1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
11 // and generates target-independent LLVM-IR.
12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs
13 // of instructions in order to estimate the profitability of vectorization.
15 // The loop vectorizer combines consecutive loop iterations into a single
16 // 'wide' iteration. After this transformation the index is incremented
17 // by the SIMD vector width, and not by one.
19 // This pass has three parts:
20 // 1. The main loop pass that drives the different parts.
21 // 2. LoopVectorizationLegality - A unit that checks for the legality
22 // of the vectorization.
23 // 3. InnerLoopVectorizer - A unit that performs the actual
24 // widening of instructions.
25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability
26 // of vectorization. It decides on the optimal vector width, which
27 // can be one, if vectorization is not profitable.
29 //===----------------------------------------------------------------------===//
31 // The reduction-variable vectorization is based on the paper:
32 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
34 // Variable uniformity checks are inspired by:
35 // Karrenberg, R. and Hack, S. Whole Function Vectorization.
37 // The interleaved access vectorization is based on the paper:
38 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved
41 // Other ideas/concepts are from:
42 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
44 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of
45 // Vectorizing Compilers.
47 //===----------------------------------------------------------------------===//
49 #include "llvm/Transforms/Vectorize.h"
50 #include "llvm/ADT/DenseMap.h"
51 #include "llvm/ADT/Hashing.h"
52 #include "llvm/ADT/MapVector.h"
53 #include "llvm/ADT/SetVector.h"
54 #include "llvm/ADT/SmallPtrSet.h"
55 #include "llvm/ADT/SmallSet.h"
56 #include "llvm/ADT/SmallVector.h"
57 #include "llvm/ADT/Statistic.h"
58 #include "llvm/ADT/StringExtras.h"
59 #include "llvm/Analysis/AliasAnalysis.h"
60 #include "llvm/Analysis/BasicAliasAnalysis.h"
61 #include "llvm/Analysis/AliasSetTracker.h"
62 #include "llvm/Analysis/AssumptionCache.h"
63 #include "llvm/Analysis/BlockFrequencyInfo.h"
64 #include "llvm/Analysis/CodeMetrics.h"
65 #include "llvm/Analysis/DemandedBits.h"
66 #include "llvm/Analysis/GlobalsModRef.h"
67 #include "llvm/Analysis/LoopAccessAnalysis.h"
68 #include "llvm/Analysis/LoopInfo.h"
69 #include "llvm/Analysis/LoopIterator.h"
70 #include "llvm/Analysis/LoopPass.h"
71 #include "llvm/Analysis/ScalarEvolution.h"
72 #include "llvm/Analysis/ScalarEvolutionExpander.h"
73 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
74 #include "llvm/Analysis/TargetTransformInfo.h"
75 #include "llvm/Analysis/ValueTracking.h"
76 #include "llvm/IR/Constants.h"
77 #include "llvm/IR/DataLayout.h"
78 #include "llvm/IR/DebugInfo.h"
79 #include "llvm/IR/DerivedTypes.h"
80 #include "llvm/IR/DiagnosticInfo.h"
81 #include "llvm/IR/Dominators.h"
82 #include "llvm/IR/Function.h"
83 #include "llvm/IR/IRBuilder.h"
84 #include "llvm/IR/Instructions.h"
85 #include "llvm/IR/IntrinsicInst.h"
86 #include "llvm/IR/LLVMContext.h"
87 #include "llvm/IR/Module.h"
88 #include "llvm/IR/PatternMatch.h"
89 #include "llvm/IR/Type.h"
90 #include "llvm/IR/Value.h"
91 #include "llvm/IR/ValueHandle.h"
92 #include "llvm/IR/Verifier.h"
93 #include "llvm/Pass.h"
94 #include "llvm/Support/BranchProbability.h"
95 #include "llvm/Support/CommandLine.h"
96 #include "llvm/Support/Debug.h"
97 #include "llvm/Support/raw_ostream.h"
98 #include "llvm/Transforms/Scalar.h"
99 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
100 #include "llvm/Transforms/Utils/Local.h"
101 #include "llvm/Analysis/VectorUtils.h"
102 #include "llvm/Transforms/Utils/LoopUtils.h"
104 #include <functional>
108 using namespace llvm;
109 using namespace llvm::PatternMatch;
111 #define LV_NAME "loop-vectorize"
112 #define DEBUG_TYPE LV_NAME
114 STATISTIC(LoopsVectorized, "Number of loops vectorized");
115 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
118 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden,
119 cl::desc("Enable if-conversion during vectorization."));
121 /// We don't vectorize loops with a known constant trip count below this number.
122 static cl::opt<unsigned>
123 TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16),
125 cl::desc("Don't vectorize loops with a constant "
126 "trip count that is smaller than this "
129 static cl::opt<bool> MaximizeBandwidth(
130 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden,
131 cl::desc("Maximize bandwidth when selecting vectorization factor which "
132 "will be determined by the smallest type in loop."));
134 /// This enables versioning on the strides of symbolically striding memory
135 /// accesses in code like the following.
136 /// for (i = 0; i < N; ++i)
137 /// A[i * Stride1] += B[i * Stride2] ...
139 /// Will be roughly translated to
140 /// if (Stride1 == 1 && Stride2 == 1) {
141 /// for (i = 0; i < N; i+=4)
145 static cl::opt<bool> EnableMemAccessVersioning(
146 "enable-mem-access-versioning", cl::init(true), cl::Hidden,
147 cl::desc("Enable symbolic stride memory access versioning"));
149 static cl::opt<bool> EnableInterleavedMemAccesses(
150 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden,
151 cl::desc("Enable vectorization on interleaved memory accesses in a loop"));
153 /// Maximum factor for an interleaved memory access.
154 static cl::opt<unsigned> MaxInterleaveGroupFactor(
155 "max-interleave-group-factor", cl::Hidden,
156 cl::desc("Maximum factor for an interleaved access group (default = 8)"),
159 /// We don't interleave loops with a known constant trip count below this
161 static const unsigned TinyTripCountInterleaveThreshold = 128;
163 static cl::opt<unsigned> ForceTargetNumScalarRegs(
164 "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
165 cl::desc("A flag that overrides the target's number of scalar registers."));
167 static cl::opt<unsigned> ForceTargetNumVectorRegs(
168 "force-target-num-vector-regs", cl::init(0), cl::Hidden,
169 cl::desc("A flag that overrides the target's number of vector registers."));
171 /// Maximum vectorization interleave count.
172 static const unsigned MaxInterleaveFactor = 16;
174 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor(
175 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
176 cl::desc("A flag that overrides the target's max interleave factor for "
179 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor(
180 "force-target-max-vector-interleave", cl::init(0), cl::Hidden,
181 cl::desc("A flag that overrides the target's max interleave factor for "
182 "vectorized loops."));
184 static cl::opt<unsigned> ForceTargetInstructionCost(
185 "force-target-instruction-cost", cl::init(0), cl::Hidden,
186 cl::desc("A flag that overrides the target's expected cost for "
187 "an instruction to a single constant value. Mostly "
188 "useful for getting consistent testing."));
190 static cl::opt<unsigned> SmallLoopCost(
191 "small-loop-cost", cl::init(20), cl::Hidden,
193 "The cost of a loop that is considered 'small' by the interleaver."));
195 static cl::opt<bool> LoopVectorizeWithBlockFrequency(
196 "loop-vectorize-with-block-frequency", cl::init(false), cl::Hidden,
197 cl::desc("Enable the use of the block frequency analysis to access PGO "
198 "heuristics minimizing code growth in cold regions and being more "
199 "aggressive in hot regions."));
201 // Runtime interleave loops for load/store throughput.
202 static cl::opt<bool> EnableLoadStoreRuntimeInterleave(
203 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden,
205 "Enable runtime interleaving until load/store ports are saturated"));
207 /// The number of stores in a loop that are allowed to need predication.
208 static cl::opt<unsigned> NumberOfStoresToPredicate(
209 "vectorize-num-stores-pred", cl::init(1), cl::Hidden,
210 cl::desc("Max number of stores to be predicated behind an if."));
212 static cl::opt<bool> EnableIndVarRegisterHeur(
213 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
214 cl::desc("Count the induction variable only once when interleaving"));
216 static cl::opt<bool> EnableCondStoresVectorization(
217 "enable-cond-stores-vec", cl::init(false), cl::Hidden,
218 cl::desc("Enable if predication of stores during vectorization."));
220 static cl::opt<unsigned> MaxNestedScalarReductionIC(
221 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden,
222 cl::desc("The maximum interleave count to use when interleaving a scalar "
223 "reduction in a nested loop."));
225 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold(
226 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden,
227 cl::desc("The maximum allowed number of runtime memory checks with a "
228 "vectorize(enable) pragma."));
230 static cl::opt<unsigned> VectorizeSCEVCheckThreshold(
231 "vectorize-scev-check-threshold", cl::init(16), cl::Hidden,
232 cl::desc("The maximum number of SCEV checks allowed."));
234 static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold(
235 "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden,
236 cl::desc("The maximum number of SCEV checks allowed with a "
237 "vectorize(enable) pragma"));
241 // Forward declarations.
242 class LoopVectorizeHints;
243 class LoopVectorizationLegality;
244 class LoopVectorizationCostModel;
245 class LoopVectorizationRequirements;
247 /// \brief This modifies LoopAccessReport to initialize message with
248 /// loop-vectorizer-specific part.
249 class VectorizationReport : public LoopAccessReport {
251 VectorizationReport(Instruction *I = nullptr)
252 : LoopAccessReport("loop not vectorized: ", I) {}
254 /// \brief This allows promotion of the loop-access analysis report into the
255 /// loop-vectorizer report. It modifies the message to add the
256 /// loop-vectorizer-specific part of the message.
257 explicit VectorizationReport(const LoopAccessReport &R)
258 : LoopAccessReport(Twine("loop not vectorized: ") + R.str(),
262 /// A helper function for converting Scalar types to vector types.
263 /// If the incoming type is void, we return void. If the VF is 1, we return
265 static Type* ToVectorTy(Type *Scalar, unsigned VF) {
266 if (Scalar->isVoidTy() || VF == 1)
268 return VectorType::get(Scalar, VF);
271 /// A helper function that returns GEP instruction and knows to skip a
272 /// 'bitcast'. The 'bitcast' may be skipped if the source and the destination
273 /// pointee types of the 'bitcast' have the same size.
275 /// bitcast double** %var to i64* - can be skipped
276 /// bitcast double** %var to i8* - can not
277 static GetElementPtrInst *getGEPInstruction(Value *Ptr) {
279 if (isa<GetElementPtrInst>(Ptr))
280 return cast<GetElementPtrInst>(Ptr);
282 if (isa<BitCastInst>(Ptr) &&
283 isa<GetElementPtrInst>(cast<BitCastInst>(Ptr)->getOperand(0))) {
284 Type *BitcastTy = Ptr->getType();
285 Type *GEPTy = cast<BitCastInst>(Ptr)->getSrcTy();
286 if (!isa<PointerType>(BitcastTy) || !isa<PointerType>(GEPTy))
288 Type *Pointee1Ty = cast<PointerType>(BitcastTy)->getPointerElementType();
289 Type *Pointee2Ty = cast<PointerType>(GEPTy)->getPointerElementType();
290 const DataLayout &DL = cast<BitCastInst>(Ptr)->getModule()->getDataLayout();
291 if (DL.getTypeSizeInBits(Pointee1Ty) == DL.getTypeSizeInBits(Pointee2Ty))
292 return cast<GetElementPtrInst>(cast<BitCastInst>(Ptr)->getOperand(0));
297 /// InnerLoopVectorizer vectorizes loops which contain only one basic
298 /// block to a specified vectorization factor (VF).
299 /// This class performs the widening of scalars into vectors, or multiple
300 /// scalars. This class also implements the following features:
301 /// * It inserts an epilogue loop for handling loops that don't have iteration
302 /// counts that are known to be a multiple of the vectorization factor.
303 /// * It handles the code generation for reduction variables.
304 /// * Scalarization (implementation using scalars) of un-vectorizable
306 /// InnerLoopVectorizer does not perform any vectorization-legality
307 /// checks, and relies on the caller to check for the different legality
308 /// aspects. The InnerLoopVectorizer relies on the
309 /// LoopVectorizationLegality class to provide information about the induction
310 /// and reduction variables that were found to a given vectorization factor.
311 class InnerLoopVectorizer {
313 InnerLoopVectorizer(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI,
314 DominatorTree *DT, const TargetLibraryInfo *TLI,
315 const TargetTransformInfo *TTI, unsigned VecWidth,
316 unsigned UnrollFactor, SCEVUnionPredicate &Preds)
317 : OrigLoop(OrigLoop), SE(SE), LI(LI), DT(DT), TLI(TLI), TTI(TTI),
318 VF(VecWidth), UF(UnrollFactor), Builder(SE->getContext()),
319 Induction(nullptr), OldInduction(nullptr), WidenMap(UnrollFactor),
320 TripCount(nullptr), VectorTripCount(nullptr), Legal(nullptr),
321 AddedSafetyChecks(false), Preds(Preds) {}
323 // Perform the actual loop widening (vectorization).
324 // MinimumBitWidths maps scalar integer values to the smallest bitwidth they
325 // can be validly truncated to. The cost model has assumed this truncation
326 // will happen when vectorizing.
327 void vectorize(LoopVectorizationLegality *L,
328 MapVector<Instruction*,uint64_t> MinimumBitWidths) {
329 MinBWs = MinimumBitWidths;
331 // Create a new empty loop. Unlink the old loop and connect the new one.
333 // Widen each instruction in the old loop to a new one in the new loop.
334 // Use the Legality module to find the induction and reduction variables.
338 // Return true if any runtime check is added.
339 bool IsSafetyChecksAdded() {
340 return AddedSafetyChecks;
343 virtual ~InnerLoopVectorizer() {}
346 /// A small list of PHINodes.
347 typedef SmallVector<PHINode*, 4> PhiVector;
348 /// When we unroll loops we have multiple vector values for each scalar.
349 /// This data structure holds the unrolled and vectorized values that
350 /// originated from one scalar instruction.
351 typedef SmallVector<Value*, 2> VectorParts;
353 // When we if-convert we need to create edge masks. We have to cache values
354 // so that we don't end up with exponential recursion/IR.
355 typedef DenseMap<std::pair<BasicBlock*, BasicBlock*>,
356 VectorParts> EdgeMaskCache;
358 /// Create an empty loop, based on the loop ranges of the old loop.
359 void createEmptyLoop();
360 /// Create a new induction variable inside L.
361 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End,
362 Value *Step, Instruction *DL);
363 /// Copy and widen the instructions from the old loop.
364 virtual void vectorizeLoop();
366 /// \brief The Loop exit block may have single value PHI nodes where the
367 /// incoming value is 'Undef'. While vectorizing we only handled real values
368 /// that were defined inside the loop. Here we fix the 'undef case'.
372 /// Shrinks vector element sizes based on information in "MinBWs".
373 void truncateToMinimalBitwidths();
375 /// A helper function that computes the predicate of the block BB, assuming
376 /// that the header block of the loop is set to True. It returns the *entry*
377 /// mask for the block BB.
378 VectorParts createBlockInMask(BasicBlock *BB);
379 /// A helper function that computes the predicate of the edge between SRC
381 VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst);
383 /// A helper function to vectorize a single BB within the innermost loop.
384 void vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV);
386 /// Vectorize a single PHINode in a block. This method handles the induction
387 /// variable canonicalization. It supports both VF = 1 for unrolled loops and
388 /// arbitrary length vectors.
389 void widenPHIInstruction(Instruction *PN, VectorParts &Entry,
390 unsigned UF, unsigned VF, PhiVector *PV);
392 /// Insert the new loop to the loop hierarchy and pass manager
393 /// and update the analysis passes.
394 void updateAnalysis();
396 /// This instruction is un-vectorizable. Implement it as a sequence
397 /// of scalars. If \p IfPredicateStore is true we need to 'hide' each
398 /// scalarized instruction behind an if block predicated on the control
399 /// dependence of the instruction.
400 virtual void scalarizeInstruction(Instruction *Instr,
401 bool IfPredicateStore=false);
403 /// Vectorize Load and Store instructions,
404 virtual void vectorizeMemoryInstruction(Instruction *Instr);
406 /// Create a broadcast instruction. This method generates a broadcast
407 /// instruction (shuffle) for loop invariant values and for the induction
408 /// value. If this is the induction variable then we extend it to N, N+1, ...
409 /// this is needed because each iteration in the loop corresponds to a SIMD
411 virtual Value *getBroadcastInstrs(Value *V);
413 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...)
414 /// to each vector element of Val. The sequence starts at StartIndex.
415 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step);
417 /// When we go over instructions in the basic block we rely on previous
418 /// values within the current basic block or on loop invariant values.
419 /// When we widen (vectorize) values we place them in the map. If the values
420 /// are not within the map, they have to be loop invariant, so we simply
421 /// broadcast them into a vector.
422 VectorParts &getVectorValue(Value *V);
424 /// Try to vectorize the interleaved access group that \p Instr belongs to.
425 void vectorizeInterleaveGroup(Instruction *Instr);
427 /// Generate a shuffle sequence that will reverse the vector Vec.
428 virtual Value *reverseVector(Value *Vec);
430 /// Returns (and creates if needed) the original loop trip count.
431 Value *getOrCreateTripCount(Loop *NewLoop);
433 /// Returns (and creates if needed) the trip count of the widened loop.
434 Value *getOrCreateVectorTripCount(Loop *NewLoop);
436 /// Emit a bypass check to see if the trip count would overflow, or we
437 /// wouldn't have enough iterations to execute one vector loop.
438 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass);
439 /// Emit a bypass check to see if the vector trip count is nonzero.
