8af47530dbcec8acd70f8de22a3ca3c93cc95fab
[oota-llvm.git] / lib / Transforms / Scalar / SeparateConstOffsetFromGEP.cpp
1 //===-- SeparateConstOffsetFromGEP.cpp - ------------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Loop unrolling may create many similar GEPs for array accesses.
11 // e.g., a 2-level loop
12 //
13 // float a[32][32]; // global variable
14 //
15 // for (int i = 0; i < 2; ++i) {
16 //   for (int j = 0; j < 2; ++j) {
17 //     ...
18 //     ... = a[x + i][y + j];
19 //     ...
20 //   }
21 // }
22 //
23 // will probably be unrolled to:
24 //
25 // gep %a, 0, %x, %y; load
26 // gep %a, 0, %x, %y + 1; load
27 // gep %a, 0, %x + 1, %y; load
28 // gep %a, 0, %x + 1, %y + 1; load
29 //
30 // LLVM's GVN does not use partial redundancy elimination yet, and is thus
31 // unable to reuse (gep %a, 0, %x, %y). As a result, this misoptimization incurs
32 // significant slowdown in targets with limited addressing modes. For instance,
33 // because the PTX target does not support the reg+reg addressing mode, the
34 // NVPTX backend emits PTX code that literally computes the pointer address of
35 // each GEP, wasting tons of registers. It emits the following PTX for the
36 // first load and similar PTX for other loads.
37 //
38 // mov.u32         %r1, %x;
39 // mov.u32         %r2, %y;
40 // mul.wide.u32    %rl2, %r1, 128;
41 // mov.u64         %rl3, a;
42 // add.s64         %rl4, %rl3, %rl2;
43 // mul.wide.u32    %rl5, %r2, 4;
44 // add.s64         %rl6, %rl4, %rl5;
45 // ld.global.f32   %f1, [%rl6];
46 //
47 // To reduce the register pressure, the optimization implemented in this file
48 // merges the common part of a group of GEPs, so we can compute each pointer
49 // address by adding a simple offset to the common part, saving many registers.
50 //
51 // It works by splitting each GEP into a variadic base and a constant offset.
52 // The variadic base can be computed once and reused by multiple GEPs, and the
53 // constant offsets can be nicely folded into the reg+immediate addressing mode
54 // (supported by most targets) without using any extra register.
55 //
56 // For instance, we transform the four GEPs and four loads in the above example
57 // into:
58 //
59 // base = gep a, 0, x, y
60 // load base
61 // laod base + 1  * sizeof(float)
62 // load base + 32 * sizeof(float)
63 // load base + 33 * sizeof(float)
64 //
65 // Given the transformed IR, a backend that supports the reg+immediate
66 // addressing mode can easily fold the pointer arithmetics into the loads. For
67 // example, the NVPTX backend can easily fold the pointer arithmetics into the
68 // ld.global.f32 instructions, and the resultant PTX uses much fewer registers.
69 //
70 // mov.u32         %r1, %tid.x;
71 // mov.u32         %r2, %tid.y;
72 // mul.wide.u32    %rl2, %r1, 128;
73 // mov.u64         %rl3, a;
74 // add.s64         %rl4, %rl3, %rl2;
75 // mul.wide.u32    %rl5, %r2, 4;
76 // add.s64         %rl6, %rl4, %rl5;
77 // ld.global.f32   %f1, [%rl6]; // so far the same as unoptimized PTX
78 // ld.global.f32   %f2, [%rl6+4]; // much better
79 // ld.global.f32   %f3, [%rl6+128]; // much better
80 // ld.global.f32   %f4, [%rl6+132]; // much better
81 //
82 // Another improvement enabled by the LowerGEP flag is to lower a GEP with
83 // multiple indices to either multiple GEPs with a single index or arithmetic
84 // operations (depending on whether the target uses alias analysis in codegen).
85 // Such transformation can have following benefits:
86 // (1) It can always extract constants in the indices of structure type.
87 // (2) After such Lowering, there are more optimization opportunities such as
88 //     CSE, LICM and CGP.
89 //
90 // E.g. The following GEPs have multiple indices:
91 //  BB1:
92 //    %p = getelementptr [10 x %struct]* %ptr, i64 %i, i64 %j1, i32 3
93 //    load %p
94 //    ...
95 //  BB2:
96 //    %p2 = getelementptr [10 x %struct]* %ptr, i64 %i, i64 %j1, i32 2
97 //    load %p2
98 //    ...
99 //
100 // We can not do CSE for to the common part related to index "i64 %i". Lowering
101 // GEPs can achieve such goals.
102 // If the target does not use alias analysis in codegen, this pass will
103 // lower a GEP with multiple indices into arithmetic operations:
104 //  BB1:
105 //    %1 = ptrtoint [10 x %struct]* %ptr to i64    ; CSE opportunity
106 //    %2 = mul i64 %i, length_of_10xstruct         ; CSE opportunity
107 //    %3 = add i64 %1, %2                          ; CSE opportunity
108 //    %4 = mul i64 %j1, length_of_struct
109 //    %5 = add i64 %3, %4
110 //    %6 = add i64 %3, struct_field_3              ; Constant offset
111 //    %p = inttoptr i64 %6 to i32*
112 //    load %p
113 //    ...
114 //  BB2:
115 //    %7 = ptrtoint [10 x %struct]* %ptr to i64    ; CSE opportunity
116 //    %8 = mul i64 %i, length_of_10xstruct         ; CSE opportunity
117 //    %9 = add i64 %7, %8                          ; CSE opportunity
118 //    %10 = mul i64 %j2, length_of_struct
119 //    %11 = add i64 %9, %10
120 //    %12 = add i64 %11, struct_field_2            ; Constant offset
121 //    %p = inttoptr i64 %12 to i32*
122 //    load %p2
123 //    ...
