constant *, 8> Mask(e);
2527       for (unsigned i = 0; i < e; ++i) {
2528         if (i & 1) {
2529           Mask[i] = Builder.getInt32(e + i);
2530           OddScalars.push_back(E->Scalars[i]);
2531         } else {
2532           Mask[i] = Builder.getInt32(i);
2533           EvenScalars.push_back(E->Scalars[i]);
2534         }
2535       }
2536
2537       Value *ShuffleMask = ConstantVector::get(Mask);
2538       propagateIRFlags(V0, EvenScalars);
2539       propagateIRFlags(V1, OddScalars);
2540
2541       Value *V = Builder.CreateShuffleVector(V0, V1, ShuffleMask);
2542       E->VectorizedValue = V;
2543       ++NumVectorInstructions;
2544       if (Instruction *I = dyn_cast<Instruction>(V))
2545         return propagateMetadata(I, E->Scalars);
2546
2547       return V;
2548     }
2549     default:
2550     llvm_unreachable("unknown inst");
2551   }
2552   return nullptr;
2553 }
2554
2555 Value *BoUpSLP::vectorizeTree() {
2556   
2557   // All blocks must be scheduled before any instructions are inserted.
2558   for (auto &BSIter : BlocksSchedules) {
2559     scheduleBlock(BSIter.second.get());
2560   }
2561
2562   Builder.SetInsertPoint(&F->getEntryBlock().front());
2563   vectorizeTree(&VectorizableTree[0]);
2564
2565   DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() << " values .\n");
2566
2567   // Extract all of the elements with the external uses.
2568   for (UserList::iterator it = ExternalUses.begin(), e = ExternalUses.end();
2569        it != e; ++it) {
2570     Value *Scalar = it->Scalar;
2571     llvm::User *User = it->User;
2572
2573     // Skip users that we already RAUW. This happens when one instruction
2574     // has multiple uses of the same value.
2575     if (std::find(Scalar->user_begin(), Scalar->user_end(), User) ==
2576         Scalar->user_end())
2577       continue;
2578     assert(ScalarToTreeEntry.count(Scalar) && "Invalid scalar");
2579
2580     int Idx = ScalarToTreeEntry[Scalar];
2581     TreeEntry *E = &VectorizableTree[Idx];
2582     assert(!E->NeedToGather && "Extracting from a gather list");
2583
2584     Value *Vec = E->VectorizedValue;
2585     assert(Vec && "Can't find vectorizable value");
2586
2587     Value *Lane = Builder.getInt32(it->Lane);
2588     // Generate extracts for out-of-tree users.
2589     // Find the insertion point for the extractelement lane.
2590     if (isa<Instruction>(Vec)){
2591       if (PHINode *PH = dyn_cast<PHINode>(User)) {
2592         for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) {
2593           if (PH->getIncomingValue(i) == Scalar) {
2594             Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator());
2595             Value *Ex = Builder.CreateExtractElement(Vec, Lane);
2596             CSEBlocks.insert(PH->getIncomingBlock(i));
2597             PH->setOperand(i, Ex);
2598           }
2599         }
2600       } else {
2601         Builder.SetInsertPoint(cast<Instruction>(User));
2602         Value *Ex = Builder.CreateExtractElement(Vec, Lane);
2603         CSEBlocks.insert(cast<Instruction>(User)->getParent());
2604         User->replaceUsesOfWith(Scalar, Ex);
2605      }
2606     } else {
2607       Builder.SetInsertPoint(&F->getEntryBlock().front());
2608       Value *Ex = Builder.CreateExtractElement(Vec, Lane);
2609       CSEBlocks.insert(&F->getEntryBlock());
2610       User->replaceUsesOfWith(Scalar, Ex);
2611     }
2612
2613     DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n");
2614   }
2615
2616   // For each vectorized value:
2617   for (int EIdx = 0, EE = VectorizableTree.size(); EIdx < EE; ++EIdx) {
2618     TreeEntry *Entry = &VectorizableTree[EIdx];
2619
2620     // For each lane:
2621     for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
2622       Value *Scalar = Entry->Scalars[Lane];
2623       // No need to handle users of gathered values.
2624       if (Entry->NeedToGather)
2625         continue;
2626
2627       assert(Entry->VectorizedValue && "Can't find vectorizable value");
2628
2629       Type *Ty = Scalar->getType();
2630       if (!Ty->isVoidTy()) {
2631 #ifndef NDEBUG
2632         for (User *U : Scalar->users()) {
2633           DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n");
2634
2635           assert((ScalarToTreeEntry.count(U) ||
2636                   // It is legal to replace users in the ignorelist by undef.
2637                   (std::find(UserIgnoreList.begin(), UserIgnoreList.end(), U) !=
2638                    UserIgnoreList.end())) &&
2639                  "Replacing out-of-tree value with undef");
2640         }
2641 #endif
2642         Value *Undef = UndefValue::get(Ty);
2643         Scalar->replaceAllUsesWith(Undef);
2644       }
2645       DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n");
2646       eraseInstruction(cast<Instruction>(Scalar));
2647     }
2648   }
2649
2650   Builder.ClearInsertionPoint();
2651
2652   return VectorizableTree[0].VectorizedValue;
2653 }
2654
2655 void BoUpSLP::optimizeGatherSequence() {
2656   DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size()
2657         << " gather sequences instructions.\n");
2658   // LICM InsertElementInst sequences.
2659   for (SetVector<Instruction *>::iterator it = GatherSeq.begin(),
2660        e = GatherSeq.end(); it != e; ++it) {
2661     InsertElementInst *Insert = dyn_cast<InsertElementInst>(*it);
2662
2663     if (!Insert)
2664       continue;
2665
2666     // Check if this block is inside a loop.
2667     Loop *L = LI->getLoopFor(Insert->getParent());
2668     if (!L)
2669       continue;
2670
2671     // Check if it has a preheader.
2672     BasicBlock *PreHeader = L->getLoopPreheader();
2673     if (!PreHeader)
2674       continue;
2675
2676     // If the vector or the element that we insert into it are
2677     // instructions that are defined in this basic block then we can't
2678     // hoist this instruction.
2679     Instruction *CurrVec = dyn_cast<Instruction>(Insert->getOperand(0));
2680     Instruction *NewElem = dyn_cast<Instruction>(Insert->getOperand(1));
2681     if (CurrVec && L->contains(CurrVec))
2682       continue;
2683     if (NewElem && L->contains(NewElem))
2684       continue;
2685
2686     // We can hoist this instruction. Move it to the pre-header.
2687     Insert->moveBefore(PreHeader->getTerminator());
2688   }
2689
2690   // Make a list of all reachable blocks in our CSE queue.
2691   SmallVector<const DomTreeNode *, 8> CSEWorkList;
2692   CSEWorkList.reserve(CSEBlocks.size());
2693   for (BasicBlock *BB : CSEBlocks)
2694     if (DomTreeNode *N = DT->getNode(BB)) {
2695       assert(DT->isReachableFromEntry(N));
2696       CSEWorkList.push_back(N);
2697     }
2698
2699   // Sort blocks by domination. This ensures we visit a block after all blocks
2700   // dominating it are visited.
2701   std::stable_sort(CSEWorkList.begin(), CSEWorkList.end(),
2702                    [this](const DomTreeNode *A, const DomTreeNode *B) {
2703     return DT->properlyDominates(A, B);
2704   });
2705
2706   // Perform O(N^2) search over the gather sequences and merge identical
2707   // instructions. TODO: We can further optimize this scan if we split the
2708   // instructions into different buckets based on the insert lane.
2709   SmallVector<Instruction *, 16> Visited;
2710   for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) {
2711     assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) &&
2712            "Worklist not sorted properly!");
2713     BasicBlock *BB = (*I)->getBlock();
2714     // For all instructions in blocks containing gather sequences:
2715     for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) {
2716       Instruction *In = &*it++;
2717       if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In))
2718         continue;
2719
2720       // Check if we can replace this instruction with any of the
2721       // visited instructions.
2722       for (SmallVectorImpl<Instruction *>::iterator v = Visited.begin(),
2723                                                     ve = Visited.end();
2724            v != ve; ++v) {
2725         if (In->isIdenticalTo(*v) &&
2726             DT->dominates((*v)->getParent(), In->getParent())) {
2727           In->replaceAllUsesWith(*v);
2728           eraseInstruction(In);
2729           In = nullptr;
2730           break;
2731         }
2732       }
2733       if (In) {
2734         assert(std::find(Visited.begin(), Visited.end(), In) == Visited.end());
2735         Visited.push_back(In);
2736       }
2737     }
2738   }
2739   CSEBlocks.clear();
2740   GatherSeq.clear();
2741 }
2742
2743 // Groups the instructions to a bundle (which is then a single scheduling entity)
2744 // and schedules instructions until the bundle gets ready.
