56b9084a916f49ca6aeaf2720718d96610d7eec7
[oota-llvm.git] / lib / Transforms / Utils / LoopUtils.cpp
1 //===-- LoopUtils.cpp - Loop Utility functions -------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines common loop utility functions.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Analysis/LoopInfo.h"
15 #include "llvm/IR/Instructions.h"
16 #include "llvm/IR/PatternMatch.h"
17 #include "llvm/IR/ValueHandle.h"
18 #include "llvm/Support/Debug.h"
19 #include "llvm/Analysis/ScalarEvolution.h"
20 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
21 #include "llvm/IR/Module.h"
22 #include "llvm/Transforms/Utils/LoopUtils.h"
23
24 using namespace llvm;
25 using namespace llvm::PatternMatch;
26
27 #define DEBUG_TYPE "loop-utils"
28
29 bool RecurrenceDescriptor::areAllUsesIn(Instruction *I,
30                                         SmallPtrSetImpl<Instruction *> &Set) {
31   for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use)
32     if (!Set.count(dyn_cast<Instruction>(*Use)))
33       return false;
34   return true;
35 }
36
37 bool RecurrenceDescriptor::isIntegerRecurrenceKind(RecurrenceKind Kind) {
38   switch (Kind) {
39   default:
40     break;
41   case RK_IntegerAdd:
42   case RK_IntegerMult:
43   case RK_IntegerOr:
44   case RK_IntegerAnd:
45   case RK_IntegerXor:
46   case RK_IntegerMinMax:
47     return true;
48   }
49   return false;
50 }
51
52 bool RecurrenceDescriptor::isFloatingPointRecurrenceKind(RecurrenceKind Kind) {
53   return (Kind != RK_NoRecurrence) && !isIntegerRecurrenceKind(Kind);
54 }
55
56 bool RecurrenceDescriptor::isArithmeticRecurrenceKind(RecurrenceKind Kind) {
57   switch (Kind) {
58   default:
59     break;
60   case RK_IntegerAdd:
61   case RK_IntegerMult:
62   case RK_FloatAdd:
63   case RK_FloatMult:
64     return true;
65   }
66   return false;
67 }
68
69 Instruction *
70 RecurrenceDescriptor::lookThroughAnd(PHINode *Phi, Type *&RT,
71                                      SmallPtrSetImpl<Instruction *> &Visited,
72                                      SmallPtrSetImpl<Instruction *> &CI) {
73   if (!Phi->hasOneUse())
74     return Phi;
75
76   const APInt *M = nullptr;
77   Instruction *I, *J = cast<Instruction>(Phi->use_begin()->getUser());
78
79   // Matches either I & 2^x-1 or 2^x-1 & I. If we find a match, we update RT
80   // with a new integer type of the corresponding bit width.
81   if (match(J, m_CombineOr(m_And(m_Instruction(I), m_APInt(M)),
82                            m_And(m_APInt(M), m_Instruction(I))))) {
83     int32_t Bits = (*M + 1).exactLogBase2();
84     if (Bits > 0) {
85       RT = IntegerType::get(Phi->getContext(), Bits);
86       Visited.insert(Phi);
87       CI.insert(J);
88       return J;
89     }
90   }
91   return Phi;
92 }
93
94 bool RecurrenceDescriptor::getSourceExtensionKind(
95     Instruction *Start, Instruction *Exit, Type *RT, bool &IsSigned,
96     SmallPtrSetImpl<Instruction *> &Visited,
97     SmallPtrSetImpl<Instruction *> &CI) {
98
99   SmallVector<Instruction *, 8> Worklist;
100   bool FoundOneOperand = false;
101   unsigned DstSize = RT->getPrimitiveSizeInBits();
102   Worklist.push_back(Exit);
103
104   // Traverse the instructions in the reduction expression, beginning with the
105   // exit value.
106   while (!Worklist.empty()) {
107     Instruction *I = Worklist.pop_back_val();
108     for (Use &U : I->operands()) {
109
110       // Terminate the traversal if the operand is not an instruction, or we
111       // reach the starting value.
112       Instruction *J = dyn_cast<Instruction>(U.get());
113       if (!J || J == Start)
114         continue;
115
116       // Otherwise, investigate the operation if it is also in the expression.