124 //
125 // If the target uses alias analysis in codegen, this pass will lower a GEP
126 // with multiple indices into multiple GEPs with a single index:
127 //  BB1:
128 //    %1 = bitcast [10 x %struct]* %ptr to i8*     ; CSE opportunity
129 //    %2 = mul i64 %i, length_of_10xstruct         ; CSE opportunity
130 //    %3 = getelementptr i8* %1, i64 %2            ; CSE opportunity
131 //    %4 = mul i64 %j1, length_of_struct
132 //    %5 = getelementptr i8* %3, i64 %4
133 //    %6 = getelementptr i8* %5, struct_field_3    ; Constant offset
134 //    %p = bitcast i8* %6 to i32*
135 //    load %p
136 //    ...
137 //  BB2:
138 //    %7 = bitcast [10 x %struct]* %ptr to i8*     ; CSE opportunity
139 //    %8 = mul i64 %i, length_of_10xstruct         ; CSE opportunity
140 //    %9 = getelementptr i8* %7, i64 %8            ; CSE opportunity
141 //    %10 = mul i64 %j2, length_of_struct
142 //    %11 = getelementptr i8* %9, i64 %10
143 //    %12 = getelementptr i8* %11, struct_field_2  ; Constant offset
144 //    %p2 = bitcast i8* %12 to i32*
145 //    load %p2
146 //    ...
147 //
148 // Lowering GEPs can also benefit other passes such as LICM and CGP.
149 // LICM (Loop Invariant Code Motion) can not hoist/sink a GEP of multiple
150 // indices if one of the index is variant. If we lower such GEP into invariant
151 // parts and variant parts, LICM can hoist/sink those invariant parts.
152 // CGP (CodeGen Prepare) tries to sink address calculations that match the
153 // target's addressing modes. A GEP with multiple indices may not match and will
154 // not be sunk. If we lower such GEP into smaller parts, CGP may sink some of
155 // them. So we end up with a better addressing mode.
156 //
157 //===----------------------------------------------------------------------===//
158
159 #include "llvm/Analysis/TargetTransformInfo.h"
160 #include "llvm/Analysis/ValueTracking.h"
161 #include "llvm/IR/Constants.h"
162 #include "llvm/IR/DataLayout.h"
163 #include "llvm/IR/Instructions.h"
164 #include "llvm/IR/LLVMContext.h"
165 #include "llvm/IR/Module.h"
166 #include "llvm/IR/Operator.h"
167 #include "llvm/Support/CommandLine.h"
168 #include "llvm/Support/raw_ostream.h"
169 #include "llvm/Transforms/Scalar.h"
170 #include "llvm/Target/TargetMachine.h"
171 #include "llvm/Target/TargetSubtargetInfo.h"
172 #include "llvm/IR/IRBuilder.h"
173
174 using namespace llvm;
175
176 static cl::opt<bool> DisableSeparateConstOffsetFromGEP(
177     "disable-separate-const-offset-from-gep", cl::init(false),
178     cl::desc("Do not separate the constant offset from a GEP instruction"),
179     cl::Hidden);
180
181 namespace {
182
183 /// \brief A helper class for separating a constant offset from a GEP index.
184 ///
185 /// In real programs, a GEP index may be more complicated than a simple addition
186 /// of something and a constant integer which can be trivially splitted. For
187 /// example, to split ((a << 3) | 5) + b, we need to search deeper for the
188 /// constant offset, so that we can separate the index to (a << 3) + b and 5.
189 ///
190 /// Therefore, this class looks into the expression that computes a given GEP
191 /// index, and tries to find a constant integer that can be hoisted to the
192 /// outermost level of the expression as an addition. Not every constant in an
193 /// expression can jump out. e.g., we cannot transform (b * (a + 5)) to (b * a +
194 /// 5); nor can we transform (3 * (a + 5)) to (3 * a + 5), however in this case,
195 /// -instcombine probably already optimized (3 * (a + 5)) to (3 * a + 15).
196 class ConstantOffsetExtractor {
197  public:
198   /// Extracts a constant offset from the given GEP index. It returns the
199   /// new index representing the remainder (equal to the original index minus
200   /// the constant offset), or nullptr if we cannot extract a constant offset.
201   /// \p Idx    The given GEP index
202   /// \p GEP    The given GEP
203    static Value *Extract(Value *Idx, GetElementPtrInst *GEP);
204   /// Looks for a constant offset from the given GEP index without extracting
205   /// it. It returns the numeric value of the extracted constant offset (0 if
206   /// failed). The meaning of the arguments are the same as Extract.
207    static int64_t Find(Value *Idx, GetElementPtrInst *GEP);
208
209  private:
210    ConstantOffsetExtractor(Instruction *InsertionPt) : IP(InsertionPt) {}
211   /// Searches the expression that computes V for a non-zero constant C s.t.
212   /// V can be reassociated into the form V' + C. If the searching is
213   /// successful, returns C and update UserChain as a def-use chain from C to V;
214   /// otherwise, UserChain is empty.
215   ///
216   /// \p V            The given expression
217   /// \p SignExtended Whether V will be sign-extended in the computation of the
218   ///                 GEP index
219   /// \p ZeroExtended Whether V will be zero-extended in the computation of the
220   ///                 GEP index
221   /// \p NonNegative  Whether V is guaranteed to be non-negative. For example,
222   ///                 an index of an inbounds GEP is guaranteed to be
223   ///                 non-negative. Levaraging this, we can better split
224   ///                 inbounds GEPs.
225   APInt find(Value *V, bool SignExtended, bool ZeroExtended, bool NonNegative);
226   /// A helper function to look into both operands of a binary operator.
227   APInt findInEitherOperand(BinaryOperator *BO, bool SignExtended,
228                             bool ZeroExtended);
229   /// After finding the constant offset C from the GEP index I, we build a new
230   /// index I' s.t. I' + C = I. This function builds and returns the new
231   /// index I' according to UserChain produced by function "find".
232   ///
233   /// The building conceptually takes two steps:
234   /// 1) iteratively distribute s/zext towards the leaves of the expression tree
235   /// that computes I
236   /// 2) reassociate the expression tree to the form I' + C.
237   ///
238   /// For example, to extract the 5 from sext(a + (b + 5)), we first distribute
239   /// sext to a, b and 5 so that we have
240   ///   sext(a) + (sext(b) + 5).
241   /// Then, we reassociate it to
242   ///   (sext(a) + sext(b)) + 5.
243   /// Given this form, we know I' is sext(a) + sext(b).