2745 bool BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL,
2746                                                  BoUpSLP *SLP) {
2747   if (isa<PHINode>(VL[0]))
2748     return true;
2749
2750   // Initialize the instruction bundle.
2751   Instruction *OldScheduleEnd = ScheduleEnd;
2752   ScheduleData *PrevInBundle = nullptr;
2753   ScheduleData *Bundle = nullptr;
2754   bool ReSchedule = false;
2755   DEBUG(dbgs() << "SLP:  bundle: " << *VL[0] << "\n");
2756
2757   // Make sure that the scheduling region contains all
2758   // instructions of the bundle.
2759   for (Value *V : VL) {
2760     if (!extendSchedulingRegion(V))
2761       return false;
2762   }
2763
2764   for (Value *V : VL) {
2765     ScheduleData *BundleMember = getScheduleData(V);
2766     assert(BundleMember &&
2767            "no ScheduleData for bundle member (maybe not in same basic block)");
2768     if (BundleMember->IsScheduled) {
2769       // A bundle member was scheduled as single instruction before and now
2770       // needs to be scheduled as part of the bundle. We just get rid of the
2771       // existing schedule.
2772       DEBUG(dbgs() << "SLP:  reset schedule because " << *BundleMember
2773                    << " was already scheduled\n");
2774       ReSchedule = true;
2775     }
2776     assert(BundleMember->isSchedulingEntity() &&
2777            "bundle member already part of other bundle");
2778     if (PrevInBundle) {
2779       PrevInBundle->NextInBundle = BundleMember;
2780     } else {
2781       Bundle = BundleMember;
2782     }
2783     BundleMember->UnscheduledDepsInBundle = 0;
2784     Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps;
2785
2786     // Group the instructions to a bundle.
2787     BundleMember->FirstInBundle = Bundle;
2788     PrevInBundle = BundleMember;
2789   }
2790   if (ScheduleEnd != OldScheduleEnd) {
2791     // The scheduling region got new instructions at the lower end (or it is a
2792     // new region for the first bundle). This makes it necessary to
2793     // recalculate all dependencies.
2794     // It is seldom that this needs to be done a second time after adding the
2795     // initial bundle to the region.
2796     for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
2797       ScheduleData *SD = getScheduleData(I);
2798       SD->clearDependencies();
2799     }
2800     ReSchedule = true;
2801   }
2802   if (ReSchedule) {
2803     resetSchedule();
2804     initialFillReadyList(ReadyInsts);
2805   }
2806
2807   DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block "
2808                << BB->getName() << "\n");
2809
2810   calculateDependencies(Bundle, true, SLP);
2811
2812   // Now try to schedule the new bundle. As soon as the bundle is "ready" it
2813   // means that there are no cyclic dependencies and we can schedule it.
2814   // Note that's important that we don't "schedule" the bundle yet (see
2815   // cancelScheduling).
2816   while (!Bundle->isReady() && !ReadyInsts.empty()) {
2817
2818     ScheduleData *pickedSD = ReadyInsts.back();
2819     ReadyInsts.pop_back();
2820
2821     if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) {
2822       schedule(pickedSD, ReadyInsts);
2823     }
2824   }
2825   if (!Bundle->isReady()) {
2826     cancelScheduling(VL);
2827     return false;
2828   }
2829   return true;
2830 }
2831
2832 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL) {
2833   if (isa<PHINode>(VL[0]))
2834     return;
2835
2836   ScheduleData *Bundle = getScheduleData(VL[0]);
2837   DEBUG(dbgs() << "SLP:  cancel scheduling of " << *Bundle << "\n");
2838   assert(!Bundle->IsScheduled &&
2839          "Can't cancel bundle which is already scheduled");
2840   assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() &&
2841          "tried to unbundle something which is not a bundle");
2842
2843   // Un-bundle: make single instructions out of the bundle.
2844   ScheduleData *BundleMember = Bundle;
2845   while (BundleMember) {
2846     assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links");
2847     BundleMember->FirstInBundle = BundleMember;
2848     ScheduleData *Next = BundleMember->NextInBundle;
2849     BundleMember->NextInBundle = nullptr;
2850     BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps;
2851     if (BundleMember->UnscheduledDepsInBundle == 0) {
2852       ReadyInsts.insert(BundleMember);
2853     }
2854     BundleMember = Next;
2855   }
2856 }
2857
2858 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V) {
2859   if (getScheduleData(V))
2860     return true;
2861   Instruction *I = dyn_cast<Instruction>(V);
2862   assert(I && "bundle member must be an instruction");
2863   assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled");
2864   if (!ScheduleStart) {
2865     // It's the first instruction in the new region.
2866     initScheduleData(I, I->getNextNode(), nullptr, nullptr);
2867     ScheduleStart = I;
2868     ScheduleEnd = I->getNextNode();
2869     assert(ScheduleEnd && "tried to vectorize a TerminatorInst?");
2870     DEBUG(dbgs() << "SLP:  initialize schedule region to " << *I << "\n");
2871     return true;
2872   }
2873   // Search up and down at the same time, because we don't know if the new
2874   // instruction is above or below the existing scheduling region.
2875   BasicBlock::reverse_iterator UpIter(ScheduleStart->getIterator());
2876   BasicBlock::reverse_iterator UpperEnd = BB->rend();
2877   BasicBlock::iterator DownIter(ScheduleEnd);
2878   BasicBlock::iterator LowerEnd = BB->end();
2879   for (;;) {
2880     if (++ScheduleRegionSize > ScheduleRegionSizeLimit) {
2881       DEBUG(dbgs() << "SLP:  exceeded schedule region size limit\n");
2882       return false;
2883     }
2884
2885     if (UpIter != UpperEnd) {
2886       if (&*UpIter == I) {
2887         initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion);
2888         ScheduleStart = I;
2889         DEBUG(dbgs() << "SLP:  extend schedule region start to " << *I << "\n");
2890         return true;
2891       }
2892       UpIter++;
2893     }
2894     if (DownIter != LowerEnd) {
2895       if (&*DownIter == I) {
2896         initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion,
2897                          nullptr);
2898         ScheduleEnd = I->getNextNode();
2899         assert(ScheduleEnd && "tried to vectorize a TerminatorInst?");
2900         DEBUG(dbgs() << "SLP:  extend schedule region end to " << *I << "\n");
2901         return true;
2902       }
2903       DownIter++;
2904     }
2905     assert((UpIter != UpperEnd || DownIter != LowerEnd) &&
2906            "instruction not found in block");
2907   }
2908   return true;
2909 }
2910
2911 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI,
2912                                                 Instruction *ToI,
2913                                                 ScheduleData *PrevLoadStore,
2914                                                 ScheduleData *NextLoadStore) {
2915   ScheduleData *CurrentLoadStore = PrevLoadStore;
2916   for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) {
2917     ScheduleData *SD = ScheduleDataMap[I];
2918     if (!SD) {
2919       // Allocate a new ScheduleData for the instruction.
2920       if (ChunkPos >= ChunkSize) {
2921         ScheduleDataChunks.push_back(
2922             llvm::make_unique<ScheduleData[]>(ChunkSize));
2923         ChunkPos = 0;
2924       }
2925       SD = &(ScheduleDataChunks.back()[ChunkPos++]);
2926       ScheduleDataMap[I] = SD;
2927       SD->Inst = I;
2928     }
2929     assert(!isInSchedulingRegion(SD) &&
2930            "new ScheduleData already in scheduling region");
2931     SD->init(SchedulingRegionID);
2932
2933     if (I->mayReadOrWriteMemory()) {
2934       // Update the linked list of memory accessing instructions.