440 void emitVectorLoopEnteredCheck(Loop *L, BasicBlock *Bypass);
441 /// Emit a bypass check to see if all of the SCEV assumptions we've
442 /// had to make are correct.
443 void emitSCEVChecks(Loop *L, BasicBlock *Bypass);
444 /// Emit bypass checks to check any memory assumptions we may have made.
445 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass);
447 /// This is a helper class that holds the vectorizer state. It maps scalar
448 /// instructions to vector instructions. When the code is 'unrolled' then
449 /// then a single scalar value is mapped to multiple vector parts. The parts
450 /// are stored in the VectorPart type.
452 /// C'tor. UnrollFactor controls the number of vectors ('parts') that
454 ValueMap(unsigned UnrollFactor) : UF(UnrollFactor) {}
456 /// \return True if 'Key' is saved in the Value Map.
457 bool has(Value *Key) const { return MapStorage.count(Key); }
459 /// Initializes a new entry in the map. Sets all of the vector parts to the
460 /// save value in 'Val'.
461 /// \return A reference to a vector with splat values.
462 VectorParts &splat(Value *Key, Value *Val) {
463 VectorParts &Entry = MapStorage[Key];
464 Entry.assign(UF, Val);
468 ///\return A reference to the value that is stored at 'Key'.
469 VectorParts &get(Value *Key) {
470 VectorParts &Entry = MapStorage[Key];
473 assert(Entry.size() == UF);
478 /// The unroll factor. Each entry in the map stores this number of vector
482 /// Map storage. We use std::map and not DenseMap because insertions to a
483 /// dense map invalidates its iterators.
484 std::map<Value *, VectorParts> MapStorage;
487 /// The original loop.
489 /// Scev analysis to use.
497 /// Target Library Info.
498 const TargetLibraryInfo *TLI;
499 /// Target Transform Info.
500 const TargetTransformInfo *TTI;
502 /// The vectorization SIMD factor to use. Each vector will have this many
507 /// The vectorization unroll factor to use. Each scalar is vectorized to this
508 /// many different vector instructions.
511 /// The builder that we use
514 // --- Vectorization state ---
516 /// The vector-loop preheader.
517 BasicBlock *LoopVectorPreHeader;
518 /// The scalar-loop preheader.
519 BasicBlock *LoopScalarPreHeader;
520 /// Middle Block between the vector and the scalar.
521 BasicBlock *LoopMiddleBlock;
522 ///The ExitBlock of the scalar loop.
523 BasicBlock *LoopExitBlock;
524 ///The vector loop body.
525 SmallVector<BasicBlock *, 4> LoopVectorBody;
526 ///The scalar loop body.
527 BasicBlock *LoopScalarBody;
528 /// A list of all bypass blocks. The first block is the entry of the loop.
529 SmallVector<BasicBlock *, 4> LoopBypassBlocks;
531 /// The new Induction variable which was added to the new block.
533 /// The induction variable of the old basic block.
534 PHINode *OldInduction;
535 /// Maps scalars to widened vectors.
537 /// Store instructions that should be predicated, as a pair
538 /// <StoreInst, Predicate>
539 SmallVector<std::pair<StoreInst*,Value*>, 4> PredicatedStores;
540 EdgeMaskCache MaskCache;
541 /// Trip count of the original loop.
543 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF))
544 Value *VectorTripCount;
546 /// Map of scalar integer values to the smallest bitwidth they can be legally
547 /// represented as. The vector equivalents of these values should be truncated
549 MapVector<Instruction*,uint64_t> MinBWs;
550 LoopVectorizationLegality *Legal;
552 // Record whether runtime check is added.
553 bool AddedSafetyChecks;
555 /// The SCEV predicate containing all the SCEV-related assumptions.
556 /// The predicate is used to simplify existing expressions in the
557 /// context of existing SCEV assumptions. Since legality checking is
558 /// not done here, we don't need to use this predicate to record
559 /// further assumptions.
560 SCEVUnionPredicate &Preds;
563 class InnerLoopUnroller : public InnerLoopVectorizer {
565 InnerLoopUnroller(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI,
566 DominatorTree *DT, const TargetLibraryInfo *TLI,
567 const TargetTransformInfo *TTI, unsigned UnrollFactor,
568 SCEVUnionPredicate &Preds)
569 : InnerLoopVectorizer(OrigLoop, SE, LI, DT, TLI, TTI, 1, UnrollFactor,
573 void scalarizeInstruction(Instruction *Instr,
574 bool IfPredicateStore = false) override;
575 void vectorizeMemoryInstruction(Instruction *Instr) override;
576 Value *getBroadcastInstrs(Value *V) override;
577 Value *getStepVector(Value *Val, int StartIdx, Value *Step) override;
578 Value *reverseVector(Value *Vec) override;
581 /// \brief Look for a meaningful debug location on the instruction or it's
583 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
588 if (I->getDebugLoc() != Empty)
591 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) {
592 if (Instruction *OpInst = dyn_cast<Instruction>(*OI))
593 if (OpInst->getDebugLoc() != Empty)
600 /// \brief Set the debug location in the builder using the debug location in the
602 static void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) {
603 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr))
604 B.SetCurrentDebugLocation(Inst->getDebugLoc());
606 B.SetCurrentDebugLocation(DebugLoc());
610 /// \return string containing a file name and a line # for the given loop.
611 static std::string getDebugLocString(const Loop *L) {
614 raw_string_ostream OS(Result);
615 if (const DebugLoc LoopDbgLoc = L->getStartLoc())
616 LoopDbgLoc.print(OS);
618 // Just print the module name.
619 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier();
626 /// \brief Propagate known metadata from one instruction to another.
627 static void propagateMetadata(Instruction *To, const Instruction *From) {
628 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
629 From->getAllMetadataOtherThanDebugLoc(Metadata);
631 for (auto M : Metadata) {
632 unsigned Kind = M.first;
634 // These are safe to transfer (this is safe for TBAA, even when we
635 // if-convert, because should that metadata have had a control dependency
636 // on the condition, and thus actually aliased with some other
637 // non-speculated memory access when the condition was false, this would be
638 // caught by the runtime overlap checks).
639 if (Kind != LLVMContext::MD_tbaa &&
640 Kind != LLVMContext::MD_alias_scope &&
641 Kind != LLVMContext::MD_noalias &&
642 Kind != LLVMContext::MD_fpmath &&
643 Kind != LLVMContext::MD_nontemporal)
646 To->setMetadata(Kind, M.second);
650 /// \brief Propagate known metadata from one instruction to a vector of others.
651 static void propagateMetadata(SmallVectorImpl<Value *> &To,
652 const Instruction *From) {
654 if (Instruction *I = dyn_cast<Instruction>(V))
655 propagateMetadata(I, From);
658 /// \brief The group of interleaved loads/stores sharing the same stride and
659 /// close to each other.
661 /// Each member in this group has an index starting from 0, and the largest
662 /// index should be less than interleaved factor, which is equal to the absolute
663 /// value of the access's stride.
665 /// E.g. An interleaved load group of factor 4:
666 /// for (unsigned i = 0; i < 1024; i+=4) {
667 /// a = A[i]; // Member of index 0
668 /// b = A[i+1]; // Member of index 1
669 /// d = A[i+3]; // Member of index 3
673 /// An interleaved store group of factor 4:
674 /// for (unsigned i = 0; i < 1024; i+=4) {
676 /// A[i] = a; // Member of index 0
677 /// A[i+1] = b; // Member of index 1
678 /// A[i+2] = c; // Member of index 2
679 /// A[i+3] = d; // Member of index 3
682 /// Note: the interleaved load group could have gaps (missing members), but
683 /// the interleaved store group doesn't allow gaps.
684 class InterleaveGroup {
686 InterleaveGroup(Instruction *Instr, int Stride, unsigned Align)
687 : Align(Align), SmallestKey(0), LargestKey(0), InsertPos(Instr) {
688 assert(Align && "The alignment should be non-zero");
690 Factor = std::abs(Stride);
691 assert(Factor > 1 && "Invalid interleave factor");
693 Reverse = Stride < 0;
697 bool isReverse() const { return Reverse; }
698 unsigned getFactor() const { return Factor; }
699 unsigned getAlignment() const { return Align; }
700 unsigned getNumMembers() const { return Members.size(); }
702 /// \brief Try to insert a new member \p Instr with index \p Index and
703 /// alignment \p NewAlign. The index is related to the leader and it could be
704 /// negative if it is the new leader.
706 /// \returns false if the instruction doesn't belong to the group.
707 bool insertMember(Instruction *Instr, int Index, unsigned NewAlign) {
708 assert(NewAlign && "The new member's alignment should be non-zero");
710 int Key = Index + SmallestKey;
712 // Skip if there is already a member with the same index.
713 if (Members.count(Key))
716 if (Key > LargestKey) {
717 // The largest index is always less than the interleave factor.
718 if (Index >= static_cast<int>(Factor))
722 } else if (Key < SmallestKey) {
723 // The largest index is always less than the interleave factor.
724 if (LargestKey - Key >= static_cast<int>(Factor))
730 // It's always safe to select the minimum alignment.
731 Align = std::min(Align, NewAlign);
732 Members[Key] = Instr;
736 /// \brief Get the member with the given index \p Index
738 /// \returns nullptr if contains no such member.
739 Instruction *getMember(unsigned Index) const {
740 int Key = SmallestKey + Index;
741 if (!Members.count(Key))
744 return Members.find(Key)->second;
747 /// \brief Get the index for the given member. Unlike the key in the member
748 /// map, the index starts from 0.
749 unsigned getIndex(Instruction *Instr) const {
750 for (auto I : Members)
751 if (I.second == Instr)
752 return I.first - SmallestKey;
754 llvm_unreachable("InterleaveGroup contains no such member");
757 Instruction *getInsertPos() const { return InsertPos; }
758 void setInsertPos(Instruction *Inst) { InsertPos = Inst; }
761 unsigned Factor; // Interleave Factor.
764 DenseMap<int, Instruction *> Members;
768 // To avoid breaking dependences, vectorized instructions of an interleave
769 // group should be inserted at either the first load or the last store in
772 // E.g. %even = load i32 // Insert Position
773 // %add = add i32 %even // Use of %even
777 // %odd = add i32 // Def of %odd
778 // store i32 %odd // Insert Position
779 Instruction *InsertPos;
782 /// \brief Drive the analysis of interleaved memory accesses in the loop.
784 /// Use this class to analyze interleaved accesses only when we can vectorize
785 /// a loop. Otherwise it's meaningless to do analysis as the vectorization
786 /// on interleaved accesses is unsafe.
788 /// The analysis collects interleave groups and records the relationships
789 /// between the member and the group in a map.
790 class InterleavedAccessInfo {
792 InterleavedAccessInfo(ScalarEvolution *SE, Loop *L, DominatorTree *DT,
793 SCEVUnionPredicate &Preds)
794 : SE(SE), TheLoop(L), DT(DT), Preds(Preds) {}
796 ~InterleavedAccessInfo() {
797 SmallSet<InterleaveGroup *, 4> DelSet;
798 // Avoid releasing a pointer twice.
799 for (auto &I : InterleaveGroupMap)
800 DelSet.insert(I.second);
801 for (auto *Ptr : DelSet)
805 /// \brief Analyze the interleaved accesses and collect them in interleave
806 /// groups. Substitute symbolic strides using \p Strides.
807 void analyzeInterleaving(const ValueToValueMap &Strides);
809 /// \brief Check if \p Instr belongs to any interleave group.
810 bool isInterleaved(Instruction *Instr) const {
811 return InterleaveGroupMap.count(Instr);
814 /// \brief Get the interleave group that \p Instr belongs to.
816 /// \returns nullptr if doesn't have such group.
817 InterleaveGroup *getInterleaveGroup(Instruction *Instr) const {
818 if (InterleaveGroupMap.count(Instr))
819 return InterleaveGroupMap.find(Instr)->second;
828 /// The SCEV predicate containing all the SCEV-related assumptions.
829 /// The predicate is used to simplify SCEV expressions in the
830 /// context of existing SCEV assumptions. The interleaved access
831 /// analysis can also add new predicates (for example by versioning
832 /// strides of pointers).
833 SCEVUnionPredicate &Preds;
835 /// Holds the relationships between the members and the interleave group.
836 DenseMap<Instruction *, InterleaveGroup *> InterleaveGroupMap;
838 /// \brief The descriptor for a strided memory access.
839 struct StrideDescriptor {
840 StrideDescriptor(int Stride, const SCEV *Scev, unsigned Size,
842 : Stride(Stride), Scev(Scev), Size(Size), Align(Align) {}
844 StrideDescriptor() : Stride(0), Scev(nullptr), Size(0), Align(0) {}
846 int Stride; // The access's stride. It is negative for a reverse access.
847 const SCEV *Scev; // The scalar expression of this access
848 unsigned Size; // The size of the memory object.
849 unsigned Align; // The alignment of this access.
852 /// \brief Create a new interleave group with the given instruction \p Instr,
853 /// stride \p Stride and alignment \p Align.
855 /// \returns the newly created interleave group.
856 InterleaveGroup *createInterleaveGroup(Instruction *Instr, int Stride,
858 assert(!InterleaveGroupMap.count(Instr) &&
859 "Already in an interleaved access group");
860 InterleaveGroupMap[Instr] = new InterleaveGroup(Instr, Stride, Align);
861 return InterleaveGroupMap[Instr];
864 /// \brief Release the group and remove all the relationships.
865 void releaseGroup(InterleaveGroup *Group) {
866 for (unsigned i = 0; i < Group->getFactor(); i++)
867 if (Instruction *Member = Group->getMember(i))
868 InterleaveGroupMap.erase(Member);
873 /// \brief Collect all the accesses with a constant stride in program order.
874 void collectConstStridedAccesses(
875 MapVector<Instruction *, StrideDescriptor> &StrideAccesses,
876 const ValueToValueMap &Strides);
879 /// Utility class for getting and setting loop vectorizer hints in the form
880 /// of loop metadata.
881 /// This class keeps a number of loop annotations locally (as member variables)
882 /// and can, upon request, write them back as metadata on the loop. It will
883 /// initially scan the loop for existing metadata, and will update the local
884 /// values based on information in the loop.
885 /// We cannot write all values to metadata, as the mere presence of some info,
886 /// for example 'force', means a decision has been made. So, we need to be
887 /// careful NOT to add them if the user hasn't specifically asked so.
888 class LoopVectorizeHints {
895 /// Hint - associates name and validation with the hint value.
898 unsigned Value; // This may have to change for non-numeric values.
901 Hint(const char * Name, unsigned Value, HintKind Kind)
902 : Name(Name), Value(Value), Kind(Kind) { }
904 bool validate(unsigned Val) {
907 return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth;
909 return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor;
917 /// Vectorization width.
919 /// Vectorization interleave factor.
921 /// Vectorization forced
924 /// Return the loop metadata prefix.
925 static StringRef Prefix() { return "llvm.loop."; }
929 FK_Undefined = -1, ///< Not selected.
930 FK_Disabled = 0, ///< Forcing disabled.
931 FK_Enabled = 1, ///< Forcing enabled.
934 LoopVectorizeHints(const Loop *L, bool DisableInterleaving)
935 : Width("vectorize.width", VectorizerParams::VectorizationFactor,
937 Interleave("interleave.count", DisableInterleaving, HK_UNROLL),
938 Force("vectorize.enable", FK_Undefined, HK_FORCE),
940 // Populate values with existing loop metadata.
941 getHintsFromMetadata();
943 // force-vector-interleave overrides DisableInterleaving.
944 if (VectorizerParams::isInterleaveForced())
945 Interleave.Value = VectorizerParams::VectorizationInterleave;
947 DEBUG(if (DisableInterleaving && Interleave.Value == 1) dbgs()
948 << "LV: Interleaving disabled by the pass manager\n");
951 /// Mark the loop L as already vectorized by setting the width to 1.
952 void setAlreadyVectorized() {
953 Width.Value = Interleave.Value = 1;
954 Hint Hints[] = {Width, Interleave};
955 writeHintsToMetadata(Hints);
958 bool allowVectorization(Function *F, Loop *L, bool AlwaysVectorize) const {
959 if (getForce() == LoopVectorizeHints::FK_Disabled) {
960 DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n");
961 emitOptimizationRemarkAnalysis(F->getContext(),
962 vectorizeAnalysisPassName(), *F,
963 L->getStartLoc(), emitRemark());
967 if (!AlwaysVectorize && getForce() != LoopVectorizeHints::FK_Enabled) {
968 DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n");
969 emitOptimizationRemarkAnalysis(F->getContext(),
970 vectorizeAnalysisPassName(), *F,
971 L->getStartLoc(), emitRemark());
975 if (getWidth() == 1 && getInterleave() == 1) {
976 // FIXME: Add a separate metadata to indicate when the loop has already
977 // been vectorized instead of setting width and count to 1.
978 DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n");
979 // FIXME: Add interleave.disable metadata. This will allow
980 // vectorize.disable to be used without disabling the pass and errors
981 // to differentiate between disabled vectorization and a width of 1.
982 emitOptimizationRemarkAnalysis(
983 F->getContext(), vectorizeAnalysisPassName(), *F, L->getStartLoc(),
984 "loop not vectorized: vectorization and interleaving are explicitly "
985 "disabled, or vectorize width and interleave count are both set to "
993 /// Dumps all the hint information.