244   Value *rebuildWithoutConstOffset();
245   /// After the first step of rebuilding the GEP index without the constant
246   /// offset, distribute s/zext to the operands of all operators in UserChain.
247   /// e.g., zext(sext(a + (b + 5)) (assuming no overflow) =>
248   /// zext(sext(a)) + (zext(sext(b)) + zext(sext(5))).
249   ///
250   /// The function also updates UserChain to point to new subexpressions after
251   /// distributing s/zext. e.g., the old UserChain of the above example is
252   /// 5 -> b + 5 -> a + (b + 5) -> sext(...) -> zext(sext(...)),
253   /// and the new UserChain is
254   /// zext(sext(5)) -> zext(sext(b)) + zext(sext(5)) ->
255   ///   zext(sext(a)) + (zext(sext(b)) + zext(sext(5))
256   ///
257   /// \p ChainIndex The index to UserChain. ChainIndex is initially
258   ///               UserChain.size() - 1, and is decremented during
259   ///               the recursion.
260   Value *distributeExtsAndCloneChain(unsigned ChainIndex);
261   /// Reassociates the GEP index to the form I' + C and returns I'.
262   Value *removeConstOffset(unsigned ChainIndex);
263   /// A helper function to apply ExtInsts, a list of s/zext, to value V.
264   /// e.g., if ExtInsts = [sext i32 to i64, zext i16 to i32], this function
265   /// returns "sext i32 (zext i16 V to i32) to i64".
266   Value *applyExts(Value *V);
267
268   /// Returns true if LHS and RHS have no bits in common, i.e., LHS | RHS == 0.
269   bool NoCommonBits(Value *LHS, Value *RHS) const;
270   /// Computes which bits are known to be one or zero.
271   /// \p KnownOne Mask of all bits that are known to be one.
272   /// \p KnownZero Mask of all bits that are known to be zero.
273   void ComputeKnownBits(Value *V, APInt &KnownOne, APInt &KnownZero) const;
274   /// A helper function that returns whether we can trace into the operands
275   /// of binary operator BO for a constant offset.
276   ///
277   /// \p SignExtended Whether BO is surrounded by sext
278   /// \p ZeroExtended Whether BO is surrounded by zext
279   /// \p NonNegative Whether BO is known to be non-negative, e.g., an in-bound
280   ///                array index.
281   bool CanTraceInto(bool SignExtended, bool ZeroExtended, BinaryOperator *BO,
282                     bool NonNegative);
283
284   /// The path from the constant offset to the old GEP index. e.g., if the GEP
285   /// index is "a * b + (c + 5)". After running function find, UserChain[0] will
286   /// be the constant 5, UserChain[1] will be the subexpression "c + 5", and
287   /// UserChain[2] will be the entire expression "a * b + (c + 5)".
288   ///
289   /// This path helps to rebuild the new GEP index.
290   SmallVector<User *, 8> UserChain;
291   /// A data structure used in rebuildWithoutConstOffset. Contains all
292   /// sext/zext instructions along UserChain.
293   SmallVector<CastInst *, 16> ExtInsts;
294   Instruction *IP;  /// Insertion position of cloned instructions.
295 };
296
297 /// \brief A pass that tries to split every GEP in the function into a variadic
298 /// base and a constant offset. It is a FunctionPass because searching for the
299 /// constant offset may inspect other basic blocks.
300 class SeparateConstOffsetFromGEP : public FunctionPass {
301  public:
302   static char ID;
303   SeparateConstOffsetFromGEP(const TargetMachine *TM = nullptr,
304                              bool LowerGEP = false)
305       : FunctionPass(ID), TM(TM), LowerGEP(LowerGEP) {
306     initializeSeparateConstOffsetFromGEPPass(*PassRegistry::getPassRegistry());
307   }
308
309   void getAnalysisUsage(AnalysisUsage &AU) const override {
310     AU.addRequired<TargetTransformInfoWrapperPass>();
311     AU.setPreservesCFG();
312   }
313
314   bool runOnFunction(Function &F) override;
315
316  private:
317   /// Tries to split the given GEP into a variadic base and a constant offset,
318   /// and returns true if the splitting succeeds.
319   bool splitGEP(GetElementPtrInst *GEP);
320   /// Lower a GEP with multiple indices into multiple GEPs with a single index.
321   /// Function splitGEP already split the original GEP into a variadic part and
322   /// a constant offset (i.e., AccumulativeByteOffset). This function lowers the
323   /// variadic part into a set of GEPs with a single index and applies
324   /// AccumulativeByteOffset to it.
325   /// \p Variadic                  The variadic part of the original GEP.
326   /// \p AccumulativeByteOffset    The constant offset.
327   void lowerToSingleIndexGEPs(GetElementPtrInst *Variadic,
328                               int64_t AccumulativeByteOffset);
329   /// Lower a GEP with multiple indices into ptrtoint+arithmetics+inttoptr form.
330   /// Function splitGEP already split the original GEP into a variadic part and
331   /// a constant offset (i.e., AccumulativeByteOffset). This function lowers the
332   /// variadic part into a set of arithmetic operations and applies
333   /// AccumulativeByteOffset to it.
334   /// \p Variadic                  The variadic part of the original GEP.
335   /// \p AccumulativeByteOffset    The constant offset.
336   void lowerToArithmetics(GetElementPtrInst *Variadic,
337                           int64_t AccumulativeByteOffset);
338   /// Finds the constant offset within each index and accumulates them. If
339   /// LowerGEP is true, it finds in indices of both sequential and structure
340   /// types, otherwise it only finds in sequential indices. The output
341   /// NeedsExtraction indicates whether we successfully find a non-zero constant
342   /// offset.
343   int64_t accumulateByteOffset(GetElementPtrInst *GEP, bool &NeedsExtraction);
344   /// Canonicalize array indices to pointer-size integers. This helps to
345   /// simplify the logic of splitting a GEP. For example, if a + b is a
346   /// pointer-size integer, we have
347   ///   gep base, a + b = gep (gep base, a), b
348   /// However, this equality may not hold if the size of a + b is smaller than
349   /// the pointer size, because LLVM conceptually sign-extends GEP indices to
350   /// pointer size before computing the address
351   /// (http://llvm.org/docs/LangRef.html#id181).
