31755427d775b1bca978dbeacd5d43553143671b
[oota-llvm.git] / lib / Transforms / Utils / ValueMapper.cpp
1 //===- ValueMapper.cpp - Interface shared by lib/Transforms/Utils ---------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the MapValue function, which is shared by various parts of
11 // the lib/Transforms/Utils library.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/Transforms/Utils/ValueMapper.h"
16 #include "llvm/IR/Constants.h"
17 #include "llvm/IR/Function.h"
18 #include "llvm/IR/InlineAsm.h"
19 #include "llvm/IR/Instructions.h"
20 #include "llvm/IR/Metadata.h"
21 using namespace llvm;
22
23 // Out of line method to get vtable etc for class.
24 void ValueMapTypeRemapper::anchor() {}
25 void ValueMaterializer::anchor() {}
26
27 Value *llvm::MapValue(const Value *V, ValueToValueMapTy &VM, RemapFlags Flags,
28                       ValueMapTypeRemapper *TypeMapper,
29                       ValueMaterializer *Materializer) {
30   ValueToValueMapTy::iterator I = VM.find(V);
31   
32   // If the value already exists in the map, use it.
33   if (I != VM.end() && I->second) return I->second;
34   
35   // If we have a materializer and it can materialize a value, use that.
36   if (Materializer) {
37     if (Value *NewV = Materializer->materializeValueFor(const_cast<Value*>(V)))
38       return VM[V] = NewV;
39   }
40
41   // Global values do not need to be seeded into the VM if they
42   // are using the identity mapping.
43   if (isa<GlobalValue>(V) || isa<MDString>(V))
44     return VM[V] = const_cast<Value*>(V);
45   
46   if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
47     // Inline asm may need *type* remapping.
48     FunctionType *NewTy = IA->getFunctionType();
49     if (TypeMapper) {
50       NewTy = cast<FunctionType>(TypeMapper->remapType(NewTy));
51
52       if (NewTy != IA->getFunctionType())
53         V = InlineAsm::get(NewTy, IA->getAsmString(), IA->getConstraintString(),
54                            IA->hasSideEffects(), IA->isAlignStack());
55     }
56     
57     return VM[V] = const_cast<Value*>(V);
58   }
59   
60
61   if (const MDNode *MD = dyn_cast<MDNode>(V)) {
62     // If this is a module-level metadata and we know that nothing at the module
63     // level is changing, then use an identity mapping.
64     if (!MD->isFunctionLocal() && (Flags & RF_NoModuleLevelChanges))
65       return VM[V] = const_cast<Value*>(V);
66     
67     // Create a dummy node in case we have a metadata cycle.
68     MDNode *Dummy = MDNode::getTemporary(V->getContext(), None);
69     VM[V] = Dummy;
70     
71     // Check all operands to see if any need to be remapped.
72     for (unsigned i = 0, e = MD->getNumOperands(); i != e; ++i) {
73       Value *OP = MD->getOperand(i);
74       if (!OP) continue;
75       Value *Mapped_OP = MapValue(OP, VM, Flags, TypeMapper, Materializer);
76       // Use identity map if Mapped_Op is null and we can ignore missing
77       // entries.
78       if (Mapped_OP == OP ||
79           (Mapped_OP == nullptr && (Flags & RF_IgnoreMissingEntries)))
80         continue;
81
82       // Ok, at least one operand needs remapping.  
83       SmallVector<Value*, 4> Elts;
84       Elts.reserve(MD->getNumOperands());
85       for (i = 0; i != e; ++i) {
86         Value *Op = MD->getOperand(i);
87         if (!Op)
88           Elts.push_back(nullptr);
89         else {
90           Value *Mapped_Op = MapValue(Op, VM, Flags, TypeMapper, Materializer);
91           // Use identity map if Mapped_Op is null and we can ignore missing
92           // entries.
93           if (Mapped_Op == nullptr && (Flags & RF_IgnoreMissingEntries))
94             Mapped_Op = Op;
95           Elts.push_back(Mapped_Op);
96         }
97       }
98       MDNode *NewMD = MDNode::get(V->getContext(), Elts);
99       Dummy->replaceAllUsesWith(NewMD);
100       VM[V] = NewMD;
101       MDNode::deleteTemporary(Dummy);
102       return NewMD;
103     }
104
105     VM[V] = const_cast<Value*>(V);
106     MDNode::deleteTemporary(Dummy);
107
108     // No operands needed remapping.  Use an identity mapping.
109     return const_cast<Value*>(V);
110   }
111
112   // Okay, this either must be a constant (which may or may not be mappable) or
113   // is something that is not in the mapping table.