117       if (Visited.count(J)) {
118         Worklist.push_back(J);
119         continue;
120       }
121
122       // If the operand is not in Visited, it is not a reduction operation, but
123       // it does feed into one. Make sure it is either a single-use sign- or
124       // zero-extend instruction.
125       CastInst *Cast = dyn_cast<CastInst>(J);
126       bool IsSExtInst = isa<SExtInst>(J);
127       if (!Cast || !Cast->hasOneUse() || !(isa<ZExtInst>(J) || IsSExtInst))
128         return false;
129
130       // Ensure the source type of the extend is no larger than the reduction
131       // type. It is not necessary for the types to be identical.
132       unsigned SrcSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
133       if (SrcSize > DstSize)
134         return false;
135
136       // Furthermore, ensure that all such extends are of the same kind.
137       if (FoundOneOperand) {
138         if (IsSigned != IsSExtInst)
139           return false;
140       } else {
141         FoundOneOperand = true;
142         IsSigned = IsSExtInst;
143       }
144
145       // Lastly, if the source type of the extend matches the reduction type,
146       // add the extend to CI so that we can avoid accounting for it in the
147       // cost model.
148       if (SrcSize == DstSize)
149         CI.insert(Cast);
150     }
151   }
152   return true;
153 }
154
155 bool RecurrenceDescriptor::AddReductionVar(PHINode *Phi, RecurrenceKind Kind,
156                                            Loop *TheLoop, bool HasFunNoNaNAttr,
157                                            RecurrenceDescriptor &RedDes) {
158   if (Phi->getNumIncomingValues() != 2)
159     return false;
160
161   // Reduction variables are only found in the loop header block.
162   if (Phi->getParent() != TheLoop->getHeader())
163     return false;
164
165   // Obtain the reduction start value from the value that comes from the loop
166   // preheader.
167   Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader());
168
169   // ExitInstruction is the single value which is used outside the loop.
170   // We only allow for a single reduction value to be used outside the loop.
171   // This includes users of the reduction, variables (which form a cycle
172   // which ends in the phi node).
173   Instruction *ExitInstruction = nullptr;
174   // Indicates that we found a reduction operation in our scan.
175   bool FoundReduxOp = false;
176
177   // We start with the PHI node and scan for all of the users of this
178   // instruction. All users must be instructions that can be used as reduction
179   // variables (such as ADD). We must have a single out-of-block user. The cycle
180   // must include the original PHI.
181   bool FoundStartPHI = false;
182
183   // To recognize min/max patterns formed by a icmp select sequence, we store
184   // the number of instruction we saw from the recognized min/max pattern,
185   //  to make sure we only see exactly the two instructions.
186   unsigned NumCmpSelectPatternInst = 0;
187   InstDesc ReduxDesc(false, nullptr);
188
189   // Data used for determining if the recurrence has been type-promoted.
190   Type *RecurrenceType = Phi->getType();
191   SmallPtrSet<Instruction *, 4> CastInsts;
192   Instruction *Start = Phi;
193   bool IsSigned = false;
194
195   SmallPtrSet<Instruction *, 8> VisitedInsts;
196   SmallVector<Instruction *, 8> Worklist;
197
198   // Return early if the recurrence kind does not match the type of Phi. If the
199   // recurrence kind is arithmetic, we attempt to look through AND operations
200   // resulting from the type promotion performed by InstCombine.  Vector
201   // operations are not limited to the legal integer widths, so we may be able
202   // to evaluate the reduction in the narrower width.
203   if (RecurrenceType->isFloatingPointTy()) {
204     if (!isFloatingPointRecurrenceKind(Kind))
205       return false;
206   } else {
207     if (!isIntegerRecurrenceKind(Kind))
208       return false;
209     if (isArithmeticRecurrenceKind(Kind))
210       Start = lookThroughAnd(Phi, RecurrenceType, VisitedInsts, CastInsts);
211   }
212
213   Worklist.push_back(Start);
214   VisitedInsts.insert(Start);
215
216   // A value in the reduction can be used:
217   //  - By the reduction:
218   //      - Reduction operation:
219   //        - One use of reduction value (safe).