994 std::string emitRemark() const {
995 VectorizationReport R;
996 if (Force.Value == LoopVectorizeHints::FK_Disabled)
997 R << "vectorization is explicitly disabled";
999 R << "use -Rpass-analysis=loop-vectorize for more info";
1000 if (Force.Value == LoopVectorizeHints::FK_Enabled) {
1001 R << " (Force=true";
1002 if (Width.Value != 0)
1003 R << ", Vector Width=" << Width.Value;
1004 if (Interleave.Value != 0)
1005 R << ", Interleave Count=" << Interleave.Value;
1013 unsigned getWidth() const { return Width.Value; }
1014 unsigned getInterleave() const { return Interleave.Value; }
1015 enum ForceKind getForce() const { return (ForceKind)Force.Value; }
1016 const char *vectorizeAnalysisPassName() const {
1017 // If hints are provided that don't disable vectorization use the
1018 // AlwaysPrint pass name to force the frontend to print the diagnostic.
1019 if (getWidth() == 1)
1021 if (getForce() == LoopVectorizeHints::FK_Disabled)
1023 if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth() == 0)
1025 return DiagnosticInfo::AlwaysPrint;
1028 bool allowReordering() const {
1029 // When enabling loop hints are provided we allow the vectorizer to change
1030 // the order of operations that is given by the scalar loop. This is not
1031 // enabled by default because can be unsafe or inefficient. For example,
1032 // reordering floating-point operations will change the way round-off
1033 // error accumulates in the loop.
1034 return getForce() == LoopVectorizeHints::FK_Enabled || getWidth() > 1;
1038 /// Find hints specified in the loop metadata and update local values.
1039 void getHintsFromMetadata() {
1040 MDNode *LoopID = TheLoop->getLoopID();
1044 // First operand should refer to the loop id itself.
1045 assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
1046 assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
1048 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
1049 const MDString *S = nullptr;
1050 SmallVector<Metadata *, 4> Args;
1052 // The expected hint is either a MDString or a MDNode with the first
1053 // operand a MDString.
1054 if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) {
1055 if (!MD || MD->getNumOperands() == 0)
1057 S = dyn_cast<MDString>(MD->getOperand(0));
1058 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i)
1059 Args.push_back(MD->getOperand(i));
1061 S = dyn_cast<MDString>(LoopID->getOperand(i));
1062 assert(Args.size() == 0 && "too many arguments for MDString");
1068 // Check if the hint starts with the loop metadata prefix.
1069 StringRef Name = S->getString();
1070 if (Args.size() == 1)
1071 setHint(Name, Args[0]);
1075 /// Checks string hint with one operand and set value if valid.
1076 void setHint(StringRef Name, Metadata *Arg) {
1077 if (!Name.startswith(Prefix()))
1079 Name = Name.substr(Prefix().size(), StringRef::npos);
1081 const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg);
1083 unsigned Val = C->getZExtValue();
1085 Hint *Hints[] = {&Width, &Interleave, &Force};
1086 for (auto H : Hints) {
1087 if (Name == H->Name) {
1088 if (H->validate(Val))
1091 DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n");
1097 /// Create a new hint from name / value pair.
1098 MDNode *createHintMetadata(StringRef Name, unsigned V) const {
1099 LLVMContext &Context = TheLoop->getHeader()->getContext();
1100 Metadata *MDs[] = {MDString::get(Context, Name),
1101 ConstantAsMetadata::get(
1102 ConstantInt::get(Type::getInt32Ty(Context), V))};
1103 return MDNode::get(Context, MDs);
1106 /// Matches metadata with hint name.
1107 bool matchesHintMetadataName(MDNode *Node, ArrayRef<Hint> HintTypes) {
1108 MDString* Name = dyn_cast<MDString>(Node->getOperand(0));
1112 for (auto H : HintTypes)
1113 if (Name->getString().endswith(H.Name))
1118 /// Sets current hints into loop metadata, keeping other values intact.
1119 void writeHintsToMetadata(ArrayRef<Hint> HintTypes) {
1120 if (HintTypes.size() == 0)
1123 // Reserve the first element to LoopID (see below).
1124 SmallVector<Metadata *, 4> MDs(1);
1125 // If the loop already has metadata, then ignore the existing operands.
1126 MDNode *LoopID = TheLoop->getLoopID();
1128 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
1129 MDNode *Node = cast<MDNode>(LoopID->getOperand(i));
1130 // If node in update list, ignore old value.
1131 if (!matchesHintMetadataName(Node, HintTypes))
1132 MDs.push_back(Node);
1136 // Now, add the missing hints.
1137 for (auto H : HintTypes)
1138 MDs.push_back(createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value));
1140 // Replace current metadata node with new one.
1141 LLVMContext &Context = TheLoop->getHeader()->getContext();
1142 MDNode *NewLoopID = MDNode::get(Context, MDs);
1143 // Set operand 0 to refer to the loop id itself.
1144 NewLoopID->replaceOperandWith(0, NewLoopID);
1146 TheLoop->setLoopID(NewLoopID);
1149 /// The loop these hints belong to.
1150 const Loop *TheLoop;
1153 static void emitAnalysisDiag(const Function *TheFunction, const Loop *TheLoop,
1154 const LoopVectorizeHints &Hints,
1155 const LoopAccessReport &Message) {
1156 const char *Name = Hints.vectorizeAnalysisPassName();
1157 LoopAccessReport::emitAnalysis(Message, TheFunction, TheLoop, Name);
1160 static void emitMissedWarning(Function *F, Loop *L,
1161 const LoopVectorizeHints &LH) {
1162 emitOptimizationRemarkMissed(F->getContext(), LV_NAME, *F, L->getStartLoc(),
1165 if (LH.getForce() == LoopVectorizeHints::FK_Enabled) {
1166 if (LH.getWidth() != 1)
1167 emitLoopVectorizeWarning(
1168 F->getContext(), *F, L->getStartLoc(),
1169 "failed explicitly specified loop vectorization");
1170 else if (LH.getInterleave() != 1)
1171 emitLoopInterleaveWarning(
1172 F->getContext(), *F, L->getStartLoc(),
1173 "failed explicitly specified loop interleaving");
1177 /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and
1178 /// to what vectorization factor.
1179 /// This class does not look at the profitability of vectorization, only the
1180 /// legality. This class has two main kinds of checks:
1181 /// * Memory checks - The code in canVectorizeMemory checks if vectorization
1182 /// will change the order of memory accesses in a way that will change the
1183 /// correctness of the program.
1184 /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory
1185 /// checks for a number of different conditions, such as the availability of a
1186 /// single induction variable, that all types are supported and vectorize-able,
1187 /// etc. This code reflects the capabilities of InnerLoopVectorizer.
1188 /// This class is also used by InnerLoopVectorizer for identifying
1189 /// induction variable and the different reduction variables.
1190 class LoopVectorizationLegality {
1192 LoopVectorizationLegality(Loop *L, ScalarEvolution *SE, DominatorTree *DT,
1193 TargetLibraryInfo *TLI, AliasAnalysis *AA,
1194 Function *F, const TargetTransformInfo *TTI,
1195 LoopAccessAnalysis *LAA,
1196 LoopVectorizationRequirements *R,
1197 const LoopVectorizeHints *H,
1198 SCEVUnionPredicate &Preds)
1199 : NumPredStores(0), TheLoop(L), SE(SE), TLI(TLI), TheFunction(F),
1200 TTI(TTI), DT(DT), LAA(LAA), LAI(nullptr),
1201 InterleaveInfo(SE, L, DT, Preds), Induction(nullptr),
1202 WidestIndTy(nullptr), HasFunNoNaNAttr(false), Requirements(R), Hints(H),
1205 /// ReductionList contains the reduction descriptors for all
1206 /// of the reductions that were found in the loop.
1207 typedef DenseMap<PHINode *, RecurrenceDescriptor> ReductionList;
1209 /// InductionList saves induction variables and maps them to the
1210 /// induction descriptor.
1211 typedef MapVector<PHINode*, InductionDescriptor> InductionList;
1213 /// Returns true if it is legal to vectorize this loop.
1214 /// This does not mean that it is profitable to vectorize this
1215 /// loop, only that it is legal to do so.
1216 bool canVectorize();
1218 /// Returns the Induction variable.
1219 PHINode *getInduction() { return Induction; }
1221 /// Returns the reduction variables found in the loop.
1222 ReductionList *getReductionVars() { return &Reductions; }
1224 /// Returns the induction variables found in the loop.
1225 InductionList *getInductionVars() { return &Inductions; }
1227 /// Returns the widest induction type.
1228 Type *getWidestInductionType() { return WidestIndTy; }
1230 /// Returns True if V is an induction variable in this loop.
1231 bool isInductionVariable(const Value *V);
1233 /// Returns True if PN is a reduction variable in this loop.
1234 bool isReductionVariable(PHINode *PN) { return Reductions.count(PN); }
1236 /// Return true if the block BB needs to be predicated in order for the loop
1237 /// to be vectorized.
1238 bool blockNeedsPredication(BasicBlock *BB);
1240 /// Check if this pointer is consecutive when vectorizing. This happens
1241 /// when the last index of the GEP is the induction variable, or that the
1242 /// pointer itself is an induction variable.
1243 /// This check allows us to vectorize A[idx] into a wide load/store.
1245 /// 0 - Stride is unknown or non-consecutive.
1246 /// 1 - Address is consecutive.
1247 /// -1 - Address is consecutive, and decreasing.
1248 int isConsecutivePtr(Value *Ptr);
1250 /// Returns true if the value V is uniform within the loop.
1251 bool isUniform(Value *V);
1253 /// Returns true if this instruction will remain scalar after vectorization.
1254 bool isUniformAfterVectorization(Instruction* I) { return Uniforms.count(I); }
1256 /// Returns the information that we collected about runtime memory check.
1257 const RuntimePointerChecking *getRuntimePointerChecking() const {
1258 return LAI->getRuntimePointerChecking();
1261 const LoopAccessInfo *getLAI() const {
1265 /// \brief Check if \p Instr belongs to any interleaved access group.
1266 bool isAccessInterleaved(Instruction *Instr) {
1267 return InterleaveInfo.isInterleaved(Instr);
1270 /// \brief Get the interleaved access group that \p Instr belongs to.
1271 const InterleaveGroup *getInterleavedAccessGroup(Instruction *Instr) {
1272 return InterleaveInfo.getInterleaveGroup(Instr);
1275 unsigned getMaxSafeDepDistBytes() { return LAI->getMaxSafeDepDistBytes(); }
1277 bool hasStride(Value *V) { return StrideSet.count(V); }
1278 bool mustCheckStrides() { return !StrideSet.empty(); }
1279 SmallPtrSet<Value *, 8>::iterator strides_begin() {
1280 return StrideSet.begin();
1282 SmallPtrSet<Value *, 8>::iterator strides_end() { return StrideSet.end(); }
1284 /// Returns true if the target machine supports masked store operation
1285 /// for the given \p DataType and kind of access to \p Ptr.
1286 bool isLegalMaskedStore(Type *DataType, Value *Ptr) {
1287 return isConsecutivePtr(Ptr) && TTI->isLegalMaskedStore(DataType);
1289 /// Returns true if the target machine supports masked load operation
1290 /// for the given \p DataType and kind of access to \p Ptr.
1291 bool isLegalMaskedLoad(Type *DataType, Value *Ptr) {
1292 return isConsecutivePtr(Ptr) && TTI->isLegalMaskedLoad(DataType);
1294 /// Returns true if vector representation of the instruction \p I
1296 bool isMaskRequired(const Instruction* I) {
1297 return (MaskedOp.count(I) != 0);
1299 unsigned getNumStores() const {
1300 return LAI->getNumStores();
1302 unsigned getNumLoads() const {
1303 return LAI->getNumLoads();
1305 unsigned getNumPredStores() const {
1306 return NumPredStores;
1309 /// Check if a single basic block loop is vectorizable.
1310 /// At this point we know that this is a loop with a constant trip count
1311 /// and we only need to check individual instructions.
1312 bool canVectorizeInstrs();
1314 /// When we vectorize loops we may change the order in which
1315 /// we read and write from memory. This method checks if it is
1316 /// legal to vectorize the code, considering only memory constrains.
1317 /// Returns true if the loop is vectorizable
1318 bool canVectorizeMemory();
1320 /// Return true if we can vectorize this loop using the IF-conversion
1322 bool canVectorizeWithIfConvert();
1324 /// Collect the variables that need to stay uniform after vectorization.
1325 void collectLoopUniforms();
1327 /// Return true if all of the instructions in the block can be speculatively
1328 /// executed. \p SafePtrs is a list of addresses that are known to be legal
1329 /// and we know that we can read from them without segfault.
1330 bool blockCanBePredicated(BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs);
1332 /// \brief Collect memory access with loop invariant strides.
1334 /// Looks for accesses like "a[i * StrideA]" where "StrideA" is loop
1336 void collectStridedAccess(Value *LoadOrStoreInst);
1338 /// Report an analysis message to assist the user in diagnosing loops that are
1339 /// not vectorized. These are handled as LoopAccessReport rather than
1340 /// VectorizationReport because the << operator of VectorizationReport returns
1341 /// LoopAccessReport.
1342 void emitAnalysis(const LoopAccessReport &Message) const {
1343 emitAnalysisDiag(TheFunction, TheLoop, *Hints, Message);
1346 unsigned NumPredStores;
1348 /// The loop that we evaluate.
1351 ScalarEvolution *SE;
1352 /// Target Library Info.
1353 TargetLibraryInfo *TLI;
1355 Function *TheFunction;
1356 /// Target Transform Info
1357 const TargetTransformInfo *TTI;
1360 // LoopAccess analysis.
1361 LoopAccessAnalysis *LAA;
1362 // And the loop-accesses info corresponding to this loop. This pointer is
1363 // null until canVectorizeMemory sets it up.
1364 const LoopAccessInfo *LAI;
1366 /// The interleave access information contains groups of interleaved accesses
1367 /// with the same stride and close to each other.
1368 InterleavedAccessInfo InterleaveInfo;
1370 // --- vectorization state --- //
1372 /// Holds the integer induction variable. This is the counter of the
1375 /// Holds the reduction variables.
1376 ReductionList Reductions;
1377 /// Holds all of the induction variables that we found in the loop.
1378 /// Notice that inductions don't need to start at zero and that induction
1379 /// variables can be pointers.
1380 InductionList Inductions;
1381 /// Holds the widest induction type encountered.
1384 /// Allowed outside users. This holds the reduction
1385 /// vars which can be accessed from outside the loop.
1386 SmallPtrSet<Value*, 4> AllowedExit;
1387 /// This set holds the variables which are known to be uniform after
1389 SmallPtrSet<Instruction*, 4> Uniforms;
1391 /// Can we assume the absence of NaNs.
1392 bool HasFunNoNaNAttr;
1394 /// Vectorization requirements that will go through late-evaluation.
1395 LoopVectorizationRequirements *Requirements;
1397 /// Used to emit an analysis of any legality issues.
1398 const LoopVectorizeHints *Hints;
1400 ValueToValueMap Strides;
1401 SmallPtrSet<Value *, 8> StrideSet;
1403 /// While vectorizing these instructions we have to generate a
1404 /// call to the appropriate masked intrinsic
1405 SmallPtrSet<const Instruction *, 8> MaskedOp;
1407 /// The SCEV predicate containing all the SCEV-related assumptions.
1408 /// The predicate is used to simplify SCEV expressions in the
1409 /// context of existing SCEV assumptions. The analysis will also
1410 /// add a minimal set of new predicates if this is required to
1411 /// enable vectorization/unrolling.
1412 SCEVUnionPredicate &Preds;
1415 /// LoopVectorizationCostModel - estimates the expected speedups due to
1417 /// In many cases vectorization is not profitable. This can happen because of
1418 /// a number of reasons. In this class we mainly attempt to predict the
1419 /// expected speedup/slowdowns due to the supported instruction set. We use the
1420 /// TargetTransformInfo to query the different backends for the cost of
1421 /// different operations.
1422 class LoopVectorizationCostModel {
1424 LoopVectorizationCostModel(Loop *L, ScalarEvolution *SE, LoopInfo *LI,
1425 LoopVectorizationLegality *Legal,
1426 const TargetTransformInfo &TTI,
1427 const TargetLibraryInfo *TLI, DemandedBits *DB,
1428 AssumptionCache *AC, const Function *F,
1429 const LoopVectorizeHints *Hints,
1430 SmallPtrSetImpl<const Value *> &ValuesToIgnore,
1431 SCEVUnionPredicate &Preds)
1432 : TheLoop(L), SE(SE), LI(LI), Legal(Legal), TTI(TTI), TLI(TLI), DB(DB),
1433 TheFunction(F), Hints(Hints), ValuesToIgnore(ValuesToIgnore) {}
1435 /// Information about vectorization costs
1436 struct VectorizationFactor {
1437 unsigned Width; // Vector width with best cost
1438 unsigned Cost; // Cost of the loop with that width
1440 /// \return The most profitable vectorization factor and the cost of that VF.
1441 /// This method checks every power of two up to VF. If UserVF is not ZERO
1442 /// then this vectorization factor will be selected if vectorization is
1444 VectorizationFactor selectVectorizationFactor(bool OptForSize);
1446 /// \return The size (in bits) of the smallest and widest types in the code
1447 /// that needs to be vectorized. We ignore values that remain scalar such as
1448 /// 64 bit loop indices.
1449 std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
1451 /// \return The desired interleave count.
1452 /// If interleave count has been specified by metadata it will be returned.
1453 /// Otherwise, the interleave count is computed and returned. VF and LoopCost
1454 /// are the selected vectorization factor and the cost of the selected VF.
1455 unsigned selectInterleaveCount(bool OptForSize, unsigned VF,
1458 /// \return The most profitable unroll factor.
1459 /// This method finds the best unroll-factor based on register pressure and
1460 /// other parameters. VF and LoopCost are the selected vectorization factor
1461 /// and the cost of the selected VF.
1462 unsigned computeInterleaveCount(bool OptForSize, unsigned VF,
1465 /// \brief A struct that represents some properties of the register usage
1467 struct RegisterUsage {
1468 /// Holds the number of loop invariant values that are used in the loop.