2935       if (CurrentLoadStore) {
2936         CurrentLoadStore->NextLoadStore = SD;
2937       } else {
2938         FirstLoadStoreInRegion = SD;
2939       }
2940       CurrentLoadStore = SD;
2941     }
2942   }
2943   if (NextLoadStore) {
2944     if (CurrentLoadStore)
2945       CurrentLoadStore->NextLoadStore = NextLoadStore;
2946   } else {
2947     LastLoadStoreInRegion = CurrentLoadStore;
2948   }
2949 }
2950
2951 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD,
2952                                                      bool InsertInReadyList,
2953                                                      BoUpSLP *SLP) {
2954   assert(SD->isSchedulingEntity());
2955
2956   SmallVector<ScheduleData *, 10> WorkList;
2957   WorkList.push_back(SD);
2958
2959   while (!WorkList.empty()) {
2960     ScheduleData *SD = WorkList.back();
2961     WorkList.pop_back();
2962
2963     ScheduleData *BundleMember = SD;
2964     while (BundleMember) {
2965       assert(isInSchedulingRegion(BundleMember));
2966       if (!BundleMember->hasValidDependencies()) {
2967
2968         DEBUG(dbgs() << "SLP:       update deps of " << *BundleMember << "\n");
2969         BundleMember->Dependencies = 0;
2970         BundleMember->resetUnscheduledDeps();
2971
2972         // Handle def-use chain dependencies.
2973         for (User *U : BundleMember->Inst->users()) {
2974           if (isa<Instruction>(U)) {
2975             ScheduleData *UseSD = getScheduleData(U);
2976             if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) {
2977               BundleMember->Dependencies++;
2978               ScheduleData *DestBundle = UseSD->FirstInBundle;
2979               if (!DestBundle->IsScheduled) {
2980                 BundleMember->incrementUnscheduledDeps(1);
2981               }
2982               if (!DestBundle->hasValidDependencies()) {
2983                 WorkList.push_back(DestBundle);
2984               }
2985             }
2986           } else {
2987             // I'm not sure if this can ever happen. But we need to be safe.
2988             // This lets the instruction/bundle never be scheduled and
2989             // eventually disable vectorization.
2990             BundleMember->Dependencies++;
2991             BundleMember->incrementUnscheduledDeps(1);
2992           }
2993         }
2994
2995         // Handle the memory dependencies.
2996         ScheduleData *DepDest = BundleMember->NextLoadStore;
2997         if (DepDest) {
2998           Instruction *SrcInst = BundleMember->Inst;
2999           MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA);
3000           bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory();
3001           unsigned numAliased = 0;
3002           unsigned DistToSrc = 1;
3003
3004           while (DepDest) {
3005             assert(isInSchedulingRegion(DepDest));
3006
3007             // We have two limits to reduce the complexity:
3008             // 1) AliasedCheckLimit: It's a small limit to reduce calls to
3009             //    SLP->isAliased (which is the expensive part in this loop).
3010             // 2) MaxMemDepDistance: It's for very large blocks and it aborts
3011             //    the whole loop (even if the loop is fast, it's quadratic).
3012             //    It's important for the loop break condition (see below) to
3013             //    check this limit even between two read-only instructions.
3014             if (DistToSrc >= MaxMemDepDistance ||
3015                     ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) &&
3016                      (numAliased >= AliasedCheckLimit ||
3017                       SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) {
3018
3019               // We increment the counter only if the locations are aliased
3020               // (instead of counting all alias checks). This gives a better
3021               // balance between reduced runtime and accurate dependencies.
3022               numAliased++;
3023
3024               DepDest->MemoryDependencies.push_back(BundleMember);
3025               BundleMember->Dependencies++;
3026               ScheduleData *DestBundle = DepDest->FirstInBundle;
3027               if (!DestBundle->IsScheduled) {
3028                 BundleMember->incrementUnscheduledDeps(1);
3029               }
3030               if (!DestBundle->hasValidDependencies()) {
3031                 WorkList.push_back(DestBundle);
3032               }
3033             }
3034             DepDest = DepDest->NextLoadStore;
3035
3036             // Example, explaining the loop break condition: Let's assume our
3037             // starting instruction is i0 and MaxMemDepDistance = 3.
3038             //
3039             //                      +--------v--v--v
3040             //             i0,i1,i2,i3,i4,i5,i6,i7,i8
3041             //             +--------^--^--^
3042             //
3043             // MaxMemDepDistance let us stop alias-checking at i3 and we add
3044             // dependencies from i0 to i3,i4,.. (even if they are not aliased).
3045             // Previously we already added dependencies from i3 to i6,i7,i8
3046             // (because of MaxMemDepDistance). As we added a dependency from
3047             // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8
3048             // and we can abort this loop at i6.
3049             if (DistToSrc >= 2 * MaxMemDepDistance)
3050                 break;
3051             DistToSrc++;
3052           }
3053         }
3054       }
3055       BundleMember = BundleMember->NextInBundle;
3056     }
3057     if (InsertInReadyList && SD->isReady()) {
3058       ReadyInsts.push_back(SD);
3059       DEBUG(dbgs() << "SLP:     gets ready on update: " << *SD->Inst << "\n");
3060     }
3061   }
3062 }
3063
3064 void BoUpSLP::BlockScheduling::resetSchedule() {
3065   assert(ScheduleStart &&
3066          "tried to reset schedule on block which has not been scheduled");
3067   for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
3068     ScheduleData *SD = getScheduleData(I);
3069     assert(isInSchedulingRegion(SD));
3070     SD->IsScheduled = false;
3071     SD->resetUnscheduledDeps();
3072   }
3073   ReadyInsts.clear();
3074 }
3075
3076 void BoUpSLP::scheduleBlock(BlockScheduling *BS) {
3077   
3078   if (!BS->ScheduleStart)
3079     return;
3080   
3081   DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n");
3082
3083   BS->resetSchedule();
3084
3085   // For the real scheduling we use a more sophisticated ready-list: it is
3086   // sorted by the original instruction location. This lets the final schedule
3087   // be as  close as possible to the original instruction order.
3088   struct ScheduleDataCompare {
3089     bool operator()(ScheduleData *SD1, ScheduleData *SD2) {
3090       return SD2->SchedulingPriority < SD1->SchedulingPriority;
3091     }
3092   };
3093   std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts;
3094
3095   // Ensure that all dependency data is updated and fill the ready-list with
3096   // initial instructions.
3097   int Idx = 0;
3098   int NumToSchedule = 0;
3099   for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd;
3100        I = I->getNextNode()) {
3101     ScheduleData *SD = BS->getScheduleData(I);
3102     assert(
3103         SD->isPartOfBundle() == (ScalarToTreeEntry.count(SD->Inst) != 0) &&
3104         "scheduler and vectorizer have different opinion on what is a bundle");
3105     SD->FirstInBundle->SchedulingPriority = Idx++;
3106     if (SD->isSchedulingEntity()) {
3107       BS->calculateDependencies(SD, false, this);
3108       NumToSchedule++;
3109     }
3110   }
3111   BS->initialFillReadyList(ReadyInsts);
3112
3113   Instruction *LastScheduledInst = BS->ScheduleEnd;
3114
3115   // Do the "real" scheduling.
3116   while (!ReadyInsts.empty()) {
3117     ScheduleData *picked = *ReadyInsts.begin();
3118     ReadyInsts.erase(ReadyInsts.begin());
3119
3120     // Move the scheduled instruction(s) to their dedicated places, if not
3121     // there yet.
3122     ScheduleData *BundleMember = picked;
3123     while (BundleMember) {
3124       Instruction *pickedInst = BundleMember->Inst;
3125       if (LastScheduledInst->getNextNode() != pickedInst) {
3126         BS->BB->getInstList().remove(pickedInst);
3127         BS->BB->getInstList().insert(LastScheduledInst->getIterator(),
3128                                      pickedInst);
3129       }
3130       LastScheduledInst = pickedInst;
3131       BundleMember = BundleMember->NextInBundle;
3132     }
3133
3134     BS->schedule(picked, ReadyInsts);
3135     NumToSchedule--;
3136   }
3137   assert(NumToSchedule == 0 && "could not schedule all instructions");
3138
3139   // Avoid duplicate scheduling of the block.
3140   BS->ScheduleStart = nullptr;
3141 }
3142
3143 /// The SLPVectorizer Pass.