220   //        - Multiple use of reduction value (not safe).
221   //      - PHI:
222   //        - All uses of the PHI must be the reduction (safe).
223   //        - Otherwise, not safe.
224   //  - By one instruction outside of the loop (safe).
225   //  - By further instructions outside of the loop (not safe).
226   //  - By an instruction that is not part of the reduction (not safe).
227   //    This is either:
228   //      * An instruction type other than PHI or the reduction operation.
229   //      * A PHI in the header other than the initial PHI.
230   while (!Worklist.empty()) {
231     Instruction *Cur = Worklist.back();
232     Worklist.pop_back();
233
234     // No Users.
235     // If the instruction has no users then this is a broken chain and can't be
236     // a reduction variable.
237     if (Cur->use_empty())
238       return false;
239
240     bool IsAPhi = isa<PHINode>(Cur);
241
242     // A header PHI use other than the original PHI.
243     if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent())
244       return false;
245
246     // Reductions of instructions such as Div, and Sub is only possible if the
247     // LHS is the reduction variable.
248     if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) &&
249         !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) &&
250         !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0))))
251       return false;
252
253     // Any reduction instruction must be of one of the allowed kinds. We ignore
254     // the starting value (the Phi or an AND instruction if the Phi has been
255     // type-promoted).
256     if (Cur != Start) {
257       ReduxDesc = isRecurrenceInstr(Cur, Kind, ReduxDesc, HasFunNoNaNAttr);
258       if (!ReduxDesc.isRecurrence())
259         return false;
260     }
261
262     // A reduction operation must only have one use of the reduction value.
263     if (!IsAPhi && Kind != RK_IntegerMinMax && Kind != RK_FloatMinMax &&
264         hasMultipleUsesOf(Cur, VisitedInsts))
265       return false;
266
267     // All inputs to a PHI node must be a reduction value.
268     if (IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts))
269       return false;
270
271     if (Kind == RK_IntegerMinMax &&
272         (isa<ICmpInst>(Cur) || isa<SelectInst>(Cur)))
273       ++NumCmpSelectPatternInst;
274     if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) || isa<SelectInst>(Cur)))
275       ++NumCmpSelectPatternInst;
276
277     // Check  whether we found a reduction operator.
278     FoundReduxOp |= !IsAPhi && Cur != Start;
279
280     // Process users of current instruction. Push non-PHI nodes after PHI nodes
281     // onto the stack. This way we are going to have seen all inputs to PHI
282     // nodes once we get to them.
283     SmallVector<Instruction *, 8> NonPHIs;
284     SmallVector<Instruction *, 8> PHIs;
285     for (User *U : Cur->users()) {
286       Instruction *UI = cast<Instruction>(U);
287
288       // Check if we found the exit user.
289       BasicBlock *Parent = UI->getParent();
290       if (!TheLoop->contains(Parent)) {
291         // Exit if you find multiple outside users or if the header phi node is
292         // being used. In this case the user uses the value of the previous
293         // iteration, in which case we would loose "VF-1" iterations of the
294         // reduction operation if we vectorize.
295         if (ExitInstruction != nullptr || Cur == Phi)
296           return false;
297
298         // The instruction used by an outside user must be the last instruction
299         // before we feed back to the reduction phi. Otherwise, we loose VF-1
300         // operations on the value.
301         if (std::find(Phi->op_begin(), Phi->op_end(), Cur) == Phi->op_end())
302           return false;
303
304         ExitInstruction = Cur;
305         continue;
306       }
307
308       // Process instructions only once (termination). Each reduction cycle
309       // value must only be used once, except by phi nodes and min/max
310       // reductions which are represented as a cmp followed by a select.
311       InstDesc IgnoredVal(false, nullptr);
312       if (VisitedInsts.insert(UI).second) {
313         if (isa<PHINode>(UI))
314           PHIs.push_back(UI);
315         else
316           NonPHIs.push_back(UI);
317       } else if (!isa<PHINode>(UI) &&
318                  ((!isa<FCmpInst>(UI) && !isa<ICmpInst>(UI) &&
319                    !isa<SelectInst>(UI)) ||
320                   !isMinMaxSelectCmpPattern(UI, IgnoredVal).isRecurrence()))
321         return false;
322
323       // Remember that we completed the cycle.