1469 unsigned LoopInvariantRegs;
1470 /// Holds the maximum number of concurrent live intervals in the loop.
1471 unsigned MaxLocalUsers;
1472 /// Holds the number of instructions in the loop.
1473 unsigned NumInstructions;
1476 /// \return Returns information about the register usages of the loop for the
1477 /// given vectorization factors.
1478 SmallVector<RegisterUsage, 8>
1479 calculateRegisterUsage(const SmallVector<unsigned, 8> &VFs);
1482 /// Returns the expected execution cost. The unit of the cost does
1483 /// not matter because we use the 'cost' units to compare different
1484 /// vector widths. The cost that is returned is *not* normalized by
1485 /// the factor width.
1486 unsigned expectedCost(unsigned VF);
1488 /// Returns the execution time cost of an instruction for a given vector
1489 /// width. Vector width of one means scalar.
1490 unsigned getInstructionCost(Instruction *I, unsigned VF);
1492 /// Returns whether the instruction is a load or store and will be a emitted
1493 /// as a vector operation.
1494 bool isConsecutiveLoadOrStore(Instruction *I);
1496 /// Report an analysis message to assist the user in diagnosing loops that are
1497 /// not vectorized. These are handled as LoopAccessReport rather than
1498 /// VectorizationReport because the << operator of VectorizationReport returns
1499 /// LoopAccessReport.
1500 void emitAnalysis(const LoopAccessReport &Message) const {
1501 emitAnalysisDiag(TheFunction, TheLoop, *Hints, Message);
1505 /// Map of scalar integer values to the smallest bitwidth they can be legally
1506 /// represented as. The vector equivalents of these values should be truncated
1508 MapVector<Instruction*,uint64_t> MinBWs;
1510 /// The loop that we evaluate.
1513 ScalarEvolution *SE;
1514 /// Loop Info analysis.
1516 /// Vectorization legality.
1517 LoopVectorizationLegality *Legal;
1518 /// Vector target information.
1519 const TargetTransformInfo &TTI;
1520 /// Target Library Info.
1521 const TargetLibraryInfo *TLI;
1522 /// Demanded bits analysis
1524 const Function *TheFunction;
1525 // Loop Vectorize Hint.
1526 const LoopVectorizeHints *Hints;
1527 // Values to ignore in the cost model.
1528 const SmallPtrSetImpl<const Value *> &ValuesToIgnore;
1531 /// \brief This holds vectorization requirements that must be verified late in
1532 /// the process. The requirements are set by legalize and costmodel. Once
1533 /// vectorization has been determined to be possible and profitable the
1534 /// requirements can be verified by looking for metadata or compiler options.
1535 /// For example, some loops require FP commutativity which is only allowed if
1536 /// vectorization is explicitly specified or if the fast-math compiler option
1537 /// has been provided.
1538 /// Late evaluation of these requirements allows helpful diagnostics to be
1539 /// composed that tells the user what need to be done to vectorize the loop. For
1540 /// example, by specifying #pragma clang loop vectorize or -ffast-math. Late
1541 /// evaluation should be used only when diagnostics can generated that can be
1542 /// followed by a non-expert user.
1543 class LoopVectorizationRequirements {
1545 LoopVectorizationRequirements()
1546 : NumRuntimePointerChecks(0), UnsafeAlgebraInst(nullptr) {}
1548 void addUnsafeAlgebraInst(Instruction *I) {
1549 // First unsafe algebra instruction.
1550 if (!UnsafeAlgebraInst)
1551 UnsafeAlgebraInst = I;
1554 void addRuntimePointerChecks(unsigned Num) { NumRuntimePointerChecks = Num; }
1556 bool doesNotMeet(Function *F, Loop *L, const LoopVectorizeHints &Hints) {
1557 const char *Name = Hints.vectorizeAnalysisPassName();
1558 bool Failed = false;
1559 if (UnsafeAlgebraInst && !Hints.allowReordering()) {
1560 emitOptimizationRemarkAnalysisFPCommute(
1561 F->getContext(), Name, *F, UnsafeAlgebraInst->getDebugLoc(),
1562 VectorizationReport() << "cannot prove it is safe to reorder "
1563 "floating-point operations");
1567 // Test if runtime memcheck thresholds are exceeded.
1568 bool PragmaThresholdReached =
1569 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold;
1570 bool ThresholdReached =
1571 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold;
1572 if ((ThresholdReached && !Hints.allowReordering()) ||
1573 PragmaThresholdReached) {
1574 emitOptimizationRemarkAnalysisAliasing(
1575 F->getContext(), Name, *F, L->getStartLoc(),
1576 VectorizationReport()
1577 << "cannot prove it is safe to reorder memory operations");
1578 DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
1586 unsigned NumRuntimePointerChecks;
1587 Instruction *UnsafeAlgebraInst;
1590 static void addInnerLoop(Loop &L, SmallVectorImpl<Loop *> &V) {
1592 return V.push_back(&L);
1594 for (Loop *InnerL : L)
1595 addInnerLoop(*InnerL, V);
1598 /// The LoopVectorize Pass.
1599 struct LoopVectorize : public FunctionPass {
1600 /// Pass identification, replacement for typeid
1603 explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true)
1605 DisableUnrolling(NoUnrolling),
1606 AlwaysVectorize(AlwaysVectorize) {
1607 initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
1610 ScalarEvolution *SE;
1612 TargetTransformInfo *TTI;
1614 BlockFrequencyInfo *BFI;
1615 TargetLibraryInfo *TLI;
1618 AssumptionCache *AC;
1619 LoopAccessAnalysis *LAA;
1620 bool DisableUnrolling;
1621 bool AlwaysVectorize;
1623 BlockFrequency ColdEntryFreq;
1625 bool runOnFunction(Function &F) override {
1626 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1627 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1628 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
1629 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1630 BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
1631 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
1632 TLI = TLIP ? &TLIP->getTLI() : nullptr;
1633 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
1634 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1635 LAA = &getAnalysis<LoopAccessAnalysis>();
1636 DB = &getAnalysis<DemandedBits>();
1638 // Compute some weights outside of the loop over the loops. Compute this
1639 // using a BranchProbability to re-use its scaling math.
1640 const BranchProbability ColdProb(1, 5); // 20%
1641 ColdEntryFreq = BlockFrequency(BFI->getEntryFreq()) * ColdProb;
1644 // 1. the target claims to have no vector registers, and
1645 // 2. interleaving won't help ILP.
1647 // The second condition is necessary because, even if the target has no
1648 // vector registers, loop vectorization may still enable scalar
1650 if (!TTI->getNumberOfRegisters(true) && TTI->getMaxInterleaveFactor(1) < 2)
1653 // Build up a worklist of inner-loops to vectorize. This is necessary as
1654 // the act of vectorizing or partially unrolling a loop creates new loops
1655 // and can invalidate iterators across the loops.
1656 SmallVector<Loop *, 8> Worklist;
1659 addInnerLoop(*L, Worklist);
1661 LoopsAnalyzed += Worklist.size();
1663 // Now walk the identified inner loops.
1664 bool Changed = false;
1665 while (!Worklist.empty())
1666 Changed |= processLoop(Worklist.pop_back_val());
1668 // Process each loop nest in the function.
1672 static void AddRuntimeUnrollDisableMetaData(Loop *L) {
1673 SmallVector<Metadata *, 4> MDs;
1674 // Reserve first location for self reference to the LoopID metadata node.
1675 MDs.push_back(nullptr);
1676 bool IsUnrollMetadata = false;
1677 MDNode *LoopID = L->getLoopID();
1679 // First find existing loop unrolling disable metadata.
1680 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
1681 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
1683 const MDString *S = dyn_cast<MDString>(MD->getOperand(0));
1685 S && S->getString().startswith("llvm.loop.unroll.disable");
1687 MDs.push_back(LoopID->getOperand(i));
1691 if (!IsUnrollMetadata) {
1692 // Add runtime unroll disable metadata.
1693 LLVMContext &Context = L->getHeader()->getContext();
1694 SmallVector<Metadata *, 1> DisableOperands;
1695 DisableOperands.push_back(
1696 MDString::get(Context, "llvm.loop.unroll.runtime.disable"));
1697 MDNode *DisableNode = MDNode::get(Context, DisableOperands);
1698 MDs.push_back(DisableNode);
1699 MDNode *NewLoopID = MDNode::get(Context, MDs);
1700 // Set operand 0 to refer to the loop id itself.
1701 NewLoopID->replaceOperandWith(0, NewLoopID);
1702 L->setLoopID(NewLoopID);
1706 bool processLoop(Loop *L) {
1707 assert(L->empty() && "Only process inner loops.");
1710 const std::string DebugLocStr = getDebugLocString(L);
1713 DEBUG(dbgs() << "\nLV: Checking a loop in \""
1714 << L->getHeader()->getParent()->getName() << "\" from "
1715 << DebugLocStr << "\n");
1717 LoopVectorizeHints Hints(L, DisableUnrolling);
1719 DEBUG(dbgs() << "LV: Loop hints:"
1721 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled
1723 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled
1725 : "?")) << " width=" << Hints.getWidth()
1726 << " unroll=" << Hints.getInterleave() << "\n");
1728 // Function containing loop
1729 Function *F = L->getHeader()->getParent();
1731 // Looking at the diagnostic output is the only way to determine if a loop
1732 // was vectorized (other than looking at the IR or machine code), so it
1733 // is important to generate an optimization remark for each loop. Most of
1734 // these messages are generated by emitOptimizationRemarkAnalysis. Remarks
1735 // generated by emitOptimizationRemark and emitOptimizationRemarkMissed are
1736 // less verbose reporting vectorized loops and unvectorized loops that may
1737 // benefit from vectorization, respectively.
1739 if (!Hints.allowVectorization(F, L, AlwaysVectorize)) {
1740 DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n");
1744 // Check the loop for a trip count threshold:
1745 // do not vectorize loops with a tiny trip count.
1746 const unsigned TC = SE->getSmallConstantTripCount(L);
1747 if (TC > 0u && TC < TinyTripCountVectorThreshold) {
1748 DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
1749 << "This loop is not worth vectorizing.");
1750 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled)
1751 DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
1753 DEBUG(dbgs() << "\n");
1754 emitAnalysisDiag(F, L, Hints, VectorizationReport()
1755 << "vectorization is not beneficial "
1756 "and is not explicitly forced");
1761 SCEVUnionPredicate Preds;
1763 // Check if it is legal to vectorize the loop.
1764 LoopVectorizationRequirements Requirements;
1765 LoopVectorizationLegality LVL(L, SE, DT, TLI, AA, F, TTI, LAA,
1766 &Requirements, &Hints, Preds);
1767 if (!LVL.canVectorize()) {
1768 DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
1769 emitMissedWarning(F, L, Hints);
1773 // Collect values we want to ignore in the cost model. This includes
1774 // type-promoting instructions we identified during reduction detection.
1775 SmallPtrSet<const Value *, 32> ValuesToIgnore;
1776 CodeMetrics::collectEphemeralValues(L, AC, ValuesToIgnore);
1777 for (auto &Reduction : *LVL.getReductionVars()) {
1778 RecurrenceDescriptor &RedDes = Reduction.second;
1779 SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts();
1780 ValuesToIgnore.insert(Casts.begin(), Casts.end());
1783 // Use the cost model.
1784 LoopVectorizationCostModel CM(L, SE, LI, &LVL, *TTI, TLI, DB, AC, F, &Hints,
1785 ValuesToIgnore, Preds);
1787 // Check the function attributes to find out if this function should be
1788 // optimized for size.
1789 bool OptForSize = Hints.getForce() != LoopVectorizeHints::FK_Enabled &&
1792 // Compute the weighted frequency of this loop being executed and see if it
1793 // is less than 20% of the function entry baseline frequency. Note that we
1794 // always have a canonical loop here because we think we *can* vectorize.
1795 // FIXME: This is hidden behind a flag due to pervasive problems with
1796 // exactly what block frequency models.
1797 if (LoopVectorizeWithBlockFrequency) {
1798 BlockFrequency LoopEntryFreq = BFI->getBlockFreq(L->getLoopPreheader());
1799 if (Hints.getForce() != LoopVectorizeHints::FK_Enabled &&
1800 LoopEntryFreq < ColdEntryFreq)
1804 // Check the function attributes to see if implicit floats are allowed.
1805 // FIXME: This check doesn't seem possibly correct -- what if the loop is
1806 // an integer loop and the vector instructions selected are purely integer
1807 // vector instructions?
1808 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
1809 DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat"
1810 "attribute is used.\n");
1813 VectorizationReport()
1814 << "loop not vectorized due to NoImplicitFloat attribute");
1815 emitMissedWarning(F, L, Hints);
1819 // Select the optimal vectorization factor.
1820 const LoopVectorizationCostModel::VectorizationFactor VF =
1821 CM.selectVectorizationFactor(OptForSize);
1823 // Select the interleave count.
1824 unsigned IC = CM.selectInterleaveCount(OptForSize, VF.Width, VF.Cost);
1826 // Get user interleave count.
1827 unsigned UserIC = Hints.getInterleave();
1829 // Identify the diagnostic messages that should be produced.
1830 std::string VecDiagMsg, IntDiagMsg;
1831 bool VectorizeLoop = true, InterleaveLoop = true;
1833 if (Requirements.doesNotMeet(F, L, Hints)) {
1834 DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization "
1836 emitMissedWarning(F, L, Hints);
1840 if (VF.Width == 1) {
1841 DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
1843 "the cost-model indicates that vectorization is not beneficial";
1844 VectorizeLoop = false;
1847 if (IC == 1 && UserIC <= 1) {
1848 // Tell the user interleaving is not beneficial.
1849 DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n");
1851 "the cost-model indicates that interleaving is not beneficial";
1852 InterleaveLoop = false;
1855 " and is explicitly disabled or interleave count is set to 1";
1856 } else if (IC > 1 && UserIC == 1) {
1857 // Tell the user interleaving is beneficial, but it explicitly disabled.
1859 << "LV: Interleaving is beneficial but is explicitly disabled.");
1860 IntDiagMsg = "the cost-model indicates that interleaving is beneficial "
1861 "but is explicitly disabled or interleave count is set to 1";
1862 InterleaveLoop = false;
1865 // Override IC if user provided an interleave count.
1866 IC = UserIC > 0 ? UserIC : IC;
1868 // Emit diagnostic messages, if any.
1869 const char *VAPassName = Hints.vectorizeAnalysisPassName();
1870 if (!VectorizeLoop && !InterleaveLoop) {
1871 // Do not vectorize or interleaving the loop.
1872 emitOptimizationRemarkAnalysis(F->getContext(), VAPassName, *F,
1873 L->getStartLoc(), VecDiagMsg);
1874 emitOptimizationRemarkAnalysis(F->getContext(), LV_NAME, *F,
1875 L->getStartLoc(), IntDiagMsg);
1877 } else if (!VectorizeLoop && InterleaveLoop) {
1878 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
1879 emitOptimizationRemarkAnalysis(F->getContext(), VAPassName, *F,
1880 L->getStartLoc(), VecDiagMsg);
1881 } else if (VectorizeLoop && !InterleaveLoop) {
1882 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in "
1883 << DebugLocStr << '\n');
1884 emitOptimizationRemarkAnalysis(F->getContext(), LV_NAME, *F,
1885 L->getStartLoc(), IntDiagMsg);
1886 } else if (VectorizeLoop && InterleaveLoop) {
1887 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in "
1888 << DebugLocStr << '\n');
1889 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
1892 if (!VectorizeLoop) {
1893 assert(IC > 1 && "interleave count should not be 1 or 0");
1894 // If we decided that it is not legal to vectorize the loop then
1896 InnerLoopUnroller Unroller(L, SE, LI, DT, TLI, TTI, IC, Preds);
1897 Unroller.vectorize(&LVL, CM.MinBWs);
1899 emitOptimizationRemark(F->getContext(), LV_NAME, *F, L->getStartLoc(),
1900 Twine("interleaved loop (interleaved count: ") +
1903 // If we decided that it is *legal* to vectorize the loop then do it.
1904 InnerLoopVectorizer LB(L, SE, LI, DT, TLI, TTI, VF.Width, IC, Preds);
1905 LB.vectorize(&LVL, CM.MinBWs);
1908 // Add metadata to disable runtime unrolling scalar loop when there's no
1909 // runtime check about strides and memory. Because at this situation,
1910 // scalar loop is rarely used not worthy to be unrolled.
1911 if (!LB.IsSafetyChecksAdded())
1912 AddRuntimeUnrollDisableMetaData(L);
1914 // Report the vectorization decision.
1915 emitOptimizationRemark(F->getContext(), LV_NAME, *F, L->getStartLoc(),
1916 Twine("vectorized loop (vectorization width: ") +
1917 Twine(VF.Width) + ", interleaved count: " +
1921 // Mark the loop as already vectorized to avoid vectorizing again.
1922 Hints.setAlreadyVectorized();
1924 DEBUG(verifyFunction(*L->getHeader()->getParent()));
1928 void getAnalysisUsage(AnalysisUsage &AU) const override {
1929 AU.addRequired<AssumptionCacheTracker>();
1930 AU.addRequiredID(LoopSimplifyID);
1931 AU.addRequiredID(LCSSAID);
1932 AU.addRequired<BlockFrequencyInfoWrapperPass>();
1933 AU.addRequired<DominatorTreeWrapperPass>();
1934 AU.addRequired<LoopInfoWrapperPass>();
1935 AU.addRequired<ScalarEvolutionWrapperPass>();
1936 AU.addRequired<TargetTransformInfoWrapperPass>();
1937 AU.addRequired<AAResultsWrapperPass>();
1938 AU.addRequired<LoopAccessAnalysis>();
1939 AU.addRequired<DemandedBits>();
1940 AU.addPreserved<LoopInfoWrapperPass>();
1941 AU.addPreserved<DominatorTreeWrapperPass>();
1942 AU.addPreserved<BasicAAWrapperPass>();
1943 AU.addPreserved<AAResultsWrapperPass>();
1944 AU.addPreserved<GlobalsAAWrapperPass>();
1949 } // end anonymous namespace
1951 //===----------------------------------------------------------------------===//
1952 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
1953 // LoopVectorizationCostModel.