3144 struct SLPVectorizer : public FunctionPass {
3145   typedef SmallVector<StoreInst *, 8> StoreList;
3146   typedef MapVector<Value *, StoreList> StoreListMap;
3147
3148   /// Pass identification, replacement for typeid
3149   static char ID;
3150
3151   explicit SLPVectorizer() : FunctionPass(ID) {
3152     initializeSLPVectorizerPass(*PassRegistry::getPassRegistry());
3153   }
3154
3155   ScalarEvolution *SE;
3156   TargetTransformInfo *TTI;
3157   TargetLibraryInfo *TLI;
3158   AliasAnalysis *AA;
3159   LoopInfo *LI;
3160   DominatorTree *DT;
3161   AssumptionCache *AC;
3162
3163   bool runOnFunction(Function &F) override {
3164     if (skipOptnoneFunction(F))
3165       return false;
3166
3167     SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
3168     TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
3169     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
3170     TLI = TLIP ? &TLIP->getTLI() : nullptr;
3171     AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
3172     LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
3173     DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
3174     AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
3175
3176     StoreRefs.clear();
3177     bool Changed = false;
3178
3179     // If the target claims to have no vector registers don't attempt
3180     // vectorization.
3181     if (!TTI->getNumberOfRegisters(true))
3182       return false;
3183
3184     // Use the vector register size specified by the target unless overridden
3185     // by a command-line option.
3186     // TODO: It would be better to limit the vectorization factor based on
3187     //       data type rather than just register size. For example, x86 AVX has
3188     //       256-bit registers, but it does not support integer operations
3189     //       at that width (that requires AVX2).
3190     if (MaxVectorRegSizeOption.getNumOccurrences())
3191       MaxVecRegSize = MaxVectorRegSizeOption;
3192     else
3193       MaxVecRegSize = TTI->getRegisterBitWidth(true);
3194
3195     // Don't vectorize when the attribute NoImplicitFloat is used.
3196     if (F.hasFnAttribute(Attribute::NoImplicitFloat))
3197       return false;
3198
3199     DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n");
3200
3201     // Use the bottom up slp vectorizer to construct chains that start with
3202     // store instructions.
3203     BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC);
3204
3205     // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to
3206     // delete instructions.
3207
3208     // Scan the blocks in the function in post order.
3209     for (auto BB : post_order(&F.getEntryBlock())) {
3210       // Vectorize trees that end at stores.
3211       if (unsigned count = collectStores(BB, R)) {
3212         (void)count;
3213         DEBUG(dbgs() << "SLP: Found " << count << " stores to vectorize.\n");
3214         Changed |= vectorizeStoreChains(R);
3215       }
3216
3217       // Vectorize trees that end at reductions.
3218       Changed |= vectorizeChainsInBlock(BB, R);
3219     }
3220
3221     if (Changed) {
3222       R.optimizeGatherSequence();
3223       DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n");
3224       DEBUG(verifyFunction(F));
3225     }
3226     return Changed;
3227   }
3228
3229   void getAnalysisUsage(AnalysisUsage &AU) const override {
3230     FunctionPass::getAnalysisUsage(AU);
3231     AU.addRequired<AssumptionCacheTracker>();
3232     AU.addRequired<ScalarEvolutionWrapperPass>();
3233     AU.addRequired<AAResultsWrapperPass>();
3234     AU.addRequired<TargetTransformInfoWrapperPass>();
3235     AU.addRequired<LoopInfoWrapperPass>();
3236     AU.addRequired<DominatorTreeWrapperPass>();
3237     AU.addPreserved<LoopInfoWrapperPass>();
3238     AU.addPreserved<DominatorTreeWrapperPass>();
3239     AU.addPreserved<AAResultsWrapperPass>();
3240     AU.addPreserved<GlobalsAAWrapperPass>();
3241     AU.setPreservesCFG();
3242   }
3243
3244 private:
3245
3246   /// \brief Collect memory references and sort them according to their base
3247   /// object. We sort the stores to their base objects to reduce the cost of the
3248   /// quadratic search on the stores. TODO: We can further reduce this cost
3249   /// if we flush the chain creation every time we run into a memory barrier.
3250   unsigned collectStores(BasicBlock *BB, BoUpSLP &R);
3251
3252   /// \brief Try to vectorize a chain that starts at two arithmetic instrs.
3253   bool tryToVectorizePair(Value *A, Value *B, BoUpSLP &R);
3254
3255   /// \brief Try to vectorize a list of operands.
3256   /// \@param BuildVector A list of users to ignore for the purpose of
3257   ///                     scheduling and that don't need extracting.
3258   /// \returns true if a value was vectorized.
3259   bool tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R,
3260                           ArrayRef<Value *> BuildVector = None,
3261                           bool allowReorder = false);
3262
3263   /// \brief Try to vectorize a chain that may start at the operands of \V;
3264   bool tryToVectorize(BinaryOperator *V, BoUpSLP &R);
3265
3266   /// \brief Vectorize the stores that were collected in StoreRefs.
3267   bool vectorizeStoreChains(BoUpSLP &R);
3268
3269   /// \brief Scan the basic block and look for patterns that are likely to start
3270   /// a vectorization chain.
3271   bool vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R);
3272
3273   bool vectorizeStoreChain(ArrayRef<Value *> Chain, int CostThreshold,
3274                            BoUpSLP &R, unsigned VecRegSize);
3275
3276   bool vectorizeStores(ArrayRef<StoreInst *> Stores, int costThreshold,
3277                        BoUpSLP &R);
3278 private:
3279   StoreListMap StoreRefs;
3280   unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt.
3281 };
3282
3283 /// \brief Check that the Values in the slice in VL array are still existent in
3284 /// the WeakVH array.
3285 /// Vectorization of part of the VL array may cause later values in the VL array
3286 /// to become invalid. We track when this has happened in the WeakVH array.
3287 static bool hasValueBeenRAUWed(ArrayRef<Value *> VL, ArrayRef<WeakVH> VH,
3288                                unsigned SliceBegin, unsigned SliceSize) {
3289   VL = VL.slice(SliceBegin, SliceSize);
3290   VH = VH.slice(SliceBegin, SliceSize);
3291   return !std::equal(VL.begin(), VL.end(), VH.begin());
3292 }
3293
3294 bool SLPVectorizer::vectorizeStoreChain(ArrayRef<Value *> Chain,
3295                                         int CostThreshold, BoUpSLP &R,
3296                                         unsigned VecRegSize) {
3297   unsigned ChainLen = Chain.size();
3298   DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen
3299         << "\n");
3300   Type *StoreTy = cast<StoreInst>(Chain[0])->getValueOperand()->getType();
3301   auto &DL = cast<StoreInst>(Chain[0])->getModule()->getDataLayout();
3302   unsigned Sz = DL.getTypeSizeInBits(StoreTy);
3303   unsigned VF = VecRegSize / Sz;
3304
3305   if (!isPowerOf2_32(Sz) || VF < 2)
3306     return false;
3307
3308   // Keep track of values that were deleted by vectorizing in the loop below.
3309   SmallVector<WeakVH, 8> TrackValues(Chain.begin(), Chain.end());
3310
3311   bool Changed = false;
3312   // Look for profitable vectorizable trees at all offsets, starting at zero.
3313   for (unsigned i = 0, e = ChainLen; i < e; ++i) {
3314     if (i + VF > e)
3315       break;
3316
3317     // Check that a previous iteration of this loop did not delete the Value.
3318     if (hasValueBeenRAUWed(Chain, TrackValues, i, VF))
3319       continue;
3320
3321     DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i
3322           << "\n");
3323     ArrayRef<Value *> Operands = Chain.slice(i, VF);
3324
3325     R.buildTree(Operands);
3326
3327     int Cost = R.getTreeCost();
3328
3329     DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF << "\n");
3330     if (Cost < CostThreshold) {
3331       DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n");
3332       R.vectorizeTree();
3333
3334       // Move to the next bundle.
3335       i += VF - 1;
3336       Changed = true;
3337     }
3338   }
3339
3340   return Changed;
3341 }
3342
3343 bool SLPVectorizer::vectorizeStores(ArrayRef<StoreInst *> Stores,
3344                                     int costThreshold, BoUpSLP &R) {
3345   SetVector<StoreInst *> Heads, Tails;
3346   SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain;
3347
3348   // We may run into multiple chains that merge into a single chain. We mark the
3349   // stores that we vectorized so that we don't visit the same store twice.
3350   BoUpSLP::ValueSet VectorizedStores;
3351   bool Changed = false;
3352
3353   // Do a quadratic search on all of the given stores and find
3354   // all of the pairs of stores that follow each other.
3355   SmallVector<unsigned, 16> IndexQueue;
3356   for (unsigned i = 0, e = Stores.size(); i < e; ++i) {
3357     const DataLayout &DL = Stores[i]->getModule()->getDataLayout();
3358     IndexQueue.clear();
3359     // If a store has multiple consecutive store candidates, search Stores
3360     // array according to the sequence: from i+1 to e, then from i-1 to 0.