352   ///
353   /// This canonicalization is very likely already done in clang and
354   /// instcombine. Therefore, the program will probably remain the same.
355   ///
356   /// Returns true if the module changes.
357   ///
358   /// Verified in @i32_add in split-gep.ll
359   bool canonicalizeArrayIndicesToPointerSize(GetElementPtrInst *GEP);
360
361   const TargetMachine *TM;
362   /// Whether to lower a GEP with multiple indices into arithmetic operations or
363   /// multiple GEPs with a single index.
364   bool LowerGEP;
365 };
366 }  // anonymous namespace
367
368 char SeparateConstOffsetFromGEP::ID = 0;
369 INITIALIZE_PASS_BEGIN(
370     SeparateConstOffsetFromGEP, "separate-const-offset-from-gep",
371     "Split GEPs to a variadic base and a constant offset for better CSE", false,
372     false)
373 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
374 INITIALIZE_PASS_END(
375     SeparateConstOffsetFromGEP, "separate-const-offset-from-gep",
376     "Split GEPs to a variadic base and a constant offset for better CSE", false,
377     false)
378
379 FunctionPass *
380 llvm::createSeparateConstOffsetFromGEPPass(const TargetMachine *TM,
381                                            bool LowerGEP) {
382   return new SeparateConstOffsetFromGEP(TM, LowerGEP);
383 }
384
385 bool ConstantOffsetExtractor::CanTraceInto(bool SignExtended,
386                                             bool ZeroExtended,
387                                             BinaryOperator *BO,
388                                             bool NonNegative) {
389   // We only consider ADD, SUB and OR, because a non-zero constant found in
390   // expressions composed of these operations can be easily hoisted as a
391   // constant offset by reassociation.
392   if (BO->getOpcode() != Instruction::Add &&
393       BO->getOpcode() != Instruction::Sub &&
394       BO->getOpcode() != Instruction::Or) {
395     return false;
396   }
397
398   Value *LHS = BO->getOperand(0), *RHS = BO->getOperand(1);
399   // Do not trace into "or" unless it is equivalent to "add". If LHS and RHS
400   // don't have common bits, (LHS | RHS) is equivalent to (LHS + RHS).
401   if (BO->getOpcode() == Instruction::Or && !NoCommonBits(LHS, RHS))
402     return false;
403
404   // In addition, tracing into BO requires that its surrounding s/zext (if
405   // any) is distributable to both operands.
406   //
407   // Suppose BO = A op B.
408   //  SignExtended | ZeroExtended | Distributable?
409   // --------------+--------------+----------------------------------
410   //       0       |      0       | true because no s/zext exists
411   //       0       |      1       | zext(BO) == zext(A) op zext(B)
412   //       1       |      0       | sext(BO) == sext(A) op sext(B)
413   //       1       |      1       | zext(sext(BO)) ==
414   //               |              |     zext(sext(A)) op zext(sext(B))
415   if (BO->getOpcode() == Instruction::Add && !ZeroExtended && NonNegative) {
416     // If a + b >= 0 and (a >= 0 or b >= 0), then
417     //   sext(a + b) = sext(a) + sext(b)
418     // even if the addition is not marked nsw.
419     //
420     // Leveraging this invarient, we can trace into an sext'ed inbound GEP
421     // index if the constant offset is non-negative.
422     //
423     // Verified in @sext_add in split-gep.ll.
424     if (ConstantInt *ConstLHS = dyn_cast<ConstantInt>(LHS)) {
425       if (!ConstLHS->isNegative())
426         return true;
427     }
428     if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(RHS)) {
429       if (!ConstRHS->isNegative())
430         return true;
431     }
432   }
433
434   // sext (add/sub nsw A, B) == add/sub nsw (sext A), (sext B)
435   // zext (add/sub nuw A, B) == add/sub nuw (zext A), (zext B)
436   if (BO->getOpcode() == Instruction::Add ||
437       BO->getOpcode() == Instruction::Sub) {
438     if (SignExtended && !BO->hasNoSignedWrap())
439       return false;
440     if (ZeroExtended && !BO->hasNoUnsignedWrap())
441       return false;
442   }
443
444   return true;
445 }
446
447 APInt ConstantOffsetExtractor::findInEitherOperand(BinaryOperator *BO,
448                                                    bool SignExtended,
449                                                    bool ZeroExtended) {
450   // BO being non-negative does not shed light on whether its operands are
451   // non-negative. Clear the NonNegative flag here.
452   APInt ConstantOffset = find(BO->getOperand(0), SignExtended, ZeroExtended,
453                               /* NonNegative */ false);
454   // If we found a constant offset in the left operand, stop and return that.
455   // This shortcut might cause us to miss opportunities of combining the
456   // constant offsets in both operands, e.g., (a + 4) + (b + 5) => (a + b) + 9.
457   // However, such cases are probably already handled by -instcombine,
458   // given this pass runs after the standard optimizations.
459   if (ConstantOffset != 0) return ConstantOffset;
460   ConstantOffset = find(BO->getOperand(1), SignExtended, ZeroExtended,
461                         /* NonNegative */ false);
462   // If U is a sub operator, negate the constant offset found in the right
463   // operand.
464   if (BO->getOpcode() == Instruction::Sub)
465     ConstantOffset = -ConstantOffset;
466   return ConstantOffset;
467 }
468
469 APInt ConstantOffsetExtractor::find(Value *V, bool SignExtended,
470                                     bool ZeroExtended, bool NonNegative) {
471   // TODO(jingyue): We could trace into integer/pointer casts, such as
472   // inttoptr, ptrtoint, bitcast, and addrspacecast. We choose to handle only
473   // integers because it gives good enough results for our benchmarks.
474   unsigned BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
475
476   // We cannot do much with Values that are not a User, such as an Argument.
477   User *U = dyn_cast<User>(V);
478   if (U == nullptr) return APInt(BitWidth, 0);
479
480   APInt ConstantOffset(BitWidth, 0);
481   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
482     // Hooray, we found it!
483     ConstantOffset = CI->getValue();
484   } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(V)) {
485     // Trace into subexpressions for more hoisting opportunities.