1954 //===----------------------------------------------------------------------===//
1956 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
1957 // We need to place the broadcast of invariant variables outside the loop.
1958 Instruction *Instr = dyn_cast<Instruction>(V);
1960 (Instr && std::find(LoopVectorBody.begin(), LoopVectorBody.end(),
1961 Instr->getParent()) != LoopVectorBody.end());
1962 bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr;
1964 // Place the code for broadcasting invariant variables in the new preheader.
1965 IRBuilder<>::InsertPointGuard Guard(Builder);
1967 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
1969 // Broadcast the scalar into all locations in the vector.
1970 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
1975 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx,
1977 assert(Val->getType()->isVectorTy() && "Must be a vector");
1978 assert(Val->getType()->getScalarType()->isIntegerTy() &&
1979 "Elem must be an integer");
1980 assert(Step->getType() == Val->getType()->getScalarType() &&
1981 "Step has wrong type");
1982 // Create the types.
1983 Type *ITy = Val->getType()->getScalarType();
1984 VectorType *Ty = cast<VectorType>(Val->getType());
1985 int VLen = Ty->getNumElements();
1986 SmallVector<Constant*, 8> Indices;
1988 // Create a vector of consecutive numbers from zero to VF.
1989 for (int i = 0; i < VLen; ++i)
1990 Indices.push_back(ConstantInt::get(ITy, StartIdx + i));
1992 // Add the consecutive indices to the vector value.
1993 Constant *Cv = ConstantVector::get(Indices);
1994 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec");
1995 Step = Builder.CreateVectorSplat(VLen, Step);
1996 assert(Step->getType() == Val->getType() && "Invalid step vec");
1997 // FIXME: The newly created binary instructions should contain nsw/nuw flags,
1998 // which can be found from the original scalar operations.
1999 Step = Builder.CreateMul(Cv, Step);
2000 return Builder.CreateAdd(Val, Step, "induction");
2003 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) {
2004 assert(Ptr->getType()->isPointerTy() && "Unexpected non-ptr");
2005 // Make sure that the pointer does not point to structs.
2006 if (Ptr->getType()->getPointerElementType()->isAggregateType())
2009 // If this value is a pointer induction variable we know it is consecutive.
2010 PHINode *Phi = dyn_cast_or_null<PHINode>(Ptr);
2011 if (Phi && Inductions.count(Phi)) {
2012 InductionDescriptor II = Inductions[Phi];
2013 return II.getConsecutiveDirection();
2016 GetElementPtrInst *Gep = getGEPInstruction(Ptr);
2020 unsigned NumOperands = Gep->getNumOperands();
2021 Value *GpPtr = Gep->getPointerOperand();
2022 // If this GEP value is a consecutive pointer induction variable and all of
2023 // the indices are constant then we know it is consecutive. We can
2024 Phi = dyn_cast<PHINode>(GpPtr);
2025 if (Phi && Inductions.count(Phi)) {
2027 // Make sure that the pointer does not point to structs.
2028 PointerType *GepPtrType = cast<PointerType>(GpPtr->getType());
2029 if (GepPtrType->getElementType()->isAggregateType())
2032 // Make sure that all of the index operands are loop invariant.
2033 for (unsigned i = 1; i < NumOperands; ++i)
2034 if (!SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop))
2037 InductionDescriptor II = Inductions[Phi];
2038 return II.getConsecutiveDirection();
2041 unsigned InductionOperand = getGEPInductionOperand(Gep);
2043 // Check that all of the gep indices are uniform except for our induction
2045 for (unsigned i = 0; i != NumOperands; ++i)
2046 if (i != InductionOperand &&
2047 !SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop))
2050 // We can emit wide load/stores only if the last non-zero index is the
2051 // induction variable.
2052 const SCEV *Last = nullptr;
2053 if (!Strides.count(Gep))
2054 Last = SE->getSCEV(Gep->getOperand(InductionOperand));
2056 // Because of the multiplication by a stride we can have a s/zext cast.
2057 // We are going to replace this stride by 1 so the cast is safe to ignore.
2059 // %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ]
2060 // %0 = trunc i64 %indvars.iv to i32
2061 // %mul = mul i32 %0, %Stride1
2062 // %idxprom = zext i32 %mul to i64 << Safe cast.
2063 // %arrayidx = getelementptr inbounds i32* %B, i64 %idxprom
2065 Last = replaceSymbolicStrideSCEV(SE, Strides, Preds,
2066 Gep->getOperand(InductionOperand), Gep);
2067 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(Last))
2069 (C->getSCEVType() == scSignExtend || C->getSCEVType() == scZeroExtend)
2073 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Last)) {
2074 const SCEV *Step = AR->getStepRecurrence(*SE);
2076 // The memory is consecutive because the last index is consecutive
2077 // and all other indices are loop invariant.
2080 if (Step->isAllOnesValue())
2087 bool LoopVectorizationLegality::isUniform(Value *V) {
2088 return LAI->isUniform(V);
2091 InnerLoopVectorizer::VectorParts&
2092 InnerLoopVectorizer::getVectorValue(Value *V) {
2093 assert(V != Induction && "The new induction variable should not be used.");
2094 assert(!V->getType()->isVectorTy() && "Can't widen a vector");
2096 // If we have a stride that is replaced by one, do it here.
2097 if (Legal->hasStride(V))
2098 V = ConstantInt::get(V->getType(), 1);
2100 // If we have this scalar in the map, return it.
2101 if (WidenMap.has(V))
2102 return WidenMap.get(V);
2104 // If this scalar is unknown, assume that it is a constant or that it is
2105 // loop invariant. Broadcast V and save the value for future uses.
2106 Value *B = getBroadcastInstrs(V);
2107 return WidenMap.splat(V, B);
2110 Value *InnerLoopVectorizer::reverseVector(Value *Vec) {
2111 assert(Vec->getType()->isVectorTy() && "Invalid type");
2112 SmallVector<Constant*, 8> ShuffleMask;
2113 for (unsigned i = 0; i < VF; ++i)
2114 ShuffleMask.push_back(Builder.getInt32(VF - i - 1));
2116 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()),
2117 ConstantVector::get(ShuffleMask),
2121 // Get a mask to interleave \p NumVec vectors into a wide vector.
2122 // I.e. <0, VF, VF*2, ..., VF*(NumVec-1), 1, VF+1, VF*2+1, ...>
2123 // E.g. For 2 interleaved vectors, if VF is 4, the mask is:
2124 // <0, 4, 1, 5, 2, 6, 3, 7>
2125 static Constant *getInterleavedMask(IRBuilder<> &Builder, unsigned VF,
2127 SmallVector<Constant *, 16> Mask;
2128 for (unsigned i = 0; i < VF; i++)
2129 for (unsigned j = 0; j < NumVec; j++)
2130 Mask.push_back(Builder.getInt32(j * VF + i));
2132 return ConstantVector::get(Mask);
2135 // Get the strided mask starting from index \p Start.
2136 // I.e. <Start, Start + Stride, ..., Start + Stride*(VF-1)>
2137 static Constant *getStridedMask(IRBuilder<> &Builder, unsigned Start,
2138 unsigned Stride, unsigned VF) {
2139 SmallVector<Constant *, 16> Mask;
2140 for (unsigned i = 0; i < VF; i++)
2141 Mask.push_back(Builder.getInt32(Start + i * Stride));
2143 return ConstantVector::get(Mask);
2146 // Get a mask of two parts: The first part consists of sequential integers
2147 // starting from 0, The second part consists of UNDEFs.
2148 // I.e. <0, 1, 2, ..., NumInt - 1, undef, ..., undef>
2149 static Constant *getSequentialMask(IRBuilder<> &Builder, unsigned NumInt,
2150 unsigned NumUndef) {
2151 SmallVector<Constant *, 16> Mask;
2152 for (unsigned i = 0; i < NumInt; i++)
2153 Mask.push_back(Builder.getInt32(i));
2155 Constant *Undef = UndefValue::get(Builder.getInt32Ty());
2156 for (unsigned i = 0; i < NumUndef; i++)
2157 Mask.push_back(Undef);
2159 return ConstantVector::get(Mask);
2162 // Concatenate two vectors with the same element type. The 2nd vector should
2163 // not have more elements than the 1st vector. If the 2nd vector has less
2164 // elements, extend it with UNDEFs.
2165 static Value *ConcatenateTwoVectors(IRBuilder<> &Builder, Value *V1,
2167 VectorType *VecTy1 = dyn_cast<VectorType>(V1->getType());
2168 VectorType *VecTy2 = dyn_cast<VectorType>(V2->getType());
2169 assert(VecTy1 && VecTy2 &&
2170 VecTy1->getScalarType() == VecTy2->getScalarType() &&
2171 "Expect two vectors with the same element type");
2173 unsigned NumElts1 = VecTy1->getNumElements();
2174 unsigned NumElts2 = VecTy2->getNumElements();
2175 assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements");
2177 if (NumElts1 > NumElts2) {
2178 // Extend with UNDEFs.
2180 getSequentialMask(Builder, NumElts2, NumElts1 - NumElts2);
2181 V2 = Builder.CreateShuffleVector(V2, UndefValue::get(VecTy2), ExtMask);
2184 Constant *Mask = getSequentialMask(Builder, NumElts1 + NumElts2, 0);
2185 return Builder.CreateShuffleVector(V1, V2, Mask);
2188 // Concatenate vectors in the given list. All vectors have the same type.
2189 static Value *ConcatenateVectors(IRBuilder<> &Builder,
2190 ArrayRef<Value *> InputList) {
2191 unsigned NumVec = InputList.size();
2192 assert(NumVec > 1 && "Should be at least two vectors");
2194 SmallVector<Value *, 8> ResList;
2195 ResList.append(InputList.begin(), InputList.end());
2197 SmallVector<Value *, 8> TmpList;
2198 for (unsigned i = 0; i < NumVec - 1; i += 2) {
2199 Value *V0 = ResList[i], *V1 = ResList[i + 1];
2200 assert((V0->getType() == V1->getType() || i == NumVec - 2) &&
2201 "Only the last vector may have a different type");
2203 TmpList.push_back(ConcatenateTwoVectors(Builder, V0, V1));
2206 // Push the last vector if the total number of vectors is odd.
2207 if (NumVec % 2 != 0)
2208 TmpList.push_back(ResList[NumVec - 1]);
2211 NumVec = ResList.size();
2212 } while (NumVec > 1);
2217 // Try to vectorize the interleave group that \p Instr belongs to.
2219 // E.g. Translate following interleaved load group (factor = 3):
2220 // for (i = 0; i < N; i+=3) {
2221 // R = Pic[i]; // Member of index 0
2222 // G = Pic[i+1]; // Member of index 1
2223 // B = Pic[i+2]; // Member of index 2
2224 // ... // do something to R, G, B
2227 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B
2228 // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements
2229 // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements
2230 // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements
2232 // Or translate following interleaved store group (factor = 3):
2233 // for (i = 0; i < N; i+=3) {
2234 // ... do something to R, G, B
2235 // Pic[i] = R; // Member of index 0
2236 // Pic[i+1] = G; // Member of index 1
2237 // Pic[i+2] = B; // Member of index 2
2240 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7>
2241 // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u>
2242 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec,
2243 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements
2244 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B
2245 void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr) {
2246 const InterleaveGroup *Group = Legal->getInterleavedAccessGroup(Instr);
2247 assert(Group && "Fail to get an interleaved access group.");
2249 // Skip if current instruction is not the insert position.
2250 if (Instr != Group->getInsertPos())
2253 LoadInst *LI = dyn_cast<LoadInst>(Instr);
2254 StoreInst *SI = dyn_cast<StoreInst>(Instr);
2255 Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand();
2257 // Prepare for the vector type of the interleaved load/store.
2258 Type *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType();
2259 unsigned InterleaveFactor = Group->getFactor();
2260 Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF);
2261 Type *PtrTy = VecTy->getPointerTo(Ptr->getType()->getPointerAddressSpace());
2263 // Prepare for the new pointers.
2264 setDebugLocFromInst(Builder, Ptr);
2265 VectorParts &PtrParts = getVectorValue(Ptr);
2266 SmallVector<Value *, 2> NewPtrs;
2267 unsigned Index = Group->getIndex(Instr);
2268 for (unsigned Part = 0; Part < UF; Part++) {
2269 // Extract the pointer for current instruction from the pointer vector. A
2270 // reverse access uses the pointer in the last lane.
2271 Value *NewPtr = Builder.CreateExtractElement(
2273 Group->isReverse() ? Builder.getInt32(VF - 1) : Builder.getInt32(0));
2275 // Notice current instruction could be any index. Need to adjust the address
2276 // to the member of index 0.
2278 // E.g. a = A[i+1]; // Member of index 1 (Current instruction)
2279 // b = A[i]; // Member of index 0
2280 // Current pointer is pointed to A[i+1], adjust it to A[i].
2282 // E.g. A[i+1] = a; // Member of index 1
2283 // A[i] = b; // Member of index 0
2284 // A[i+2] = c; // Member of index 2 (Current instruction)
2285 // Current pointer is pointed to A[i+2], adjust it to A[i].
2286 NewPtr = Builder.CreateGEP(NewPtr, Builder.getInt32(-Index));
2288 // Cast to the vector pointer type.
2289 NewPtrs.push_back(Builder.CreateBitCast(NewPtr, PtrTy));
2292 setDebugLocFromInst(Builder, Instr);
2293 Value *UndefVec = UndefValue::get(VecTy);
2295 // Vectorize the interleaved load group.
2297 for (unsigned Part = 0; Part < UF; Part++) {
2298 Instruction *NewLoadInstr = Builder.CreateAlignedLoad(
2299 NewPtrs[Part], Group->getAlignment(), "wide.vec");
2301 for (unsigned i = 0; i < InterleaveFactor; i++) {
2302 Instruction *Member = Group->getMember(i);
2304 // Skip the gaps in the group.
2308 Constant *StrideMask = getStridedMask(Builder, i, InterleaveFactor, VF);
2309 Value *StridedVec = Builder.CreateShuffleVector(
2310 NewLoadInstr, UndefVec, StrideMask, "strided.vec");
2312 // If this member has different type, cast the result type.
2313 if (Member->getType() != ScalarTy) {
2314 VectorType *OtherVTy = VectorType::get(Member->getType(), VF);
2315 StridedVec = Builder.CreateBitOrPointerCast(StridedVec, OtherVTy);
2318 VectorParts &Entry = WidenMap.get(Member);
2320 Group->isReverse() ? reverseVector(StridedVec) : StridedVec;
2323 propagateMetadata(NewLoadInstr, Instr);
2328 // The sub vector type for current instruction.
2329 VectorType *SubVT = VectorType::get(ScalarTy, VF);
2331 // Vectorize the interleaved store group.
2332 for (unsigned Part = 0; Part < UF; Part++) {
2333 // Collect the stored vector from each member.
2334 SmallVector<Value *, 4> StoredVecs;
2335 for (unsigned i = 0; i < InterleaveFactor; i++) {
2336 // Interleaved store group doesn't allow a gap, so each index has a member
2337 Instruction *Member = Group->getMember(i);
2338 assert(Member && "Fail to get a member from an interleaved store group");
2341 getVectorValue(dyn_cast<StoreInst>(Member)->getValueOperand())[Part];
2342 if (Group->isReverse())
2343 StoredVec = reverseVector(StoredVec);
2345 // If this member has different type, cast it to an unified type.
2346 if (StoredVec->getType() != SubVT)
2347 StoredVec = Builder.CreateBitOrPointerCast(StoredVec, SubVT);
2349 StoredVecs.push_back(StoredVec);
2352 // Concatenate all vectors into a wide vector.
2353 Value *WideVec = ConcatenateVectors(Builder, StoredVecs);
2355 // Interleave the elements in the wide vector.
2356 Constant *IMask = getInterleavedMask(Builder, VF, InterleaveFactor);
2357 Value *IVec = Builder.CreateShuffleVector(WideVec, UndefVec, IMask,
2360 Instruction *NewStoreInstr =
2361 Builder.CreateAlignedStore(IVec, NewPtrs[Part], Group->getAlignment());
2362 propagateMetadata(NewStoreInstr, Instr);
2366 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) {
2367 // Attempt to issue a wide load.
2368 LoadInst *LI = dyn_cast<LoadInst>(Instr);
2369 StoreInst *SI = dyn_cast<StoreInst>(Instr);
2371 assert((LI || SI) && "Invalid Load/Store instruction");
2373 // Try to vectorize the interleave group if this access is interleaved.
2374 if (Legal->isAccessInterleaved(Instr))
2375 return vectorizeInterleaveGroup(Instr);
2377 Type *ScalarDataTy = LI ? LI->getType() : SI->getValueOperand()->getType();
2378 Type *DataTy = VectorType::get(ScalarDataTy, VF);
2379 Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand();
2380 unsigned Alignment = LI ? LI->getAlignment() : SI->getAlignment();
2381 // An alignment of 0 means target abi alignment. We need to use the scalar's
2382 // target abi alignment in such a case.