324       if (UI == Phi)
325         FoundStartPHI = true;
326     }
327     Worklist.append(PHIs.begin(), PHIs.end());
328     Worklist.append(NonPHIs.begin(), NonPHIs.end());
329   }
330
331   // This means we have seen one but not the other instruction of the
332   // pattern or more than just a select and cmp.
333   if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) &&
334       NumCmpSelectPatternInst != 2)
335     return false;
336
337   if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction)
338     return false;
339
340   // If we think Phi may have been type-promoted, we also need to ensure that
341   // all source operands of the reduction are either SExtInsts or ZEstInsts. If
342   // so, we will be able to evaluate the reduction in the narrower bit width.
343   if (Start != Phi)
344     if (!getSourceExtensionKind(Start, ExitInstruction, RecurrenceType,
345                                 IsSigned, VisitedInsts, CastInsts))
346       return false;
347
348   // We found a reduction var if we have reached the original phi node and we
349   // only have a single instruction with out-of-loop users.
350
351   // The ExitInstruction(Instruction which is allowed to have out-of-loop users)
352   // is saved as part of the RecurrenceDescriptor.
353
354   // Save the description of this reduction variable.
355   RecurrenceDescriptor RD(
356       RdxStart, ExitInstruction, Kind, ReduxDesc.getMinMaxKind(),
357       ReduxDesc.getUnsafeAlgebraInst(), RecurrenceType, IsSigned, CastInsts);
358   RedDes = RD;
359
360   return true;
361 }
362
363 /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction
364 /// pattern corresponding to a min(X, Y) or max(X, Y).
365 RecurrenceDescriptor::InstDesc
366 RecurrenceDescriptor::isMinMaxSelectCmpPattern(Instruction *I, InstDesc &Prev) {
367
368   assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) &&
369          "Expect a select instruction");
370   Instruction *Cmp = nullptr;
371   SelectInst *Select = nullptr;
372
373   // We must handle the select(cmp()) as a single instruction. Advance to the
374   // select.
375   if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) {
376     if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->user_begin())))
377       return InstDesc(false, I);
378     return InstDesc(Select, Prev.getMinMaxKind());
379   }
380
381   // Only handle single use cases for now.
382   if (!(Select = dyn_cast<SelectInst>(I)))
383     return InstDesc(false, I);
384   if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) &&
385       !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0))))
386     return InstDesc(false, I);
387   if (!Cmp->hasOneUse())
388     return InstDesc(false, I);
389
390   Value *CmpLeft;
391   Value *CmpRight;
392
393   // Look for a min/max pattern.
394   if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
395     return InstDesc(Select, MRK_UIntMin);
396   else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
397     return InstDesc(Select, MRK_UIntMax);
398   else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
399     return InstDesc(Select, MRK_SIntMax);
400   else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
401     return InstDesc(Select, MRK_SIntMin);
402   else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
403     return InstDesc(Select, MRK_FloatMin);
404   else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
405     return InstDesc(Select, MRK_FloatMax);
406   else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
407     return InstDesc(Select, MRK_FloatMin);
408   else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
409     return InstDesc(Select, MRK_FloatMax);
410
411   return InstDesc(false, I);
412 }
413
414 RecurrenceDescriptor::InstDesc
415 RecurrenceDescriptor::isRecurrenceInstr(Instruction *I, RecurrenceKind Kind,
416                                         InstDesc &Prev, bool HasFunNoNaNAttr) {
417   bool FP = I->getType()->isFloatingPointTy();
418   Instruction *UAI = Prev.getUnsafeAlgebraInst();
419   if (!UAI && FP && !I->hasUnsafeAlgebra())