486     if (CanTraceInto(SignExtended, ZeroExtended, BO, NonNegative)) {
487       ConstantOffset = findInEitherOperand(BO, SignExtended, ZeroExtended);
488     }
489   } else if (isa<SExtInst>(V)) {
490     ConstantOffset = find(U->getOperand(0), /* SignExtended */ true,
491                           ZeroExtended, NonNegative).sext(BitWidth);
492   } else if (isa<ZExtInst>(V)) {
493     // As an optimization, we can clear the SignExtended flag because
494     // sext(zext(a)) = zext(a). Verified in @sext_zext in split-gep.ll.
495     //
496     // Clear the NonNegative flag, because zext(a) >= 0 does not imply a >= 0.
497     ConstantOffset =
498         find(U->getOperand(0), /* SignExtended */ false,
499              /* ZeroExtended */ true, /* NonNegative */ false).zext(BitWidth);
500   }
501
502   // If we found a non-zero constant offset, add it to the path for
503   // rebuildWithoutConstOffset. Zero is a valid constant offset, but doesn't
504   // help this optimization.
505   if (ConstantOffset != 0)
506     UserChain.push_back(U);
507   return ConstantOffset;
508 }
509
510 Value *ConstantOffsetExtractor::applyExts(Value *V) {
511   Value *Current = V;
512   // ExtInsts is built in the use-def order. Therefore, we apply them to V
513   // in the reversed order.
514   for (auto I = ExtInsts.rbegin(), E = ExtInsts.rend(); I != E; ++I) {
515     if (Constant *C = dyn_cast<Constant>(Current)) {
516       // If Current is a constant, apply s/zext using ConstantExpr::getCast.
517       // ConstantExpr::getCast emits a ConstantInt if C is a ConstantInt.
518       Current = ConstantExpr::getCast((*I)->getOpcode(), C, (*I)->getType());
519     } else {
520       Instruction *Ext = (*I)->clone();
521       Ext->setOperand(0, Current);
522       Ext->insertBefore(IP);
523       Current = Ext;
524     }
525   }
526   return Current;
527 }
528
529 Value *ConstantOffsetExtractor::rebuildWithoutConstOffset() {
530   distributeExtsAndCloneChain(UserChain.size() - 1);
531   // Remove all nullptrs (used to be s/zext) from UserChain.
532   unsigned NewSize = 0;
533   for (auto I = UserChain.begin(), E = UserChain.end(); I != E; ++I) {
534     if (*I != nullptr) {
535       UserChain[NewSize] = *I;
536       NewSize++;
537     }
538   }
539   UserChain.resize(NewSize);
540   return removeConstOffset(UserChain.size() - 1);
541 }
542
543 Value *
544 ConstantOffsetExtractor::distributeExtsAndCloneChain(unsigned ChainIndex) {
545   User *U = UserChain[ChainIndex];
546   if (ChainIndex == 0) {
547     assert(isa<ConstantInt>(U));
548     // If U is a ConstantInt, applyExts will return a ConstantInt as well.
549     return UserChain[ChainIndex] = cast<ConstantInt>(applyExts(U));
550   }
551
552   if (CastInst *Cast = dyn_cast<CastInst>(U)) {
553     assert((isa<SExtInst>(Cast) || isa<ZExtInst>(Cast)) &&
554            "We only traced into two types of CastInst: sext and zext");
555     ExtInsts.push_back(Cast);
556     UserChain[ChainIndex] = nullptr;
557     return distributeExtsAndCloneChain(ChainIndex - 1);
558   }
559
560   // Function find only trace into BinaryOperator and CastInst.
561   BinaryOperator *BO = cast<BinaryOperator>(U);
562   // OpNo = which operand of BO is UserChain[ChainIndex - 1]
563   unsigned OpNo = (BO->getOperand(0) == UserChain[ChainIndex - 1] ? 0 : 1);
564   Value *TheOther = applyExts(BO->getOperand(1 - OpNo));
565   Value *NextInChain = distributeExtsAndCloneChain(ChainIndex - 1);
566
567   BinaryOperator *NewBO = nullptr;
568   if (OpNo == 0) {
569     NewBO = BinaryOperator::Create(BO->getOpcode(), NextInChain, TheOther,
570                                    BO->getName(), IP);
571   } else {
572     NewBO = BinaryOperator::Create(BO->getOpcode(), TheOther, NextInChain,
573                                    BO->getName(), IP);
574   }
575   return UserChain[ChainIndex] = NewBO;
576 }
577
578 Value *ConstantOffsetExtractor::removeConstOffset(unsigned ChainIndex) {
579   if (ChainIndex == 0) {
580     assert(isa<ConstantInt>(UserChain[ChainIndex]));
581     return ConstantInt::getNullValue(UserChain[ChainIndex]->getType());
582   }
583
584   BinaryOperator *BO = cast<BinaryOperator>(UserChain[ChainIndex]);
585   unsigned OpNo = (BO->getOperand(0) == UserChain[ChainIndex - 1] ? 0 : 1);
586   assert(BO->getOperand(OpNo) == UserChain[ChainIndex - 1]);
587   Value *NextInChain = removeConstOffset(ChainIndex - 1);
588   Value *TheOther = BO->getOperand(1 - OpNo);
589
590   // If NextInChain is 0 and not the LHS of a sub, we can simplify the
591   // sub-expression to be just TheOther.
592   if (ConstantInt *CI = dyn_cast<ConstantInt>(NextInChain)) {
593     if (CI->isZero() && !(BO->getOpcode() == Instruction::Sub && OpNo == 0))
594       return TheOther;
595   }
596
597   if (BO->getOpcode() == Instruction::Or) {
598     // Rebuild "or" as "add", because "or" may be invalid for the new
599     // epxression.
600     //
601     // For instance, given
602     //   a | (b + 5) where a and b + 5 have no common bits,
603     // we can extract 5 as the constant offset.
604     //
605     // However, reusing the "or" in the new index would give us
606     //   (a | b) + 5
607     // which does not equal a | (b + 5).