2383 const DataLayout &DL = Instr->getModule()->getDataLayout();
2385 Alignment = DL.getABITypeAlignment(ScalarDataTy);
2386 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace();
2387 unsigned ScalarAllocatedSize = DL.getTypeAllocSize(ScalarDataTy);
2388 unsigned VectorElementSize = DL.getTypeStoreSize(DataTy) / VF;
2390 if (SI && Legal->blockNeedsPredication(SI->getParent()) &&
2391 !Legal->isMaskRequired(SI))
2392 return scalarizeInstruction(Instr, true);
2394 if (ScalarAllocatedSize != VectorElementSize)
2395 return scalarizeInstruction(Instr);
2397 // If the pointer is loop invariant or if it is non-consecutive,
2398 // scalarize the load.
2399 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
2400 bool Reverse = ConsecutiveStride < 0;
2401 bool UniformLoad = LI && Legal->isUniform(Ptr);
2402 if (!ConsecutiveStride || UniformLoad)
2403 return scalarizeInstruction(Instr);
2405 Constant *Zero = Builder.getInt32(0);
2406 VectorParts &Entry = WidenMap.get(Instr);
2408 // Handle consecutive loads/stores.
2409 GetElementPtrInst *Gep = getGEPInstruction(Ptr);
2410 if (Gep && Legal->isInductionVariable(Gep->getPointerOperand())) {
2411 setDebugLocFromInst(Builder, Gep);
2412 Value *PtrOperand = Gep->getPointerOperand();
2413 Value *FirstBasePtr = getVectorValue(PtrOperand)[0];
2414 FirstBasePtr = Builder.CreateExtractElement(FirstBasePtr, Zero);
2416 // Create the new GEP with the new induction variable.
2417 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
2418 Gep2->setOperand(0, FirstBasePtr);
2419 Gep2->setName("gep.indvar.base");
2420 Ptr = Builder.Insert(Gep2);
2422 setDebugLocFromInst(Builder, Gep);
2423 assert(SE->isLoopInvariant(SE->getSCEV(Gep->getPointerOperand()),
2424 OrigLoop) && "Base ptr must be invariant");
2426 // The last index does not have to be the induction. It can be
2427 // consecutive and be a function of the index. For example A[I+1];
2428 unsigned NumOperands = Gep->getNumOperands();
2429 unsigned InductionOperand = getGEPInductionOperand(Gep);
2430 // Create the new GEP with the new induction variable.
2431 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
2433 for (unsigned i = 0; i < NumOperands; ++i) {
2434 Value *GepOperand = Gep->getOperand(i);
2435 Instruction *GepOperandInst = dyn_cast<Instruction>(GepOperand);
2437 // Update last index or loop invariant instruction anchored in loop.
2438 if (i == InductionOperand ||
2439 (GepOperandInst && OrigLoop->contains(GepOperandInst))) {
2440 assert((i == InductionOperand ||
2441 SE->isLoopInvariant(SE->getSCEV(GepOperandInst), OrigLoop)) &&
2442 "Must be last index or loop invariant");
2444 VectorParts &GEPParts = getVectorValue(GepOperand);
2445 Value *Index = GEPParts[0];
2446 Index = Builder.CreateExtractElement(Index, Zero);
2447 Gep2->setOperand(i, Index);
2448 Gep2->setName("gep.indvar.idx");
2451 Ptr = Builder.Insert(Gep2);
2453 // Use the induction element ptr.
2454 assert(isa<PHINode>(Ptr) && "Invalid induction ptr");
2455 setDebugLocFromInst(Builder, Ptr);
2456 VectorParts &PtrVal = getVectorValue(Ptr);
2457 Ptr = Builder.CreateExtractElement(PtrVal[0], Zero);
2460 VectorParts Mask = createBlockInMask(Instr->getParent());
2463 assert(!Legal->isUniform(SI->getPointerOperand()) &&
2464 "We do not allow storing to uniform addresses");
2465 setDebugLocFromInst(Builder, SI);
2466 // We don't want to update the value in the map as it might be used in
2467 // another expression. So don't use a reference type for "StoredVal".
2468 VectorParts StoredVal = getVectorValue(SI->getValueOperand());
2470 for (unsigned Part = 0; Part < UF; ++Part) {
2471 // Calculate the pointer for the specific unroll-part.
2473 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF));
2476 // If we store to reverse consecutive memory locations, then we need
2477 // to reverse the order of elements in the stored value.
2478 StoredVal[Part] = reverseVector(StoredVal[Part]);
2479 // If the address is consecutive but reversed, then the
2480 // wide store needs to start at the last vector element.
2481 PartPtr = Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF));
2482 PartPtr = Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF));
2483 Mask[Part] = reverseVector(Mask[Part]);
2486 Value *VecPtr = Builder.CreateBitCast(PartPtr,
2487 DataTy->getPointerTo(AddressSpace));
2490 if (Legal->isMaskRequired(SI))
2491 NewSI = Builder.CreateMaskedStore(StoredVal[Part], VecPtr, Alignment,
2494 NewSI = Builder.CreateAlignedStore(StoredVal[Part], VecPtr, Alignment);
2495 propagateMetadata(NewSI, SI);
2501 assert(LI && "Must have a load instruction");
2502 setDebugLocFromInst(Builder, LI);
2503 for (unsigned Part = 0; Part < UF; ++Part) {
2504 // Calculate the pointer for the specific unroll-part.
2506 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF));
2509 // If the address is consecutive but reversed, then the
2510 // wide load needs to start at the last vector element.
2511 PartPtr = Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF));
2512 PartPtr = Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF));
2513 Mask[Part] = reverseVector(Mask[Part]);
2517 Value *VecPtr = Builder.CreateBitCast(PartPtr,
2518 DataTy->getPointerTo(AddressSpace));
2519 if (Legal->isMaskRequired(LI))
2520 NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part],
2521 UndefValue::get(DataTy),
2522 "wide.masked.load");
2524 NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load");
2525 propagateMetadata(NewLI, LI);
2526 Entry[Part] = Reverse ? reverseVector(NewLI) : NewLI;
2530 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr,
2531 bool IfPredicateStore) {
2532 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
2533 // Holds vector parameters or scalars, in case of uniform vals.
2534 SmallVector<VectorParts, 4> Params;
2536 setDebugLocFromInst(Builder, Instr);
2538 // Find all of the vectorized parameters.
2539 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
2540 Value *SrcOp = Instr->getOperand(op);
2542 // If we are accessing the old induction variable, use the new one.
2543 if (SrcOp == OldInduction) {
2544 Params.push_back(getVectorValue(SrcOp));
2548 // Try using previously calculated values.
2549 Instruction *SrcInst = dyn_cast<Instruction>(SrcOp);
2551 // If the src is an instruction that appeared earlier in the basic block,
2552 // then it should already be vectorized.
2553 if (SrcInst && OrigLoop->contains(SrcInst)) {
2554 assert(WidenMap.has(SrcInst) && "Source operand is unavailable");
2555 // The parameter is a vector value from earlier.
2556 Params.push_back(WidenMap.get(SrcInst));
2558 // The parameter is a scalar from outside the loop. Maybe even a constant.
2559 VectorParts Scalars;
2560 Scalars.append(UF, SrcOp);
2561 Params.push_back(Scalars);
2565 assert(Params.size() == Instr->getNumOperands() &&
2566 "Invalid number of operands");
2568 // Does this instruction return a value ?
2569 bool IsVoidRetTy = Instr->getType()->isVoidTy();
2571 Value *UndefVec = IsVoidRetTy ? nullptr :
2572 UndefValue::get(VectorType::get(Instr->getType(), VF));
2573 // Create a new entry in the WidenMap and initialize it to Undef or Null.
2574 VectorParts &VecResults = WidenMap.splat(Instr, UndefVec);
2577 if (IfPredicateStore) {
2578 assert(Instr->getParent()->getSinglePredecessor() &&
2579 "Only support single predecessor blocks");
2580 Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(),
2581 Instr->getParent());
2584 // For each vector unroll 'part':
2585 for (unsigned Part = 0; Part < UF; ++Part) {
2586 // For each scalar that we create:
2587 for (unsigned Width = 0; Width < VF; ++Width) {
2590 Value *Cmp = nullptr;
2591 if (IfPredicateStore) {
2592 Cmp = Builder.CreateExtractElement(Cond[Part], Builder.getInt32(Width));
2593 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cmp,
2594 ConstantInt::get(Cmp->getType(), 1));
2597 Instruction *Cloned = Instr->clone();
2599 Cloned->setName(Instr->getName() + ".cloned");
2600 // Replace the operands of the cloned instructions with extracted scalars.
2601 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
2602 Value *Op = Params[op][Part];
2603 // Param is a vector. Need to extract the right lane.
2604 if (Op->getType()->isVectorTy())
2605 Op = Builder.CreateExtractElement(Op, Builder.getInt32(Width));
2606 Cloned->setOperand(op, Op);
2609 // Place the cloned scalar in the new loop.
2610 Builder.Insert(Cloned);
2612 // If the original scalar returns a value we need to place it in a vector
2613 // so that future users will be able to use it.
2615 VecResults[Part] = Builder.CreateInsertElement(VecResults[Part], Cloned,
2616 Builder.getInt32(Width));
2618 if (IfPredicateStore)
2619 PredicatedStores.push_back(std::make_pair(cast<StoreInst>(Cloned),
2625 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start,
2626 Value *End, Value *Step,
2628 BasicBlock *Header = L->getHeader();
2629 BasicBlock *Latch = L->getLoopLatch();
2630 // As we're just creating this loop, it's possible no latch exists
2631 // yet. If so, use the header as this will be a single block loop.
2635 IRBuilder<> Builder(&*Header->getFirstInsertionPt());
2636 setDebugLocFromInst(Builder, getDebugLocFromInstOrOperands(OldInduction));
2637 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index");
2639 Builder.SetInsertPoint(Latch->getTerminator());
2641 // Create i+1 and fill the PHINode.
2642 Value *Next = Builder.CreateAdd(Induction, Step, "index.next");
2643 Induction->addIncoming(Start, L->getLoopPreheader());
2644 Induction->addIncoming(Next, Latch);
2645 // Create the compare.
2646 Value *ICmp = Builder.CreateICmpEQ(Next, End);
2647 Builder.CreateCondBr(ICmp, L->getExitBlock(), Header);
2649 // Now we have two terminators. Remove the old one from the block.
2650 Latch->getTerminator()->eraseFromParent();
2655 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) {
2659 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
2660 // Find the loop boundaries.
2661 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(OrigLoop);
2662 assert(BackedgeTakenCount != SE->getCouldNotCompute() &&
2663 "Invalid loop count");
2665 Type *IdxTy = Legal->getWidestInductionType();
2667 // The exit count might have the type of i64 while the phi is i32. This can
2668 // happen if we have an induction variable that is sign extended before the
2669 // compare. The only way that we get a backedge taken count is that the
2670 // induction variable was signed and as such will not overflow. In such a case
2671 // truncation is legal.
2672 if (BackedgeTakenCount->getType()->getPrimitiveSizeInBits() >
2673 IdxTy->getPrimitiveSizeInBits())
2674 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy);
2675 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy);
2677 // Get the total trip count from the count by adding 1.
2678 const SCEV *ExitCount = SE->getAddExpr(
2679 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
2681 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
2683 // Expand the trip count and place the new instructions in the preheader.
2684 // Notice that the pre-header does not change, only the loop body.
2685 SCEVExpander Exp(*SE, DL, "induction");
2687 // Count holds the overall loop count (N).
2688 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
2689 L->getLoopPreheader()->getTerminator());
2691 if (TripCount->getType()->isPointerTy())
2693 CastInst::CreatePointerCast(TripCount, IdxTy,
2694 "exitcount.ptrcnt.to.int",
2695 L->getLoopPreheader()->getTerminator());
2700 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) {
2701 if (VectorTripCount)
2702 return VectorTripCount;
2704 Value *TC = getOrCreateTripCount(L);
2705 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
2707 // Now we need to generate the expression for N - (N % VF), which is
2708 // the part that the vectorized body will execute.
2709 // The loop step is equal to the vectorization factor (num of SIMD elements)
2710 // times the unroll factor (num of SIMD instructions).
2711 Constant *Step = ConstantInt::get(TC->getType(), VF * UF);
2712 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf");
2713 VectorTripCount = Builder.CreateSub(TC, R, "n.vec");
2715 return VectorTripCount;
2718 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L,
2719 BasicBlock *Bypass) {
2720 Value *Count = getOrCreateTripCount(L);
2721 BasicBlock *BB = L->getLoopPreheader();
2722 IRBuilder<> Builder(BB->getTerminator());
2724 // Generate code to check that the loop's trip count that we computed by
2725 // adding one to the backedge-taken count will not overflow.
2726 Value *CheckMinIters =
2727 Builder.CreateICmpULT(Count,
2728 ConstantInt::get(Count->getType(), VF * UF),
2731 BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(),
2732 "min.iters.checked");
2733 if (L->getParentLoop())
2734 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI);
2735 ReplaceInstWithInst(BB->getTerminator(),
2736 BranchInst::Create(Bypass, NewBB, CheckMinIters));
2737 LoopBypassBlocks.push_back(BB);
2740 void InnerLoopVectorizer::emitVectorLoopEnteredCheck(Loop *L,
2741 BasicBlock *Bypass) {
2742 Value *TC = getOrCreateVectorTripCount(L);
2743 BasicBlock *BB = L->getLoopPreheader();
2744 IRBuilder<> Builder(BB->getTerminator());
2746 // Now, compare the new count to zero. If it is zero skip the vector loop and
2747 // jump to the scalar loop.
2748 Value *Cmp = Builder.CreateICmpEQ(TC, Constant::getNullValue(TC->getType()),
2751 // Generate code to check that the loop's trip count that we computed by
2752 // adding one to the backedge-taken count will not overflow.
2753 BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(),
2755 if (L->getParentLoop())
2756 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI);
2757 ReplaceInstWithInst(BB->getTerminator(),
2758 BranchInst::Create(Bypass, NewBB, Cmp));
2759 LoopBypassBlocks.push_back(BB);
2762 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) {
2763 BasicBlock *BB = L->getLoopPreheader();
2765 // Generate the code to check that the SCEV assumptions that we made.
2766 // We want the new basic block to start at the first instruction in a
2767 // sequence of instructions that form a check.
2768 SCEVExpander Exp(*SE, Bypass->getModule()->getDataLayout(), "scev.check");
2769 Value *SCEVCheck = Exp.expandCodeForPredicate(&Preds, BB->getTerminator());
2771 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck))
2775 // Create a new block containing the stride check.
2776 BB->setName("vector.scevcheck");
2777 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph");
2778 if (L->getParentLoop())
2779 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI);
2780 ReplaceInstWithInst(BB->getTerminator(),
2781 BranchInst::Create(Bypass, NewBB, SCEVCheck));
2782 LoopBypassBlocks.push_back(BB);
2783 AddedSafetyChecks = true;
2786 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L,
2787 BasicBlock *Bypass) {
2788 BasicBlock *BB = L->getLoopPreheader();
2790 // Generate the code that checks in runtime if arrays overlap. We put the
2791 // checks into a separate block to make the more common case of few elements
2793 Instruction *FirstCheckInst;
2794 Instruction *MemRuntimeCheck;
2795 std::tie(FirstCheckInst, MemRuntimeCheck) =
2796 Legal->getLAI()->addRuntimeChecks(BB->getTerminator());
2797 if (!MemRuntimeCheck)
2800 // Create a new block containing the memory check.
2801 BB->setName("vector.memcheck");
2802 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph");
2803 if (L->getParentLoop())
2804 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI);
2805 ReplaceInstWithInst(BB->getTerminator(),
2806 BranchInst::Create(Bypass, NewBB, MemRuntimeCheck));
2807 LoopBypassBlocks.push_back(BB);
2808 AddedSafetyChecks = true;
2812 void InnerLoopVectorizer::createEmptyLoop() {
2814 In this function we generate a new loop. The new loop will contain
2815 the vectorized instructions while the old loop will continue to run the
2818 [ ] <-- loop iteration number check.
2821 | [ ] <-- vector loop bypass (may consist of multiple blocks).
2824 || [ ] <-- vector pre header.
2828 | [ ]_| <-- vector loop.
2831 | -[ ] <--- middle-block.
2834 -|- >[ ] <--- new preheader.
2838 | [ ]_| <-- old scalar loop to handle remainder.
2841 >[ ] <-- exit block.
2845 BasicBlock *OldBasicBlock = OrigLoop->getHeader();
2846 BasicBlock *VectorPH = OrigLoop->getLoopPreheader();
2847 BasicBlock *ExitBlock = OrigLoop->getExitBlock();
2848 assert(VectorPH && "Invalid loop structure");
2849 assert(ExitBlock && "Must have an exit block");
2851 // Some loops have a single integer induction variable, while other loops
2852 // don't. One example is c++ iterators that often have multiple pointer
2853 // induction variables. In the code below we also support a case where we
2854 // don't have a single induction variable.
2856 // We try to obtain an induction variable from the original loop as hard
2857 // as possible. However if we don't find one that:
2859 // - counts from zero, stepping by one
2860 // - is the size of the widest induction variable type
2861 // then we create a new one.
2862 OldInduction = Legal->getInduction();
2863 Type *IdxTy = Legal->getWidestInductionType();
2865 // Split the single block loop into the two loop structure described above.
2866 BasicBlock *VecBody =
2867 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body");
2868 BasicBlock *MiddleBlock =
2869 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block");
2870 BasicBlock *ScalarPH =
2871 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph");
2873 // Create and register the new vector loop.
2874 Loop* Lp = new Loop();
2875 Loop *ParentLoop = OrigLoop->getParentLoop();
2877 // Insert the new loop into the loop nest and register the new basic blocks
2878 // before calling any utilities such as SCEV that require valid LoopInfo.
2880 ParentLoop->addChildLoop(Lp);
2881 ParentLoop->addBasicBlockToLoop(ScalarPH, *LI);
2882 ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI);
2884 LI->addTopLevelLoop(Lp);
2886 Lp->addBasicBlockToLoop(VecBody, *LI);
2888 // Find the loop boundaries.