420     UAI = I; // Found an unsafe (unvectorizable) algebra instruction.
421
422   switch (I->getOpcode()) {
423   default:
424     return InstDesc(false, I);
425   case Instruction::PHI:
426     return InstDesc(I, Prev.getMinMaxKind());
427   case Instruction::Sub:
428   case Instruction::Add:
429     return InstDesc(Kind == RK_IntegerAdd, I);
430   case Instruction::Mul:
431     return InstDesc(Kind == RK_IntegerMult, I);
432   case Instruction::And:
433     return InstDesc(Kind == RK_IntegerAnd, I);
434   case Instruction::Or:
435     return InstDesc(Kind == RK_IntegerOr, I);
436   case Instruction::Xor:
437     return InstDesc(Kind == RK_IntegerXor, I);
438   case Instruction::FMul:
439     return InstDesc(Kind == RK_FloatMult, I, UAI);
440   case Instruction::FSub:
441   case Instruction::FAdd:
442     return InstDesc(Kind == RK_FloatAdd, I, UAI);
443   case Instruction::FCmp:
444   case Instruction::ICmp:
445   case Instruction::Select:
446     if (Kind != RK_IntegerMinMax &&
447         (!HasFunNoNaNAttr || Kind != RK_FloatMinMax))
448       return InstDesc(false, I);
449     return isMinMaxSelectCmpPattern(I, Prev);
450   }
451 }
452
453 bool RecurrenceDescriptor::hasMultipleUsesOf(
454     Instruction *I, SmallPtrSetImpl<Instruction *> &Insts) {
455   unsigned NumUses = 0;
456   for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E;
457        ++Use) {
458     if (Insts.count(dyn_cast<Instruction>(*Use)))
459       ++NumUses;
460     if (NumUses > 1)
461       return true;
462   }
463
464   return false;
465 }
466 bool RecurrenceDescriptor::isReductionPHI(PHINode *Phi, Loop *TheLoop,
467                                           RecurrenceDescriptor &RedDes) {
468
469   bool HasFunNoNaNAttr = false;
470   BasicBlock *Header = TheLoop->getHeader();
471   Function &F = *Header->getParent();
472   if (F.hasFnAttribute("no-nans-fp-math"))
473     HasFunNoNaNAttr =
474         F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true";
475
476   if (AddReductionVar(Phi, RK_IntegerAdd, TheLoop, HasFunNoNaNAttr, RedDes)) {
477     DEBUG(dbgs() << "Found an ADD reduction PHI." << *Phi << "\n");
478     return true;
479   }
480   if (AddReductionVar(Phi, RK_IntegerMult, TheLoop, HasFunNoNaNAttr, RedDes)) {
481     DEBUG(dbgs() << "Found a MUL reduction PHI." << *Phi << "\n");
482     return true;
483   }
484   if (AddReductionVar(Phi, RK_IntegerOr, TheLoop, HasFunNoNaNAttr, RedDes)) {
485     DEBUG(dbgs() << "Found an OR reduction PHI." << *Phi << "\n");
486     return true;
487   }
488   if (AddReductionVar(Phi, RK_IntegerAnd, TheLoop, HasFunNoNaNAttr, RedDes)) {
489     DEBUG(dbgs() << "Found an AND reduction PHI." << *Phi << "\n");
490     return true;
491   }
492   if (AddReductionVar(Phi, RK_IntegerXor, TheLoop, HasFunNoNaNAttr, RedDes)) {
493     DEBUG(dbgs() << "Found a XOR reduction PHI." << *Phi << "\n");
494     return true;
495   }
496   if (AddReductionVar(Phi, RK_IntegerMinMax, TheLoop, HasFunNoNaNAttr,
497                       RedDes)) {
498     DEBUG(dbgs() << "Found a MINMAX reduction PHI." << *Phi << "\n");
499     return true;
500   }
501   if (AddReductionVar(Phi, RK_FloatMult, TheLoop, HasFunNoNaNAttr, RedDes)) {
502     DEBUG(dbgs() << "Found an FMult reduction PHI." << *Phi << "\n");
503     return true;
504   }
505   if (AddReductionVar(Phi, RK_FloatAdd, TheLoop, HasFunNoNaNAttr, RedDes)) {
506     DEBUG(dbgs() << "Found an FAdd reduction PHI." << *Phi << "\n");
507     return true;
508   }
509   if (AddReductionVar(Phi, RK_FloatMinMax, TheLoop, HasFunNoNaNAttr, RedDes)) {
510     DEBUG(dbgs() << "Found an float MINMAX reduction PHI." << *Phi << "\n");
511     return true;
512   }
513   // Not a reduction of known type.