114   Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V));
115   if (!C)
116     return nullptr;
117   
118   if (BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
119     Function *F = 
120       cast<Function>(MapValue(BA->getFunction(), VM, Flags, TypeMapper, Materializer));
121     BasicBlock *BB = cast_or_null<BasicBlock>(MapValue(BA->getBasicBlock(), VM,
122                                                        Flags, TypeMapper, Materializer));
123     return VM[V] = BlockAddress::get(F, BB ? BB : BA->getBasicBlock());
124   }
125   
126   // Otherwise, we have some other constant to remap.  Start by checking to see
127   // if all operands have an identity remapping.
128   unsigned OpNo = 0, NumOperands = C->getNumOperands();
129   Value *Mapped = nullptr;
130   for (; OpNo != NumOperands; ++OpNo) {
131     Value *Op = C->getOperand(OpNo);
132     Mapped = MapValue(Op, VM, Flags, TypeMapper, Materializer);
133     if (Mapped != C) break;
134   }
135   
136   // See if the type mapper wants to remap the type as well.
137   Type *NewTy = C->getType();
138   if (TypeMapper)
139     NewTy = TypeMapper->remapType(NewTy);
140
141   // If the result type and all operands match up, then just insert an identity
142   // mapping.
143   if (OpNo == NumOperands && NewTy == C->getType())
144     return VM[V] = C;
145   
146   // Okay, we need to create a new constant.  We've already processed some or
147   // all of the operands, set them all up now.
148   SmallVector<Constant*, 8> Ops;
149   Ops.reserve(NumOperands);
150   for (unsigned j = 0; j != OpNo; ++j)
151     Ops.push_back(cast<Constant>(C->getOperand(j)));
152   
153   // If one of the operands mismatch, push it and the other mapped operands.
154   if (OpNo != NumOperands) {
155     Ops.push_back(cast<Constant>(Mapped));
156   
157     // Map the rest of the operands that aren't processed yet.
158     for (++OpNo; OpNo != NumOperands; ++OpNo)
159       Ops.push_back(MapValue(cast<Constant>(C->getOperand(OpNo)), VM,
160                              Flags, TypeMapper, Materializer));
161   }
162   
163   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
164     return VM[V] = CE->getWithOperands(Ops, NewTy);
165   if (isa<ConstantArray>(C))
166     return VM[V] = ConstantArray::get(cast<ArrayType>(NewTy), Ops);
167   if (isa<ConstantStruct>(C))
168     return VM[V] = ConstantStruct::get(cast<StructType>(NewTy), Ops);
169   if (isa<ConstantVector>(C))
170     return VM[V] = ConstantVector::get(Ops);
171   // If this is a no-operand constant, it must be because the type was remapped.
172   if (isa<UndefValue>(C))
173     return VM[V] = UndefValue::get(NewTy);
174   if (isa<ConstantAggregateZero>(C))
175     return VM[V] = ConstantAggregateZero::get(NewTy);
176   assert(isa<ConstantPointerNull>(C));
177   return VM[V] = ConstantPointerNull::get(cast<PointerType>(NewTy));
178 }
179
180 /// RemapInstruction - Convert the instruction operands from referencing the
181 /// current values into those specified by VMap.
182 ///
183 void llvm::RemapInstruction(Instruction *I, ValueToValueMapTy &VMap,
184                             RemapFlags Flags, ValueMapTypeRemapper *TypeMapper,
185                             ValueMaterializer *Materializer){
186   // Remap operands.
187   for (User::op_iterator op = I->op_begin(), E = I->op_end(); op != E; ++op) {
188     Value *V = MapValue(*op, VMap, Flags, TypeMapper, Materializer);
189     // If we aren't ignoring missing entries, assert that something happened.
190     if (V)
191       *op = V;
192     else
193       assert((Flags & RF_IgnoreMissingEntries) &&
194              "Referenced value not in value map!");
195   }
196
197   // Remap phi nodes' incoming blocks.
198   if (PHINode *PN = dyn_cast<PHINode>(I)) {
199     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
200       Value *V = MapValue(PN->getIncomingBlock(i), VMap, Flags);
201       // If we aren't ignoring missing entries, assert that something happened.
202       if (V)
203         PN->setIncomingBlock(i, cast<BasicBlock>(V));
204       else
205         assert((Flags & RF_IgnoreMissingEntries) &&
206                "Referenced block not in value map!");
207     }
208   }
209
210   // Remap attached metadata.
211   SmallVector<std::pair<unsigned, Value *>, 4> MDs;
212   I->getAllMetadata(MDs);
213   for (auto MI = MDs.begin(), ME = MDs.end(); MI != ME; ++MI) {
214     Value *Old = MI->second;
215     Value *New = MapValue(Old, VMap, Flags, TypeMapper, Materializer);
216     if (New != Old)
217       I->setMetadata(MI->first, New);
218   }
219   
220   // If the instruction's type is being remapped, do so now.
221   if (TypeMapper)
222     I->mutateType(TypeMapper->remapType(I->getType()));
223 }