608     //
609     // Replacing the "or" with "add" is fine, because
610     //   a | (b + 5) = a + (b + 5) = (a + b) + 5
611     if (OpNo == 0) {
612       return BinaryOperator::CreateAdd(NextInChain, TheOther, BO->getName(),
613                                        IP);
614     } else {
615       return BinaryOperator::CreateAdd(TheOther, NextInChain, BO->getName(),
616                                        IP);
617     }
618   }
619
620   // We can reuse BO in this case, because the new expression shares the same
621   // instruction type and BO is used at most once.
622   assert(BO->getNumUses() <= 1 &&
623          "distributeExtsAndCloneChain clones each BinaryOperator in "
624          "UserChain, so no one should be used more than "
625          "once");
626   BO->setOperand(OpNo, NextInChain);
627   BO->setHasNoSignedWrap(false);
628   BO->setHasNoUnsignedWrap(false);
629   // Make sure it appears after all instructions we've inserted so far.
630   BO->moveBefore(IP);
631   return BO;
632 }
633
634 Value *ConstantOffsetExtractor::Extract(Value *Idx, GetElementPtrInst *GEP) {
635   ConstantOffsetExtractor Extractor(GEP);
636   // Find a non-zero constant offset first.
637   APInt ConstantOffset =
638       Extractor.find(Idx, /* SignExtended */ false, /* ZeroExtended */ false,
639                      GEP->isInBounds());
640   if (ConstantOffset == 0)
641     return nullptr;
642   // Separates the constant offset from the GEP index.
643   return Extractor.rebuildWithoutConstOffset();
644 }
645
646 int64_t ConstantOffsetExtractor::Find(Value *Idx, GetElementPtrInst *GEP) {
647   // If Idx is an index of an inbound GEP, Idx is guaranteed to be non-negative.
648   return ConstantOffsetExtractor(GEP)
649       .find(Idx, /* SignExtended */ false, /* ZeroExtended */ false,
650             GEP->isInBounds())
651       .getSExtValue();
652 }
653
654 void ConstantOffsetExtractor::ComputeKnownBits(Value *V, APInt &KnownOne,
655                                                APInt &KnownZero) const {
656   IntegerType *IT = cast<IntegerType>(V->getType());
657   KnownOne = APInt(IT->getBitWidth(), 0);
658   KnownZero = APInt(IT->getBitWidth(), 0);
659   const DataLayout &DL = IP->getModule()->getDataLayout();
660   llvm::computeKnownBits(V, KnownZero, KnownOne, DL, 0);
661 }
662
663 bool ConstantOffsetExtractor::NoCommonBits(Value *LHS, Value *RHS) const {
664   assert(LHS->getType() == RHS->getType() &&
665          "LHS and RHS should have the same type");
666   APInt LHSKnownOne, LHSKnownZero, RHSKnownOne, RHSKnownZero;
667   ComputeKnownBits(LHS, LHSKnownOne, LHSKnownZero);
668   ComputeKnownBits(RHS, RHSKnownOne, RHSKnownZero);
669   return (LHSKnownZero | RHSKnownZero).isAllOnesValue();
670 }
671
672 bool SeparateConstOffsetFromGEP::canonicalizeArrayIndicesToPointerSize(
673     GetElementPtrInst *GEP) {
674   bool Changed = false;
675   const DataLayout &DL = GEP->getModule()->getDataLayout();
676   Type *IntPtrTy = DL.getIntPtrType(GEP->getType());
677   gep_type_iterator GTI = gep_type_begin(*GEP);
678   for (User::op_iterator I = GEP->op_begin() + 1, E = GEP->op_end();
679        I != E; ++I, ++GTI) {
680     // Skip struct member indices which must be i32.
681     if (isa<SequentialType>(*GTI)) {
682       if ((*I)->getType() != IntPtrTy) {
683         *I = CastInst::CreateIntegerCast(*I, IntPtrTy, true, "idxprom", GEP);
684         Changed = true;
685       }
686     }
687   }
688   return Changed;
689 }
690
691 int64_t
692 SeparateConstOffsetFromGEP::accumulateByteOffset(GetElementPtrInst *GEP,
693                                                  bool &NeedsExtraction) {
694   NeedsExtraction = false;
695   int64_t AccumulativeByteOffset = 0;
696   gep_type_iterator GTI = gep_type_begin(*GEP);
697   const DataLayout &DL = GEP->getModule()->getDataLayout();
698   for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) {
699     if (isa<SequentialType>(*GTI)) {
700       // Tries to extract a constant offset from this GEP index.
701       int64_t ConstantOffset =
702           ConstantOffsetExtractor::Find(GEP->getOperand(I), GEP);
703       if (ConstantOffset != 0) {
704         NeedsExtraction = true;
705         // A GEP may have multiple indices.  We accumulate the extracted
706         // constant offset to a byte offset, and later offset the remainder of
707         // the original GEP with this byte offset.
708         AccumulativeByteOffset +=
709             ConstantOffset * DL.getTypeAllocSize(GTI.getIndexedType());
710       }
711     } else if (LowerGEP) {
712       StructType *StTy = cast<StructType>(*GTI);
713       uint64_t Field = cast<ConstantInt>(GEP->getOperand(I))->getZExtValue();
714       // Skip field 0 as the offset is always 0.
715       if (Field != 0) {
716         NeedsExtraction = true;
717         AccumulativeByteOffset +=
718             DL.getStructLayout(StTy)->getElementOffset(Field);
719       }
720     }
721   }
722   return AccumulativeByteOffset;
723 }
724
725 void SeparateConstOffsetFromGEP::lowerToSingleIndexGEPs(
726     GetElementPtrInst *Variadic, int64_t AccumulativeByteOffset) {
727   IRBuilder<> Builder(Variadic);
728   const DataLayout &DL = Variadic->getModule()->getDataLayout();
729   Type *IntPtrTy = DL.getIntPtrType(Variadic->getType());
730
731   Type *I8PtrTy =
732       Builder.getInt8PtrTy(Variadic->getType()->getPointerAddressSpace());
733   Value *ResultPtr = Variadic->getOperand(0);
734   if (ResultPtr->getType() != I8PtrTy)
735     ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy);
736
737   gep_type_iterator GTI = gep_type_begin(*Variadic);
738   // Create an ugly GEP for each sequential index. We don't create GEPs for
739   // structure indices, as they are accumulated in the constant offset index.