3361     // This is because usually pairing with immediate succeeding or preceding
3362     // candidate create the best chance to find slp vectorization opportunity.
3363     unsigned j = 0;
3364     for (j = i + 1; j < e; ++j)
3365       IndexQueue.push_back(j);
3366     for (j = i; j > 0; --j)
3367       IndexQueue.push_back(j - 1);
3368
3369     for (auto &k : IndexQueue) {
3370       if (R.isConsecutiveAccess(Stores[i], Stores[k], DL)) {
3371         Tails.insert(Stores[k]);
3372         Heads.insert(Stores[i]);
3373         ConsecutiveChain[Stores[i]] = Stores[k];
3374         break;
3375       }
3376     }
3377   }
3378
3379   // For stores that start but don't end a link in the chain:
3380   for (SetVector<StoreInst *>::iterator it = Heads.begin(), e = Heads.end();
3381        it != e; ++it) {
3382     if (Tails.count(*it))
3383       continue;
3384
3385     // We found a store instr that starts a chain. Now follow the chain and try
3386     // to vectorize it.
3387     BoUpSLP::ValueList Operands;
3388     StoreInst *I = *it;
3389     // Collect the chain into a list.
3390     while (Tails.count(I) || Heads.count(I)) {
3391       if (VectorizedStores.count(I))
3392         break;
3393       Operands.push_back(I);
3394       // Move to the next value in the chain.
3395       I = ConsecutiveChain[I];
3396     }
3397
3398     // FIXME: Is division-by-2 the correct step? Should we assert that the
3399     // register size is a power-of-2?
3400     for (unsigned Size = MaxVecRegSize; Size >= MinVecRegSize; Size /= 2) {
3401       if (vectorizeStoreChain(Operands, costThreshold, R, Size)) {
3402         // Mark the vectorized stores so that we don't vectorize them again.
3403         VectorizedStores.insert(Operands.begin(), Operands.end());
3404         Changed = true;
3405         break;
3406       }
3407     }
3408   }
3409
3410   return Changed;
3411 }
3412
3413
3414 unsigned SLPVectorizer::collectStores(BasicBlock *BB, BoUpSLP &R) {
3415   unsigned count = 0;
3416   StoreRefs.clear();
3417   const DataLayout &DL = BB->getModule()->getDataLayout();
3418   for (Instruction &I : *BB) {
3419     StoreInst *SI = dyn_cast<StoreInst>(&I);
3420     if (!SI)
3421       continue;
3422
3423     // Don't touch volatile stores.
3424     if (!SI->isSimple())
3425       continue;
3426
3427     // Check that the pointer points to scalars.
3428     Type *Ty = SI->getValueOperand()->getType();
3429     if (!isValidElementType(Ty))
3430       continue;
3431
3432     // Find the base pointer.
3433     Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), DL);
3434
3435     // Save the store locations.
3436     StoreRefs[Ptr].push_back(SI);
3437     count++;
3438   }
3439   return count;
3440 }
3441
3442 bool SLPVectorizer::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) {
3443   if (!A || !B)
3444     return false;
3445   Value *VL[] = { A, B };
3446   return tryToVectorizeList(VL, R, None, true);
3447 }
3448
3449 bool SLPVectorizer::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R,
3450                                        ArrayRef<Value *> BuildVector,
3451                                        bool allowReorder) {
3452   if (VL.size() < 2)
3453     return false;
3454
3455   DEBUG(dbgs() << "SLP: Vectorizing a list of length = " << VL.size() << ".\n");
3456
3457   // Check that all of the parts are scalar instructions of the same type.
3458   Instruction *I0 = dyn_cast<Instruction>(VL[0]);
3459   if (!I0)
3460     return false;
3461
3462   unsigned Opcode0 = I0->getOpcode();
3463   const DataLayout &DL = I0->getModule()->getDataLayout();
3464
3465   Type *Ty0 = I0->getType();
3466   unsigned Sz = DL.getTypeSizeInBits(Ty0);
3467   // FIXME: Register size should be a parameter to this function, so we can
3468   // try different vectorization factors.
3469   unsigned VF = MinVecRegSize / Sz;
3470
3471   for (Value *V : VL) {
3472     Type *Ty = V->getType();
3473     if (!isValidElementType(Ty))
3474       return false;
3475     Instruction *Inst = dyn_cast<Instruction>(V);
3476     if (!Inst || Inst->getOpcode() != Opcode0)
3477       return false;
3478   }
3479
3480   bool Changed = false;
3481
3482   // Keep track of values that were deleted by vectorizing in the loop below.
3483   SmallVector<WeakVH, 8> TrackValues(VL.begin(), VL.end());
3484
3485   for (unsigned i = 0, e = VL.size(); i < e; ++i) {
3486     unsigned OpsWidth = 0;
3487
3488     if (i + VF > e)
3489       OpsWidth = e - i;
3490     else
3491       OpsWidth = VF;
3492
3493     if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2)
3494       break;
3495
3496     // Check that a previous iteration of this loop did not delete the Value.
3497     if (hasValueBeenRAUWed(VL, TrackValues, i, OpsWidth))
3498       continue;
3499
3500     DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations "
3501                  << "\n");
3502     ArrayRef<Value *> Ops = VL.slice(i, OpsWidth);
3503
3504     ArrayRef<Value *> BuildVectorSlice;
3505     if (!BuildVector.empty())
3506       BuildVectorSlice = BuildVector.slice(i, OpsWidth);
3507
3508     R.buildTree(Ops, BuildVectorSlice);
3509     // TODO: check if we can allow reordering also for other cases than
3510     // tryToVectorizePair()
3511     if (allowReorder && R.shouldReorder()) {
3512       assert(Ops.size() == 2);
3513       assert(BuildVectorSlice.empty());
3514       Value *ReorderedOps[] = { Ops[1], Ops[0] };
3515       R.buildTree(ReorderedOps, None);
3516     }
3517     int Cost = R.getTreeCost();
3518
3519     if (Cost < -SLPCostThreshold) {
3520       DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n");
3521       Value *VectorizedRoot = R.vectorizeTree();
3522
3523       // Reconstruct the build vector by extracting the vectorized root. This
3524       // way we handle the case where some elements of the vector are undefined.
3525       //  (return (inserelt <4 xi32> (insertelt undef (opd0) 0) (opd1) 2))
3526       if (!BuildVectorSlice.empty()) {
3527         // The insert point is the last build vector instruction. The vectorized
3528         // root will precede it. This guarantees that we get an instruction. The
3529         // vectorized tree could have been constant folded.
3530         Instruction *InsertAfter = cast<Instruction>(BuildVectorSlice.back());
3531         unsigned VecIdx = 0;
3532         for (auto &V : BuildVectorSlice) {
3533           IRBuilder<true, NoFolder> Builder(
3534               InsertAfter->getParent(), ++BasicBlock::iterator(InsertAfter));
3535           InsertElementInst *IE = cast<InsertElementInst>(V);
3536           Instruction *Extract = cast<Instruction>(Builder.CreateExtractElement(
3537               VectorizedRoot, Builder.getInt32(VecIdx++)));
3538           IE->setOperand(1, Extract);
3539           IE->removeFromParent();
3540           IE->insertAfter(Extract);
3541           InsertAfter = IE;
3542         }
3543       }
3544       // Move to the next bundle.
3545       i += VF - 1;
3546       Changed = true;
3547     }
3548   }
3549
3550   return Changed;
3551 }
3552
3553 bool SLPVectorizer::tryToVectorize(BinaryOperator *V, BoUpSLP &R) {
3554   if (!V)
3555     return false;
3556
3557   // Try to vectorize V.
3558   if (tryToVectorizePair(V->getOperand(0), V->getOperand(1), R))
3559     return true;
3560
3561   BinaryOperator *A = dyn_cast<BinaryOperator>(V->getOperand(0));
3562   BinaryOperator *B = dyn_cast<BinaryOperator>(V->getOperand(1));
3563   // Try to skip B.
3564   if (B && B->hasOneUse()) {
3565     BinaryOperator *B0 = dyn_cast<BinaryOperator>(B->getOperand(0));
3566     BinaryOperator *B1 = dyn_cast<BinaryOperator>(B->getOperand(1));
3567     if (tryToVectorizePair(A, B0, R)) {
3568       return true;
3569     }
3570     if (tryToVectorizePair(A, B1, R)) {
3571       return true;
3572     }
3573   }
3574
3575   // Try to skip A.