2889 Value *Count = getOrCreateTripCount(Lp);
2891 Value *StartIdx = ConstantInt::get(IdxTy, 0);
2893 // We need to test whether the backedge-taken count is uint##_max. Adding one
2894 // to it will cause overflow and an incorrect loop trip count in the vector
2895 // body. In case of overflow we want to directly jump to the scalar remainder
2897 emitMinimumIterationCountCheck(Lp, ScalarPH);
2898 // Now, compare the new count to zero. If it is zero skip the vector loop and
2899 // jump to the scalar loop.
2900 emitVectorLoopEnteredCheck(Lp, ScalarPH);
2901 // Generate the code to check any assumptions that we've made for SCEV
2903 emitSCEVChecks(Lp, ScalarPH);
2905 // Generate the code that checks in runtime if arrays overlap. We put the
2906 // checks into a separate block to make the more common case of few elements
2908 emitMemRuntimeChecks(Lp, ScalarPH);
2910 // Generate the induction variable.
2911 // The loop step is equal to the vectorization factor (num of SIMD elements)
2912 // times the unroll factor (num of SIMD instructions).
2913 Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
2914 Constant *Step = ConstantInt::get(IdxTy, VF * UF);
2916 createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
2917 getDebugLocFromInstOrOperands(OldInduction));
2919 // We are going to resume the execution of the scalar loop.
2920 // Go over all of the induction variables that we found and fix the
2921 // PHIs that are left in the scalar version of the loop.
2922 // The starting values of PHI nodes depend on the counter of the last
2923 // iteration in the vectorized loop.
2924 // If we come from a bypass edge then we need to start from the original
2927 // This variable saves the new starting index for the scalar loop. It is used
2928 // to test if there are any tail iterations left once the vector loop has
2930 LoopVectorizationLegality::InductionList::iterator I, E;
2931 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars();
2932 for (I = List->begin(), E = List->end(); I != E; ++I) {
2933 PHINode *OrigPhi = I->first;
2934 InductionDescriptor II = I->second;
2936 // Create phi nodes to merge from the backedge-taken check block.
2937 PHINode *BCResumeVal = PHINode::Create(OrigPhi->getType(), 3,
2939 ScalarPH->getTerminator());
2941 if (OrigPhi == OldInduction) {
2942 // We know what the end value is.
2943 EndValue = CountRoundDown;
2945 IRBuilder<> B(LoopBypassBlocks.back()->getTerminator());
2946 Value *CRD = B.CreateSExtOrTrunc(CountRoundDown,
2947 II.getStepValue()->getType(),
2949 EndValue = II.transform(B, CRD);
2950 EndValue->setName("ind.end");
2953 // The new PHI merges the original incoming value, in case of a bypass,
2954 // or the value at the end of the vectorized loop.
2955 BCResumeVal->addIncoming(EndValue, MiddleBlock);
2957 // Fix the scalar body counter (PHI node).
2958 unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH);
2960 // The old induction's phi node in the scalar body needs the truncated
2962 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
2963 BCResumeVal->addIncoming(II.getStartValue(), LoopBypassBlocks[I]);
2964 OrigPhi->setIncomingValue(BlockIdx, BCResumeVal);
2967 // Add a check in the middle block to see if we have completed
2968 // all of the iterations in the first vector loop.
2969 // If (N - N%VF) == N, then we *don't* need to run the remainder.
2970 Value *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count,
2971 CountRoundDown, "cmp.n",
2972 MiddleBlock->getTerminator());
2973 ReplaceInstWithInst(MiddleBlock->getTerminator(),
2974 BranchInst::Create(ExitBlock, ScalarPH, CmpN));
2976 // Get ready to start creating new instructions into the vectorized body.
2977 Builder.SetInsertPoint(&*VecBody->getFirstInsertionPt());
2980 LoopVectorPreHeader = Lp->getLoopPreheader();
2981 LoopScalarPreHeader = ScalarPH;
2982 LoopMiddleBlock = MiddleBlock;
2983 LoopExitBlock = ExitBlock;
2984 LoopVectorBody.push_back(VecBody);
2985 LoopScalarBody = OldBasicBlock;
2987 LoopVectorizeHints Hints(Lp, true);
2988 Hints.setAlreadyVectorized();
2992 struct CSEDenseMapInfo {
2993 static bool canHandle(Instruction *I) {
2994 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
2995 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
2997 static inline Instruction *getEmptyKey() {
2998 return DenseMapInfo<Instruction *>::getEmptyKey();
3000 static inline Instruction *getTombstoneKey() {
3001 return DenseMapInfo<Instruction *>::getTombstoneKey();
3003 static unsigned getHashValue(Instruction *I) {
3004 assert(canHandle(I) && "Unknown instruction!");
3005 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(),
3006 I->value_op_end()));
3008 static bool isEqual(Instruction *LHS, Instruction *RHS) {
3009 if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
3010 LHS == getTombstoneKey() || RHS == getTombstoneKey())
3012 return LHS->isIdenticalTo(RHS);
3017 /// \brief Check whether this block is a predicated block.
3018 /// Due to if predication of stores we might create a sequence of "if(pred) a[i]
3019 /// = ...; " blocks. We start with one vectorized basic block. For every
3020 /// conditional block we split this vectorized block. Therefore, every second
3021 /// block will be a predicated one.
3022 static bool isPredicatedBlock(unsigned BlockNum) {
3023 return BlockNum % 2;
3026 ///\brief Perform cse of induction variable instructions.
3027 static void cse(SmallVector<BasicBlock *, 4> &BBs) {
3028 // Perform simple cse.
3029 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap;
3030 for (unsigned i = 0, e = BBs.size(); i != e; ++i) {
3031 BasicBlock *BB = BBs[i];
3032 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
3033 Instruction *In = &*I++;
3035 if (!CSEDenseMapInfo::canHandle(In))
3038 // Check if we can replace this instruction with any of the
3039 // visited instructions.
3040 if (Instruction *V = CSEMap.lookup(In)) {
3041 In->replaceAllUsesWith(V);
3042 In->eraseFromParent();
3045 // Ignore instructions in conditional blocks. We create "if (pred) a[i] =
3046 // ...;" blocks for predicated stores. Every second block is a predicated
3048 if (isPredicatedBlock(i))
3056 /// \brief Adds a 'fast' flag to floating point operations.
3057 static Value *addFastMathFlag(Value *V) {
3058 if (isa<FPMathOperator>(V)){
3059 FastMathFlags Flags;
3060 Flags.setUnsafeAlgebra();
3061 cast<Instruction>(V)->setFastMathFlags(Flags);
3066 /// Estimate the overhead of scalarizing a value. Insert and Extract are set if
3067 /// the result needs to be inserted and/or extracted from vectors.
3068 static unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract,
3069 const TargetTransformInfo &TTI) {
3073 assert(Ty->isVectorTy() && "Can only scalarize vectors");
3076 for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) {
3078 Cost += TTI.getVectorInstrCost(Instruction::InsertElement, Ty, i);
3080 Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, Ty, i);
3086 // Estimate cost of a call instruction CI if it were vectorized with factor VF.
3087 // Return the cost of the instruction, including scalarization overhead if it's
3088 // needed. The flag NeedToScalarize shows if the call needs to be scalarized -
3089 // i.e. either vector version isn't available, or is too expensive.
3090 static unsigned getVectorCallCost(CallInst *CI, unsigned VF,
3091 const TargetTransformInfo &TTI,
3092 const TargetLibraryInfo *TLI,
3093 bool &NeedToScalarize) {
3094 Function *F = CI->getCalledFunction();
3095 StringRef FnName = CI->getCalledFunction()->getName();
3096 Type *ScalarRetTy = CI->getType();
3097 SmallVector<Type *, 4> Tys, ScalarTys;
3098 for (auto &ArgOp : CI->arg_operands())
3099 ScalarTys.push_back(ArgOp->getType());
3101 // Estimate cost of scalarized vector call. The source operands are assumed
3102 // to be vectors, so we need to extract individual elements from there,
3103 // execute VF scalar calls, and then gather the result into the vector return
3105 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys);
3107 return ScalarCallCost;
3109 // Compute corresponding vector type for return value and arguments.
3110 Type *RetTy = ToVectorTy(ScalarRetTy, VF);
3111 for (unsigned i = 0, ie = ScalarTys.size(); i != ie; ++i)
3112 Tys.push_back(ToVectorTy(ScalarTys[i], VF));
3114 // Compute costs of unpacking argument values for the scalar calls and
3115 // packing the return values to a vector.
3116 unsigned ScalarizationCost =
3117 getScalarizationOverhead(RetTy, true, false, TTI);
3118 for (unsigned i = 0, ie = Tys.size(); i != ie; ++i)
3119 ScalarizationCost += getScalarizationOverhead(Tys[i], false, true, TTI);
3121 unsigned Cost = ScalarCallCost * VF + ScalarizationCost;
3123 // If we can't emit a vector call for this function, then the currently found
3124 // cost is the cost we need to return.
3125 NeedToScalarize = true;
3126 if (!TLI || !TLI->isFunctionVectorizable(FnName, VF) || CI->isNoBuiltin())
3129 // If the corresponding vector cost is cheaper, return its cost.
3130 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys);
3131 if (VectorCallCost < Cost) {
3132 NeedToScalarize = false;
3133 return VectorCallCost;
3138 // Estimate cost of an intrinsic call instruction CI if it were vectorized with
3139 // factor VF. Return the cost of the instruction, including scalarization
3140 // overhead if it's needed.
3141 static unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF,
3142 const TargetTransformInfo &TTI,
3143 const TargetLibraryInfo *TLI) {
3144 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
3145 assert(ID && "Expected intrinsic call!");
3147 Type *RetTy = ToVectorTy(CI->getType(), VF);
3148 SmallVector<Type *, 4> Tys;
3149 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i)
3150 Tys.push_back(ToVectorTy(CI->getArgOperand(i)->getType(), VF));
3152 return TTI.getIntrinsicInstrCost(ID, RetTy, Tys);
3155 static Type *smallestIntegerVectorType(Type *T1, Type *T2) {
3156 IntegerType *I1 = cast<IntegerType>(T1->getVectorElementType());
3157 IntegerType *I2 = cast<IntegerType>(T2->getVectorElementType());
3158 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2;
3160 static Type *largestIntegerVectorType(Type *T1, Type *T2) {
3161 IntegerType *I1 = cast<IntegerType>(T1->getVectorElementType());
3162 IntegerType *I2 = cast<IntegerType>(T2->getVectorElementType());
3163 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2;
3166 void InnerLoopVectorizer::truncateToMinimalBitwidths() {
3167 // For every instruction `I` in MinBWs, truncate the operands, create a
3168 // truncated version of `I` and reextend its result. InstCombine runs
3169 // later and will remove any ext/trunc pairs.
3171 for (auto &KV : MinBWs) {
3172 VectorParts &Parts = WidenMap.get(KV.first);
3173 for (Value *&I : Parts) {
3176 Type *OriginalTy = I->getType();
3177 Type *ScalarTruncatedTy = IntegerType::get(OriginalTy->getContext(),
3179 Type *TruncatedTy = VectorType::get(ScalarTruncatedTy,
3180 OriginalTy->getVectorNumElements());
3181 if (TruncatedTy == OriginalTy)
3184 IRBuilder<> B(cast<Instruction>(I));
3185 auto ShrinkOperand = [&](Value *V) -> Value* {
3186 if (auto *ZI = dyn_cast<ZExtInst>(V))
3187 if (ZI->getSrcTy() == TruncatedTy)
3188 return ZI->getOperand(0);
3189 return B.CreateZExtOrTrunc(V, TruncatedTy);
3192 // The actual instruction modification depends on the instruction type,
3194 Value *NewI = nullptr;
3195 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
3196 NewI = B.CreateBinOp(BO->getOpcode(),
3197 ShrinkOperand(BO->getOperand(0)),
3198 ShrinkOperand(BO->getOperand(1)));
3199 cast<BinaryOperator>(NewI)->copyIRFlags(I);
3200 } else if (ICmpInst *CI = dyn_cast<ICmpInst>(I)) {
3201 NewI = B.CreateICmp(CI->getPredicate(),
3202 ShrinkOperand(CI->getOperand(0)),
3203 ShrinkOperand(CI->getOperand(1)));
3204 } else if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
3205 NewI = B.CreateSelect(SI->getCondition(),
3206 ShrinkOperand(SI->getTrueValue()),
3207 ShrinkOperand(SI->getFalseValue()));
3208 } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
3209 switch (CI->getOpcode()) {
3210 default: llvm_unreachable("Unhandled cast!");
3211 case Instruction::Trunc:
3212 NewI = ShrinkOperand(CI->getOperand(0));
3214 case Instruction::SExt:
3215 NewI = B.CreateSExtOrTrunc(CI->getOperand(0),
3216 smallestIntegerVectorType(OriginalTy,
3219 case Instruction::ZExt:
3220 NewI = B.CreateZExtOrTrunc(CI->getOperand(0),
3221 smallestIntegerVectorType(OriginalTy,
3225 } else if (ShuffleVectorInst *SI = dyn_cast<ShuffleVectorInst>(I)) {
3226 auto Elements0 = SI->getOperand(0)->getType()->getVectorNumElements();
3228 B.CreateZExtOrTrunc(SI->getOperand(0),
3229 VectorType::get(ScalarTruncatedTy, Elements0));
3230 auto Elements1 = SI->getOperand(1)->getType()->getVectorNumElements();
3232 B.CreateZExtOrTrunc(SI->getOperand(1),
3233 VectorType::get(ScalarTruncatedTy, Elements1));
3235 NewI = B.CreateShuffleVector(O0, O1, SI->getMask());
3236 } else if (isa<LoadInst>(I)) {
3237 // Don't do anything with the operands, just extend the result.
3240 llvm_unreachable("Unhandled instruction type!");
3243 // Lastly, extend the result.
3244 NewI->takeName(cast<Instruction>(I));
3245 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy);
3246 I->replaceAllUsesWith(Res);
3247 cast<Instruction>(I)->eraseFromParent();
3252 // We'll have created a bunch of ZExts that are now parentless. Clean up.
3253 for (auto &KV : MinBWs) {
3254 VectorParts &Parts = WidenMap.get(KV.first);
3255 for (Value *&I : Parts) {
3256 ZExtInst *Inst = dyn_cast<ZExtInst>(I);
3257 if (Inst && Inst->use_empty()) {
3258 Value *NewI = Inst->getOperand(0);
3259 Inst->eraseFromParent();
3266 void InnerLoopVectorizer::vectorizeLoop() {
3267 //===------------------------------------------------===//
3269 // Notice: any optimization or new instruction that go
3270 // into the code below should be also be implemented in
3273 //===------------------------------------------------===//
3274 Constant *Zero = Builder.getInt32(0);
3276 // In order to support reduction variables we need to be able to vectorize
3277 // Phi nodes. Phi nodes have cycles, so we need to vectorize them in two
3278 // stages. First, we create a new vector PHI node with no incoming edges.
3279 // We use this value when we vectorize all of the instructions that use the
3280 // PHI. Next, after all of the instructions in the block are complete we
3281 // add the new incoming edges to the PHI. At this point all of the
3282 // instructions in the basic block are vectorized, so we can use them to
3283 // construct the PHI.
3284 PhiVector RdxPHIsToFix;
3286 // Scan the loop in a topological order to ensure that defs are vectorized
3288 LoopBlocksDFS DFS(OrigLoop);
3291 // Vectorize all of the blocks in the original loop.
3292 for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(),
3293 be = DFS.endRPO(); bb != be; ++bb)
3294 vectorizeBlockInLoop(*bb, &RdxPHIsToFix);
3296 // Insert truncates and extends for any truncated instructions as hints to
3299 truncateToMinimalBitwidths();
3301 // At this point every instruction in the original loop is widened to
3302 // a vector form. We are almost done. Now, we need to fix the PHI nodes
3303 // that we vectorized. The PHI nodes are currently empty because we did
3304 // not want to introduce cycles. Notice that the remaining PHI nodes
3305 // that we need to fix are reduction variables.
3307 // Create the 'reduced' values for each of the induction vars.
3308 // The reduced values are the vector values that we scalarize and combine
3309 // after the loop is finished.
3310 for (PhiVector::iterator it = RdxPHIsToFix.begin(), e = RdxPHIsToFix.end();
3312 PHINode *RdxPhi = *it;
3313 assert(RdxPhi && "Unable to recover vectorized PHI");
3315 // Find the reduction variable descriptor.
3316 assert(Legal->isReductionVariable(RdxPhi) &&
3317 "Unable to find the reduction variable");
3318 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[RdxPhi];
3320 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind();
3321 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue();
3322 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr();
3323 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind =
3324 RdxDesc.getMinMaxRecurrenceKind();
3325 setDebugLocFromInst(Builder, ReductionStartValue);
3327 // We need to generate a reduction vector from the incoming scalar.
3328 // To do so, we need to generate the 'identity' vector and override
3329 // one of the elements with the incoming scalar reduction. We need
3330 // to do it in the vector-loop preheader.
3331 Builder.SetInsertPoint(LoopBypassBlocks[1]->getTerminator());
3333 // This is the vector-clone of the value that leaves the loop.
3334 VectorParts &VectorExit = getVectorValue(LoopExitInst);
3335 Type *VecTy = VectorExit[0]->getType();
3337 // Find the reduction identity variable. Zero for addition, or, xor,
3338 // one for multiplication, -1 for And.
3341 if (RK == RecurrenceDescriptor::RK_IntegerMinMax ||
3342 RK == RecurrenceDescriptor::RK_FloatMinMax) {
3343 // MinMax reduction have the start value as their identify.