740   for (unsigned I = 1, E = Variadic->getNumOperands(); I != E; ++I, ++GTI) {
741     if (isa<SequentialType>(*GTI)) {
742       Value *Idx = Variadic->getOperand(I);
743       // Skip zero indices.
744       if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx))
745         if (CI->isZero())
746           continue;
747
748       APInt ElementSize = APInt(IntPtrTy->getIntegerBitWidth(),
749                                 DL.getTypeAllocSize(GTI.getIndexedType()));
750       // Scale the index by element size.
751       if (ElementSize != 1) {
752         if (ElementSize.isPowerOf2()) {
753           Idx = Builder.CreateShl(
754               Idx, ConstantInt::get(IntPtrTy, ElementSize.logBase2()));
755         } else {
756           Idx = Builder.CreateMul(Idx, ConstantInt::get(IntPtrTy, ElementSize));
757         }
758       }
759       // Create an ugly GEP with a single index for each index.
760       ResultPtr =
761           Builder.CreateGEP(Builder.getInt8Ty(), ResultPtr, Idx, "uglygep");
762     }
763   }
764
765   // Create a GEP with the constant offset index.
766   if (AccumulativeByteOffset != 0) {
767     Value *Offset = ConstantInt::get(IntPtrTy, AccumulativeByteOffset);
768     ResultPtr =
769         Builder.CreateGEP(Builder.getInt8Ty(), ResultPtr, Offset, "uglygep");
770   }
771   if (ResultPtr->getType() != Variadic->getType())
772     ResultPtr = Builder.CreateBitCast(ResultPtr, Variadic->getType());
773
774   Variadic->replaceAllUsesWith(ResultPtr);
775   Variadic->eraseFromParent();
776 }
777
778 void
779 SeparateConstOffsetFromGEP::lowerToArithmetics(GetElementPtrInst *Variadic,
780                                                int64_t AccumulativeByteOffset) {
781   IRBuilder<> Builder(Variadic);
782   const DataLayout &DL = Variadic->getModule()->getDataLayout();
783   Type *IntPtrTy = DL.getIntPtrType(Variadic->getType());
784
785   Value *ResultPtr = Builder.CreatePtrToInt(Variadic->getOperand(0), IntPtrTy);
786   gep_type_iterator GTI = gep_type_begin(*Variadic);
787   // Create ADD/SHL/MUL arithmetic operations for each sequential indices. We
788   // don't create arithmetics for structure indices, as they are accumulated
789   // in the constant offset index.
790   for (unsigned I = 1, E = Variadic->getNumOperands(); I != E; ++I, ++GTI) {
791     if (isa<SequentialType>(*GTI)) {
792       Value *Idx = Variadic->getOperand(I);
793       // Skip zero indices.
794       if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx))
795         if (CI->isZero())
796           continue;
797
798       APInt ElementSize = APInt(IntPtrTy->getIntegerBitWidth(),
799                                 DL.getTypeAllocSize(GTI.getIndexedType()));
800       // Scale the index by element size.
801       if (ElementSize != 1) {
802         if (ElementSize.isPowerOf2()) {
803           Idx = Builder.CreateShl(
804               Idx, ConstantInt::get(IntPtrTy, ElementSize.logBase2()));
805         } else {
806           Idx = Builder.CreateMul(Idx, ConstantInt::get(IntPtrTy, ElementSize));
807         }
808       }
809       // Create an ADD for each index.
810       ResultPtr = Builder.CreateAdd(ResultPtr, Idx);
811     }
812   }
813
814   // Create an ADD for the constant offset index.
815   if (AccumulativeByteOffset != 0) {
816     ResultPtr = Builder.CreateAdd(
817         ResultPtr, ConstantInt::get(IntPtrTy, AccumulativeByteOffset));
818   }
819
820   ResultPtr = Builder.CreateIntToPtr(ResultPtr, Variadic->getType());
821   Variadic->replaceAllUsesWith(ResultPtr);
822   Variadic->eraseFromParent();
823 }
824
825 bool SeparateConstOffsetFromGEP::splitGEP(GetElementPtrInst *GEP) {
826   // Skip vector GEPs.
827   if (GEP->getType()->isVectorTy())
828     return false;
829
830   // The backend can already nicely handle the case where all indices are
831   // constant.
832   if (GEP->hasAllConstantIndices())
833     return false;
834
835   bool Changed = canonicalizeArrayIndicesToPointerSize(GEP);
836
837   bool NeedsExtraction;
838   int64_t AccumulativeByteOffset = accumulateByteOffset(GEP, NeedsExtraction);
839
840   if (!NeedsExtraction)
841     return Changed;
842   // If LowerGEP is disabled, before really splitting the GEP, check whether the
843   // backend supports the addressing mode we are about to produce. If no, this
844   // splitting probably won't be beneficial.
845   // If LowerGEP is enabled, even the extracted constant offset can not match
846   // the addressing mode, we can still do optimizations to other lowered parts
847   // of variable indices. Therefore, we don't check for addressing modes in that
848   // case.
849   if (!LowerGEP) {
850     TargetTransformInfo &TTI =
851         getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
852             *GEP->getParent()->getParent());
853     if (!TTI.isLegalAddressingMode(GEP->getType()->getElementType(),
854                                    /*BaseGV=*/nullptr, AccumulativeByteOffset,
855                                    /*HasBaseReg=*/true, /*Scale=*/0)) {
856       return Changed;
857     }
858   }
859
860   // Remove the constant offset in each sequential index. The resultant GEP
861   // computes the variadic base.
862   // Notice that we don't remove struct field indices here. If LowerGEP is
863   // disabled, a structure index is not accumulated and we still use the old
864   // one. If LowerGEP is enabled, a structure index is accumulated in the
865   // constant offset. LowerToSingleIndexGEPs or lowerToArithmetics will later
866   // handle the constant offset and won't need a new structure index.
867   gep_type_iterator GTI = gep_type_begin(*GEP);
868   for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) {
869     if (isa<SequentialType>(*GTI)) {
870       // Splits this GEP index into a variadic part and a constant offset, and
871       // uses the variadic part as the new index.