3576   if (A && A->hasOneUse()) {
3577     BinaryOperator *A0 = dyn_cast<BinaryOperator>(A->getOperand(0));
3578     BinaryOperator *A1 = dyn_cast<BinaryOperator>(A->getOperand(1));
3579     if (tryToVectorizePair(A0, B, R)) {
3580       return true;
3581     }
3582     if (tryToVectorizePair(A1, B, R)) {
3583       return true;
3584     }
3585   }
3586   return 0;
3587 }
3588
3589 /// \brief Generate a shuffle mask to be used in a reduction tree.
3590 ///
3591 /// \param VecLen The length of the vector to be reduced.
3592 /// \param NumEltsToRdx The number of elements that should be reduced in the
3593 ///        vector.
3594 /// \param IsPairwise Whether the reduction is a pairwise or splitting
3595 ///        reduction. A pairwise reduction will generate a mask of 
3596 ///        <0,2,...> or <1,3,..> while a splitting reduction will generate
3597 ///        <2,3, undef,undef> for a vector of 4 and NumElts = 2.
3598 /// \param IsLeft True will generate a mask of even elements, odd otherwise.
3599 static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx,
3600                                    bool IsPairwise, bool IsLeft,
3601                                    IRBuilder<> &Builder) {
3602   assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask");
3603
3604   SmallVector<Constant *, 32> ShuffleMask(
3605       VecLen, UndefValue::get(Builder.getInt32Ty()));
3606
3607   if (IsPairwise)
3608     // Build a mask of 0, 2, ... (left) or 1, 3, ... (right).
3609     for (unsigned i = 0; i != NumEltsToRdx; ++i)
3610       ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft);
3611   else
3612     // Move the upper half of the vector to the lower half.
3613     for (unsigned i = 0; i != NumEltsToRdx; ++i)
3614       ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i);
3615
3616   return ConstantVector::get(ShuffleMask);
3617 }
3618
3619
3620 /// Model horizontal reductions.
3621 ///
3622 /// A horizontal reduction is a tree of reduction operations (currently add and
3623 /// fadd) that has operations that can be put into a vector as its leaf.
3624 /// For example, this tree:
3625 ///
3626 /// mul mul mul mul
3627 ///  \  /    \  /
3628 ///   +       +
3629 ///    \     /
3630 ///       +
3631 /// This tree has "mul" as its reduced values and "+" as its reduction
3632 /// operations. A reduction might be feeding into a store or a binary operation
3633 /// feeding a phi.
3634 ///    ...
3635 ///    \  /
3636 ///     +
3637 ///     |
3638 ///  phi +=
3639 ///
3640 ///  Or:
3641 ///    ...
3642 ///    \  /
3643 ///     +
3644 ///     |
3645 ///   *p =
3646 ///
3647 class HorizontalReduction {
3648   SmallVector<Value *, 16> ReductionOps;
3649   SmallVector<Value *, 32> ReducedVals;
3650
3651   BinaryOperator *ReductionRoot;
3652   PHINode *ReductionPHI;
3653
3654   /// The opcode of the reduction.
3655   unsigned ReductionOpcode;
3656   /// The opcode of the values we perform a reduction on.
3657   unsigned ReducedValueOpcode;
3658   /// Should we model this reduction as a pairwise reduction tree or a tree that
3659   /// splits the vector in halves and adds those halves.
3660   bool IsPairwiseReduction;
3661
3662 public:
3663   /// The width of one full horizontal reduction operation.
3664   unsigned ReduxWidth;
3665
3666   HorizontalReduction()
3667     : ReductionRoot(nullptr), ReductionPHI(nullptr), ReductionOpcode(0),
3668     ReducedValueOpcode(0), IsPairwiseReduction(false), ReduxWidth(0) {}
3669
3670   /// \brief Try to find a reduction tree.
3671   bool matchAssociativeReduction(PHINode *Phi, BinaryOperator *B) {
3672     assert((!Phi ||
3673             std::find(Phi->op_begin(), Phi->op_end(), B) != Phi->op_end()) &&
3674            "Thi phi needs to use the binary operator");
3675
3676     // We could have a initial reductions that is not an add.
3677     //  r *= v1 + v2 + v3 + v4
3678     // In such a case start looking for a tree rooted in the first '+'.
3679     if (Phi) {
3680       if (B->getOperand(0) == Phi) {
3681         Phi = nullptr;
3682         B = dyn_cast<BinaryOperator>(B->getOperand(1));
3683       } else if (B->getOperand(1) == Phi) {
3684         Phi = nullptr;
3685         B = dyn_cast<BinaryOperator>(B->getOperand(0));
3686       }
3687     }
3688
3689     if (!B)
3690       return false;
3691
3692     Type *Ty = B->getType();
3693     if (!isValidElementType(Ty))
3694       return false;
3695
3696     const DataLayout &DL = B->getModule()->getDataLayout();
3697     ReductionOpcode = B->getOpcode();
3698     ReducedValueOpcode = 0;
3699     // FIXME: Register size should be a parameter to this function, so we can
3700     // try different vectorization factors.
3701     ReduxWidth = MinVecRegSize / DL.getTypeSizeInBits(Ty);
3702     ReductionRoot = B;
3703     ReductionPHI = Phi;
3704
3705     if (ReduxWidth < 4)
3706       return false;
3707
3708     // We currently only support adds.
3709     if (ReductionOpcode != Instruction::Add &&
3710         ReductionOpcode != Instruction::FAdd)
3711       return false;
3712
3713     // Post order traverse the reduction tree starting at B. We only handle true
3714     // trees containing only binary operators or selects.
3715     SmallVector<std::pair<Instruction *, unsigned>, 32> Stack;
3716     Stack.push_back(std::make_pair(B, 0));
3717     while (!Stack.empty()) {
3718       Instruction *TreeN = Stack.back().first;
3719       unsigned EdgeToVist = Stack.back().second++;
3720       bool IsReducedValue = TreeN->getOpcode() != ReductionOpcode;
3721
3722       // Only handle trees in the current basic block.
3723       if (TreeN->getParent() != B->getParent())
3724         return false;
3725
3726       // Each tree node needs to have one user except for the ultimate
3727       // reduction.
3728       if (!TreeN->hasOneUse() && TreeN != B)
3729         return false;
3730
3731       // Postorder vist.
3732       if (EdgeToVist == 2 || IsReducedValue) {
3733         if (IsReducedValue) {
3734           // Make sure that the opcodes of the operations that we are going to
3735           // reduce match.
3736           if (!ReducedValueOpcode)
3737             ReducedValueOpcode = TreeN->getOpcode();
3738           else if (ReducedValueOpcode != TreeN->getOpcode())
3739             return false;
3740           ReducedVals.push_back(TreeN);
3741         } else {
3742           // We need to be able to reassociate the adds.
3743           if (!TreeN->isAssociative())
3744             return false;
3745           ReductionOps.push_back(TreeN);
3746         }
3747         // Retract.
3748         Stack.pop_back();
3749         continue;
3750       }
3751
3752       // Visit left or right.
3753       Value *NextV = TreeN->getOperand(EdgeToVist);
3754       // We currently only allow BinaryOperator's and SelectInst's as reduction
3755       // values in our tree.
3756       if (isa<BinaryOperator>(NextV) || isa<SelectInst>(NextV))
3757         Stack.push_back(std::make_pair(cast<Instruction>(NextV), 0));
3758       else if (NextV != Phi)
3759         return false;
3760     }
3761     return true;
3762   }
3763
3764   /// \brief Attempt to vectorize the tree found by
3765   /// matchAssociativeReduction.
3766   bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) {
3767     if (ReducedVals.empty())
3768       return false;
3769
3770     unsigned NumReducedVals = ReducedVals.size();
3771     if (NumReducedVals < ReduxWidth)
3772       return false;
3773
3774     Value *VectorizedTree = nullptr;
3775     IRBuilder<> Builder(ReductionRoot);
3776     FastMathFlags Unsafe;
3777     Unsafe.setUnsafeAlgebra();
3778     Builder.SetFastMathFlags(Unsafe);
3779     unsigned i = 0;
3780
3781     for (; i < NumReducedVals - ReduxWidth + 1; i += ReduxWidth) {
3782       V.buildTree(makeArrayRef(&ReducedVals[i], ReduxWidth), ReductionOps);
3783
3784       // Estimate cost.