514   return false;
515 }
516
517 /// This function returns the identity element (or neutral element) for
518 /// the operation K.
519 Constant *RecurrenceDescriptor::getRecurrenceIdentity(RecurrenceKind K,
520                                                       Type *Tp) {
521   switch (K) {
522   case RK_IntegerXor:
523   case RK_IntegerAdd:
524   case RK_IntegerOr:
525     // Adding, Xoring, Oring zero to a number does not change it.
526     return ConstantInt::get(Tp, 0);
527   case RK_IntegerMult:
528     // Multiplying a number by 1 does not change it.
529     return ConstantInt::get(Tp, 1);
530   case RK_IntegerAnd:
531     // AND-ing a number with an all-1 value does not change it.
532     return ConstantInt::get(Tp, -1, true);
533   case RK_FloatMult:
534     // Multiplying a number by 1 does not change it.
535     return ConstantFP::get(Tp, 1.0L);
536   case RK_FloatAdd:
537     // Adding zero to a number does not change it.
538     return ConstantFP::get(Tp, 0.0L);
539   default:
540     llvm_unreachable("Unknown recurrence kind");
541   }
542 }
543
544 /// This function translates the recurrence kind to an LLVM binary operator.
545 unsigned RecurrenceDescriptor::getRecurrenceBinOp(RecurrenceKind Kind) {
546   switch (Kind) {
547   case RK_IntegerAdd:
548     return Instruction::Add;
549   case RK_IntegerMult:
550     return Instruction::Mul;
551   case RK_IntegerOr:
552     return Instruction::Or;
553   case RK_IntegerAnd:
554     return Instruction::And;
555   case RK_IntegerXor:
556     return Instruction::Xor;
557   case RK_FloatMult:
558     return Instruction::FMul;
559   case RK_FloatAdd:
560     return Instruction::FAdd;
561   case RK_IntegerMinMax:
562     return Instruction::ICmp;
563   case RK_FloatMinMax:
564     return Instruction::FCmp;
565   default:
566     llvm_unreachable("Unknown recurrence operation");
567   }
568 }
569
570 Value *RecurrenceDescriptor::createMinMaxOp(IRBuilder<> &Builder,
571                                             MinMaxRecurrenceKind RK,
572                                             Value *Left, Value *Right) {
573   CmpInst::Predicate P = CmpInst::ICMP_NE;
574   switch (RK) {
575   default:
576     llvm_unreachable("Unknown min/max recurrence kind");
577   case MRK_UIntMin:
578     P = CmpInst::ICMP_ULT;
579     break;
580   case MRK_UIntMax:
581     P = CmpInst::ICMP_UGT;
582     break;
583   case MRK_SIntMin:
584     P = CmpInst::ICMP_SLT;
585     break;
586   case MRK_SIntMax:
587     P = CmpInst::ICMP_SGT;
588     break;
589   case MRK_FloatMin:
590     P = CmpInst::FCMP_OLT;
591     break;
592   case MRK_FloatMax:
593     P = CmpInst::FCMP_OGT;
594     break;
595   }
596
597   // We only match FP sequences with unsafe algebra, so we can unconditionally
598   // set it on any generated instructions.