872       Value *NewIdx = ConstantOffsetExtractor::Extract(GEP->getOperand(I), GEP);
873       if (NewIdx != nullptr) {
874         GEP->setOperand(I, NewIdx);
875       }
876     }
877   }
878
879   // Clear the inbounds attribute because the new index may be off-bound.
880   // e.g.,
881   //
882   // b = add i64 a, 5
883   // addr = gep inbounds float* p, i64 b
884   //
885   // is transformed to:
886   //
887   // addr2 = gep float* p, i64 a
888   // addr = gep float* addr2, i64 5
889   //
890   // If a is -4, although the old index b is in bounds, the new index a is
891   // off-bound. http://llvm.org/docs/LangRef.html#id181 says "if the
892   // inbounds keyword is not present, the offsets are added to the base
893   // address with silently-wrapping two's complement arithmetic".
894   // Therefore, the final code will be a semantically equivalent.
895   //
896   // TODO(jingyue): do some range analysis to keep as many inbounds as
897   // possible. GEPs with inbounds are more friendly to alias analysis.
898   GEP->setIsInBounds(false);
899
900   // Lowers a GEP to either GEPs with a single index or arithmetic operations.
901   if (LowerGEP) {
902     // As currently BasicAA does not analyze ptrtoint/inttoptr, do not lower to
903     // arithmetic operations if the target uses alias analysis in codegen.
904     if (TM && TM->getSubtargetImpl(*GEP->getParent()->getParent())->useAA())
905       lowerToSingleIndexGEPs(GEP, AccumulativeByteOffset);
906     else
907       lowerToArithmetics(GEP, AccumulativeByteOffset);
908     return true;
909   }
910
911   // No need to create another GEP if the accumulative byte offset is 0.
912   if (AccumulativeByteOffset == 0)
913     return true;
914
915   // Offsets the base with the accumulative byte offset.
916   //
917   //   %gep                        ; the base
918   //   ... %gep ...
919   //
920   // => add the offset
921   //
922   //   %gep2                       ; clone of %gep
923   //   %new.gep = gep %gep2, <offset / sizeof(*%gep)>
924   //   %gep                        ; will be removed
925   //   ... %gep ...
926   //
927   // => replace all uses of %gep with %new.gep and remove %gep
928   //
929   //   %gep2                       ; clone of %gep
930   //   %new.gep = gep %gep2, <offset / sizeof(*%gep)>
931   //   ... %new.gep ...
932   //
933   // If AccumulativeByteOffset is not a multiple of sizeof(*%gep), we emit an
934   // uglygep (http://llvm.org/docs/GetElementPtr.html#what-s-an-uglygep):
935   // bitcast %gep2 to i8*, add the offset, and bitcast the result back to the
936   // type of %gep.
937   //
938   //   %gep2                       ; clone of %gep
939   //   %0       = bitcast %gep2 to i8*
940   //   %uglygep = gep %0, <offset>
941   //   %new.gep = bitcast %uglygep to <type of %gep>
942   //   ... %new.gep ...
943   Instruction *NewGEP = GEP->clone();
944   NewGEP->insertBefore(GEP);
945
946   // Per ANSI C standard, signed / unsigned = unsigned and signed % unsigned =
947   // unsigned.. Therefore, we cast ElementTypeSizeOfGEP to signed because it is
948   // used with unsigned integers later.
949   const DataLayout &DL = GEP->getModule()->getDataLayout();
950   int64_t ElementTypeSizeOfGEP = static_cast<int64_t>(
951       DL.getTypeAllocSize(GEP->getType()->getElementType()));
952   Type *IntPtrTy = DL.getIntPtrType(GEP->getType());
953   if (AccumulativeByteOffset % ElementTypeSizeOfGEP == 0) {
954     // Very likely. As long as %gep is natually aligned, the byte offset we
955     // extracted should be a multiple of sizeof(*%gep).
956     int64_t Index = AccumulativeByteOffset / ElementTypeSizeOfGEP;
957     NewGEP = GetElementPtrInst::Create(GEP->getResultElementType(), NewGEP,
958                                        ConstantInt::get(IntPtrTy, Index, true),
959                                        GEP->getName(), GEP);
960   } else {
961     // Unlikely but possible. For example,
962     // #pragma pack(1)
963     // struct S {
964     //   int a[3];
965     //   int64 b[8];
966     // };
967     // #pragma pack()
968     //
969     // Suppose the gep before extraction is &s[i + 1].b[j + 3]. After
970     // extraction, it becomes &s[i].b[j] and AccumulativeByteOffset is
971     // sizeof(S) + 3 * sizeof(int64) = 100, which is not a multiple of
972     // sizeof(int64).
973     //
974     // Emit an uglygep in this case.
975     Type *I8PtrTy = Type::getInt8PtrTy(GEP->getContext(),
976                                        GEP->getPointerAddressSpace());
977     NewGEP = new BitCastInst(NewGEP, I8PtrTy, "", GEP);
978     NewGEP = GetElementPtrInst::Create(
979         Type::getInt8Ty(GEP->getContext()), NewGEP,
980         ConstantInt::get(IntPtrTy, AccumulativeByteOffset, true), "uglygep",
981         GEP);
982     if (GEP->getType() != I8PtrTy)
983       NewGEP = new BitCastInst(NewGEP, GEP->getType(), GEP->getName(), GEP);
984   }
985
986   GEP->replaceAllUsesWith(NewGEP);
987   GEP->eraseFromParent();
988
989   return true;
990 }
991
992 bool SeparateConstOffsetFromGEP::runOnFunction(Function &F) {
993   if (skipOptnoneFunction(F))
994     return false;
995
996   if (DisableSeparateConstOffsetFromGEP)
997     return false;
998
999   bool Changed = false;
1000   for (Function::iterator B = F.begin(), BE = F.end(); B != BE; ++B) {
1001     for (BasicBlock::iterator I = B->begin(), IE = B->end(); I != IE; ) {
1002       if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I++)) {
1003         Changed |= splitGEP(GEP);
1004       }
1005       // No need to split GEP ConstantExprs because all its indices are constant
1006       // already.
1007     }
1008   }
1009   return Changed;
1010 }