3785       int Cost = V.getTreeCost() + getReductionCost(TTI, ReducedVals[i]);
3786       if (Cost >= -SLPCostThreshold)
3787         break;
3788
3789       DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" << Cost
3790                    << ". (HorRdx)\n");
3791
3792       // Vectorize a tree.
3793       DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc();
3794       Value *VectorizedRoot = V.vectorizeTree();
3795
3796       // Emit a reduction.
3797       Value *ReducedSubTree = emitReduction(VectorizedRoot, Builder);
3798       if (VectorizedTree) {
3799         Builder.SetCurrentDebugLocation(Loc);
3800         VectorizedTree = createBinOp(Builder, ReductionOpcode, VectorizedTree,
3801                                      ReducedSubTree, "bin.rdx");
3802       } else
3803         VectorizedTree = ReducedSubTree;
3804     }
3805
3806     if (VectorizedTree) {
3807       // Finish the reduction.
3808       for (; i < NumReducedVals; ++i) {
3809         Builder.SetCurrentDebugLocation(
3810           cast<Instruction>(ReducedVals[i])->getDebugLoc());
3811         VectorizedTree = createBinOp(Builder, ReductionOpcode, VectorizedTree,
3812                                      ReducedVals[i]);
3813       }
3814       // Update users.
3815       if (ReductionPHI) {
3816         assert(ReductionRoot && "Need a reduction operation");
3817         ReductionRoot->setOperand(0, VectorizedTree);
3818         ReductionRoot->setOperand(1, ReductionPHI);
3819       } else
3820         ReductionRoot->replaceAllUsesWith(VectorizedTree);
3821     }
3822     return VectorizedTree != nullptr;
3823   }
3824
3825   unsigned numReductionValues() const {
3826     return ReducedVals.size();
3827   }
3828
3829 private:
3830   /// \brief Calculate the cost of a reduction.
3831   int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal) {
3832     Type *ScalarTy = FirstReducedVal->getType();
3833     Type *VecTy = VectorType::get(ScalarTy, ReduxWidth);
3834
3835     int PairwiseRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, true);
3836     int SplittingRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, false);
3837
3838     IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost;
3839     int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost;
3840
3841     int ScalarReduxCost =
3842         ReduxWidth * TTI->getArithmeticInstrCost(ReductionOpcode, VecTy);
3843
3844     DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost
3845                  << " for reduction that starts with " << *FirstReducedVal
3846                  << " (It is a "
3847                  << (IsPairwiseReduction ? "pairwise" : "splitting")
3848                  << " reduction)\n");
3849
3850     return VecReduxCost - ScalarReduxCost;
3851   }
3852
3853   static Value *createBinOp(IRBuilder<> &Builder, unsigned Opcode, Value *L,
3854                             Value *R, const Twine &Name = "") {
3855     if (Opcode == Instruction::FAdd)
3856       return Builder.CreateFAdd(L, R, Name);
3857     return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, L, R, Name);
3858   }
3859
3860   /// \brief Emit a horizontal reduction of the vectorized value.
3861   Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder) {
3862     assert(VectorizedValue && "Need to have a vectorized tree node");
3863     assert(isPowerOf2_32(ReduxWidth) &&
3864            "We only handle power-of-two reductions for now");
3865
3866     Value *TmpVec = VectorizedValue;
3867     for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) {
3868       if (IsPairwiseReduction) {
3869         Value *LeftMask =
3870           createRdxShuffleMask(ReduxWidth, i, true, true, Builder);
3871         Value *RightMask =
3872           createRdxShuffleMask(ReduxWidth, i, true, false, Builder);
3873
3874         Value *LeftShuf = Builder.CreateShuffleVector(
3875           TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l");
3876         Value *RightShuf = Builder.CreateShuffleVector(
3877           TmpVec, UndefValue::get(TmpVec->getType()), (RightMask),
3878           "rdx.shuf.r");
3879         TmpVec = createBinOp(Builder, ReductionOpcode, LeftShuf, RightShuf,
3880                              "bin.rdx");
3881       } else {
3882         Value *UpperHalf =
3883           createRdxShuffleMask(ReduxWidth, i, false, false, Builder);
3884         Value *Shuf = Builder.CreateShuffleVector(
3885           TmpVec, UndefValue::get(TmpVec->getType()), UpperHalf, "rdx.shuf");
3886         TmpVec = createBinOp(Builder, ReductionOpcode, TmpVec, Shuf, "bin.rdx");
3887       }
3888     }
3889
3890     // The result is in the first element of the vector.
3891     return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
3892   }
3893 };
3894
3895 /// \brief Recognize construction of vectors like
3896 ///  %ra = insertelement <4 x float> undef, float %s0, i32 0
3897 ///  %rb = insertelement <4 x float> %ra, float %s1, i32 1
3898 ///  %rc = insertelement <4 x float> %rb, float %s2, i32 2
3899 ///  %rd = insertelement <4 x float> %rc, float %s3, i32 3
3900 ///
3901 /// Returns true if it matches
3902 ///
3903 static bool findBuildVector(InsertElementInst *FirstInsertElem,
3904                             SmallVectorImpl<Value *> &BuildVector,
3905                             SmallVectorImpl<Value *> &BuildVectorOpds) {
3906   if (!isa<UndefValue>(FirstInsertElem->getOperand(0)))
3907     return false;
3908
3909   InsertElementInst *IE = FirstInsertElem;
3910   while (true) {
3911     BuildVector.push_back(IE);
3912     BuildVectorOpds.push_back(IE->getOperand(1));
3913
3914     if (IE->use_empty())
3915       return false;
3916
3917     InsertElementInst *NextUse = dyn_cast<InsertElementInst>(IE->user_back());
3918     if (!NextUse)
3919       return true;
3920
3921     // If this isn't the final use, make sure the next insertelement is the only
3922     // use. It's OK if the final constructed vector is used multiple times
3923     if (!IE->hasOneUse())
3924       return false;
3925
3926     IE = NextUse;
3927   }
3928
3929   return false;
3930 }
3931
3932 static bool PhiTypeSorterFunc(Value *V, Value *V2) {
3933   return V->getType() < V2->getType();
3934 }
3935
3936 /// \brief Try and get a reduction value from a phi node.
3937 ///
3938 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions
3939 /// if they come from either \p ParentBB or a containing loop latch.
3940 ///
3941 /// \returns A candidate reduction value if possible, or \code nullptr \endcode
3942 /// if not possible.
3943 static Value *getReductionValue(PHINode *P, BasicBlock *ParentBB,
3944                                 LoopInfo *LI) {
3945   Value *Rdx = nullptr;
3946
3947   // Return the incoming value if it comes from the same BB as the phi node.
3948   if (P->getIncomingBlock(0) == ParentBB) {
3949     Rdx = P->getIncomingValue(0);
3950   } else if (P->getIncomingBlock(1) == ParentBB) {
3951     Rdx = P->getIncomingValue(1);
3952   }
3953
3954   if (Rdx)
3955     return Rdx;
3956
3957   // Otherwise, check whether we have a loop latch to look at.
3958   Loop *BBL = LI->getLoopFor(ParentBB);
3959   if (!BBL)
3960     return Rdx;
3961   BasicBlock *BBLatch = BBL->getLoopLatch();
3962   if (!BBLatch)
3963     return Rdx;
3964
3965   // There is a loop latch, return the incoming value if it comes from
3966   // that. This reduction pattern occassionaly turns up.
3967   if (P->getIncomingBlock(0) == BBLatch) {
3968     Rdx = P->getIncomingValue(0);
3969   } else if (P->getIncomingBlock(1) == BBLatch) {
3970     Rdx = P->getIncomingValue(1);
3971   }
3972
3973   return Rdx;
3974 }
3975
3976 /// \brief Attempt to reduce a horizontal reduction.
3977 /// If it is legal to match a horizontal reduction feeding
3978 /// the phi node P with reduction operators BI, then check if it
3979 /// can be done.
3980 /// \returns true if a horizontal reduction was matched and reduced.
3981 /// \returns false if a horizontal reduction was not matched.
3982 static bool canMatchHorizontalReduction(PHINode *P, BinaryOperator *BI,
3983                                         BoUpSLP &R, TargetTransformInfo *TTI) {
3984   if (!ShouldVectorizeHor)
3985     return false;
3986
3987   HorizontalReduction HorRdx;
3988   if (!HorRdx.matchAssociativeReduction(P, BI))
3989     return false;
3990
3991   // If there is a sufficient number of reduction values, reduce
3992   // to a nearby power-of-2. Can safely generate oversized
3993   // vectors and rely on the backend to split them to legal sizes.