3345 VectorStart = Identity = ReductionStartValue;
3347 VectorStart = Identity =
3348 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident");
3351 // Handle other reduction kinds:
3352 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity(
3353 RK, VecTy->getScalarType());
3356 // This vector is the Identity vector where the first element is the
3357 // incoming scalar reduction.
3358 VectorStart = ReductionStartValue;
3360 Identity = ConstantVector::getSplat(VF, Iden);
3362 // This vector is the Identity vector where the first element is the
3363 // incoming scalar reduction.
3365 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero);
3369 // Fix the vector-loop phi.
3371 // Reductions do not have to start at zero. They can start with
3372 // any loop invariant values.
3373 VectorParts &VecRdxPhi = WidenMap.get(RdxPhi);
3374 BasicBlock *Latch = OrigLoop->getLoopLatch();
3375 Value *LoopVal = RdxPhi->getIncomingValueForBlock(Latch);
3376 VectorParts &Val = getVectorValue(LoopVal);
3377 for (unsigned part = 0; part < UF; ++part) {
3378 // Make sure to add the reduction stat value only to the
3379 // first unroll part.
3380 Value *StartVal = (part == 0) ? VectorStart : Identity;
3381 cast<PHINode>(VecRdxPhi[part])->addIncoming(StartVal,
3382 LoopVectorPreHeader);
3383 cast<PHINode>(VecRdxPhi[part])->addIncoming(Val[part],
3384 LoopVectorBody.back());
3387 // Before each round, move the insertion point right between
3388 // the PHIs and the values we are going to write.
3389 // This allows us to write both PHINodes and the extractelement
3391 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
3393 VectorParts RdxParts = getVectorValue(LoopExitInst);
3394 setDebugLocFromInst(Builder, LoopExitInst);
3396 // If the vector reduction can be performed in a smaller type, we truncate
3397 // then extend the loop exit value to enable InstCombine to evaluate the
3398 // entire expression in the smaller type.
3399 if (VF > 1 && RdxPhi->getType() != RdxDesc.getRecurrenceType()) {
3400 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF);
3401 Builder.SetInsertPoint(LoopVectorBody.back()->getTerminator());
3402 for (unsigned part = 0; part < UF; ++part) {
3403 Value *Trunc = Builder.CreateTrunc(RdxParts[part], RdxVecTy);
3404 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy)
3405 : Builder.CreateZExt(Trunc, VecTy);
3406 for (Value::user_iterator UI = RdxParts[part]->user_begin();
3407 UI != RdxParts[part]->user_end();)
3409 (*UI++)->replaceUsesOfWith(RdxParts[part], Extnd);
3410 RdxParts[part] = Extnd;
3415 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
3416 for (unsigned part = 0; part < UF; ++part)
3417 RdxParts[part] = Builder.CreateTrunc(RdxParts[part], RdxVecTy);
3420 // Reduce all of the unrolled parts into a single vector.
3421 Value *ReducedPartRdx = RdxParts[0];
3422 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK);
3423 setDebugLocFromInst(Builder, ReducedPartRdx);
3424 for (unsigned part = 1; part < UF; ++part) {
3425 if (Op != Instruction::ICmp && Op != Instruction::FCmp)
3426 // Floating point operations had to be 'fast' to enable the reduction.
3427 ReducedPartRdx = addFastMathFlag(
3428 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxParts[part],
3429 ReducedPartRdx, "bin.rdx"));
3431 ReducedPartRdx = RecurrenceDescriptor::createMinMaxOp(
3432 Builder, MinMaxKind, ReducedPartRdx, RdxParts[part]);
3436 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
3437 // and vector ops, reducing the set of values being computed by half each
3439 assert(isPowerOf2_32(VF) &&
3440 "Reduction emission only supported for pow2 vectors!");
3441 Value *TmpVec = ReducedPartRdx;
3442 SmallVector<Constant*, 32> ShuffleMask(VF, nullptr);
3443 for (unsigned i = VF; i != 1; i >>= 1) {
3444 // Move the upper half of the vector to the lower half.
3445 for (unsigned j = 0; j != i/2; ++j)
3446 ShuffleMask[j] = Builder.getInt32(i/2 + j);
3448 // Fill the rest of the mask with undef.
3449 std::fill(&ShuffleMask[i/2], ShuffleMask.end(),
3450 UndefValue::get(Builder.getInt32Ty()));
3453 Builder.CreateShuffleVector(TmpVec,
3454 UndefValue::get(TmpVec->getType()),
3455 ConstantVector::get(ShuffleMask),
3458 if (Op != Instruction::ICmp && Op != Instruction::FCmp)
3459 // Floating point operations had to be 'fast' to enable the reduction.
3460 TmpVec = addFastMathFlag(Builder.CreateBinOp(
3461 (Instruction::BinaryOps)Op, TmpVec, Shuf, "bin.rdx"));
3463 TmpVec = RecurrenceDescriptor::createMinMaxOp(Builder, MinMaxKind,
3467 // The result is in the first element of the vector.
3468 ReducedPartRdx = Builder.CreateExtractElement(TmpVec,
3469 Builder.getInt32(0));
3471 // If the reduction can be performed in a smaller type, we need to extend
3472 // the reduction to the wider type before we branch to the original loop.
3473 if (RdxPhi->getType() != RdxDesc.getRecurrenceType())
3476 ? Builder.CreateSExt(ReducedPartRdx, RdxPhi->getType())
3477 : Builder.CreateZExt(ReducedPartRdx, RdxPhi->getType());
3480 // Create a phi node that merges control-flow from the backedge-taken check
3481 // block and the middle block.
3482 PHINode *BCBlockPhi = PHINode::Create(RdxPhi->getType(), 2, "bc.merge.rdx",
3483 LoopScalarPreHeader->getTerminator());
3484 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
3485 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]);
3486 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock);
3488 // Now, we need to fix the users of the reduction variable
3489 // inside and outside of the scalar remainder loop.
3490 // We know that the loop is in LCSSA form. We need to update the
3491 // PHI nodes in the exit blocks.
3492 for (BasicBlock::iterator LEI = LoopExitBlock->begin(),
3493 LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) {
3494 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI);
3495 if (!LCSSAPhi) break;
3497 // All PHINodes need to have a single entry edge, or two if
3498 // we already fixed them.
3499 assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI");
3501 // We found our reduction value exit-PHI. Update it with the
3502 // incoming bypass edge.
3503 if (LCSSAPhi->getIncomingValue(0) == LoopExitInst) {
3504 // Add an edge coming from the bypass.
3505 LCSSAPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock);
3508 }// end of the LCSSA phi scan.
3510 // Fix the scalar loop reduction variable with the incoming reduction sum
3511 // from the vector body and from the backedge value.
3512 int IncomingEdgeBlockIdx =
3513 (RdxPhi)->getBasicBlockIndex(OrigLoop->getLoopLatch());
3514 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
3515 // Pick the other block.
3516 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
3517 (RdxPhi)->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi);
3518 (RdxPhi)->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst);
3519 }// end of for each redux variable.
3523 // Make sure DomTree is updated.
3526 // Predicate any stores.
3527 for (auto KV : PredicatedStores) {
3528 BasicBlock::iterator I(KV.first);
3529 auto *BB = SplitBlock(I->getParent(), &*std::next(I), DT, LI);
3530 auto *T = SplitBlockAndInsertIfThen(KV.second, &*I, /*Unreachable=*/false,
3531 /*BranchWeights=*/nullptr, DT);
3533 I->getParent()->setName("pred.store.if");
3534 BB->setName("pred.store.continue");
3536 DEBUG(DT->verifyDomTree());
3537 // Remove redundant induction instructions.
3538 cse(LoopVectorBody);
3541 void InnerLoopVectorizer::fixLCSSAPHIs() {
3542 for (BasicBlock::iterator LEI = LoopExitBlock->begin(),
3543 LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) {
3544 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI);
3545 if (!LCSSAPhi) break;
3546 if (LCSSAPhi->getNumIncomingValues() == 1)
3547 LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()),
3552 InnerLoopVectorizer::VectorParts
3553 InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) {
3554 assert(std::find(pred_begin(Dst), pred_end(Dst), Src) != pred_end(Dst) &&
3557 // Look for cached value.
3558 std::pair<BasicBlock*, BasicBlock*> Edge(Src, Dst);
3559 EdgeMaskCache::iterator ECEntryIt = MaskCache.find(Edge);
3560 if (ECEntryIt != MaskCache.end())
3561 return ECEntryIt->second;
3563 VectorParts SrcMask = createBlockInMask(Src);
3565 // The terminator has to be a branch inst!
3566 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
3567 assert(BI && "Unexpected terminator found");
3569 if (BI->isConditional()) {
3570 VectorParts EdgeMask = getVectorValue(BI->getCondition());
3572 if (BI->getSuccessor(0) != Dst)
3573 for (unsigned part = 0; part < UF; ++part)
3574 EdgeMask[part] = Builder.CreateNot(EdgeMask[part]);
3576 for (unsigned part = 0; part < UF; ++part)
3577 EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]);
3579 MaskCache[Edge] = EdgeMask;
3583 MaskCache[Edge] = SrcMask;
3587 InnerLoopVectorizer::VectorParts
3588 InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) {
3589 assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
3591 // Loop incoming mask is all-one.
3592 if (OrigLoop->getHeader() == BB) {
3593 Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1);
3594 return getVectorValue(C);
3597 // This is the block mask. We OR all incoming edges, and with zero.
3598 Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0);
3599 VectorParts BlockMask = getVectorValue(Zero);
3602 for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) {
3603 VectorParts EM = createEdgeMask(*it, BB);
3604 for (unsigned part = 0; part < UF; ++part)
3605 BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]);
3611 void InnerLoopVectorizer::widenPHIInstruction(
3612 Instruction *PN, InnerLoopVectorizer::VectorParts &Entry, unsigned UF,
3613 unsigned VF, PhiVector *PV) {
3614 PHINode* P = cast<PHINode>(PN);
3615 // Handle reduction variables:
3616 if (Legal->isReductionVariable(P)) {
3617 for (unsigned part = 0; part < UF; ++part) {
3618 // This is phase one of vectorizing PHIs.
3619 Type *VecTy = (VF == 1) ? PN->getType() :
3620 VectorType::get(PN->getType(), VF);
3621 Entry[part] = PHINode::Create(
3622 VecTy, 2, "vec.phi", &*LoopVectorBody.back()->getFirstInsertionPt());
3628 setDebugLocFromInst(Builder, P);
3629 // Check for PHI nodes that are lowered to vector selects.
3630 if (P->getParent() != OrigLoop->getHeader()) {
3631 // We know that all PHIs in non-header blocks are converted into
3632 // selects, so we don't have to worry about the insertion order and we
3633 // can just use the builder.
3634 // At this point we generate the predication tree. There may be
3635 // duplications since this is a simple recursive scan, but future
3636 // optimizations will clean it up.
3638 unsigned NumIncoming = P->getNumIncomingValues();
3640 // Generate a sequence of selects of the form:
3641 // SELECT(Mask3, In3,
3642 // SELECT(Mask2, In2,
3644 for (unsigned In = 0; In < NumIncoming; In++) {
3645 VectorParts Cond = createEdgeMask(P->getIncomingBlock(In),
3647 VectorParts &In0 = getVectorValue(P->getIncomingValue(In));
3649 for (unsigned part = 0; part < UF; ++part) {
3650 // We might have single edge PHIs (blocks) - use an identity
3651 // 'select' for the first PHI operand.
3653 Entry[part] = Builder.CreateSelect(Cond[part], In0[part],
3656 // Select between the current value and the previous incoming edge
3657 // based on the incoming mask.
3658 Entry[part] = Builder.CreateSelect(Cond[part], In0[part],
3659 Entry[part], "predphi");
3665 // This PHINode must be an induction variable.
3666 // Make sure that we know about it.
3667 assert(Legal->getInductionVars()->count(P) &&
3668 "Not an induction variable");
3670 InductionDescriptor II = Legal->getInductionVars()->lookup(P);
3672 // FIXME: The newly created binary instructions should contain nsw/nuw flags,
3673 // which can be found from the original scalar operations.
3674 switch (II.getKind()) {
3675 case InductionDescriptor::IK_NoInduction:
3676 llvm_unreachable("Unknown induction");
3677 case InductionDescriptor::IK_IntInduction: {
3678 assert(P->getType() == II.getStartValue()->getType() &&
3679 "Types must match");
3680 // Handle other induction variables that are now based on the
3682 Value *V = Induction;
3683 if (P != OldInduction) {
3684 V = Builder.CreateSExtOrTrunc(Induction, P->getType());
3685 V = II.transform(Builder, V);
3686 V->setName("offset.idx");
3688 Value *Broadcasted = getBroadcastInstrs(V);
3689 // After broadcasting the induction variable we need to make the vector
3690 // consecutive by adding 0, 1, 2, etc.
3691 for (unsigned part = 0; part < UF; ++part)
3692 Entry[part] = getStepVector(Broadcasted, VF * part, II.getStepValue());
3695 case InductionDescriptor::IK_PtrInduction:
3696 // Handle the pointer induction variable case.
3697 assert(P->getType()->isPointerTy() && "Unexpected type.");
3698 // This is the normalized GEP that starts counting at zero.
3699 Value *PtrInd = Induction;
3700 PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStepValue()->getType());
3701 // This is the vector of results. Notice that we don't generate
3702 // vector geps because scalar geps result in better code.
3703 for (unsigned part = 0; part < UF; ++part) {
3705 int EltIndex = part;
3706 Constant *Idx = ConstantInt::get(PtrInd->getType(), EltIndex);
3707 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx);
3708 Value *SclrGep = II.transform(Builder, GlobalIdx);
3709 SclrGep->setName("next.gep");
3710 Entry[part] = SclrGep;
3714 Value *VecVal = UndefValue::get(VectorType::get(P->getType(), VF));
3715 for (unsigned int i = 0; i < VF; ++i) {
3716 int EltIndex = i + part * VF;
3717 Constant *Idx = ConstantInt::get(PtrInd->getType(), EltIndex);
3718 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx);
3719 Value *SclrGep = II.transform(Builder, GlobalIdx);
3720 SclrGep->setName("next.gep");
3721 VecVal = Builder.CreateInsertElement(VecVal, SclrGep,
3722 Builder.getInt32(i),
3725 Entry[part] = VecVal;
3731 void InnerLoopVectorizer::vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV) {
3732 // For each instruction in the old loop.
3733 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
3734 VectorParts &Entry = WidenMap.get(&*it);
3736 switch (it->getOpcode()) {
3737 case Instruction::Br:
3738 // Nothing to do for PHIs and BR, since we already took care of the
3739 // loop control flow instructions.
3741 case Instruction::PHI: {
3742 // Vectorize PHINodes.
3743 widenPHIInstruction(&*it, Entry, UF, VF, PV);
3747 case Instruction::Add:
3748 case Instruction::FAdd:
3749 case Instruction::Sub:
3750 case Instruction::FSub:
3751 case Instruction::Mul:
3752 case Instruction::FMul:
3753 case Instruction::UDiv:
3754 case Instruction::SDiv:
3755 case Instruction::FDiv:
3756 case Instruction::URem:
3757 case Instruction::SRem:
3758 case Instruction::FRem:
3759 case Instruction::Shl:
3760 case Instruction::LShr:
3761 case Instruction::AShr:
3762 case Instruction::And:
3763 case Instruction::Or:
3764 case Instruction::Xor: {
3765 // Just widen binops.
3766 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(it);
3767 setDebugLocFromInst(Builder, BinOp);
3768 VectorParts &A = getVectorValue(it->getOperand(0));
3769 VectorParts &B = getVectorValue(it->getOperand(1));
3771 // Use this vector value for all users of the original instruction.
3772 for (unsigned Part = 0; Part < UF; ++Part) {
3773 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]);
3775 if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V))
3776 VecOp->copyIRFlags(BinOp);
3781 propagateMetadata(Entry, &*it);
3784 case Instruction::Select: {
3786 // If the selector is loop invariant we can create a select
3787 // instruction with a scalar condition. Otherwise, use vector-select.
3788 bool InvariantCond = SE->isLoopInvariant(SE->getSCEV(it->getOperand(0)),
3790 setDebugLocFromInst(Builder, &*it);
3792 // The condition can be loop invariant but still defined inside the
3793 // loop. This means that we can't just use the original 'cond' value.
3794 // We have to take the 'vectorized' value and pick the first lane.
3795 // Instcombine will make this a no-op.
3796 VectorParts &Cond = getVectorValue(it->getOperand(0));
3797 VectorParts &Op0 = getVectorValue(it->getOperand(1));
3798 VectorParts &Op1 = getVectorValue(it->getOperand(2));
3800 Value *ScalarCond = (VF == 1) ? Cond[0] :
3801 Builder.CreateExtractElement(Cond[0], Builder.getInt32(0));
3803 for (unsigned Part = 0; Part < UF; ++Part) {
3804 Entry[Part] = Builder.CreateSelect(
3805 InvariantCond ? ScalarCond : Cond[Part],
3810 propagateMetadata(Entry, &*it);
3814 case Instruction::ICmp:
3815 case Instruction::FCmp: {
3816 // Widen compares. Generate vector compares.
3817 bool FCmp = (it->getOpcode() == Instruction::FCmp);
3818 CmpInst *Cmp = dyn_cast<CmpInst>(it);
3819 setDebugLocFromInst(Builder, &*it);
3820 VectorParts &A = getVectorValue(it->getOperand(0));
3821 VectorParts &B = getVectorValue(it->getOperand(1));
3822 for (unsigned Part = 0; Part < UF; ++Part) {
3825 C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]);
3826 cast<FCmpInst>(C)->copyFastMathFlags(&*it);