599   IRBuilder<>::FastMathFlagGuard FMFG(Builder);
600   FastMathFlags FMF;
601   FMF.setUnsafeAlgebra();
602   Builder.SetFastMathFlags(FMF);
603
604   Value *Cmp;
605   if (RK == MRK_FloatMin || RK == MRK_FloatMax)
606     Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp");
607   else
608     Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp");
609
610   Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
611   return Select;
612 }
613
614 InductionDescriptor::InductionDescriptor(Value *Start, InductionKind K,
615                                          ConstantInt *Step)
616   : StartValue(Start), IK(K), StepValue(Step) {
617   assert(IK != IK_NoInduction && "Not an induction");
618   assert(StartValue && "StartValue is null");
619   assert(StepValue && !StepValue->isZero() && "StepValue is zero");
620   assert((IK != IK_PtrInduction || StartValue->getType()->isPointerTy()) &&
621          "StartValue is not a pointer for pointer induction");
622   assert((IK != IK_IntInduction || StartValue->getType()->isIntegerTy()) &&
623          "StartValue is not an integer for integer induction");
624   assert(StepValue->getType()->isIntegerTy() &&
625          "StepValue is not an integer");
626 }
627
628 int InductionDescriptor::getConsecutiveDirection() const {
629   if (StepValue && (StepValue->isOne() || StepValue->isMinusOne()))
630     return StepValue->getSExtValue();
631   return 0;
632 }
633
634 Value *InductionDescriptor::transform(IRBuilder<> &B, Value *Index) const {
635   switch (IK) {
636   case IK_IntInduction:
637     assert(Index->getType() == StartValue->getType() &&
638            "Index type does not match StartValue type");
639     if (StepValue->isMinusOne())
640       return B.CreateSub(StartValue, Index);
641     if (!StepValue->isOne())
642       Index = B.CreateMul(Index, StepValue);
643     return B.CreateAdd(StartValue, Index);
644
645   case IK_PtrInduction:
646     assert(Index->getType() == StepValue->getType() &&
647            "Index type does not match StepValue type");
648     if (StepValue->isMinusOne())
649       Index = B.CreateNeg(Index);
650     else if (!StepValue->isOne())
651       Index = B.CreateMul(Index, StepValue);
652     return B.CreateGEP(nullptr, StartValue, Index);
653
654   case IK_NoInduction:
655     return nullptr;
656   }
657   llvm_unreachable("invalid enum");
658 }
659
660 bool InductionDescriptor::isInductionPHI(PHINode *Phi, ScalarEvolution *SE,
661                                          InductionDescriptor &D) {
662   Type *PhiTy = Phi->getType();
663   // We only handle integer and pointer inductions variables.
664   if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy())
665     return false;
666
667   // Check that the PHI is consecutive.
668   const SCEV *PhiScev = SE->getSCEV(Phi);
669   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
670   if (!AR) {
671     DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
672     return false;
673   }
674
675   assert(AR->getLoop()->getHeader() == Phi->getParent() &&
676          "PHI is an AddRec for a different loop?!");
677   Value *StartValue =
678     Phi->getIncomingValueForBlock(AR->getLoop()->getLoopPreheader());
679   const SCEV *Step = AR->getStepRecurrence(*SE);
680   // Calculate the pointer stride and check if it is consecutive.
681   const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
682   if (!C)
683     return false;
684
685   ConstantInt *CV = C->getValue();
686   if (PhiTy->isIntegerTy()) {
687     D = InductionDescriptor(StartValue, IK_IntInduction, CV);
688     return true;
689   }
690
691   assert(PhiTy->isPointerTy() && "The PHI must be a pointer");
692   Type *PointerElementType = PhiTy->getPointerElementType();
693   // The pointer stride cannot be determined if the pointer element type is not
694   // sized.
695   if (!PointerElementType->isSized())
696     return false;
697
698   const DataLayout &DL = Phi->getModule()->getDataLayout();
699   int64_t Size = static_cast<int64_t>(DL.getTypeAllocSize(PointerElementType));
700   if (!Size)
701     return false;
702
703   int64_t CVSize = CV->getSExtValue();
704   if (CVSize % Size)
705     return false;
706   auto *StepValue = ConstantInt::getSigned(CV->getType(), CVSize / Size);
707
708   D = InductionDescriptor(StartValue, IK_PtrInduction, StepValue);
709   return true;
710 }
711
712 /// \brief Returns the instructions that use values defined in the loop.
713 SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) {
714   SmallVector<Instruction *, 8> UsedOutside;
715
716   for (auto *Block : L->getBlocks())
717     // FIXME: I believe that this could use copy_if if the Inst reference could
718     // be adapted into a pointer.
719     for (auto &Inst : *Block) {
720       auto Users = Inst.users();
721       if (std::any_of(Users.begin(), Users.end(), [&](User *U) {
722             auto *Use = cast<Instruction>(U);
723             return !L->contains(Use->getParent());
724           }))
725         UsedOutside.push_back(&Inst);
726     }
727
728   return UsedOutside;
729 }