3994   HorRdx.ReduxWidth =
3995     std::max((uint64_t)4, PowerOf2Floor(HorRdx.numReductionValues()));
3996
3997   return HorRdx.tryToReduce(R, TTI);
3998 }
3999
4000 bool SLPVectorizer::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) {
4001   bool Changed = false;
4002   SmallVector<Value *, 4> Incoming;
4003   SmallSet<Value *, 16> VisitedInstrs;
4004
4005   bool HaveVectorizedPhiNodes = true;
4006   while (HaveVectorizedPhiNodes) {
4007     HaveVectorizedPhiNodes = false;
4008
4009     // Collect the incoming values from the PHIs.
4010     Incoming.clear();
4011     for (BasicBlock::iterator instr = BB->begin(), ie = BB->end(); instr != ie;
4012          ++instr) {
4013       PHINode *P = dyn_cast<PHINode>(instr);
4014       if (!P)
4015         break;
4016
4017       if (!VisitedInstrs.count(P))
4018         Incoming.push_back(P);
4019     }
4020
4021     // Sort by type.
4022     std::stable_sort(Incoming.begin(), Incoming.end(), PhiTypeSorterFunc);
4023
4024     // Try to vectorize elements base on their type.
4025     for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(),
4026                                            E = Incoming.end();
4027          IncIt != E;) {
4028
4029       // Look for the next elements with the same type.
4030       SmallVector<Value *, 4>::iterator SameTypeIt = IncIt;
4031       while (SameTypeIt != E &&
4032              (*SameTypeIt)->getType() == (*IncIt)->getType()) {
4033         VisitedInstrs.insert(*SameTypeIt);
4034         ++SameTypeIt;
4035       }
4036
4037       // Try to vectorize them.
4038       unsigned NumElts = (SameTypeIt - IncIt);
4039       DEBUG(errs() << "SLP: Trying to vectorize starting at PHIs (" << NumElts << ")\n");
4040       if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R)) {
4041         // Success start over because instructions might have been changed.
4042         HaveVectorizedPhiNodes = true;
4043         Changed = true;
4044         break;
4045       }
4046
4047       // Start over at the next instruction of a different type (or the end).
4048       IncIt = SameTypeIt;
4049     }
4050   }
4051
4052   VisitedInstrs.clear();
4053
4054   for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; it++) {
4055     // We may go through BB multiple times so skip the one we have checked.
4056     if (!VisitedInstrs.insert(&*it).second)
4057       continue;
4058
4059     if (isa<DbgInfoIntrinsic>(it))
4060       continue;
4061
4062     // Try to vectorize reductions that use PHINodes.
4063     if (PHINode *P = dyn_cast<PHINode>(it)) {
4064       // Check that the PHI is a reduction PHI.
4065       if (P->getNumIncomingValues() != 2)
4066         return Changed;
4067
4068       Value *Rdx = getReductionValue(P, BB, LI);
4069
4070       // Check if this is a Binary Operator.
4071       BinaryOperator *BI = dyn_cast_or_null<BinaryOperator>(Rdx);
4072       if (!BI)
4073         continue;
4074
4075       // Try to match and vectorize a horizontal reduction.
4076       if (canMatchHorizontalReduction(P, BI, R, TTI)) {
4077         Changed = true;
4078         it = BB->begin();
4079         e = BB->end();
4080         continue;
4081       }
4082
4083      Value *Inst = BI->getOperand(0);
4084       if (Inst == P)
4085         Inst = BI->getOperand(1);
4086
4087       if (tryToVectorize(dyn_cast<BinaryOperator>(Inst), R)) {
4088         // We would like to start over since some instructions are deleted
4089         // and the iterator may become invalid value.
4090         Changed = true;
4091         it = BB->begin();
4092         e = BB->end();
4093         continue;
4094       }
4095
4096       continue;
4097     }
4098
4099     if (ShouldStartVectorizeHorAtStore)
4100       if (StoreInst *SI = dyn_cast<StoreInst>(it))
4101         if (BinaryOperator *BinOp =
4102                 dyn_cast<BinaryOperator>(SI->getValueOperand())) {
4103           if (canMatchHorizontalReduction(nullptr, BinOp, R, TTI) ||
4104               tryToVectorize(BinOp, R)) {
4105             Changed = true;
4106             it = BB->begin();
4107             e = BB->end();
4108             continue;
4109           }
4110         }
4111
4112     // Try to vectorize horizontal reductions feeding into a return.
4113     if (ReturnInst *RI = dyn_cast<ReturnInst>(it))
4114       if (RI->getNumOperands() != 0)
4115         if (BinaryOperator *BinOp =
4116                 dyn_cast<BinaryOperator>(RI->getOperand(0))) {
4117           DEBUG(dbgs() << "SLP: Found a return to vectorize.\n");
4118           if (tryToVectorizePair(BinOp->getOperand(0),
4119                                  BinOp->getOperand(1), R)) {
4120             Changed = true;
4121             it = BB->begin();
4122             e = BB->end();
4123             continue;
4124           }
4125         }
4126
4127     // Try to vectorize trees that start at compare instructions.
4128     if (CmpInst *CI = dyn_cast<CmpInst>(it)) {
4129       if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) {
4130         Changed = true;
4131         // We would like to start over since some instructions are deleted
4132         // and the iterator may become invalid value.
4133         it = BB->begin();
4134         e = BB->end();
4135         continue;
4136       }
4137
4138       for (int i = 0; i < 2; ++i) {
4139         if (BinaryOperator *BI = dyn_cast<BinaryOperator>(CI->getOperand(i))) {
4140           if (tryToVectorizePair(BI->getOperand(0), BI->getOperand(1), R)) {
4141             Changed = true;
4142             // We would like to start over since some instructions are deleted
4143             // and the iterator may become invalid value.
4144             it = BB->begin();
4145             e = BB->end();
4146             break;
4147           }
4148         }
4149       }
4150       continue;
4151     }
4152
4153     // Try to vectorize trees that start at insertelement instructions.
4154     if (InsertElementInst *FirstInsertElem = dyn_cast<InsertElementInst>(it)) {
4155       SmallVector<Value *, 16> BuildVector;
4156       SmallVector<Value *, 16> BuildVectorOpds;
4157       if (!findBuildVector(FirstInsertElem, BuildVector, BuildVectorOpds))
4158         continue;
4159
4160       // Vectorize starting with the build vector operands ignoring the
4161       // BuildVector instructions for the purpose of scheduling and user
4162       // extraction.
4163       if (tryToVectorizeList(BuildVectorOpds, R, BuildVector)) {
4164         Changed = true;
4165         it = BB->begin();
4166         e = BB->end();
4167       }
4168
4169       continue;
4170     }
4171   }
4172
4173   return Changed;
4174 }
4175
4176 bool SLPVectorizer::vectorizeStoreChains(BoUpSLP &R) {
4177   bool Changed = false;
4178   // Attempt to sort and vectorize each of the store-groups.
4179   for (StoreListMap::iterator it = StoreRefs.begin(), e = StoreRefs.end();
4180        it != e; ++it) {
4181     if (it->second.size() < 2)
4182       continue;
4183
4184     DEBUG(dbgs() << "SLP: Analyzing a store chain of length "
4185           << it->second.size() << ".\n");
4186
4187     // Process the stores in chunks of 16.
4188     // TODO: The limit of 16 inhibits greater vectorization factors.
4189     //       For example, AVX2 supports v32i8. Increasing this limit, however,
4190     //       may cause a significant compile-time increase.
4191     for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI+=16) {
4192       unsigned Len = std::min<unsigned>(CE - CI, 16);
4193       Changed |= vectorizeStores(makeArrayRef(&it->second[CI], Len),
4194                                  -SLPCostThreshold, R);
4195     }
4196   }
4197   return Changed;
4198 }
4199
4200 } // end anonymous namespace
4201
4202 char SLPVectorizer::ID = 0;
4203 static const char lv_name[] = "SLP Vectorizer";
4204 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false)
4205 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
4206 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
4207 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
4208 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
4209 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
4210 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false)
4211
4212 namespace llvm {
4213 Pass *createSLPVectorizerPass() { return new SLPVectorizer(); }
4214 }